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Abstract A regularized variational model of fracture

mechanics for masonry-like materials has been recently

proposed: this is based upon the competition between bulk-

energy release and surface-energy production due to the

nucleation and/or progression of cracks, assumed they can

open in mode I only. This model is applied here to derive a

theory of strength in confined masonry-like materials,

where an inhomogeneous state of stress is due to hetero-

geneous inclusions or boundary constraints. The theory

accords the phenomenon of rupture an energetic interpre-

tation. Under tension, opening of mode I fractures at right

angle to the axis of loading is clearly energetically favor-

able; under compression, the solid splits because in doing

so the stress is released so to reduce the total energy.

Numerical experiments have been performed for prismatic

solids under fixed lateral confinement and increasing uni-

axial tension or compression up to failure. Representative

domains for the strength under biaxial stress are thus

deduced.

Keywords Uniaxial tension � Uniaxial compression �
Fracture mechanics � Variational calculus �
Strength domain � Biaxial loading

1 Introduction

The uniaxial compression test is by far the most common

experimental procedure for the mechanical characterization

of those materials, such as rock, concrete or cohesive soil,

usually called brittle or quasi-brittle. A common feature to

this class is that, in general, the strength under uniaxial

compression is much higher than under tension, so that

accepted in modeling is to neglect their tensile resistance

[1]. Since such an idealized response has been traditionally

used for masonry works [2], a considerable part of the

technical literature refers to the solids for which such a

schematization is plausible as masonry-like materials [3].

The propagation of brittle fractures under compression in

masonry-like solids has been the subject of a deep research

for at least the last two centuries, but some fundamental

aspects still remain unclear. The technical literature is so

wide that it is practically impossible to present a reasonably

complete summary of existing typical models (an excel-

lent, though partial, review can be found in [4]). Conse-

quently, the following considerations irremediably reflect a

personal viewpoint, useful just to introduce our work.

Since the original work by Föppl et al. [5], it has been

realized that end-confinement due to frictional contact of

the loading-machine platens may substantially influence

the strength and failure mode of compressed specimens [6].

If platens are lubricated [7], so that friction is avoided, the

observed failure mode is the one usually named axial

splitting [8], i.e., specimens fail under the formation of a

perplex of fractures oriented in the axial direction crossing

the specimen from one end to the other, as schematically

represented in Fig. 1a. On the other hand, the result of end-

confinement is to isolate conical or pyramidal sound

material portions at the specimen bases (Fig. 1b), that

define the classical hourglass shape. Such rupture has been
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observed in many materials: here we just mention the

somehow unusual experiments on specimens made of ice

[9], which are particularly interesting because of the

transparency of the material. It is often understood that

such portions are bounded by shear-induced inclined

fracture surfaces, considered not only a consequence of

end-restraint but a fundamental form of failure [10];

according to this rationale, it is their wedging action that

possibly provokes the subsequent axial splitting in the

central portion of the specimen. An alternative interpreta-

tion, first advanced in [11] to our knowledge, is that no

shear occurs in uniaxial compression [12], being the so-

called shear failure a secondary development, which occurs

after the vertical splitting has begun. Consequently, the

mechanism of initial cracking and ultimate failure may be

different, but are not completely independent (this will be

confirmed by our modeling).

The idea that uniaxially compressed specimens collapse

following a dominant inclined fracture plane is historically

attributed to Coulomb [13]. Later on, Mohr suggested [5]

that materials fail under the combined action of shear and

normal stress along characteristic planes and, according to

this idea, it is friction induced by dry loading platens to be

responsible of the observed inclined failure surfaces at the

bases (notice here that we have used the term ‘‘failure’’ and

not ‘‘fracture’’, for reasons that will be clarified later on).

However, by no means Mohr’s theory can account for

axial-splitting failure-mode under frictionless lubricated

platens, because any conceivable envelope of Mohr’s

cycles in Mohr’s plane (r, s) would predict failure along

some inclined set of surfaces, in which the critical com-

bination of shear and normal stress is attained.

