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Abstract Data-driven decisions can be performed based

on crop yield values, essential information for precision

agriculture practices. Technical solutions for yield mapping

have been increasing for the sugarcane crop. However, the

adoption of a yield monitor is low among farmers. An

alternative is associating the amount of sugarcane har-

vested with the yield. The objective of this study was to

evaluate the accuracy of the sugarcane mass prediction by a

hydraulic oil pressure sensor installed in the chopper of the

harvester. A commercial sugarcane field was used for the

field trial with four harvesters and an in-field wagon

instrumented with the load cells. All equipment at the

harvesting front were equipped with ZigBee technology for

data transfer to the sugar mill’s Remote control center. The

redistribution of the total weight of sugarcane harvested

within each field was based on the chopper hydraulic

pressure variation. The yield monitor had a low prediction

error (4.5%) compared to the total measured by the in-field

wagon. The results suggest enhancing the frequency of data

collection by the harvester improves the spatial variability

detection of sugarcane yield at the field level. The distri-

bution of the total mass of sugarcane harvested indicated

that neither empirical model nor sensors calibration is

required to estimate yield regardless of the harvester. In

future, the application of telemetry and distribution of the

total harvest within the field should be studied for other

crops, e.g., grains, which already use this technology for

the management of equipment in the field.
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Introduction

Over the years, studies developed and tested yield monitor

solutions for mapping sugarcane yield within fields. Yield

monitors using load cells (Magalhães and Cerri 2007),

optical fiber (Price et al. 2017), deflection plate (Quaderer

et al. 2014), multi-sensors fusion (Lima et al. 2021), and

3D sensors (Darr et al. 2019) have already been tested on

sugarcane harvesters to measure the amount of sugarcane

processed in real-time. However, according to Momin et al.

(2019), the lack of accuracy of the yield monitor com-

mercially available makes the low adoption of this tool by

growers. In addition, the developed systems still require

frequent calibration of the sensors, which can reduce the

operational efficiency of the machines.

Yield is the most important layer for managing the

spatial and temporal variability of the crops, and it is an

essential component to implement PA practices (Momin

et al. 2019; Sanches et al. 2019). The main objective is of

yield mapping is to identify patterns and locations with

high and low yield potential. In this way, management can

be carried out to increase yields in areas with high pro-

ductive potential and maximize profitability in areas where

it is not possible to increase the yield. Furthermore, the use

of PA tools to manage the spatial and temporal variability

of the sugarcane field, besides reducing costs and
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increasing yields, minimizes the negative environmental

impacts and improves the sugarcane quality (Silva et al.

2011).

The sugarcane industry has always been receptive to

solutions for the management of fields with focus on

improving the operational efficiency of the machinery and

equipment that carry out the operations. Among these

solutions, the most widely used is Global Navigation

Satellite Systems (GNSS) for the auto-guidance of equip-

ment within the field (Baio 2012; Passalaqua and Molin

2020), high-resolution satellite imagery (Canata et al.

2021; Shendryk et al. 2021), and the high-spatial resolution

data generated by proximal soil and plant sensing (Amaral

et al. 2018; Sanches et al. 2019). Recently, there is a rapid

and growing adoption of telemetry and machine location

systems in this sector due to the advent of General Packet

Radio Service (GPRS) communication systems and the

affordable cost of data transmission systems (Amiama et al.

2008). In terms of data acquisition for use in crop man-

agement, telemetry is one of the most promising tech-

nologies for leveraging access to a greater amount of data

from the crop and the equipment. The adoption of

telemetry by sugarcane growers allows the information to

be transmitted from the sugarcane field to the grower’s

office through Wireless Sensors Networks (WSN) and the

internet connections.

On the harvesting front, multiple harvesters and tractors

pulling in-field wagons (Momin et al. 2019) are connected

to a WSN. WSN is based on the increasing convergence of

computing and communication, where all communication

devices contain computing functionality and all computing

devices communicate with each other (Pierce and Elliott

2008). Thus, sugarcane harvesters and tractors are equip-

ped with GNSS and onboard computers to monitor and

organize their distribution within the harvesting front. The

location information shared between equipment and sen-

sors data from each equipment is sent to the control center

for machinery management. Equipment such as the sug-

arcane harvester already carries a high instrumentation

level. The data generated by these sensors in real-time

helps monitor the parameters related to its harvest opera-

tion (Corrêdo et al. 2020; Lima et al. 2021).

