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Abstract The aim of this paper is to develop on discrete

models that reproduce the behavior of a crowd of people in

several emergency evacuation situations. The first step in

this study is to determine how to treat contacts between

pedestrians. For that, three already existing discrete

approaches, one smooth and two non-smooth, originally

proposed to simulate the collisions of granular assemblies,

are first analyzed both from the theoretical and the

numerical point of view. The solving algorithms are pre-

sented and the numerical formulation of the two non-

smooth approaches is compared to standard plasticity in

order to point out the common theoretical framework. The

next step is to adapt these discrete approaches to represent

pedestrians. The key point is to introduce a ‘‘willingness’’

for each particle through a specific desired velocity. These

adapted discrete approaches are able to handle local

interactions, like pedestrian-pedestrian or pedestrian-

obstacle contacts, in order to reproduce the global dynamic

of pedestrian traffic. Finally, results of several simulations

in emergency configurations are presented as well as

compared to real exercise ones.

Keywords Granular assembly � Human crowd � Contact �
Collision � Pedestrian traffic � Emergency evacuation �
Numerical algorithm

1 Introduction

Over the last 50 years, many studies have been performed

to describe the behavior of walking pedestrians [17, 18].

Models of crowd movements have been developed to

reproduce particular crowd phenomena. These models may

be classified according to the mode of representation of the

crowd: (1) macroscopic models, where the crowd is rep-

resented as a whole [2, 5, 23, 25, 26, 44, 45], or (2)

microscopic models [4, 18, 19, 24, 38, 40, 41, 43, 49, 52,

53], where the behavior, actions, and decisions of each

crowd member are treated individually.

In this paper, a microscopic crowd model is sought. The

first step in the modeling is to manage the contacts between

pedestrians. Many approaches have been developed over

the last decades to simulate the evolution and movements

of granular systems formed by perfectly rigid particles.

Among them, some of the most widely used belong to the

‘‘Discrete Element’’ (DE) class, which deals with multiple

simultaneous collisions. Thus, our idea is to extend and

adapt these discrete models for studying the movements of

human flow networks. To be considered as a pedestrian,

each particle must have a ‘‘willingness’’ to move toward a

given target, which might be time varying.

Within the DE class, two categories can be identified

according to the way the contact is treated: the ‘‘smooth’’
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approaches [1, 9, 10, 30] and the ‘‘non-smooth’’ approa-

ches [15, 16, 27, 28, 36, 37, 39, 47, 48, 50, 46].

Regular approaches introduced by Cundall [9] handle

contacts with a repulsion force. The contact forces are

determined by a direct calculation: the forces’ amplitude

depends on the distance between particles. The use of stiff

repulsion laws leads to a ‘‘slight’’ interpenetration between

particles and requires small time steps to ensure the sta-

bility of the time integration scheme. The Distinct Element

Method (DEM) (Cundall [9, 10]) is characteristic of this

class of regular approaches. It has inspired many of the

other approaches in this class and is often used for com-

parison and understanding of their performance. Helbing

[18-20] already applied such an approach to the crowd.

In non-regular approaches, contact forces are determined

from the solution of local nonlinear equations. The non-

smoothness is retrieved in three nonlinear aspects: (1) spatial

non-linearity, due to the condition of geometric non-inter-

penetration (use of inequalities instead of equalities); (2)

time nonlinearity, due to shocks between particles (velocity

discontinuities); and (iii) the nonlinear contact law. Non-

regular laws are used to link forces with the configuration

parameters (unilateral contact). The most prevalent non-

smooth approach in granular media simulations is the Non-

Smooth Contact Dynamics (NSCD) approach, developed by

Moreau and co-workers [28, 37, 48, 50]. It is based on the use

of the ‘‘coefficient of restitution’’ in order to represent

changes in the relative velocity of a rigid particle before and

after collision. Two approaches built following Moreau’s

line of work and termed respectively, ‘‘NSM1’’ and ‘‘NSM2’’

caught our attention. In the first one developed by Maury

[32], the contact force between two colliding particles is

determined with a constraint on the particles’ position. Such

an approach has already been applied to crowd modeling by

Venel [33, 53]. The second approach has been proposed by

Frémond and co-workers [11, 12, 15, 16], where the contact

force between two colliding particles is determined with a

constraint on the relative deformation velocity between

particles, as in Moreau’s approach. The particles’ system is

considered deformable, and the motion equations result from

the principle of virtual work, whereas constitutive laws are

given by a pseudopotential of dissipation. In Frémond’s

approach, the rebound is characterized through a ‘‘coeffi-

cient of dissipation’’ instead of the ‘‘coefficient of restitu-

tion’’ used by Moreau. Frémond [16] showed that the use of a

restitution coefficient may be inappropriate in correctly

representing the collision of more than two particles.

This paper is divided into three parts. The first section

introduces the three approaches previously mentioned that

are well-suited for studying granular assemblies: DEM,

NSM1 and NSM2. Both their theoretical and numerical

aspects are presented. Making some assumptions, both

non-smooth approaches will be rewritten with the same

formalism as the one used for the standard plasticity. In

NSM2, for the sake of simplicity, a quadratic pseudopo-

tential of dissipation augmented with indicator functions is

chosen in the following numerical simulations. In the

second section, we focus on how to adapt the three

approaches to the crowd by giving a ‘‘willingness’’ to the

particles [41, 42, 43]. Finally, several numerical simula-

tions of emergency evacuation situations are performed

and presented in the last section to compare the three

approaches with each other and with experimental data.

2 Presentation of three approaches for granular media

A granular medium is by definition a set of particles sub-

jected to gravity that interact with each other by contacts,

with or without friction and with or without cohesion. In

this paper, we assume that the movement of the particles

stays in a plane, particles are circular with a more or less

large size, and their rotation is neglected. However, refer to

Dal Pont and Dimnet [11] for extended research with

particles of more complex shapes.

Let us consider a system of N circular particles moving

in a plane. The center position of the ith particle is

described by the vector tq
i
¼ ðqx

i ; q
y
i Þ 2 R2; ri is the radius,

and uiðtÞ ¼
dq

i
ðtÞ

dt is the velocity. When the generalized

displacement vector q of size 2N;t q ¼ ðtq
1
;t q

2
; . . .;t q

N
Þ; is

assumed to be a regular function of time, the dynamics

equation for each particle can be written as the following

differential system:

_qðtÞ ¼ uðtÞ
M _uðtÞ ¼ f ðtÞ þ gðtÞ

�
ð1Þ

where M is the 2N � 2N mass matrix of all the particles; _q
denotes the generalized velocity vector of size 2N, or
t _q ¼ ðt _q

1
;t _q

2
; . . .;t _q

N
Þ; and f (resp. g) is the vector of

forces at a distance (resp. contact forces) of size 2N

applied to the system, or tf ¼ ðtf
1
;t f

2
; . . .;t f

N
Þ (resp.

tg ¼ ðtg
1
;t g

2
; . . .;t g

N
Þ).

Two major steps exist in each of the three approaches:

the detection and the treatment of every contact. We ana-

lyze only particle-particle interactions because particle-

obstacle interactions can be treated analogously.