Indeed, any classical theory of strength based upon a

macroscopic analysis of the state of stress would inevitably

fail in the interpretation of axial-splitting failure. For

example, resorting to De Saint Venant’s tensile-strain

failure-criterion would result equally ineffective, because

the observed lateral tensile strain at failure under com-

pression is, as a rule, one order of magnitude higher than

the axial strain at failure under direct uniaxial tension [14].

One may consider Galileo-Rankine’s maximum-stress

failure-criterion, but axial-splitting would again lead to

conceptual difficulties, because cracks would appear to

propagate under the application of a null macroscopic

stress normal to their plane.

In order to account for tensile stresses where splitting

fractures occurs, one has to conceptually accept the pres-

ence of microscopic defects like cracks, inclusions, grain

boundaries etc., whose effect in terms of stress is sub-

stantial, although it averages out to zero for planes parallel

to the axis of compressed specimens. A number of different

in kind models exists in this field. A famous one is that

based upon the extension of an inclined crack [15], but it

can be verified that the crack-tip driving force quickly

diminishes when crack propagates, especially in the pres-

ence of frictional resistance between crack surfaces. Other

models consider the presence of inclusions or heterogene-

ities [16]. A common feature to such models is that, in

general, the defect is supposed to be isolated in a homog-

enous matrix, because evaluating the energy release rate in

the complicated stress field of a microstructurally hetero-

geneous solids is hopelessly complicated. Other effective

approaches consist in pseudo non-local continuum theories

of fracture, such as that accounting for stress diffusion

proposed in [17].

Here, we consider the problem of splitting failure of

compressed cylinders by using a regularized variational

model of fracture mechanics that accords to compressive

fracture an energetic interpretation. As already remarked in

the elegant approach of [18], the solid splits because in

doing so it lowers the global energy by isolating indepen-

dent load-bearing microscopic material columns. The

driving force for this is due to the presence of heteroge-

neities, that are here included as elastic inclusions much

stiffer than the surrounding matrix.

The model at hand has been recently proposed in [19]

and consists in the minimization of a two-field pseudo-

spatial dependent functional with a structure similar to that

originally proposed by Bourdin et al. in [20], that translates

to the case of fracture-mechanics the C—convergence

result of Ambrosio and Tortorelli [21] for the regulariza-

tion of the Mumford-Shah functional. The model takes a

smeared view of the effects of fractures by assuming that

their gross consequence is associated with a positive-

semidefinite strain component of the (average) strain in the

representative volume element, to account for the fact that

only inelastic dilatations due to micro-crack openings are

permitted. This case is consistent with the constitutive

equations for a classical no-tension masonry-like material

Fig. 1 Failure modes of quasi-brittle materials under compression: a
axial splitting under lubricated loading platens; b formation of wedge-
shaped portions at the bases due to frictional contact of dry platens
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as discussed in [22], because one can verify that the

associated stress tensor is negative semidefinite and

co-axial with the strain component associated with cracking.

However, the present approach is different from the clas-

sical no-tension theory because it is based upon the com-

petition between bulk-energy release and surface-energy

production due to the nucleation and/or progression of

cracks: since a certain energy has to be consumed to

nucleate cracks, fracture localization is energetically

favorable. The model is numerically implemented using a

standard finite-element discretization and adopts an alter-

nate minimization algorithm, adding an inequality con-

straint to impose crack irreversibility (fixed crack model).