One assumption is that sensors installed on the harvester

and connected to a WSN can provide essential information

about the amount of sugarcane harvested and chopped in

real-time. In PA, WSNs are generally used to monitor

parameters, or are used integrated into control systems

(Popescu et al. 2020) as sensors installed in agricultural

equipment. Embedded sensors in the sugarcane harvester

can collect data at a high-resolution representing an

opportunity to guide spatial variably management within

each sugarcane row (Corrêdo et al. 2020). In this way,

harvester sensor data can be transferred using appropriate

data transmission technology within the field and con-

nected to the GPRS network to the sugar mill. In WSN-

based agricultural applications, the ZigBee wireless pro-

tocol is one of the most used due to its low cost, being

energy-efficient, and have a low-duty cycle (Ojha et al.

2015; Jawad et al. 2017; Ünal 2020). It is used in agri-

cultural systems that require a periodic refresh rate, for

example, water quality management, irrigation manage-

ment (Srbinovska et al. 2015; Aiello et al. 2018), pesticide,

and fertilizer controls.

Ünal (2020) used a ZigBee wireless network to connect

equipment within the fields and the control center, which

allowed real-time monitoring of CAN (Controller Area

Network) and GNSS data in the equipment. Maldaner et al.

(2021) predicted sugarcane yield in real-time using engine

parameters available in CAN on the onboard computer of

the sugarcane harvester and machine learning approaches.

Other studies, as carried out by Cox et al. (1999), suggest

that data generated by hydraulic oil pressure sensors from

the cane harvester chopping system, for example, and made

available in the harvester’s CAN, has the potential to be

used to estimate sugarcane yield, since this data may cor-

relate with the amount of processing mass. In this study, a

WSN commercially used by sugar mills in Brazil was used.

The differential of our study is the redistribution of the total

mass producing within each sugarcane field based on

hydraulic oil pressure. In this way, there is no need to

purchase and install income monitors in the reaper by the

farmer. Thereby, the objective of this work was to evaluate

whether the sensors installed in the harvester can accu-

rately estimate sugarcane yield within the fields.

Material and Methods

Yield Estimation

The approach to estimate sugarcane yield in this study was

based on the total weight of sugarcane harvested in studied

areas spatially distributed in the field, considering the

variations of hydraulic pressure of the chopper system of

each harvester. In this study, we used the commercial WSN

system already used by sugar mills in Brazil. The WSN

system used in this study has already been studied and

described by (Yu et al. 2013; Zenglin et al. 2017; Ünal

2020) in other agricultural applications. All equipment

(harvesters, in-field wagons, and trucks) were connected to

the ZigBee and a GPRS network, where the identification

and location information for each equipment was sent in

real-time to the management center (Fig. 1). The system

for connecting and sending data from the devices to the

monitoring center consists of four steps following the

system developed by Zenglin et al. (2017).
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The ZigBee Wireless Network

The network topology structure is the foundation of the

network (Yu et al. 2013). The system design in the sug-

arcane fields has a traditional WSN adopted in each

equipment within the harvest front. All nodes in the WSN

will transmit data to the base station. The location of a

WSN node depends on the coordinates generated by GNSS

installed in each equipment. The WSN nodes can be

located in the same field or in different fields within the

same harvester front. The ZigBee terminal node consists of

onboard computers and a ZigBee wireless module (Zenglin

et al. 2017) installed in all equipment (harvesters, wagons,

and trucks) distributed within the field where harvesting

was carried out. The nodes are supplied with electrical

power through each equipment battery (24 V DC) which is

constantly monitored. Each onboard computer sends to the

ZigBee network information of the identification and

location of each equipment generated by a GNSS. All

onboard computers transmit and receive data with a pri-

ority and the IEEE 802.15.4 protocol by a DigiMesh net-

work (Digikey, Minnesota, EUA). Thus, there is data

exchange among the nodes; therefore, they directly share

this information among the equipment. The onboard

computers installed in the harvesters send the identification

and location of the equipment in the field and also send the

data generated from any sensors. If a node malfunctions,

the computer automatically stops sending data to the net-

work, while the other nodes continue to send information

over the network normally.