The detection of contact is straightforward in the case of

circular particles. Let us introduce the unit vector eij directed

from particle i to particle j by eij ¼
q

j
�q

i

kq
j
�q

i
k : The distance Dij

between two particles i and j can be expressed as:

DijðqÞ ¼ kqj
� q

i
k � ðri þ rjÞ ð2Þ

where kq
j
� q

i
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qx

j � qx
i

� �2

þ qy
j � qy

i

� �2
r

:
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There is contact between particles i and j when DijðqÞ ¼
0 and an overlap when DijðqÞ\0: In order to reduce the

computation time, an efficient method of detection of

contacts [14], or closest neighbors, becomes necessary

when the number of considered particles increases. How-

ever, due to the relatively small number of considered

particles in the simulations presented in this article, its use

is not necessary in our research.

The next step is to determine the contact force vector

gðtÞ in order to find uðtÞ and qðtÞ: In DEM, the local

contact force between two particles i and j is chosen to be

proportional to Dij; in NSM1, it is defined so that particles

never overlap, i.e. there is a constraint on the particles’

position; and finally, in NSM2, it is determined by means of

a constraint on the relative deformation velocity between

particles. Differences and similarities in contact treatment

among the three approaches are detailed in the next sec-

tions, both analytically and numerically. Thus, it will be

shown that the discretization of both the NSM1 and NSM2

approaches fits into the same framework of constrained

minimization problems.

2.1 Theoretical aspects of the three approaches

2.1.1 DEM

In the ‘‘smooth’’ approach introduced by Cundall in the

seventies [9, 10], contacts are treated using regular forces.

The expression of the repulsive force representing local

interaction through contact between particles i and

j, applied to particle i, is given by:

g
ij
ðtÞ ¼ k min 0;DijðqðtÞÞ

� �
eijðtÞ ð3Þ

where k is a constant stiffness. Helbing et al. [20] chose

k = 1.2 9 105 kg s-2 for crowd simulations.

The total contact force applied to the particle i is then:

g
i
ðtÞ ¼

XN

j¼1
j6¼i

g
ij
ðtÞ: ð4Þ

With this approach, overlapping is needed to control the

contact. If there is no interpenetration between particles i

and j (DijðqÞ[ 0), then g
ij
¼ 0:

2.1.2 NSM1

In this approach [32], contacts between circular particles

are treated as purely inelastic collisions, i.e. no rebound

is considered. The extension of this approach to other types

of collisions (elastic collisions) is not straightforward, as

mentioned by Maury [32]. The particles’ positions must

always be admissible, i.e. there should never be any

overlap between particles. At the moment of one collision,

there is a discontinuity of the velocity u: Hence, the

velocity after collision uþ is determined so that the posi-

tions of colliding particles are feasible, i.e. uþ has a

‘‘geometrical’’ meaning rather than a ‘‘physical’’ meaning.

The particles’ velocities after contact uþ must belong to the

set of admissible velocities defined by:

Cq ¼ v 2 R2N : 8i\j; t GijðqÞv�0 as soon as DijðqÞ ¼ 0
n o

ð5Þ
where tGijðqÞ ¼rDijðqÞ

¼ 0; . . .;0;� teij;0; . . .;0;
t eij;0; . . .;0

� �
2R2N :

" "
particle i particle j

ð6Þ

Thus, as overlapping is forbidden by virtue of condition
tGijðqÞuþ�0; two particles i and j already in contact can

only increase or preserve their relative distance. The polar

cone Nq of Cq is introduced [32, 34]:

Nq ¼ w 2 R2N ; t w v� 0 8v 2 Cq

n o

¼ �
X
i\j

lijGijðqÞ; lij ¼ 0 if DijðqÞ[ 0; lij 2 Rþ if DijðqÞ ¼ 0

( )
:

ð7Þ

The system (1) is rewritten using a differential inclusion:

M _uþ Nq 3 f

uþ ¼ PCq
u�

(
ð8Þ

where PCq
is the Euclidean projection onto the closed

convex cone Cq: A solution of this problem exists [3, 33].

When there is no contact, the first equation of (8) reads

as the ordinary differential equation M _u ¼ f : When there

is a contact, the previous equation can be read: 9g 2
�Nq such that M _u ¼ f þ g; where the expression of the

total contact force is g ¼
P

1� i\j�N lijGijðqÞ: The second

equation of (8) provides the collision model. uþ is then

defined as the Euclidean projection of the velocity before

contact u� on the set Cq: This approach leads us to solve

the following constrained minimization problem:

uþ ¼
arg min

v 2 Cq

1
2
kv� u�k2

M

h i
ð9Þ

where kXk2
M ¼t X M X:

2.1.3 NSM2

NSM2 is an original approach based on the theory of rigid

bodies’ collisions first proposed by Frémond [15, 16] in a
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rigorous thermodynamic frame, along the lines of the

works of Moreau [36]. The numerical aspects were later

developed by Dal Pont and Dimnet [11, 12].

Let us consider the set of N particles as a deformable

system composed of N rigid solids. Collisions among

particles can be inelastic or elastic. Friction forces can also

be considered [12]. The relative deformation velocity

between the ith and jth particles is introduced:

DijðuðtÞÞ ¼ uiðtÞ � ujðtÞ:
The system (1) is rewritten:

M _uðtÞ¼�f intðtÞþ f extðtÞ almost everywhere ð10Þ
M uþðtÞ�u�ðtÞð Þ¼�pintðtÞþpextðtÞ everywhere ð11Þ

�

where f ext (resp. f int) is the exterior forces vector (resp.

interior forces vector) of dimension 2N applied to the

deformable system. The existence of a solution of the

system given by Eqs. (10) and (11) is proven in [7, 12, 16].

Equation (10) describes the smooth evolution of the multi-

particle system, whereas (11) describes its non-smooth

evolution during a collision. Hence, Eq. (10) applies almost

everywhere, except at the instant of the collision, where it

is replaced by Eq. (11). When contact is detected,

velocities of colliding particles are discontinuous, and so

in Eq. (11), the percussions pint and pext; interior and

exterior to the system respectively, are introduced. By

definition, percussions have the dimension of a force

multiplied by a time. The pint percussions are unknown;

they take into account the dissipative interactions between

the colliding particles (dissipative percussions) and the

reaction forces that permit the avoidance of overlapping

among particles (reactive percussions). Frémond [15, 16]

defined the velocity of deformation at the moment of

impact
DðuþÞþDðu�Þ

2
and showed that pint is defined in duality

with
DðuþÞþDðu�Þ

2
according to the work of internal forces. He

then introduced a pseudopotential of dissipation U that

allows us to express pint as:

pint 2 oU
DðuþÞ þ Dðu�Þ

2

� 	
ð12Þ

where the operator q is the subdifferential that generalizes

the derivative for convex functions [16] (see Appendix 1).

The convex function U [35] is defined as the sum of two

pseudopotentials: U ¼ Ud þ Ur; where Ud and Ur charac-

terize the dissipative and reactive interior percussions

respectively. The pseudopotential Ud is chosen to be qua-

dratic: UdðyÞ ¼ K
2

y2; where K is a coefficient of dissipation.