Using this rationale, the phenomenon of axial splitting

can be conveniently reproduced. The model also predicts

the formation of the wedge-like portions contiguous to

confining dry loading platens, but furnishes for this phe-

nomenon an alternative explanation to the classical one,

according to which such portions are delimited by shear-

fracture surfaces as mentioned at the beginning. Indeed,

here the leading phenomenon for both cases of dry- and

lubricated-platens is always axial splitting; the possible

presence of friction induces a confinement that compresses

the end-portions and prevents axial-cracks from reaching

the specimen bases. In other words, according to our

interpretation in agreement with the original idea of [11],

axial splitting is not provoked by the wedging action of the

conically-shaped end-portions (isolated by shear-fracture

surfaces), but it is axial splitting that is arrested by the

lateral confinement due to friction in proximity of the

conical surface. No shear fracture is induced in this model:

specimen failure is eventually provoked by the buckling of

the material columns resulting from axial splitting, while

the conical portions at the specimen bases remain sound in

the post-peak response because they are not affected by

cracks.

Numerical experiments have been performed for pris-

matic solids under fixed lateral confinement and increasing

uniaxial tension or compression up to failure. This simple

model explains that lateral confinement is in general ben-

eficial because it tends to close the axial cracks. Moreover,

in our interpretation there is no need to call for a theory à

la Mohr, assuming a priori the dependence of the failure

state upon a proper combination of shear and normal stress

in the failure plane. Our model is minimal because the only

material parameters that are required are the elastic moduli,

the value of the fracture energy and a third parameter

representative of the material intrinsic length scale [23].

Despite its simplicity, the model is capable of reproducing

most part of classical resistance domains for confined

materials, such as Kupfer’s for concrete under biaxial stress

[24], with no need of establishing a phenomenological

dichotomy between shear and cleavage fracture.

2 The variational approach to fracture in masonry-like

materials

The model used here has already been presented in [19],

but for the sake of completeness the main features are

briefly recalled. Denoting with D;D ¼ 2� 3, the dimen-

sion of the Euclidean space where the problem is set, let

X � R
D be the undistorted natural reference configuration

of the body B for which the reference frame fO; x1; . . .; xDg
has been defined by the orthogonal base of unit vectors

fe1; . . .; eDg. The mapping yðxÞ : X! R
D define the

deformation so that uðxÞ ¼ yðxÞ � x : X! R
D is the dis-

placement of x.

We suppose that under assigned boundary conditions the

body may damage and fracture. The resulting deformation

is characterized by two different kinematics: the opening of

micro- or macro-cracks and the distortion of the elastically

bent lamellae delimited by the crack surfaces (elastic part

of the deformation). We consider a smeared view of the

phenomenon so that the corresponding strain fields result

continuous and regular in any representative volume ele-

ment (RVE). Under the hypothesis of infinitesimal defor-

mations, the global strain is the symmetric gradient of the

displacement field

rsu ¼ ðruþruTÞ=2; ð2:1Þ

for which a decomposition is assumed in the form

rsuðxÞ ¼ EeðxÞ þ EsðxÞ; ð2:2Þ

where Ee represents the elastic part of the strain, whereas

Es is the inelastic part of the strain, associated with the

formation of micro-cracks. In the language of the broader

framework of the Theory of Structured Deformations [25],

Es is that part of the strain representing the structured part

of the deformation. This is why, in the following, Es will be

referred to as the structured strain.

Let us introduce an internal damage state variable

sðxÞ : X! ½0; 1� � R, which varies from 0 to 1 and takes

the 1 value in the undamaged region and 0 in a completely

disaggregated zone1. If Ec (x) represents the structured

strain that would develop in a neighborhood of the particle

x if, here, the material was completely disaggregated, the

significance of the variable s is defined by the relation

EsðxÞ ¼ 1� sðxÞ½ �EcðxÞ: ð2:3Þ

In fact, s = 0) Es = Ec and s = 1) Es = 0, while if

s takes an intermediate value it means that material

microstructure is only partially loosened. Particular

1 The variable s is analogous to the classical damage parameter first

introduced by Kachanov [26]. To be precise, Kachanov used the

complementary variable w = 1 - s called continuity, but here we

have preferred s instead of w to follow [20].
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expressions of the field Ec (x) characterize the response of

different-in-type materials, because a completely damaged

body is composed of pieces in unilateral contact whose

kinematics depends upon the underlying microstructure.