Base Station

Consists of an antenna and a system capable of meeting the

communication needs of the regions where the equipment

was located during the harvest. A BCM2835 processor

embedded with arm11 technology and a ZigBee module

(Digikey, Minnesota, EUA) was used for data conversion

between ZigBee and GPRS network. In many agricultural

applications, the base station has an alternate energy source

such as solar power (Ojha et al. 2015). In remote locations,

a solar power supply and a high capacity battery are often

used with the base station.

The GPRS Network

A mobile communication system and the GSM Bridge for

the 3G and 4G networks were used to transmit the data

between the base station terminal and the remote control

centers. GPRS modems do not require a constant Internet

connection with a standard modem because they only use

the network when data are sent. It uses packet-switching

technology and sends the data at high speed on the network

and instant connections, subject to radio coverage.

The Remote Control Center (RCC)

An RS232 chip connects the GPRS module to the computer

(Zenglin et al. 2017), which processes and stores the data

collected from each equipment connected to the wireless

network in the harvest front. In this work, the monitoring

center stored the location and identification data of each

equipment within the harvest area to perform the tracking

of the sugarcane harvested. Also, the total weight of sug-

arcane harvested by each harvester was monitored. In this

way, by locating the harvester’s path during cutting and

processing the sugarcane within the field was possible to

redistribute the total weight to each harvester.

The redistributing of the total weight of sugarcane har-

vested within each field was based on the variation of the

hydraulic oil pressure in the chopper system. The chopper

system consists of two hydraulic motors that drive a pair of

chopping drums with flat blades along their length

(Fig. 2A). These blades chop the sugarcane stalks into

billets of approximately 0.2–0.3 m. The chopper power

technique assumes that the power required to chop the

sugarcane into billets is proportional to the mass flow rate

through the choppers (Cox et al. 1999; Xie et al. 2019). The

Fig. 1 The topology of the

sugarcane mapping system
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hydraulic pressure demanded to chop the sugarcane was

measured with pressure transducers in the hydraulic circuit,

both before and after the chopper motors (Fig. 2B). The

pressure sensor, model SCP01–400–14 (Parker Hannifin,

Ohio, USA), was used to measure the hydraulic pressure in

the chopper motor. This sensor has a reading range from

0–400 bar with a response time of B 1.0 ms. Its nonlin-

earity and hysteresis error was specified as ± 0.1% at full

scale, environmental temperature range of -40– ? 85 �C,
and a fluid temperature range from -40– ? 125 �C. The
sensor needs a maximum supply of 30 V and 50 mA.

The hydraulic pressure data were processed in real-time

by the onboard computer in the harvester. The differential

hydraulic pressure (DP) was calculated at each time i. This

DP at the time i was compared to the previously DP cal-

culated at time i–1. If the DPi has a greater or lower

variation than the DPi-1, and then the onboard computer

sends the DPi information to the RCC. The coordinates

were also sent to the RCC identifying the moment that the

DP occurred, the identification of the harvester, the iden-

tification of the in-field wagon where the harvester was

unloading the processed sugarcane in real-time, and the

identification of the truck where this wagon transferred the

harvested sugarcane. This truck receives multi-wagon

loading. In the end, the total weight of sugarcane in the

truck is sent to the RCC, where it is distributed according

to the wagon identifications to their respective

recollections.

Field Trial

The trial was conducted in a 186 ha commercial sugarcane

field in the municipality of Quatá, São Paulo, Brazil

(22�11026‘‘S, 55�51018’’W, and 545 m of altitude). The

first ratoon field was planted to sugarcane variety RB98769

and was cultivated with double-combined row spacing

(1.50 m 9 0.90 m). Similar to that described by Momin

et al. (2019), in this study, the sugarcane harvesting

operation consisted of four sugarcane harvesters, a fleet of

tractor pulling in-field wagons, and a fleet of semi-trucks.