This choice allows one to find the classical results when the

coefficient of restitution is used. Other choices of Ud allow

one to obtain a large variety of behaviors after impact [6, 16].

In Eq. (11), the problem is to find the velocity uþ after

particles’ collision. To determine uþ; we have to solve the

following constrained minimization problem:

X ¼ argmin

Y 2R2N
tY M Y þUðDðYÞÞ�t ð2u� þM�1pextÞM Y
h i

ð13Þ

where the solution X ¼ uþþu�

2
:

In this approach, the velocity of a particle after a contact

(uþ) has a physical meaning. Proof of the existence and

uniqueness of this velocity after the simultaneous collisions

of several rigid solids, as well as the dissipativity of the

collisions, is presented in [11, 12, 15, 16].

2.2 Numerical aspects of the three approaches

The time interval [0,T] is discretized into Nint regular

intervals [tn,tn?1] of length h ¼ T
Nint
: Let q0 ¼ qð0Þ and

u0 ¼ uð0Þ respectively be the initial positions and veloci-

ties of the particles. Given qn and un at time tn, we have to

find qnþ1 and unþ1 at time tn?1 for each approach.

For both NSM1 and NSM2, after making some

assumptions, the contact problem can be written with the

same formalism as that used in plasticity. The minimizing

problem in the case of plasticity can be written [51]:

rnþ1 ¼ arg min

r
1
2
kr� r

predicted
k2

C�1 þ Dkf ðrÞ
" #

with r
predicted

¼ rn þ C : De
ð14Þ

where kXk2
C�1 ¼t X : C�1 : X;C is the elasticity tensor,

De ¼ enþ1 � en is the total strain increment, Dk is the

plasticity multiplier, f ðrÞ is the elastic domain, and Dk and

r satisfy the inequalities:

f rnþ1
� �

� 0

Dk � 0

Dk f rnþ1
� �

¼ 0:

8>><
>>:

ð15Þ

In other words, the minimization problems obtained with

NSM1 and NSM2 can also be solved using the well-known

solving algorithms proposed, e.g. in [51].

2.2.1 DEM

The positions and velocities of particles at time tn?1 are

given by the explicit scheme:

unþ1 ¼ un þ h M�1ðf n þ gnÞ
qnþ1 ¼ qn þ hunþ1

�
ð16Þ
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where f n is the vector of forces at a distance and gn is the

vector of contact forces at time tn (Eq. 1). From Eqs. (3)

and (4), the contact force applied to the particle i at time tn

is given by:

gn
i
¼
XN

j¼1j 6¼i

k minð0;DijðqnÞÞen
ij: ð17Þ

The overlap and stability of the time integration scheme

depend on the chosen time step denoted by h [9, 43]; hence

its choice is essential.

2.2.2 NSM1

The positions of particles at time tn?1 are obtained by the

iterative equation:

qnþ1 ¼ qn þ hunþ1 ð18Þ

where unþ1 has to be found such that Dijðqnþ1Þ� 0:

As Dij is convex, the following relationship can be

established:

Dijðqnþ1Þ ¼ Dijðqn þ hunþ1Þ�DijðqnÞ þ htGijðqnÞunþ1� 0:

ð19Þ

So, we search unþ1 such that the approximation of the final

distance between each pair of particles DijðqnÞ þ
htGijðqnÞunþ1 is positive or zero.

To calculate unþ1; we have to solve the constrained

minimization problem:

where lnþ1
ij is a Lagrange multiplier and has the dimension

of a force. lnþ1
ij and unþ1 must satisfy the Kuhn-Tucker

conditions:

lnþ1
ij � 0

DijðqnÞ þ htGijðqnÞunþ1 � 0

lnþ1
ij DijðqnÞ þ htGijðqnÞunþ1
� �

¼ 0:

8><
>: ð21Þ

The convergence of the numerical scheme given by Eqs.

(18), (20), and (21) is proven in [3]. The inelastic collision

law is implicitly included in the constrained minimization

problem (20). The constraint affects the positions of par-

ticles at the end of the considered time step, and unþ1 is

computed such that these positions are admissible.

The expression of unþ1 and lnþ1
ij is related by:

M unþ1 ¼ M un þ hf n þ h
P

1� i\j�N

lnþ1
ij GijðqnÞ ð22Þ

when lnþ1
ij and unþ1 satisfy the Kuhn-Tucker conditions (21).

2.2.3 NSM2

On each interval [tn, tn?1], regular forces are substituted by

percussions applied at the time hn ¼ tn þ h
2
; and all the

non-regular forces, or the percussions applied during the

collision, are applied to the system at hn: Both Eqs. (10)

and (11) are numerically treated at the same time. Hence,

interior (resp. exterior) percussions to the deformable

system are the sum of the interior (resp. exterior) per-

cussions during contacts and the percussions obtained

from regular forces exerted on the system during the

regular evolution of the system [12]. It follows that the

velocities are discontinuous at times hn when percussions

are applied to the system and are constant elsewhere. It is

represented by a piecewise affine function, constant on

½tn; hn½ and �hn; t
nþ1� and with a jump discontinuity at hn

(see Fig. 1).

The equation governing a discontinuity on [tn, tn?1] is:

unþ1ðhnÞ � unðhnÞ ¼ M�1 �pint Dðunþ1ðhnÞÞþDðunðhnÞÞ
2

� �
þ pextðhnÞ

� �
:

ð23Þ

Fig. 1 NSM2-Velocity of the pedestrian i. Time intervals in yellow

correspond to those where there is a contact and/or nonzero regular force

applied to the ith particle and there is a jump discontinuity in the velocity

unþ1 ¼ arg min

vnþ1 2 R2N
1
2
kvnþ1 � Vpredictedk

2
M �

P
1� i\j�N

lnþ1
ij ðDijðqnÞ þ htGijðqnÞvnþ1Þ

" #

with Vpredicted ¼ un þ hM�1f n

ð20Þ
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Let Xnþ1 ¼ unþ1ðhnÞþunðhnÞ
2

so that Eq. (23) becomes:

2Xnþ1 þM�1pintðDðXnþ1ÞÞ ¼ 2unðhnÞ þM�1pextðhnÞ:
ð24Þ

From Eqs. (13) and (24), Xnþ1 can be obtained by solving

the constrained minimization problem:

with Ynþ1 ¼ unþ1ðhnÞþunðhnÞ
2

:

The constitutive law used is the linear law correspond-

ing to the quadratic pseudopotential:

Udðqn;DðYnþ1ÞÞ

¼
X

1� i\j�N

1

2
KT

tDijðYnþ1Þ?en
ji

� �2

þ 1

2
KN

tDijðYnþ1Þen
ji

� �2

ð26Þ

where en
ji is the normal vector at the contact point, ?en

ji is the

tangent vector at the contact point; and KN and KT are the

coefficients of dissipation for the normal and tangential com-

ponents of percussions. KN reflects the inelastic nature of colli-

sions between particles. A collision between a particle and a wall

is elastic for KN !1 [16]. Practically, a value of KN [104 kg

is well-suited for our analysis. KT is due to the atomization of

viscous friction, and its value is chosen to be zero.

