
ORIGINAL ARTICLE

Lazy zone bone remodeling theory and its relation to topology
optimization

Anders Klarbring • Bo Torstenfelt

Received: 27 April 2012 / Accepted: 30 October 2012 / Published online: 7 November 2012

� Springer-Verlag Berlin Heidelberg 2012

Abstract The connection between apparent density-type

bone remodeling theories and density formulations of

topology optimization is well known from a large number

of publications and its theoretical basis has recently been

discussed by making use of a dynamical systems approach

to optimization. The present paper takes this connection

one step further by showing how the Coleman–Noll pro-

cedure of rational thermodynamics can be used to derive

general dynamical systems, where a special case includes

the lazy zone concept of bone remodeling theory. It is also

shown how a numerical solution method for the dynamical

system can be developed by using the sequential convex

approximation idea. The method is employed to obtain a

series of solutions that show the influence of modeling

parameters representing elements of plasticity and viscos-

ity in the growth process.

1 Introduction

It is well known that there is a resemblance between, on the

one hand, bone remodeling theories based on adaptive

elasticity and apparent density, see Cowin and Hegedus

[5], and, on the other hand, material distribution optimi-

zation problems such as that given by the SIMP formula-

tion of topology optimization, see, e.g., Christensen and

Klarbring [4]. Research aimed at applying topology

optimization theory to bone remodeling can be found in,

e.g., recent work by Jang and Kim [11–13], while studies

with the converse aim, i.e., applying bone remodeling

theories in structural and topology optimization, can be

found in Penninger et al. [19] and Andreaus et al. [1]. The

theoretical basis for this connection of theories is inde-

pendently discussed in Jang et al. [14] and Klarbring and

Torstenfelt [15, 16]. To be more specific, in the latter

works we showed that there is a one-to-one correspondence

between a dynamical systems approach to SIMP topology

optimization and the apparent density bone remodeling

theory of Harrigan and Hamilton [8, 9]. The latter theory is

based on a formal finite element formulation where

Young’s modules is related to the density by a power law,

and a strain energy driven evolution equation for the den-

sity is used.

In the following we extend this analogy and develop a

refined theory comprising the so-called lazy zone concept,

meaning that, for a certain intermediate range of remod-

eling stimuli, no bone remodeling takes place. This concept

was originally suggested in an experimental context by

Carter [3] and first used in a computational model by

Huiskes et al. [10]. It has since then been discussed and

used in a large number of publications. Its general idea is

depicted in Fig. 1 of this paper where the apparent density

evolution is represented by the y-axis and the strain energy

stimuli is represented by the x-axis.

Our theoretical development starts from a Lyaponov-

type inequality, which in the dynamical systems approach

replaces the optimization formulation as the basic problem

statement. We then observe that this inequality resembles

the well-known dissipation inequality of thermodynamics,

stated for instance in Gurtin et al. [7] or Frémond [6]. In

fact, the logical status of these two inequalities are the

same: we are to find a dynamical system that satisfies the
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inequality for all possible evolutions. In thermodynamics,

this particular modeling step is known as the Coleman–

Noll procedure, [6, 7]. Following this procedure we derive

a general dynamical system that when specialized takes the

form of a lazy zone bone remodeling theory.

The resulting dynamical system is subsequently investi-

gated by developing a numerical method based on an implicit

time discretization, followed by a sequential explicit convex

approximation in the standard manner of structural optimi-

zation, see, e.g., Christensen and Klarbring [4]. Next, we

present a series of numerical solutions showing the influence

of different modeling parameters. Finally, the conclusions of

our investigations are summarized.

2 Basic theory

The standard formulation of structural optimization (the

sizing, density or SIMP topology optimization version), see

e.g. [4], is the following:

min
u;q2K

f ðu; qÞ subject to F ¼ KðqÞu; ð1Þ

where

• q ¼ ðq1; . . .; qEÞT is a vector of E design or configu-

rational variables (see discussion below);

• K is a set of such variables. In the following it takes the

form of simple box constraints, i.e.,

K ¼
YE

i¼1

Ki; Ki ¼ fqi j q� qi� qg;

where q and q are upper and lower bounds;

• the equilibrium equation of discrete structures

F ¼ KðqÞu; ð2Þ

consists of a vector F of external forces, a displacement

vector u and a positive semi-definite stiffness matrix KðqÞ
that depends on q;

• and f ðu; qÞ is a goal or objective function.