Data Collection

The in-field wagon, which was equipped with the load

cells, was loaded by the harvester and then driven to a

transloading site. The in-field wagon had a load capacity of

8 Mg instrumented with load cells, EX5000 model (Exact

scales, Rancharia, São Paulo, Brazil) with 10 kg resolution

for real-time measurement of the sugarcane harvested. For

each harvester, four loads of these in-field wagons were

collected, which continuously recorded the sugarcane mass

at a frequency of 1 Hz while the harvester cut, processed,

and threw the sugarcane billets in the wagon. In this way,

16 wagons were collected during the field trial. The amount

of data recorded by the yield monitor was less than the data

generated by the load cells installed on the railcar in field

wagon. While the registration time of data by the load cells

at transfer was 1 s, the monitor recorded data at an average

frequency of 17 s.

Data Processing

First, the time lag difference in the data logger on the

harvester was corrected. The time in which the mass of

sugarcane passes through the chopper system until it is

measured by the load cells installed in the in-field wagon

was 7 s (offset). The sugarcane yield (kg ha-1) data esti-

mated by the harvester with the respective time and coor-

dinates were synchronized with the load cell data (kg) by

the registration time. After the synchronization, the sug-

arcane yield values (kg ha-1) estimated at the harvester

were converted into the total amount of mass (kg) pro-

cessed at each synchronized point. The estimated total

amount of sugarcane mass was compared to the observed

total mass.

Fig. 2 Schematic diagram of

the sugarcane chopper system

(A) and the hydraulic oil

pressure sensors (B)
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To perform the comparison of point-to-point yield data,

the estimated and observed mass at each point synchro-

nized was converted into the mass flow (kg s-1) according

to Eq. (1):

Mass flow kg s�1
� �

¼ miþ1 � mi

tiþ1 � ti
ð1Þ

where m is the mass at point i, and t is the time in point i.

Prediction Performance

The performance metric used was the Root-mean-square

error (RMSE, Eq. (2)) and Mean absolute percentage error

(MAPE, Eq. (3)).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 m̂i � mið Þ2

n

s

ð2Þ

MAPE %ð Þ ¼ 1

n

Xn

i¼1

mi � m̂i

mi

����

����

" #

� 100 ð3Þ

where, m̂i is the predicted mass, and mi is the measured

mass at time collection i, and n is the number of obser-

vations. The mean error, the standard deviation (SD) of the

error, the 95th percentile of absolute error, and the per-

centage of RMSE in relation to the range measured truth

mass were also used as supplementary error descriptive

metrics (Fei et al. 2020).

Results and Discussion

Data Resolution

The frequency of data recording influenced the yield

variability. The higher the frequency of data collection, the

greater the yield variability found within the sugarcane

row. Estimating yield with a higher frequency of the sen-

sors in the harvester that travels across the field every (or

double) sugarcane row can provide a high-resolution yield

map. PA applications, i.e., mapping nutrients exported in

detailed resolution, in the sugarcane field require a yield

map with high-resolution spatial. The system proposed in

this paper can predict the mass flow changes over the time

of the harvest, especially when an abrupt change in mass

flow occurred (black box in Fig. 3). Similar results to those

found by Maldaner et al. (2021), where yield prediction

model using harvester CAN data can recognize changes in

sugarcane yield, but, when there is an abrupt change in

yield values, there was a greater prediction error. In this

study, there was a greater variation in the observed mass

flow; however, the yield monitor did not record these small

variations in mass flow. This led to the smoothing of the

mass flow over the collection time (blue box in Fig. 3).

There were low mass variations (dotted black polygon in

Fig. 3), and the approach failed to identify these variations,

overestimating the mass flow. Although for most site-

specific applications, there is a need for high-resolution

yield data, according to (Blackmore and Moore 1999),

some applications in precision farming, such as the defi-

nition of management zones, accept some smoothing in the

yield data.

Total Mass Estimation

The predicted and observed total mass has a strong corre-

lation (r = 0.99). Figure 4 shows that the observed versus

the predicted total weight relationship has a regression

slope of 1.09 and an R2 of 0.98. The approach of this study

had an RMSE of 296 kg and a MAPE of 4.5%. The RMSE

represents 3.7% of the maximum load (8,000 kg) of the in-

field wagon used in this study. The MAPE in this study was

similar to the studies carried out by Molin and Menegatti

(2004) and Magalhães and Cerri (2007) that used a yield

monitor with load cells in the elevator of the harvester and

obtained a MAPE of 9.5% and 4.3%, respectively.