The following inequality has to be verified when there is

a contact between two particles i and j:

�tDijðYnþ1Þen
ji þt Dijð

unðhnÞ
2
Þen

ji� 0: ð27Þ

Thus

Urðqn;DðYnþ1ÞÞ

¼
X

1� i\j�N

lnþ1
ij �tDijðYnþ1Þen

ji þt Dijð
unðhnÞ

2
Þen

ji


 �
ð28Þ

where lnþ1
ij is a Lagrange multiplier and has the dimension

of a percussion. lnþ1
ij and unþ1 must satisfy the Kuhn-

Tucker conditions:

lnþ1
ij � 0

tDijðYnþ1Þen
ji �t Dijð

unðhnÞ
2
Þen

ji � 0

lnþ1
ij

tDijðYnþ1Þen
ji �t Dijð

unðhnÞ
2
Þen

ji

h i
¼ 0:

8>><
>>:

ð29Þ

The velocities and positions at the end of time steps are

solutions of:

unþ1ðhnÞ ¼ unþ1ðhnþ1Þ ¼ 2Xnþ1 � unðhnÞ
qnþ1 ¼ qn þ h

unþ1ðhnÞþunðhnÞ
2

:

(
ð30Þ

The minimization problems (20) and (25) are solved using

the classical Uzawa algorithm (see Appendix 1) [8, 12, 13,

16]. The convergence of this scheme has been proved in

[13] for the case of Coulomb’s friction law.

To write Eq. (25) with the same formalism as Eqs. (14)

and (20), only purely inelastic collisions have to be con-

sidered, as in NSM1. We choose then KN = KT = 0 in Eq.

(26), thus Eq. (25) becomes (see Appendix 1):

Consequently, with KN = KT = 0, the expressions of unþ1

and of lnþ1
ij are related by:

M unþ1ðhnÞ ¼ M unðhnÞ þ pextðhnÞ þ
P

1� i\j�N

lnþ1
ij GijðqnÞ

ð32Þ

when lnþ1
ij and unþ1 satisfy the Kuhn-Tucker conditions

(29).

Equations (22) and (32) have similar expressions;

however, the calculation of the Lagrange multiplier lnþ1
ij is

different. For NSM1, the constraint is on the position of the

particle and is dependent on the time step, so overlapping is

always avoided. The velocity of the particle has a ‘‘geo-

metrical meaning’’ because it is computed from the pre-

viously found position. However, for NSM2, the constraint

is on the velocity of the particle and is independent of the

time step, so an overlap is possible. The velocity now has

more physical meaning, and it can be accepted that the

Xnþ1 ¼ arg min

Ynþ1 2 R2N
tYnþ1M Ynþ1 þ Uðqn;DðYnþ1ÞÞ �t ð2unðhnÞ þM�1pextðhnÞÞM Ynþ1
h i

ð25Þ

unþ1 ¼ arg min

vnþ1 2 R2N
1
2
kvnþ1ðhnÞ � Vpredictedk

2
M �

P
1� i\j�N

lnþ1 t
ij GijðqnÞvnþ1ðhnÞ

" #

with Vpredicted ¼ unðhnÞ þM�1pextðhnÞ
ð31Þ
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position of the particle after the contact can violate the

overlapping condition.

Table 1 shows the analogies between minimization

problems in the case of plasticity and when using NSM1 or

NSM2 (Eqs. 14, 20 and 31).

The difference in contact treatment between NSM1 and

NSM2 is then illustrated with an example. In the xy-plane,

we consider a particle of radius r = 0.22 m, initial posi-

tion q
initial

¼t ð0:5; 0:5Þ, and initial velocity uinitial ¼
tð 1ffiffi

2
p ;� 1ffiffi

2
p Þ: The ground corresponds to y = 0. We choose

KN = KT = 0 kg, T = 0.8 s, and h = 10-2 s. No exterior

force is applied to the particle. The position in the xy-plane

and the time evolution of the velocity along the y-axis of

the particle after collision with the ground are given for

both NSM1 and NSM2 in Fig. 2.

Considering the spatial trajectory of the particle’s center

in the xy-plane, previously made remarks about Eqs. (22)

and (32) are illustrated in the following figures. Figure 2b

(zoomed in on a section of Fig. 2a) shows that except

NSM1, a light numerical error on the position of the par-

ticle can exist with NSM2. Indeed, it is assumed that the

contact, when it exists in [tn, tn?1], is applied in the middle

hn of the time interval. In the studied case, the contact

appears in the time interval [t39, t40]. If the contact occurs

exactly at time h39, the particle is in perfect contact on one

point with the ground at time t40; the ordinate of the par-

ticle’s center is equal to the particle’s radius (0.22 m). If

the contact takes place in ½t39; h39½; a light numerical

overlapping exists. If the contact is in �h39; t40�; the

numerical error does not allow the particle to be in contact

with the ground at time t40 (Fig. 2b). With NSM1, the

particle is in perfect contact with the ground at time t40.

Figure 2d (zoomed in on a section of Fig. 2c) shows that

when the contact is detected, one intermediate velocity

with no physical meaning is found at time t40 with NSM1.

Moreover the discontinuity of the velocity at time h39 with

NSM2 can be seen.

3 Extension of granular approaches to the crowd

A pedestrian can be represented as a circular particle by

giving it a willingness, i.e. a desire to move in a particular

direction with a specific speed at each time.

Table 1 Analogies between minimization problems in the case of plasticity and when using NSM1 or NSM2

Plasticity NSM2 NSM1

Main unknown variable rnþ1 unþ1ðhnÞ unþ1

Predicted value r
predicted

¼ rn þ C : De Vpredicted ¼ unðhnÞ þM�1pextðhnÞ Vpredicted ¼ un þ hM�1f n

External ‘‘agency’’ De ¼ enþ1 � en pextðhnÞ hf n

Constraint f ðrnþ1Þ� 0 tGijðqnÞunþ1ðhnÞ� 0 ðm:s�1Þ DijðqnÞ þ htGijðqnÞunþ1� 0 ðmÞ
Lagrange multiplier Dk lij

n?1 (N.s) lij
n?1 (N)

Fig. 2 Collision of a particle

with the ground for NSM1-

NSM2. Subplots a, b show the

trajectory in the xy-plane of the

particle’s center (of radius

r = 0.22 m) after collision with

the ground as a function of time.

Subplots c, d show the time

evolution of the velocity along

the y-axis of the particle’s

center after collision with the

ground. Subplots b, d are

magnifications of the green
rectangles in subplots a, c
respectively. The curve for

NSM1 is the red dotted line and

the one for NSM2 is the blue
line
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The first step of the modified approach is to give a

desired trajectory to each particle. Several definitions of the

desired trajectory of any one pedestrian are possible: either

(1) the most comfortable trajectory for him, where he must

exert the least effort, e.g. by avoiding the stairs or making

the fewest changes in direction, etc.; (2) the shortest path;

or (3) the fastest path to move from one place to another

[24]. It is possible to combine two strategies in the same

simulation or to change the preferred strategy for any

reason during the simulation.