Here E is the number of finite elements in the structure,

and for simplicity we assume that there is one design

variable for each such element.

In the SIMP formulation, the dependence of the stiffness

matrix on the vector q is given by

KðqÞ ¼
XE

i¼1

qq
i Ki ð3Þ

where q is a positive exponent and Ki is an element stiff-

ness matrix for a unit value of the design variable qi. In

topology optimization, q is a design variable whose ele-

ments take values between 0 and 1, i.e., q ¼ 0 and q ¼ 1;

and intermediate values are penalized by letting the

exponent q of (3) be larger than one. In the bone remod-

eling interpretation of the same formulation, q represents

an apparent density, and while its lower bound is still zero,

its upper bound corresponds to the density of compact

bone. In the following we will refer to q as a vector of

configurational variables, somehow including two different

interpretations of the theory.

In this paper we use a dynamical systems approach and

do not deal directly with the optimization problem (1).

Rather, we regard the displacements and the configura-

tional variables as depending on a time variable t, i.e.,

u ¼ uðtÞ and q ¼ qðtÞ; and derive dynamical systems that

satisfy certain Lyaponov-type inequalities. A simple such

inequality, see [16], which can be applied when the

external force F does not depend on time, reads

d

dt
f ðu; qÞ� 0

for all u and q 2 K such that F ¼ KðqÞu:
ð4Þ

That is, we assume a quasi-static time evolution of the

system such that the goal or objective function is never

increasing. For biological systems, such as those involved

in bone remodeling, stating an inequality like (4) implies

that we have, experimentally or otherwise, observed an

extremum property that we use as a postulate in modeling.

The observation could be, e.g., that cost of material and/or

mechanical efficiency are developing towards lower or

homeostatic values during a growth process.

Obviously, (4) is a statement of different kind from (1):

the latter problem is to be solved for a certain optimum

ðu�; q�Þ, while (4) is a requirement that should be satisfied

by a dynamical system. An example of a dynamical system

that satisfies (4) is

_qi ¼ �
o~f ðqÞ
oqi

; ð5Þ

where a superposed dot indicates a time derivative, and
~f ðqÞ ¼ f ðuðqÞ; qÞ, where uðqÞ solves (2), assuming that the

Fig. 1 Geometric representation of equation (15), including a lazy

zone of length d- ? d?
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stiffness matrix is non-singular. Equation (5) and the

optimization problem (1) are now related in the sense that

an equilibrium point q� of (5) (satisfying o~f ðq�Þ=oqi ¼ 0)

has the property that ðuðq�Þ; q�Þ is a stationary point of (1)

and the time sequence q ¼ qðtÞ defined by (5) converges

towards such a point. However, not all dynamical systems

that satisfy (4) define sequences that converge to stationary

points of (1), and such systems will in fact be central to the

present investigation. In such cases, however, we regard (4)

as a statement that is closer to the physical behavior that we

want to model than (1) is.

We may also note that the case of a time-dependent load

and objective function, as well as the extension to cyclic

loading, is discussed in Klarbring and Torstenfelt [16].

2.1 Dynamical system

We will now derive a general dynamical system that sat-

isfies the Lyaponov inequality (4). Such a derivation is

analogous to that of the Coleman–Noll procedure of ther-

modynamics. As a first step we relax the equilibrium

equation (2). Taking its time derivative (for constant F)

yields

XE

i¼1

oKðqÞ
oqi

u _qi þ KðqÞ _u ¼ 0:

By multiplying this equation by a Lagrangian multiplier

vector k and adding to the inequality in (4), we get

ruf ðu; qÞT þ kT KðqÞ
� �

_u

þ
XE

i¼1

of ðu; qÞ
oqi

þ kT oKðqÞ
oqi

u

� �
_qi� 0;

which must be satisfied for all evolutions of u; k and q 2 K.

This requirement can be met by assuming the adjoint

system

ruf ðu; qÞ þ KðqÞk ¼ 0; ð6Þ

where we have used the symmetry of KðqÞ, and the

inequality

XE

i¼1

Ri _qi� 0; ð7Þ

where Ri are configurational forces associated with growth

that satisfy

�Ri 2
of ðu; qÞ

oqi

þ kT oKðqÞ
oqi

uþ oIKi
ðqiÞ: ð8Þ

In the last term of (8), the symbol q indicates the subdif-

ferential of a convex function, see, e.g., Rockafellar [20]

or, for its use in mechanics, Panagiotopoulos [18] and

Frémond [6]. The convex function is in this case the

indicator function of the convex set Ki, i.e., a function that

takes the value 0 for points inside the set and infinity for

points outside the set.