The energy functional is composed of two terms: the

bulk energy stored in the elastically bent material and the

surface energy associated with the formation of fractures.

Such functional generally depends upon the displacement

field u(x), the damage field s(x) and Ec, according to a

general expression of the form

Plðu; s;EcÞ ¼
Z

X

Wðrsu; s;EcÞdxþ
Z

X

ClðsÞdx: ð2:4Þ

Here, Wðrsu; s;EcÞ is the bulk part of the energy, a

function of the displacement u, the damage field s and the

structured part of the deformation Ec as per (2.3), while

ClðsÞ is the surface part. Following Griffith, this is

proportional to the area of the fracture surface only, so

that the dependence is upon the field s and the

characteristic material internal length-scale l, representing

the width of the process-zone band associated with the

phenomenon of crack coalescence [23]. For reasons

explained at length in [27], we take for ClðsÞ the expression

ClðsÞ ¼
c
2

ljrsj2 þ ð1� sÞ2

l

" #
; ð2:5Þ

being c the material parameter representative of the energy

per unit area of fracture.

The derivation of the specific form of the bulk part of the

energy requires more effort and the reader is directed to [19]

for the details. In the simplest case, it can be inferred that for

the given material the crack pattern is completely charac-

terized by the average strain of the RVE, i.e., Ec (x) is a

function ofrsu(x). In extreme synthesis, one may establish a

relationship between the local value of the average stainrsu

and a particular value of Ec, say Ec
* = Ec

*(rsu), which cor-

responds to the structured strain that minimizes the stored

elastic energy in the RVE under homogenous boundary

condition, compatible with the local value of rsu.

In the particular case of masonry-like materials, one

assumes that Ec 2 Symþ, being Sym? the class of positive

semi-definite symmetric tensors. Then, in case of a linear

elastic isotropic matrix for which the elasticity tensor takes

the form C ¼ 2lIþ kI� I, being k and l the Lamé’s

elastic constants, it can be proved that

rsu ¼
XD
i¼1

eiêi � êi ) E�c ¼
XD
i¼1

a�i êi � êi; ð2:6Þ

i.e.,rsu and Ec
* are coaxial. Moreover, for the case of plain

strain for which e3 ¼ 0, it is possible to verify that, when

k C 0, then

a�3 ¼ 0; a�1; a
�
2

� �

¼
ð0; 0Þ if ð1� mÞe1 þ me2	 0;

e1 þ m
1�me2; 0

� �
if ð1� mÞe1 þ me2 [ 0 and e2\ 0;

ðe1; e2Þ if e2
 0;

8><
>:

ð2:7Þ

having set, without loosing generality, e1
 e2.

The final result is the definition of the relaxed bulk

energy density in the form W��ðrsu; sÞ �
W rsu; s;E�cðrsuÞ
� �

, that reads [19]

W��ðrsu; sÞ ¼ 1

2
C rsu� ð1� sÞ E�cðrsuÞ
� �

� rsu� ð1� sÞ E�cðrsuÞ
� �

: ð2:8Þ

Remarkably, defining T� :¼ C½rsu� E�cðrsuÞ�, one

finds that (1) E�cðrsuÞ 2 Symþ; (2) T� 2 Sym�; (3)

rsu ¼ C
�1½T�� þ E�c ; (4) T� � E�c ¼ 0. These conditions

imply that T* and Ec
* are, in general, coaxial. Moreover, in

the particular case of isotropic elasticity, then (5) also rs

u is coaxial with T* and Ec
*. If one establish a

correspondence between the tensor T* and the Cauchy

stress in completely damaged body (s = 0), these

conditions coincide with the definition of the constitutive

equations for a classical linear elastic masonry-like

material, established in [22].

Going back to the energy functional (2.4), we can now

introduce the relaxed free energy functional, obtained from

(2.4) by substitution of W�� for W, that is

P��l ðu; sÞ ¼
Z

X

W��ðrsu; sÞdxþ
Z

X

ClðsÞdx; ð2:9Þ

where W��ð�; �Þ and Clð�Þ are defined in (2.8) and (2.5),

respectively.