The strategy of the shortest path from one point to

another is implemented through a Fast Marching algorithm

[29] and is used to obtain the desired direction ed;i of an

individual i. This direction depends on the environment in

which pedestrians walk (obstacles, etc.), the time of day,

and also the characteristics of the individual (gender, age,

hurried steps or not, etc.). It is defined by: ed;iðtÞ ¼
ud;iðtÞ
kud;ik

;

where ud;i is the desired velocity of the ith pedestrian.

The amplitude kud;ik of the desired velocity represents

the speed at which the ith pedestrian wants to move, and it

can be influenced by his nervousness. This velocity is

chosen by following a normal distribution with an average

of 1.34 m s-1 and standard deviation of 0.26 m s-1 [23].

In the second step, the desired velocity of each pedes-

trian i is introduced into the original discrete models to

simulate crowd movement. Let f ðtÞ ¼ f aðtÞ (DEM or

NSM1) or f intðtÞ ¼ f aðtÞ (NSM2), where the so-called

acceleration force f aðtÞ [19] allows one to give a desired

direction and amplitude of the velocity to each pedestrian.

Each component f a
i
ðtÞ of the vector force of dimension

2N : t f a ¼ ðtf a
1
;t f a

2
; . . .;t f a

N
Þ; is associated with pedestrian i

and can be expressed as:

f a
i
ðtÞ ¼ mi

kud;iked;iðtÞ � uiðtÞ
si

ð33Þ

where ui is the actual velocity and si is a relaxation time,

which specifies how long the pedestrian will take to

recover his desired velocity either after a contact or after he

suddenly changes his walking direction. Helbing [20]

chose s ¼ 0:5 s in his numerical simulations. Smaller

values of si let the pedestrians walk more aggressively.

An example of the trajectories of two identical pedestrians i

and j moving in opposite directions after collision is

illustrated in Fig. 3 for different values of s. The influence

of the relaxation time parameter s has been studied in [42].

The chosen value of this parameter is less than or equal to

0.5 s; as such, several contacts may occur because the

pedestrians walk aggressively. The pedestrians’ behavior

can be enriched by adding other external social forces [18,

38] so as to become more realistic (socio-psychological

force, attractive force, group force, etc.). For instance, a

socio-psychological force can reflect the tendency of

pedestrians to keep a certain distance from other

pedestrians. The expression of this repulsive force,

applied to the ith pedestrian due to interaction with

pedestrian j, is given by:

f soc
ij
ðtÞ ¼ Ai exp

�DijðqðtÞÞ
Bi

� 	
Ki þ ð1� KiÞ

1þ cos uij

2

� 	
eij

ð34Þ

where Ai denotes the interaction strength; Bi is the range of

the repulsive interaction; Ki\1 considers the anisotropic

character of pedestrian interactions, as the situation in front

of a pedestrian has a larger impact on his behavior than

what is happening behind; and uij is the angle between the

direction ed;iðtÞ of desired motion and the direction �eij of

the pedestrian exerting the repulsive force. f soc
ij

is the force

at a distance: the further two pedestrians are from each

other, the smaller the amplitude of the force because of the

exponential term. The three extended approaches: DEMe,

NSM1e and NSM2e will now be explored.

4 Application to numerical simulations

In this section, numerical simulations are presented. The

previous approaches have been implemented in a MAT-

LAB environment, and some applications have been pro-

cessed numerically. Three parameters are computed to

Fig. 3 Trajectories of two identical pedestrians i and j moving in

opposite directions for different values of s. This numerical simula-

tion is done with extended NSM2. After the collision, the external

acceleration force allows each pedestrian to gradually switch from the

actual velocity after shock to the desired velocity, depending on the

values of si and sj. In this example, si = sj = s
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compare evacuation results: (1) the evacuation or egress

curve, which represents the time evolution of the number

of persons having left the studied structure via one or

several exits; (2) the average flow, which is obtained from

the time derivative of the previous curve; and (3) the

escape time from one’s initial position, which is the

amount of time that a person needs to evacuate a structure

versus his initial position.

The first simulation concerns the evacuation of a room.

We compare the numerical results obtained with the three

extended approaches with the results from the real evacu-

ation exercise imitating conditions of panic obtained by

Helbing et al. [22], using the parameter of average flow

through the exit. The influence of the chosen time step for

the numerical simulations is also examined.

The second simulation concerns the evacuation of a class-

room. Numerical results obtained with the three extended

approaches are compared with the real exercises results

obtained by Helbing et al. [21]. The parameter being compared

in this instance is the escape time from an initial position.

The last case deals with the evacuation of a primary

school that has several floors. The egress curve obtained by

Klüpfel [31] from his real exercise is compared to the one

obtained numerically through the NSM2e method.

For the following simulations, the parameters’ values for

each pedestrian (walking speed, radius, mass, response time,

and relaxation time) have been chosen to be uniformly dis-

tributed within their range from experimental tests [21, 31].

4.1 Evacuation of a square room

We consider a square room with sides 5 m in length that 20

pedestrians want to escape through a door 82 cm wide. The

parameters used in the simulations are given in Table 2.

As pedestrians’ parameters are randomly generated

within a given range (see Table 2), 50 simulations are

performed (Fig. 4) for each extended approach, for each

time step h = 10-2 s, h = 10-3 s, and h = 10-4 s,

respectively. This example has already been presented in

[43] for h = 10-2 s. The socio-psychological force in

Eq. (34) is not added in the simulation, and the initial

conditions of the 50 runs are the same for each approach.

Figure 4 shows the linear regression of the 50 simula-

tions for NSM2e with h = 10-2 s. The slope allows us to

estimate the average flow Q (pedestrian/min) through the

door. The values of Q for the simulations obtained with the

three extended approaches at different time steps, as well

as those obtained with a real evacuation exercise [22], are

collected in Table 3.

It shows that the influence of the chosen time step on Q

is negligible as long as the stability of the time integration

scheme is ensured. Moreover, Q obtained with NSM2e is very

similar to Q obtained with the real evacuation exercise

imitating conditions of panic. However, pedestrians escape

faster with NSM1e than with the two other extended approa-

ches. These results are probably due to the way contact is

treated: purely inelastic in NSM1 and elastic in DEM and

NSM2. Taking into account elastic collisions seems to be

necessary. The difference between Q obtained with DEMe

and Q obtained with NSM2e could be due to the overlapping

effect that is necessary for treating contacts in DEMe.