Local Mass Estimation

All four harvesters performed similarly in predicting the

flow of sugarcane mass over the harvest time. They had an

excellent linear model fit with R2 between 0.93–0.98 and a

regression slope closest to 1 (Fig. 5). This indicates that

there was no difference between the sensors installed on

the different harvesters and that different calibrations were

not required. Multiple harvesters working in the same field

and with yield monitors with different calibration settings

cause discontinuity of the data values and require post-

processing to remove this calibration difference (Maldaner

et al. 2016; Sams et al. 2017; Leroux et al. 2018).

The RMSE varies from 3.1–3.4 kg s-1 (Fig. 5), which

corresponds to 3.1–6.3% of the mass flow range for each

harvester. However, MAPE ranging from 12.0–17.6%.

There was a high dispersion of the data observed and

estimated by the yield monitor, mainly due to the opera-

tional frequency difference between devices. The lower

frequency of recorded data resulted in a smoothing in the

mass flow values, causing high error dispersion.

Considering all four harvesters, the RMSE was

3.3 kg s-1, representing 3.3% of the maximum mass flow

and a MAPE of 14.4% (Fig. 6). The mean absolute error

was 2.2 kg s-1, and the SD was 2.4 kg s-1. The error

dispersion in Fig. 6 shows a variation of the error between -

10–10 kg s-1. From the observed mass flow above

60 kg s-1, the yield monitor underestimated the sugarcane

flow mass, smoothing the values of the collected data.

Sugar Tech (May-June 2022) 24(3):813–821 817

123



Smoothing the data lost details of the yield variability

within rows, and according to (Maldaner and Molin 2020),

the investigation for local interventions within sugarcane

row demand high-frequency data acquisition by the yield

monitor.

On the other hand, the data generated by the yield

monitor in this system of distribution of the total mass do

not require post-processing steps to remove the outlier data,

as the data does not contain outliers. Some studies with

yield data filtering show that values are smoothed after

removing the outliers in the data set (Bramley and Jensen

2014; Maldaner and Molin 2020). Enhancing the frequency

of data collection by the harvester can better characterize

the spatial variability of the fields. For future studies, field

trials can cover different varieties of sugarcane and field

conditions (slope, soil type, among others).

Conclusion

The system generates accurate yield data (error of 4.5%)

with high sample density within sugarcane rows, which is

essential information for the site-specific management of

sugarcane fields. In distributing the total mass harvested

using multiple harvesters within the same field, it was

Fig. 3 Sugarcane mass flow (kg s-1) estimated by the yield monitor

and observed by the load cells installed in the instrumented in-field

wagon over the collection time. Black box—Mass flow where the

approach was able to identify the variations. Blue box—the approach

smoothed the mass flow over the collection time. Black polygon

dotted—The approach overestimated the mass flow

Fig. 4 The total mass observed in each in-field wagon versus the total

mass estimated by the yield monitor. The dashed line represents the

1:1 line, and the solid line represents the fitted linear function
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unnecessary to calibrate the sensors for different har-

vesters. The registration time of the yield monitor in this

study was 17 s, making it challenging to identify the small

variations in the mass flow within the sugarcane row,

indicating the possibility of increasing the frequency of

data collection recorded by the harvester. The sugarcane

yield mapping approach has the potential to replace con-

ventional yield monitor. Many sugarcane industries already

use telemetry to collect data for machine and equipment

management, and this study showed that data transmitted

via telemetry, such as those from the hydraulic pressure

sensors of the chopper system, can generate the informa-

tion necessary for the spatialization of sugarcane yields.

Overall, the approaches in this study help support different

applications in PA. Furthermore, this approach can be the

basis for studies with different sugarcane varieties in dif-

ferent production environments. In addition, the applica-

tion of telemetry and distribution of the total harvested

within the field should be studied for other crops, e.g.,

grains, which already use this technology for the man-

agement of equipment in the field.
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