In conclusion, the variational problem results to be

min
ðu;sÞ2A

P��l ðu; sÞ; ð2:10Þ

where A represents the admissible class of functions,

which also contains indication of the specific conditions for

the fields u(x) and s(x) on the boundary oX of X with _s	 0

where �h i represents derivative with respect to time.

It can be verified [19] that the Cauchy stress T, which is

dual in energy with respect to the strain rsu, reads

T ¼ C rsu½ � � ð1� s2ÞC E�cðrsuÞ
� �

¼ T� þ s2
C E�cðrsuÞ
� �

:
ð2:11Þ

Notice that when s = 1 one finds the stress in a sound

elastic material, whereas when s = 0 one obtains the

aforementioned T* for a classical masonry-like material

[22]. There are however two major novelties of this model

with respect to the classical no-tension theory. First, the

term in (2.9) representative of surface-energy implies that
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the opening of fractures (i.e., s passing from 1 to 0) is

associated with an energy consumption; second, there may

be regions where the material is only partially damaged (s

between 0 and 1).

The model has been implemented in an appositely

conceived program based upon the Open Source package

deal.II [28], for which the numerical details can be found in

[19].

3 The influence of heterogeneities. Numerical

experiments

In the numerical experiments, we consider the two-

dimensional rectangular domain X of Fig. 2, with sides

d and h, which represents a section of a prismatic specimen

in plane strain.

The element is uniaxially loaded at the bases C2 and C1,

while the vertical borders C3 and C4 are unconstrained and

stress free. The considered boundary conditions reflect the

borderline cases of perfectly lubricated (slippery) and

perfectly bonded (frictional) loading plates. For the first

case of slippery plates they take the form

u � e2 ¼ 0; tn � e1 ¼ 0; s ¼ 1; on C1;
u � e2 ¼ tu; tn � e1 ¼ 0; s ¼ 1; on C2;
tn ¼ 0; rs � n ¼ 0; on C3 and C4;

8<
:

ð3:1Þ

where e1 and e2 are the horizontal and vertical unit vectors

respectively, n is the outward normal to the boundary,

tn = Tn is the normal traction with T the Cauchy stress

defined in (2.11), while t is the dimensionless parameter

correlated with the imposed displacement, associated with

the length-scale u. The case of bonded dry platens is simply

obtained through

u ¼ 0; s ¼ 1; on C1;
u ¼ tue2; s ¼ 1; on C2;
tn ¼ 0; rs � n ¼ 0; on C3 and C4:

8<
: ð3:2Þ

The setting s = 1 on C1 and C2 means that the body

cannot damage at the constrained borders and it is

remindful of the fact that contact of loading platens can

strengthen the material at the interface, but the distinction

is of scarce relevance because the degradation may in any

case occur in a neighboring portion. The following

experiments refer to the case d = 50 mm, h = 100 mm,

with elastic constants l = 12,500 N/mm2 and k = 8,333

N/mm2 (corresponding to Young’s modulus E = 30,000

N/mm2 and Poisson’s ratio m = 0.2). For fracture

toughness and intrinsic length scale, we set c = 10-4 N/mm

and l = 1 mm and we define u ¼ 2:5� 10�4mm for a

traction test and u ¼ �2:5� 10�3mm in compression2. In

the numerical discretization, we adopted a structured and

homogeneous finite element mesh composed of 80,000

quadrilaterals, with in total 3 9 80,601 degrees of

freedoms. The size of the element is 5� 10�3d, that is

0.25 l.

Figure 3 summarize the results of a traction test on the

homogeneous isotropic specimen under the slippery platen

conditions of (3.1). Two horizontal cracks appear in a

neighborhood of the lower and upper bases (Fig. 3a) and

the formation of such cracks is evidenced by an energetic

transfer à la Griffith from the bulk to the surface energy

part. This is clearly illustrated in the energy graphs of

Fig. 3b, which represent the bulk, surface and total energy,

respectively associated with the first and second integral in

the energy functional of (2.9) and with their sum.

