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Abstract The adoption of precision agriculture involves a

demand for equipment and solutions to create an accurate

diagnostic of the spatial variability to be managed at the

field level. Sugarcane has faced some challenges due to the

limited solutions adapted to the crop, which develops

throughout the year and involving a large-scale harvest.

LiDAR (Light Detection and Ranging) technology is a

high-resolution tool that permits the measurement of veg-

etative growth in a non-destructive way, assisting, for

example, in harvest planning. The objective was to

describe the three-dimensional (3D) data processing to

characterize the spatial variability of sugarcane fields in the

pre-harvest period. An aerial platform was used for data

acquisition 10 days before and after harvesting. The digital

models of surface, of terrain, and the canopy height model

(CHM) were generated to spatialize plants height based on

point cloud. The LiDAR-derived metrics extracted were

percentiles (P50th; P90th–P99th), with the highest value of

the coefficient of variation observed for the P50th (59%),

indicating that there is high spatial variability in plant

height. The RMSE (Root Mean Squared Error) among field

measurements and sugarcane stalk height from CHM was

0.47 m. This study demonstrates that 3D sensing data can

provide relevant information for the assessment of the crop

height and, potentially, to consider it as an indicator of the

field regions with distinct levels of production.

Keywords Precision agriculture � Point clouds �
Remote sensing � Site-specific

Introduction

The application of remote sensing (RS) techniques in

agriculture allows for the collection of high-resolution data

(spatial and temporal) for mapping and monitoring crops,

which are essential to the PA practices. RS allows for the

identification of agronomic factors associated with the

inherent variability of the fields (Molin et al. 2015). Both

aerial images and scanning sensors (laser, ultrasonic, and

radar) have been adopted to detect the spatial variability of

agricultural fields and to support agricultural management

decisions. The main reason is the capacity of the embedded

sensors on platforms to obtain a high sample density, in

shorter time, and large-scale (Buelvas et al. 2019). Maes

and Steppe (2019) reported the progress of applying RS

tools to the PA scenario as a solution to provide detailed

spatial information to the agronomical diagnostics. Some

examples regarding the potential of the image-based aerial

platforms are assessing drought stress in early stages, to

develop site-specific weed detection, to detect growth

vigor, crop nutrient status, and yield prediction. The

authors highlighted the integration of different datasets to

improve the applicability of the developed models. The

goal is to optimize agricultural practices by increasing the

systems knowledge due to increased availability and

quality of agronomic data (Saiz-Rubio and Rovira-Más

2020).

The agricultural applications considering laser sensors, a

LiDAR technology, started in silviculture during the 1960s

to estimate forest biomass, such as eucalyptus (Ross,
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2013). Silva et al. (2020) demonstrated the potential of

modeling forest plantations using LiDAR and field data

(stem volume). Other agricultural research studies utilized

3D point clouds to characterize the structure of perennial

crops (Jiang et al. 2019; Murray et al. 2020), the modeling

of orange orchards (Colaço et al. 2019), the estimation of

barley, paddy rice, and wheat biomass (Brocks and Bareth

et al. 2018; Tilly et al. 2015; Walter et al. 2019), the

assessment of wheat nitrogen status (Eitel et al. 2014), the

measurement of dry matter yield of forage (Gebremedhin

et al. 2019), and the analysis of plant growth within-field

(Escolà et al. 2016; Sun et al. 2018), among others. Paulus

et al. (2014) verified the response of the volumetric shape

of sugar beet subject to drought conditions based on laser

sensors as a potential technique for plant phenotyping.

Paulus (2019) introduced different measuring techniques

using LiDAR for crop analysis and suggested to advance

on the automated extraction of the attributes related to the

crop yield from point clouds. Another approach is the

integration of laser sensors and reflectance data to infer

about crop biomass (Okhrimenko et al. 2019; Tilly et al.

2015). Other agricultural applications have been supported

by 3D sensing data, such as fruit detection for apple

orchards with an accuracy of more than 80% (Gené-Mola

et al. 2020). Three-dimensional sensing data are commonly

collected through aerial or terrestrial platforms which are

referred to as aerial laser scanning (ALS) and terrestrial

laser scanning (TLS), respectively. Both platforms have

been used in agriculture to provide crop canopy models

along the development cycle of the crop and integrated to

calibrate structural attributes of the plants (Bazezew et al.

2018; Hopkinson et al. 2013). Li et al. (2017) investigated

the potential of point clouds generated from ALS to char-

acterize the structural complexity of maize canopy, such as

leaf area index estimation with a relative error of 5.63%.