A direct way of satisfying (7) for all _qi is to postulate the

relation Ri ¼ ki _qi for a non-negative function ki that could,

e.g., depend on q, u and their time derivatives. This was the

route taken in Klarbring and Torstenfelt [16]. However,

here we will take an alternative approach that will even-

tually lead to the incorporation of the lazy zone concept

into the model. We will use positive convex potentials

Dið _qiÞ, with the properties 0 = Di(0), 0 2 oDið0Þ, and such

that

Ri 2 oDið _qiÞ; ð9Þ

see, e.g., Frémond [6]. The potential could depend on other

variables than _qi in the same way as for ki, but these act as

parameters and the subdifferential is with respect to _qi.

Note that (9) can be multi-valued and the potential could

take the value 1, implying a constraint on admissible

values of _qi, which are features not present in Ri ¼ ki _qi. On

the other hand, Ri ¼ ki _qi could represent a non-monotone

relation between Ri and _qi, which is not included in (9)

since D needs to be convex. A non-convex generalization

of (9) has, however, been suggested by Panagiotopoulos

[18]. Using (9), the evolution law for configurational

variables now reads

0 2 of ðu; qÞ
oqi

þ kT oKðqÞ
oqi

uþ oDið _qiÞ þ oIKi
ðqiÞ: ð10Þ

In the following we will investigate the particular convex

potential

Di ¼
aic

2
_q2

i þ
aidþ _qi if _qi� 0

�aid� _qi if _qi\0;

�
ð11Þ

where c, d? and d- are positive constants and ai may be

interpreted as the volume (or area) of element i. The choice

of this potential is basically one of convenience: it is the

simplest potential that includes both a viscous growth

effect, represented by the first term, and a plastic growth

behavior, represented by the second term. However, an

important motivation for choosing this particular potential

is that it turns out to model the lazy zone behavior of bone

remodeling, i.e., there is a range of stimulus for which no

growth takes place, see [3, 10]. With this potential (9)

becomes

Ri 2 aic _qi þ
aidþ if _qi [ 0

ai½�d�; dþ� if _qi ¼ 0

�aid� if _qi\0:

8
<

:

Since this relation is multi-valued it is different from what

can be represented by Ri ¼ ki _qi, even when ki is a general

function of _qi:
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2.2 Special goal function

The preceding presentation is valid for a general objective

or goal function. Here we will specialize to a particular

function that involves compliance (inverse of stiffness), C,

and cost of material, W, defined by

C ¼ 1

2
FT u and W ¼

XE

i¼1

aiqi:

If the cost of material is measured by its weight, which is a

natural choice, the constant ai would be the volume of

element i. A natural goal function is now

f ¼ C þ lW ; ð12Þ

for some constant l. For this special case,

ruf ðu; qÞ ¼ F=2, so by comparing the adjoint system (6)

and the equilibrium equation (2) one finds that k ¼ �u=2.

Moreover, assuming that KðqÞ is non-singular for all

q 2 K, u can be seen as a function of q, defined by (2). This

implies that (10) takes the form

0 2 lai � eiðqÞ þ oDið _qiÞ þ oIKi
ðqiÞ; ð13Þ

where we have used the notation

eiðqÞ ¼
1

2
uT oKðqÞ

oqi

u:

Specializing further by taking the particular form of the

function Di in (11), (13) becomes

0 2 lai � eiðqÞ þ aic _qi þ
aidþ if _qi [ 0

ai½�d�; dþ� if _qi ¼ 0

�aid� if _qi\0:

8
<

:

ð14Þ

When c 6¼ 0, this inclusion can be inverted and we obtain

_qi ¼
c�1 eiðqÞ

ai
� l� dþ

� �
if

eiðqÞ
ai

[ lþ dþ

0 if l� d� � eiðqÞ
ai
� lþ dþ

c�1 eiðqÞ
ai
� lþ d�

� �
if

eiðqÞ
ai

\l� d�:

8
>>><

>>>:

ð15Þ

Note that since eiðqÞ� 0, due to positive semi-definiteness

of Ki, we need to have l[ d- for the last line to ever be

applicable. This means that bone resorption never takes

place unless this condition holds, and the physical

interpretation is that the cost of bone has to be higher

than a measure of energy consumption when removing

bone. Equation (15) appears as a purely phenomenological

equation in the bone remodeling literature. It is thought of

as modeling the so called lazy zone behavior, which means

that for mature bone there is a range of stimuli for which

the bone is stable and does not remodel. Note that the

stimuli turns out to be

eiðqÞ
ai
¼ qUi; Ui ¼

1

2

uTqq
i Kiu

aiqi

;

where Ui is the mass specific strain energy of element

i. Equation (15) is illustrated in Fig. 1.

When c = 0, (14) represents a purely plastic behavior; it

implies

l� d� �
eiðqÞ

ai
� lþ dþ;

together with the growth direction criterion

_qi

� 0 if
eiðqÞ

ai
¼ lþ dþ

¼ 0 if l� d�\ eiðqÞ
ai

\lþ dþ

� 0 if
eiðqÞ

ai
¼ l� d�:

8
><

>:

3 Numerical method

For the numerical integration of (13), including (14) as a

special case, we discretize time into steps of length Dt.

Given a solution qn at time tn, we find the solution q at time

tn?1 by solving

0 2 df ðuðqÞ; qÞ
dqi

þ oIKi
ðqiÞ þ oDi

qi � qn
i

Dt

	 

: ð16Þ

This is essentially an implicit time discretization scheme

and (16) defines a unilateral stationary point of the

optimization problem

ðMÞn min
q2K

f ðuðqÞ; qÞ þ Dt
XE

i¼1

Di
qi � qn

i

Dt

	 
" #
:

To solve ðMÞn, in the case when Di is given by (11), we

suggest a sequential convex approximation strategy, see

Christensen and Klarbring [4]. This means solving an

iterative sequence of problems defined by convex

approximations of the objective function of ðMÞn. These

approximations should involve explicit functions of q, as

opposed to the original objective function where uðqÞ is

defined implicitly by solving (2). The first term of the goal

function, see (12), is linearized in the, so-called,

intervening variables qi
-a, a[ 0, see Christensen and

Klarbring [4]. If the linearization is made at the point qk we

obtain

f ðuðqÞ; qÞ � const.þ
XE

i¼1

eiðqkÞa�1ðqk
i Þ

1þaq�a
i þ laiqi

h i
:

ð17Þ

The approximation of ðMÞn then reads
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ðMÞn;k min
q2K

XE

i¼1

un;k
i ðqiÞ ¼

XE

i¼1

min
qi2Ki

un;k
i ðqiÞ;

where

un;k
i ðqiÞ¼ eiðqkÞa�1ðqk

i Þ
1þaq�a

i þlaiqi

þ1

2
ciai
ðqi�qn

i Þ
2

Dt
þ

dþaiðqi�qn
i Þ if qi�qn

i

�d�aiðqi�qn
i Þ if qi\qn

i :

�

The switch of min and sum in ðMÞn;k is possible due to the

separability of the approximation (17). The solution of the

inner convex subproblem of minimizing un;k
i ðqiÞ over the

interval Ki will be one out of five types: the minimum is

taken

(1) at the left endpoint qi ¼ q,

(2) at the right endpoint qi ¼ q,

(3) at the non-differentiable point qi = qi
n,

(4) at a stationary point on the interval q\qi\qn
i , or

(5) at a stationary point on the interval qn
i \qi\q:

Making the trail assumption that a stationary point occurs

in the interval qn
i \qi\q we find

oun;k
i ðqiÞ
oqi

¼ aiðlþ dþÞ þ
ciai

Dt
ðqi � qn

i Þ

� eiðqkÞðqk
i Þ

1þaq�ð1þaÞ
i

¼ 0:

For general constants, this is an equation that is not

explicitly solvable. Nonetheless, we call its unique solution
1q̂k

i and for the special case ci = 0 we have

qi ¼
eiðqkÞ

aiðlþ dþÞ

	 
 1
1þa

qk
i :