The corresponding compression test is illustrated in

Fig. 4. Remarkably, no crack occurs in practice because the

body is under a uniaxial state of stress (Fig. 4a). The total

energy grows quadratically as represented in Fig. 4b,

where there is no evident sign of transfer from the bulk to

the surface part.

The model predictions under compression are clearly

unsatisfactory and consequently, as mentioned in the

Introduction, we need to consider the presence of defects.

In a first experiment, we simply add three small square

inclusions with side equal to one millimeter inside the

prism in the position indicated in Fig. 5. The inclusions are

made of a material much stiffer than the matrix, for which

we choose E = 60,000 MPa and c = 10-3 N/mm.

Figure 6 describes for increasing load the evolution of

the damage parameter s for the case of slippery platens,

h

d

e
2

e
1

Fig. 2 Layout of the prismatic specimen in plane strain under

uniaxial tension or compression

2 The two absolute values of u are different because the resistance

under traction is expected to be much lower than under compression.
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which is clearly associated with the crack path. Looking for

energy minimization, the specimen splits following vertical

cracks that isolate material columns that render the pres-

ence of inclusions ineffective, because they annihilate the

hoop stress due to the kinematic compatibility with the

inhomogeneities.

The corresponding case for bonded-platen boundary

conditions is particularly interesting. To render even more

evident the comparison with the previous case, Fig. 7 report

the evolution of the field s for a mixed problem, for which the

slippery boundary condition of (3.1) has been adopted on the

upper base C2, whereas the bonded platen condition of (3.2)

has been used on the lower base C1. Since the specimen is

relatively high, the two conditions, as confirmed by the

numerical results, do not influence one-another.

What should be noted here is that cracks do not develop

down to the lower base, simply because here the material is

under biaxial compression due to frictional contact. From

the energetic point of view, the development of cracks for

both cases is evidenced by a gradual increase of the surface

energy, as it is clear from observation of Fig. 8 which

reports the integral over the whole body of the term (2.5).

In substance there is not a qualitative differences between

the cases of dry and lubricated platens, because in both

cases the leading phenomenon is axial splitting.

To investigate further, we now consider the effect of

multiple square inclusions with side equal to 1 mm,

arranged according to a regular scheme as indicated in

Fig. 9 (the horizontal distance of the inclusion is 6 mm and

each line of inclusions are 3 mm equally spaced) the

mechanical properties of the inclusion being the same as

before.

The corresponding crack path for the case of compres-

sion with lubricated platens is represented in Fig 10. The

Fig. 3 Failure mode of

homogeneous isotropic

specimen under traction: a map

of s; b surface energy diagram

as a function of the loading

parameter t

Fig. 4 Behaviour of quasi-

brittle homogeneous material

under compression: a map of s;

b surface energy diagram as a

function of t
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phenomenon of axial splitting is clearly evident. Final

failure of the specimen is associated with the buckling of

the materials columns isolated by the crack surfaces, but

the present model cannot reproduce this effect because the

quadratic form (2.8) of the bulk strain energy cannot

account for geometric non-linearities.

If one considers the same case but under dry-platens

condition, the evolution of s would be as represented in

Fig. 11. Again, the confinement at the specimen ends

prevents the propagation of cracks at the bases under

biaxial compression. It is remarkable that two triangular-

shaped sound material portions are isolated at the bases,

but this shape is not due to shear cracks but it is simply

delimited by the tips of propagating cracks, that arrest

where the material is bi-axially compressed. The classical

hourglass shape that is commonly experienced in com-

pression tests with dry platens is consequently not due to

shear but rather to cleavage fractures, with no substantial

difference with the case of lubricated platens.