4.2 Evacuation of a classroom

The real evacuation exercise of 30 students from a class-

room is presented in [21]. The classroom’s width is 5.85 m

and its length 6.75 m. There are 30 desks in six rows and

five columns. The longitudinal and the transverse distances

Table 2 Evacuation of a room—parameters used in simulations

(� uniformly distributed within their range)

Parameter Symbol Value Unit

Pedestrians

i

Walking speed � kud;ik [1.5, 2] m s-1

Radius � ri [0.2, 0.25] m

Mass � mi [60, 100] kg

Response time tr,i 0 s

Relaxation time � si [0.1, 0.5] s

DEMe Constant stiffness k 1.2 9 105 kg s-2

NSM2e Normal coefficients

of dissipation

KN 105 kg

Tangential

coefficients of

dissipation

KT 0 kg

Time step h 10-2, 10-3, 10-4 s

The response time is the time needed by pedestrian i to start evacuating

after the triggering of the evacuation movement

Fig. 4 Evacuation of a square room—Egress curves for NSM2e, with

h = 10-2 s. Egress curves of the 50 simulations are the cyan curves.

The linear regression (black line) of the 50 simulations (black points)

allows us to obtain the average flow through the door
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between desks are 0.9 and 1.35 m respectively. The only

exit is in the back of the classroom, and its width is 0.5 m.

The evacuation process is recorded by two video cameras.

As soon as a cameraman shouts a word of command, all

students stand up from their chairs and hurry toward the

exit. Parameters used in simulations are summarized in

Table 4. As some parameters are uniformly distributed

within their range, 50 simulations are performed. Figure 5

shows snapshots of the numerical simulations at different

times that were obtained with NSM1e and NSM2e. The

snapshots obtained with DEMe are similar to those

obtained with NSM2e. For the three extended approaches,

we observe the formation of an arch in front of the exit. For

DEMe and NSM2e, pedestrians evacuate the classrooms

(e.g. first line of Fig. 5) without problem, while for NSM1e,

pedestrians are often blocked (e.g. second line of Fig. 5).

NSM1e is not efficient for this situation. Our study is then

limited to the two other models. Figure 6 indicates the

average escape times from all desks (i.e. initial positions).

The average escape times for each student that were

obtained from the real experiment are at the top, from the

50 simulations of DEMe are in the middle, and from the 50

simulations of NSM2e are at the bottom.

Similarities can be noted for the average escape times

obtained from the experiment and from the simulations.

First, the escape time increases with the initial distance

from the exit for each column of desks. Second, even

though the escape time increases approximately with the

initial distance from the exit, the students in the first and

second columns need a disproportionate amount of time to

escape. The explanation given by Helbing from the

experiment is that students naturally use the passageway

between the columns of desks that are closer to the door

(i.e. the passageway to their left with regard to their

direction of motion). This means that students in the first

and second columns use the same passageway, thereby

increasing the density and escape times. The explanation

that we can give from the simulations is that since the

density of students around the narrow door becomes so

important during an emergency evacuation, students who

Table 3 Evacuation of a square room—average flow Q (pedestrian/

min) through a door 82 cm wide

Simulations or experiment Q (pedestrian/min)

h = 10-2 s h = 10-3 s h = 10-4 s

Simulations with DEMe 182 182 181

Simulations with NSM1e 279 276 278

Simulations with NSM2e 156 154 155

Real evacuation exercise

[22]

160 160 160

Table 4 Evacuation of a classroom—parameters used in simulations

(� uniformly distributed within their range)

Parameter Symbol Value Unit

Student

i
Walking speed � kud;ik [1.2, 2] m s-1

Radius � ri [0.18, 0.22] m

Mass � mi [50, 75] kg

Response time tr,i 0 s

Relaxation time � si [0.1, 0.5] s

NSM2e Normal coefficients

of dissipation

KN 105 kg

Tangential coefficients

of dissipation

KT 0 kg

Time step h 0.01 s

The response time is the time needed by pedestrian i to start evacu-

ating after the triggering of the evacuation movement

Fig. 5 Evacuation of a

classroom—snapshot of two

numerical simulations at

different times. The first row is

obtained with NSM2e while the

second row is obtained with

NSM1e. Walls are black, desks

are blue, the door is magenta,

and pedestrians are red circles
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are in front of the door can leave the classroom more easily

than students who come by one side.

4.3 Evacuation of a primary school

NSM2e is finally applied to the evacuation exercise of a

primary school, which was presented in [31]. This example

shows that it is possible to study a 3D problem using a 2D

approach. The building has 3 floors and 6 classrooms with

about 130 pupils (between the ages of 6 and 10). The initial

number of persons in each room is given in [31]. When the

alarm is triggered, pupils start evacuating, and each class of

pupils follows its teacher. Videotapes are taken during the

real exercise and the experimental results are based on them.

To simulate this exercise, we propose the set of parameters

summarized in Table 5 that were obtained from [20, 31] to

represent a standard population. One hundred numerical

simulations are performed with NSM2e because some

parameters are uniformly distributed within their range.

NSM2e contains the socio-psychological force introduced in

Sect. 3 An example of the snapshots of one numerical sim-

ulation at different times is shown in Fig. 7. Figure 8 gives

the egress curve obtained from the real exercise as well as the

mean of the egress curves obtained by numerical simulations.

Using a set of parameters derived from the capabilities of a

standard population, the simulation results are similar to

those obtained with a class of pupils that follows its teacher

during the real evacuation exercise. It can be noted that in the

egress curve obtained from the real exercise, the flow

Fig. 6 Evacuation of a classroom—escape times from all initial

positions. The three numerical values in each circle indicate the

average escape times obtained from the experiment (at the top) and

the simulations (in the middle for DEMe and at the bottom for

NSM2e)

Table 5 Evacuation of a primary school—parameters used in simu-

lations (� uniformly distributed within their range)

Parameter Symbol Value Unit

Pedestrian i Walking speed � kud;ik [1.2, 2] m s-1

Walking speed

in stairs �
kud;ik [0.5, 1] m s-1

Radius � ri [0.2, 0.25] m

Mass � mi [60, 100] kg

Response time � tr,i [0, 10] s

Relaxation time � si [0.1, 0.5] s

NSM2e Normal coefficients of

dissipation

KN 105 kg

Tangential

coefficients of

dissipation

KT 0 kg

Social force for

pedestrian i

Interaction strength Ai 2000 N

Range of the repulsive

interaction

Bi 0.08 m

Anisotropic character

of pedestrian

interactions

Ki 0

Angle between ed;iðtÞ
and �eij

uij 90 �

Time step h 0.01 s

The response time is the time needed by pedestrian i to start evacuating

after the triggering of the evacuation movement

Fig. 7 Evacuation of a primary school—snapshots of one numerical

simulation at different times. Walls are black, obstacles are green,

stairs are yellow, doors are magenta, and pedestrians are red circles
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suddenly decreases at t ^ 38 s and then resumes its original

slope after t ^ 48 s. This phenomenon, potentially a

pedestrian traffic jam, is not reproduced by our model. One

possible explanation is that pedestrians were blocked some-

where in the building, possibly in the stairs where two classes

could meet, since they were children under the responsibility

of their teacher.

5 Conclusion

This paper presents three existing discrete approaches (one

smooth and two non-smooth), which were originally pro-

posed to simulate the granular assembly’s movement, that

we adapted to represent pedestrians with varying willing-

nesses to move. For both non-smooth approaches, by

making some assumptions (purely inelastic collisions, etc.),

the contact problem can be written with the same formal-

ism as that used in plasticity.