Assuming that a stationary point is taken in q\qi\qn
i we

find the same equation where d? is replaced for -d-. The

corresponding solution is denoted 2q̂k
i , and we end up with

the following updating alternatives:

if 1q̂k
i � q then qkþ1

i ¼ q
if 2q̂k

i � q then qkþ1
i ¼ q

if q[ 1q̂k
i [ qn

i then qkþ1
i ¼ 1 q̂k

i

if q\ 2q̂k
i \qn

i then qkþ1
i ¼ 2 q̂k

i

if 2q̂k
i � qn

i � 1q̂k
i then qkþ1

i ¼ qn
i :

Finally it should be remarked that when the exponent q in

(3) is grater than one, it is well known that the underlying

continuum problem may lack a solution, which shows up in

the discrete problem as checkerboards and mesh depen-

dence, see [4]. To avoid such incorrect solutions, we use the

filtering scheme suggested by Sigmund, discussed in [21]. It

essentially means using a weighted averaging of eiðqkÞ over

nearby elements. It is interesting that checkerboards

appeared also in early bone remodeling calculations, and to

remedy this Mullender et al. [17] introduced a spatial

influence function and the notion of sensor cells, in close

analogy with the filter approach used in topology

optimization.

4 Numerical results

We like to investigate the influence on the solution of the

parameters c (viscosity), d? and d- (plasticity), as well as

the initial distribution of the configurational variable q. The

loading will be a step loading (time independent F) and we

will presents plots showing converged, i.e., equilibrium,

distributions of q. We divide the investigation into two

parts: first the convex case q = 1 and then the non-convex

case of q = 3 are treated. For a discussion of convexity and

non-convexity of these goal functions we refer to Svanberg

[22]. The dimensions of the computational domain are 1.8

by 0.3 and the load is uniformly distributed over a

boundary segment of length 0.06. Due to symmetry, we

model half of the domain. Poisson’s ratio is taken to be 0.3.

The finite element discretization is obtained by four node

square Lagrangian displacement elements of length 0.01

resulting in a total of 2,700 elements. The upper and lower

bounds on the configurational variable are q ¼ 0:001 � 0

and q ¼ 1. For each set of problems, we fix the value of the

constant l by first solving a classical stiffness optimization

problem with volume constraint. In such a problem l
corresponds to a Lagrangian multiplier, Christensen and

Klarbring [4].

4.1 Convex case

In Fig. 2 we show the influence of the plasticity parameter

d-, while c and d? are set to zero. In the the top plot,

however, d- = 0, which reduces the problem to a classical

problem (essentially the convex variable thickness sheet

problem, see [4]), while in the other two plots d- is set to a

fraction of l, namely 0.5 l and 0.8 l. Since c = 0, the

problem is reduced to a single time step: after convergence

of the first time step there is no change in the solution in the

following steps since the load is constant. This is a con-

sequence of the time scale independence of plasticity

problems. However, even though the scale is unimportant,

the problem is path dependent when d� 6¼ 0, implying that

the initial distribution of q has an influence on the final

solution. In Fig. 2 it is seen that the plasticity effect pre-

vents material from being removed: the top picture repre-

sents the minimum of the goal function f = C ? l W while

in the other two pictures the plasticity or friction effect

prevents the solution from reaching this minimum. If the

displacement value for the central point under the load is
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normalized so that its value in the top picture of Fig. 2 is 1,

the corresponding displacements, in the same scale, for the

other two solutions are 0.7976 and 0.6501. These numbers

indicate the obvious fact that stiffer structures are obtained

when less material is removed.

In Fig. 3 the opposite effect to that in Fig. 2 is illus-

trated: the plasticity parameter d? is varied, while c and d-

are set to zero and we start from an initial configurational

parameter which takes the lower value q � 0 in all ele-

ments. The upper plot is the same as the upper picture in

Fig. 2, i.e., it is the reference case of all three parameters

being zero. In the lower two plots we have set d? equal

to l and 2 l, respectively. In this case the plasticity or

friction prevents material from being added and the dis-

placement under the load becomes, when normalized, 1,

1.309 and 1.550 from top to bottom.