The substantial analogy between the two cases of slip-

pery and dry platens is again confirmed from an energetic

point of view by the surface energy graphs of Fig. 12. Of

Fig. 5 Rectangular prism in plane strain with three small inclusions

under uniaxial tension or compression (strain-driven test)

Fig. 6 Rectangular prism in

plane strain under compression

with three small inclusions.

Evolution of s for the case of

lubricated platens

Fig. 7 Rectangular prism in

plane strain with three small

inclusions under compression

(dry lower platen and lubricated

upper platen): evolution of s
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course the progression of cracks is quite restrained by

frictional contact because, for the same value of t, the

fracture energy expended in the material is smaller in dry

than in lubricated platen conditions.

4 The domain of resistance under biaxial stress

Despite its simplicity, the model can also account for the

influence of lateral confinement. For this tests plane strain

conditions have been used. To illustrate, consider now the

same prism with multiple inclusions of Fig. 9 for which,

with the same notation of (3.1) and (3.2), we assume

boundary conditions of the form

tn ¼ r2n; s ¼ 1; on C1 and C2;
tn ¼ r1n; s ¼ 1; on C3 and C4;

�
ð4:1Þ

as schematically represented in Fig. 13a.

The scope now is to calculate the combination of r1 and

r2 that provokes the onset of cracks. This is conventionally

revealed, as already discussed for Figs. 8 and 12, by a

sudden increase of the total surface energy, calculated as

the body integral of the term (2.5). The resulting resistance

Fig. 8 Rectangular prism with

three small inclusions in plane

strain under compression:

surface-energy diagram as a

function of the loading

parameter t. a Case of

lubricated platens; b case of dry

lower platen and lubricated

upper platen

h

d

e
2

e
1

Fig. 9 Layout of the prismatic specimen with multiple small

inclusions in plane strain under uniaxial tension or compression

(strain-driven test)

Fig. 10 Prism with multiple

small inclusions in plane strain

under compression. Evolution

of s for the case of lubricated

platens
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domain is represented in Fig. 13b, where an indication of

the failure mode is also furnished in the small pictures,

representing a collapsing RVE in proximity of the corre-

sponding branch of the domain. Figure 13c represents a

magnification of the domain when tractions are applied

(r1 [ 0 and/or r2 [ 0).

Observing the domain, it is clear that the strength under

compression is one order of magnitude higher than under

traction and that the lateral confinement increases the

compression strength. In fact, material crisis occurs when

the compression reaches a threshold value that linearly

increases with the lateral confining actions. The failure

Fig. 11 Prism with multiple

small inclusions in plane strain

under compression. Evolution

of s for the case of dry platens

Fig. 12 Prism with multiple

small inclusions in plane strain

under compression. Surface-

energy diagram as a function of

t for: a lubricated platens; b dry

platens

(a) (b) (c)

Fig. 13 Rectangular prism in plane stress with multiple small inclusions: a state of stress; b Biaxial stress state; c Particular of the biaxial stress

state under traction

Ann. Solid Struct. Mech. (2011) 2:57–67 65

123



mode for this case, as evident in the corresponding pictures

of the RVE, is multiple axial splitting according to the

direction of maximal compression.

It should be mentioned that in this model the material

exhibits unbounded compression strength if the lateral

confinement is correspondingly high. In fact, this model

does not account for the possibility of material crushing

under exceptionally high compression because only crack

openings are contemplated. If crushing failure was taken

into account by a convenient enrichment of the model, the

negative branches of the domain would be delimited by the

dashed lines represented, at a pure qualitative level, in

Fig. 13b. This will be not considered here, but will be the

subject of further research.

Under the combination of traction and compression

(sectors where r1 � r2 \ 0), it is evident from the picture

that even a moderate lateral tensile component drastically

diminishes the associated compression strength. More in

particular, increasing the lateral traction component

decreases the corresponding compression strength with a

pseudo-linear dependence. Failure again occurs by crack-

ing that develops parallel to the compression direction or,

equivalently, at right angle to the direction of tension.