The use of unmanned aerial vehicle (UAV) has been a

low-cost alternative to monitor crops compared to the

LiDAR systems. Mesas-Carrascosa et al. (2020) developed

a solution for viticulture-based utilizing an RGB sensor

mounted on a UAV to derive crop canopy information,

such as the heights of individual grapevines with an error

of 0.07 m. Maimaitijiang et al. (2020) proposed a method

to model and predict soybean yields from UAV and data

fusion as an alternative to the field management. The main

limitations of this approach are the reduced payload of the

platform, a lack of sensors able to deal with the spectral

saturation effect, the independence of the ambient light

conditions, and difficulties related to the signal penetration

of the dense crop canopy prior to the harvest period (Deery

et al. 2014; Poley and McDermid, 2020). Shendryk et al.

(2020) used multirotor UAV with LiDAR and imaging

sensors embedded for prediction of biomass and leaf

nitrogen content in sugarcane; they found moderate

relationship (R2 B 0.52) to estimate sugarcane biomass

based on 3D modeling and multispectral images.

Sugarcane plays an important role in the Brazilian

agricultural economy. Brazil is the largest producer of

sugarcane in the world market (about 9.0 M ha) and the

first in the production of sugar and ethanol (CONAB,

2020). The high demand regarding domestic and foreign

markets for products obtained through sugarcane, and the

expansion of production areas in different regions of the

country have intensified the need to obtain information that

has a direct relationship with sugarcane yield. Mapping

sugarcane areas using multi-temporal data has been dis-

cussed to monitor spatial variability of the fields based on

orbital images (Luciano et al. 2018; Wang et al. 2019).

Also, the spectral bands (reflectance data and vegetation

indices) have been investigated for sugarcane yield fore-

casting (Bégué et al. 2010; Rahman and Robson 2020).

Despite the potential to explore and model agronomic

data from low-cost images, the problems associated with

the spectral saturation effect prior to the harvest, and also

selecting the most appropriate period to collect the data to

determine crop yield are the main challenges limiting to

implementation of these methods for high biomass crops

(e.g., maize, sugarcane, and wheat). Molijn et al. (2018)

proposed a methodology for estimating sugarcane biomass

from soil reference data and orbital images, associating

biometric measurements, to monitor the dynamics of the

sugarcane production. Canata et al. (2019) developed a

measurement system based on TLS as a spatial assessment

of sugarcane plant height in the pre-harvest period. To

advance the understanding and application of LiDAR

technology in sugarcane, the objective of this paper is to

describe the techniques of 3D data processing for mapping

the spatial variability of sugarcane fields. A validation of

the LiDAR measurements is also described.

Material and Methods

Study Site

The study was conducted in a 36.05 ha commercial sug-

arcane area with three fields, located near Botucatu, São

Paulo, Brazil (22� 410 42.800 S; 48� 160 54.000 W; elevation

480 m) for the 2018/2019 sugarcane growing season. The

climate in the region of study is mesothermal, Cwa, i.e.,

humid subtropical including drought in the winter (from

June to September) and rain from November to April, and

the average annual rainfall in that municipality is

1433 mm. The average air relative humidity is 71% with

an annual average temperature of 238C (Cunha and Martins

2009). The sugarcane variety SP83-2847 (4th ratoon) was

planted with a row spacing of 1.5 m on an Argisol soil for
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all study sites. All fields were mechanically harvested

green late in the season (wet time of the year—November).

Data Acquisition and Processing

To investigate the application of LiDAR technology for

mapping the variation of sugarcane plant heights, the fol-

lowing embedded and integrated equipment was used: a

laser sensor ALTM Gemini 56,100 (OPTECH), an inertial

unit, and a GNSS (Global Navigation Satellite Systems)

receiver mounted on a helicopter. The sensors were

mounted at a nadir angle with scans over the sugarcane

fields. The average flying altitude was 500 m above ground

level. The main specifications of the data acquisition are

shown in Fig. 1. The data acquisition occurred on two

occasions, within each collection time, and manual mea-

surements were taken immediately after the ALS data

acquisition. The first data acquisition (first flight) was

carried out 10 days before harvesting for the three fields

selected according to the validation points. The second

flight occurred 10 days after harvesting with the same

equipment to create the DTM of reference.

The planimetric coordinates (X and Y) and the ellipsoid

height values (Z) were computed for all laser sensor data

(points) and georeferenced using the post-processing

method. The original point clouds were stored in LAS

format and projected on the WGS84/UTM22S coordinate

system. The preliminary analyzes of the point clouds were

done using CloudCompare 2.10.2 software (Girardeau-

Montaut). All data allocate outside the field boundary and

outliers were manually excluded from point clouds.