Social forces as well as a desired direction/velocity are

introduced in order to simulate the behavior of real

pedestrians. The three extended approaches are numeri-

cally implemented and applied to a real case of an evac-

uation of a room. The obtained results are compared to the

experimental ones. The effect of the chosen time step on

the results is studied and for both approaches, it is dis-

covered to be negligible as long as the stability of the time

integration scheme is ensured. The non-smooth approach

adapted from the works of Frémond proved to be capable

of reproducing this real evacuation exercise in a satisfac-

tory way. Other simulations performed with this approach

are compared with real evacuation exercises and confirm

this conclusion as well.

The proposed modeling strategy would be useful in

improving the design of public spaces for accidental situ-

ations (e.g. fires) by increasing the safety and comfort of

the users.
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Appendix 1: Elements of convex analysis

We recall here some concepts and results of convex

analysis.

Convex functions

Convex set

Let X be a vector space on R. A set C 	 X is called convex

if for all x and y of C and all h of ]0, 1[,

hxþ ð1� hÞy 2 C: ð35Þ

Convex function

A function f defined on a set C of X with values in R ¼
R [ fþ1g is called a convex function if for all x and y of

C and all h of ]0, 1[,

f ðhxþ ð1� hÞyÞ� hf ðxÞ þ ð1� hÞf ðyÞ ð36Þ

where addition and multiplication in R are extended by

ðþ1Þ þ ðþ1Þ ¼ þ1 ð37Þ
kðþ1Þ ¼ ðþ1Þ if k[ 0: ð38Þ

We call the set where it is defined the domain of f:

domðf Þ ¼ fx 2 C=f ðxÞ 6¼ þ1g: ð39Þ

Subdifferentiability

Vector space in duality

Two vector spaces V and V� are in duality if there exists a

bilinear form f�; �g defined on V � V� such that:

8x 2 V ; x 6¼ 0; 9y� 2 V� such that fx; y�g 6¼ 0

8y� 2 V�; y� 6¼ 0; 9x 2 V such that fx; y�g 6¼ 0:

ð40Þ

Subgradient and subdifferential of a convex function

Let V and V� two vector spaces placed in duality by a

bilinear form f�; �g: A convex function f of V in R is

Fig. 8 Evacuation of a primary school—Egress curves. Comparison

between real exercise and numerical simulations results: the 100

numerical simulations are the cyan curves, the mean of these

simulations is the bold black curve, and the real exercise curve is the

bold red one
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subdifferentiable at point x0 2 V if there is x� 2 V� such

that for all x 2 V

fx� x0; x
�g þ f ðx0Þ� f ðxÞ ð41Þ

x� is a subgradient. The set of subgradients is the

subdifferential of ðx0Þ (Fig. 9), and it is convex and closed

on V�:

Dissipation pseudopotential

Lower semi-continuity

A convex function defined on a Banach space X is called

lower semi-continuous if for all real r

fx 2 X=f ðxÞ� rg is closed. ð42Þ

Dissipation pseudopotential

This concept has been defined by Moreau. A dissipation

pseudopotential is a positive convex function that is lower

semi-continuous and zero at the origin.

Appendis 2: Optimization with convex constraint [8, 12,

16]

Kuhn-Tucker conditions

Let f : X 	 E ¼ Rn �! R; differentiable in x� 2 K with

X open and convex,

K ¼ x 2 X; uiðxÞ� 0; i ¼ 1; . . .;mf g 6¼ [

ui : X �! R convex, differentiable in x�:

1. If x� is a solution of

ðPÞ f ðx�Þ ¼ infx2K f ðxÞ
x� 2 K

�
ð43Þ

and if the constraints are qualified, i.e. ui are affine or

9x 2 K such that uiðxÞ\0 for the non affine ui; then

Lagrange multipliers ki C 0 exist and verify the Kuhn-

Tucker conditions

rf ðx�Þþ
Pm

1

kiruiðx�Þ ¼ 0

kiuiðx�Þ ¼ 0; i¼ 1; . . .;m:

8<
: ð44Þ

2. Reciprocally, if f : X�! R is convex and differ-

entiable, x� 2K and Lagrange multipliers ki C 0

exist and verify the Kuhn-Tucker conditions, then x�

is a solution of (P).

Interpretation of the Kuhn-Tucker conditions

As K is convex and x� is a minimum of f, it is already

known that

ð�rf x�ð Þ; x� x�Þ � 0 8x 2 K; ð45Þ

which means that �rf x�ð Þ realizes an angle � p
2

with the

interior directions x� x�:
Kuhn-Tucker conditions add that

�rf x�ð Þ ¼
X

kiruiðx�Þ; ki� 0; ð46Þ

i.e. �rf x�ð Þ is in the coneX
airuiðx�Þ; ai� 0: ð47Þ

Moreover, the Kuhn-Tucker conditions express that x� is a

solution of the minimization problem without constraint of

the functional

x 2 X �! f ðxÞ þ
Xm

1

kiðx�ÞuiðxÞ ð48Þ

whose solution corresponds to the annulation of the

derivative.

Saddle point

Let E and M be two normed spaces and L : E �M �! R:

ðx�; kÞ 2 E �M is a saddle point if x� is a minimum for

x �! Lðx; kÞ and if k is a maximum for l �! Lðx�;lÞ: In

such point,

inf
x2E

sup
l2M

Lðx; lÞ ¼ sup
l2M

Lðx�; lÞ ¼ Lðx�; kÞ ¼ inf
x2E

Lðx; kÞ

¼ sup
l2M

inf
x2E

Lðx; lÞ: ð49Þ

Lagrangian

The Lagrangian associated with the problem (P) is the

function of E � Rm
þ �! R defined by

Fig. 9 The convex function f has no derivative at point A. It has

generalized derivatives at this point, which are the slopes of the lines
that are passing through A and are under the curve representing the

function. These slopes are subgradients that form the subdifferential
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Lðx; lÞ ¼ f ðxÞ þ
Xm

1

liuiðxÞ: ð50Þ

Saddle point of the Lagrangian and solution

of the problem (P)

If ðx�; kÞ 2 E � Rm
þ is a saddle point of the Lagrangian

of the problem (P), then x� 2 K and x� is a solution of

(P).

If the functions f and ui are convex and differentiable in

x� 2 K; the constraints are qualified, and x� is a solution of

(P), then at least one k 2 Rm
þ exists such that ðx�; kÞ 2

E � Rm
þ is a saddle point of L.

Dual problem of problem (P)

1. ui are assumed to be continuous, and for all l 2 Rm
þ

the problem

ðPlÞ
Lðxl; lÞ ¼ infx2E Lðx; lÞ

xl 2 E

�
ð51Þ

has a solution and only one xl that continuously

depends on l.

Then, if k is a solution of the problem

ðQÞ GðkÞ ¼ supl� 0 GðlÞ
k 2 Rm

þ

�
ð52Þ

with

GðlÞ ¼ inf
x2E

Lðx; lÞ ¼ Lðxl; lÞ; ð53Þ

the solution xk of (Pk) is a solution of (P).