However, as evidenced in the small RVE pictures, failure is

associated with the formation of one dominant crack,

instead of multiple axial splitting as in the previous case.

This is because the tensile component favors the fracture

localization under pure mode I opening.

Finally, let us consider the case of biaxial tension,

magnified in Fig. 13c. Again, failure occurs across one

dominating crack that develops at right angle to the

direction of maximal tension. A contemporaneous lateral

traction renders the material slightly stronger, but the effect

is of scarce relevance, being the ultimate tensile strength

practically independent of the applied lateral stress.

Moreover, for the reasons mentioned above, the present

approach cannot predict the final failure of the specimen

under high compression because material crushing is not

contemplated.

The response predicted by the model in the elastic range is

reminiscent of the classic Kupfer domain [25], that is almost

unanimously recognized as the typical domain of resistance

for quasi-brittle materials under generalized plane stress. As

a matter of fact, the elastic domain of Fig. 13 shows a slight

deviation from convexity especially in the transition zone

between the tension-tension range and the tension-com-

pression regime, whereas the Kupfer-like domains are usu-

ally assumed to be convex. However, here the non-convexity

is just perceptible and it is difficult to understand whether it is

due to numerical approximation or it is physically motivated.

To our knowledge, the experimental results, such as the most

famous ones on brick masonry by Page [29–31], reveal a

rather scattered ensemble of experimental points, that only

qualitatively can be interpolated by a convex contour. The

issue of the convexity of the elastic domain is very important

and certainly deserves further investigation that goes beyond

the scope of this paper.

5 Discussion and conclusions

The uniaxial compression test on brittle and quasi-brittle

solids is of such importance and complexity that it is

practically impossible to account for all the proposed

models, ranging from phenomenological models to micro-

mechanically motivated theories, possibly based upon a

multiscale approach. In general, the response of diverse

materials is different in type, so that no model can be

considered of universal value, even if our present inter-

pretation accords with a wide experimental evidence.

Perhaps, the major result here consists in having shown

the potentiality of the regularized variational approach to

fracture mechanics, as adapted to the case of masonry-like

material as per [19]. The model is minimal, because the

only required material parameters are the elastic moduli,

the overall fracture energy and the intrinsic material length

scale. Nevertheless, with a proper consideration of micro-

defects, here simply considered as elastic inclusions, the

model is able to reproduce a great number of aspects,

capturing the onset of axial splitting and the possible

influence of end frictional constraints of loading platens. In

particular, for what the latter aspect is concerned, the

classical hourglass shape is justified by an interpretation

that is alternative to the classical one accounting to shear

cracks, being it attributed to the arrest of splitting cracks in

the bi-axially compressed portions.

The variational masonry-like model is in practice anal-

ogous to a no-tension material with an energetic barrier, so

that a balance à la Griffith results to be equivalent to

moderate tensile strength. The model can capture the

defect-induced axial splitting because the heterogenous

microstructure gives rise to a complex stress distribution:

the material fractures to relax the excess of elastic energy

associated with this. Indeed, the proposed approach is a

regularized formulation of fracture mechanics in the sense

stated by [20], that can be numerically implemented and

take into account an extraordinary complex distribution of

stress, that would be very complicated with a conventional

sharp fixed-crack model.

Remarkably, without any need to resort to more com-

plexity or to phenomenological laws, the simple model can

also give an elementary explanation of the effects of con-

finement, interpreting at least at the qualitative level a

considerable part of the Kupfer-like failure domains [24],

representing by far the most used description of failure

under biaxial stress for a wide class of quasi-brittle solids.
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Of course, the model is still far from being exhaustive.

Further necessary developments consist in the implemen-

tation of failure due to material crushing and in the intro-

duction of geometric non-linearities, to account for the

possibility of buckling of material columns isolated by

axial splitting. Possible further immediate applications

could be the analysis of the effect of reinforcement rings in

compressed structural columns.
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