We now turn to the influence of the parameter c. In

Fig. 4 we start from a distribution qi ¼ q in all elements

and d- = 0.5 l. We then show converged, i.e., equilibrium

distributions, for three values of c, namely 0; 10�14Dt and

10�12Dt. It is clear that c has the effect of smoothing out

the solution, increasing the length scale of its geometrical

features. The normalized displacements become 1, 1.003

and 1.010. Thus, a non-zero c gives a distribution that

represents a marginally less stiff structure. Note that vis-

cosity (non-vanishing c) introduces a time scale into the

problem and we have to use a sequence of time steps. A

similar test on the influence of c has also been done for the

case with initial distribution q � 0. Essential the same

behavior as in the reported test is found.

4.2 Non-convex case

The sequence of test runs reported above can also be made

for the non-convex case of q = 3. The solutions then

become more of the black-white type but are otherwise

exhibiting a behavior similar to the convex case. In Fig. 5

we start from qi ¼ q and test different values of d-. The

normalized displacements are from top to bottom 1, 0.7562

and 0.5478.

The similar problem when starting from qi ¼ q shows

the expected behavior that a higher value of d? produces a

Fig. 2 The influence of the plasticity parameter d- when

c = d? = 0, we start from an initial distribution of qi ¼ q for all

elements, and q = 1. From top to bottom we have set d- equal to 0,

0.5 l and 0.8 l

Fig. 3 The influence of the plasticity parameter d? when

c = d- = 0, we start from an initial distribution of qi ¼ q for all

elements, and q = 1. From top to bottom we have set d? equal to 0, l
and 2 l
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thinner structure but the topology is the same in all

calculations.

Finally, we study the influence of the parameter c in the

non-convex case. We start again from a full distribution

qi ¼ q and use the same values for c as in the convex case.

The normalized displacements from top to bottom become

1, 1,004 and 1,1586. The lower picture, representing the

largest viscosity, shows quite a different behavior from the

other solutions. Clearly, a sufficiently large viscosity

smooths out the solution and does not give a black-white

solution.

5 Conclusions and discussion

The connection between certain bone remodeling theories

and a density approach to topology optimization, which

was previously discussed in Klarbring and Torstenfelt [15,

16], has been taken one step further in the present paper,

showing how more refined bone remodeling theories, e.g.,

involving a lazy zone, fits into a dynamical systems

approach to optimization. The well-known Coleman–Noll

procedure of rational thermodynamics turns out to be

applicable in the derivation of dynamical systems. This is

seen essentially by letting the objective function play the

role of a thermodynamic free energy. The resulting mod-

eling approach is flexible and by making particular choices

for the objective function and the dissipation function

particular remodeling theories can be obtained, one such

theory is demonstrated to involve the lazy zone context.

Moreover, it is shown that the lazy zone model is related to

elements of plasticity and viscosity in the growth process.

Furthermore, we show how the general idea of linear-

izing in an intermediate variable, well known in structural

optimization, can be used in obtaining an algorithm for the

solution of the dynamical system. An extensive set of

numerical tests indicate the effect of different parameters

involved. In particularly, we find that inclusion of viscosity

tends to smooth out an otherwise black and white solution.

The discussion and developments of this paper was

limited to static loading, since our main goal was to show

the inclusion of the lazy zone concept into our previously

developed theory. However, in [16] we have shown how to

use time dependent loads and a time dependent goal

Fig. 4 The influence of the viscosity parameter c when d? = 0,

d- = 0.5 l, we start from an initial distribution of qi ¼ q for all

elements, and q = 1. From top to bottom we have set c equal to 0,

10�14Dt and 10�12Dt

Fig. 5 The influence of the plasticity parameter d- when

c = d? = 0, we start from an initial distribution of qi ¼ q for all

elements, and q = 3. From top to bottom we have set d- equal to 0,

0.5 l and 0.8 l
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function. In fact, in that paper we also discussed the

possibility of treating cyclic loading by means of several

simultaneous load cases. Obviously, such cyclic loading,

arising typically in walking, is important in bone remod-

eling calculations. Although, this theory of time dependent

loading was presented in the context of the equation

Ri ¼ ki _qi, instead of (9), it is easily extended to this later

case.

Finally, we note that although the problems discussed in

this paper are obviously test problems, chosen to demon-

strate the impact of different modeling parameters, the

general approach is not limited to simple geometries in two

dimensions. This has been amply demonstrated in the

topology optimization literature and by the existence of

several widely used commercial programs. In the context

of bone remodeling, the recent paper by Boyle and Kim [2]

shows that three-dimensional bone remodeling calculations

for real geometries are possible.
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