(Q) is named the dual problem of the primal problem

(P) and l is named the dual variable of the primal

variable x.

2. We assume that (P) has at least one solution x�; the

functions f and ui are convex and differentiable in x�;
and the constraints are qualified.

Then the problem (Q) has at least one solution.

Uzawa method

The problem (P), whose constraints are

K ¼ x 2 E; uiðxÞ� 0f g; ð54Þ

is resolved with the help of the dual problem, whose con-

straints l 2 Rm
þ are simpler.

Approach

Knowing k0 2 Rm
þ ordinary, a double sequence ðkk; xkÞ is

calculated.

Calculation of kk?1

Knowing kk and xk�1; kkþ1 is sought as an approximation

of the solution of (Q) by evaluating kk þ qrG kkð Þ and

taking the projection of this value on the domain l� 0

(projected gradient method with fixed step q).

Calculation of rG kkð Þ

Under the assumptions of Paragraph 2.6, it can be proved

that G is differentiable and that

rGl ¼ ðuiðxlÞÞi: ð55Þ

To calculate rG kkð Þ; xkk
has to be calculated first. Let xk ¼

xkk
: This point is obtained with an optimization method

without constraint as a solution of

f ðxkÞ þ
X

kkiuiðxkÞ ¼ inf
x2E
ðf ðxÞ þ

X
kkiuiðxÞÞ: ð56Þ

Under some assumptions, the sequence ððkk; xkÞÞk con-

verges to the saddle point of L, ðx�; kÞ with x� being the

solution of (P).

Sufficient convergence’s condition of the Uzawa method

f : E �! R is assumed to be elliptic with a being its

ellipticity coefficient. K non empty is assumed to be

defined by affine inequality constraints

K ¼ x 2 E; Cx� df g; ð57Þ

and then if

0\q\
2a

kCk2
; ð58Þ

the sequence (xk) of the Uzawa method converges to the

unique solution of (P).

Moreover, if the rank of C is m, the sequence ðkkÞ con-

verges to the unique solution of the dual problem (Q) as well.

Appendix 3: Rewriting of the Lagrangian associated

to the constrained minimization problem of NSM2

The constrained minimization problem of NSM2 is Eq. (25):

Xnþ1 ¼ arg min

Ynþ1 2 R2N
tYnþ1M Ynþ1 þ Uðqn;DðYnþ1ÞÞ
h

�tð2unðhnÞ þM�1pextðhnÞÞM Ynþ1
i
:

Let LNSM2 be the Lagrangian associated to the constrained

minimization problems Eq. (25):

LNSM2 ¼t Ynþ1M Ynþ1 þ Uðqn;DðYnþ1ÞÞ �t ð2unðhnÞ
þM�1pextðhnÞÞM Ynþ1 ð59Þ
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tM ¼ M

M ¼ cte

tunðhnÞM unþ1ðhnÞ ¼t unþ1ðhnÞM unðhnÞ

Ynþ1 ¼ unþ1ðhnÞ þ unðhnÞ
2

kXk2
M ¼t X M X:

We assume that the rotation of the particle is neglected.

The constitutive law used is the linear law correspond-

ing to the quadratic pseudopotential:

Udðqn;DðYnþ1ÞÞ ¼
X

1� i\j�N

1

2
KT

tYnþ1
i �t Ynþ1

j

� �?
en

ji

� 	2

þ 1

2
KN

tYnþ1
i �t Ynþ1

j

� �
en

ji

� �2

ð60Þ

where en
ji is the normal to the contact; ?en

ji is the tangent to the

contact; and KN and KT are the coefficients of dissipation for

the normal and Tangential components of percussions. KN

reflects the inelastic nature of collisions between particles and

KT results of atomization of viscous friction.

The constraint that has to be verified when there is a contact

between two particles i and j is the following inequality:

�tDijðYnþ1Þen
ji þt Dij

unðhnÞ
2

� 	
en

ji� 0: ð61Þ

Thus

Urðqn;DðYnþ1ÞÞ ¼
X

1� i\j�N

lnþ1
ij � tYnþ1

i �t Ynþ1
j

� �
en

ji

h

þ
tun

i ðhnÞ
2
�

tun
j ðhnÞ
2

� 	
en

ji

�
ð62Þ

where lnþ1
ij is a Lagrange multiplier and has the dimension

of a percussion.

We know that

kYnþ1 � 1

2
2unðhnÞ þM�1pextðhnÞ
� �

k2
M

¼t Ynþ1 � 1

2
2unðhnÞ þM�1pextðhnÞ
� �
 �

�M Ynþ1 � 1

2
2unðhnÞ þM�1pextðhnÞ
� �
 �

¼t Ynþ1M Ynþ1 �t 2unðhnÞ þM�1pextðhnÞ
� �

MYnþ1. . .

þ 1

4

t

2unðhnÞ þM�1pextðhnÞ
� �

�M 2unðhnÞ þM�1pextðhnÞ
� �

: ð63Þ

Then Eq. (59) becomes

LNSM2 ¼ kYnþ1 � 1

2
2unðhnÞ þM�1pextðhnÞ
� �

k2
M

þ Udðqn;DðYnþ1ÞÞ þ Urðqn;DðYnþ1ÞÞ. . .

� 1

4

t

2unðhnÞ þM�1pextðhnÞ
� �

�M 2unðhnÞ þM�1pextðhnÞ
� �

:

ð64Þ

Finding the minimum of LNSM2 is equivalent to

minimizing

L
0

NSM2¼kYnþ1�1

2
2unðhnÞþM�1pextðhnÞ
� �

k2
M

þUdðqn;DðYnþ1ÞÞ. . . þ
X

1� i\j�N

lnþ1
ij

� � tYnþ1
i �t Ynþ1

j

� �
en

jiþ
tun

i ðhnÞ
2
�

tun
j ðhnÞ
2

� 	
en

ji


 �

ð65Þ

because

� 1
4

t
2unðhnÞ þM�1pextðhnÞ
� �

M 2unðhnÞ þM�1pextðhnÞ
� �

is known.

We can note

kYnþ1 � 1

2
2unðhnÞ þM�1pextðhnÞ
� �

k2
M

¼ 1

4
kunþ1ðhnÞ � unðhnÞ þM�1pextðhnÞ

� �
k2

M

ð66Þ

and according to the definition of tGijðqÞ (Eq. 6)

� tYnþ1
i �t Ynþ1

j

� �
en

ji þ
tun

i ðhnÞ
2
�

tun
j ðhnÞ
2

� 	
en

ji

¼ �tGijðqnÞ u
nþ1ðhnÞ

2
: ð67Þ

As in NSM1, only purely inelastic collisions are con-

sidered, so we simplify Eq. (65) by examining only

non-elastic impact: KT = KN = 0 (purely inelastic col-

lisions), and according to Eqs. (66) and (67), Eq. (25)

becomes:
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40. Paris S, Pettré J, Donikian S (2007) Pedestrian reactive naviga-

tion for crowd simulation: a predictive approach. Comput Graph

Forum 26(3):665–674
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modeling of crowd movements. AIMS (submitted)
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