The function grid_metrics of the lidR package (Roussel

et al. 2019) from R statistical software (R Core Team,

2017) was used to create the DSM. lidR package is con-

sidered an interface for data manipulation and visualization

of airborne LiDAR data. The grid_metrics function is an

area-based approach. In the first data acquisition, the 3D

data was used to calculate the DSM, which is the absolute

height of sugarcane plants. The data processing steps to

generate the DSM were (i) to consider the maximum ele-

vation parameter of the filtered point cloud generated

before harvesting; (ii) to rasterize the data with a pixel

resolution of 0.5 m, due to the row spacing of sugarcane

plants, and the recommendation of Mielcarek et al. (2020);

(iii) computing the metrics for each cell. The same function

was used to generate the percentiles (P50th; from P90th to

P99th) that are common LiDAR-derived metrics calculated

in studies of 3D data (Gorgens et al. 2017; Li et al. 2017).

Eleven metrics were considered to support the identifica-

tion of the spatial variability in sugarcane fields. The

DTMs for both point clouds (before and after harvesting)

were generated using the function grid_terrain of lidR

package (Roussel et al. 2019) from R statistical software (R

Core Team 2018). Only LiDAR points classified as ground

(classification = 2, according to LAS file format) were

interpolated using triangulated irregular network (TIN),

Delaunay triangulation method, with the same pixel reso-

lution of DSM (0.5 m). The relationship between the

Fig. 1 Overview of the LiDAR data acquisition from airborne laser scanning

Sugar Tech (Mar-Apr 2022) 24(2):419–429 421

123



elevation values from both DTMs was evaluated by cal-

culating the RMSE according to Eq. (1).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

zi � zð Þ2

s

ð1Þ

where n is the number of the sample, zi is the predicted

height, and z is the observed height.

Determining the crop canopy height with LiDAR

requires an estimation of the ground level and subtracting it

from the absolute height of the elevation (Eq. 2, Jimenez-

Berni et al. 2018; Loudermilk et al. 2009). The DTM can

be obtained from a scan with bare soil, while the crop

surface model is calculated from the top-most points of the

point cloud, using a selection based on the top percentile

(Friedli et al. 2016; Hämmerle and Höfle, 2014). The

purpose of the data acquisition after harvesting was to map

the DTM of reference.

CHM ¼ DSM � DTM ð2Þ

where CHM is the canopy height model (m); DSM is the

digital surface model (m); DTM is the digital terrain model

(m).

Field Data Collection

Manual measurements were collected across three fields

(Field 1—18.07 ha; Field 2—12.67 ha; Field 3—5.31 ha)

as harvesting front advanced. Totally 162 validation points

were allocated on the study site (Fig. 2a), and the geo-

graphical coordinates for each one were recorded using a

GNSS receiver with satellite differential correction

(Fig. 2b). The sugarcane stalk height and the canopy height

(the highest leaf of the plant) were measured and georef-

erenced using a ruler (Fig. 2c), according to the method-

ology described by Portz et al. (2012). For measuring the

stalk height, we considered the top visible dewlap leaf as

reference (stem distance from the ground level). The

accuracy of the plant height measurements was assessed by

calculating the RMSE. In addition, linear regression anal-

ysis was used to describe the relationship among plant

height estimation from CHM and field measurements. The

coefficient of determination (R2) was calculated as a

measure of the goodness of fit from the prediction model.

The linear regression was used to develop equations that

relate LiDAR-derived metrics with reference data (field

measurements) (Mielcarek et al. 2018).

Fig. 2 Sugarcane study site (a); validation points (b); field measurements (c)
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The CHM and the percentiles from point cloud were

converted to vector layer on quantum geographic infor-

mation system (QGIS 2.18.26, QGIS Development Team

2018) and compared with the georeferenced field mea-

surements. The relationship among LiDAR and field data

has been used to verify the relative error of measuring plant

height (Borra-Serrano et al. 2019; Harkel et al. 2020),

considering it an indicator of yield and highly influenced

by soil, temperature, and light intensity (Cholula et al.

2020). The main steps and the computational tools for

processing 3D sensing data are shown in Fig. 3. The spatial

variability was determined according to the descriptive

statistics of the dataset and the criteria established by

Gomes and Garcia (2002), considering the coefficient of

variation (CV). This criterion is useful for PA as an initial

analysis to identify the within-field regions with a distinct

potential of production (Molin et al. 2015). All statistical

analyses were conducted in R statistical software (R Core

Team 2018).

Results and Discussion

Point Clouds Assessment

3D sensing data demonstrates the common characteristic of

high-resolution data (about 13 points m-2) for the point

clouds generated before and after harvesting for the

selected fields. The descriptive statistics for both point

clouds, considering the preliminary data filtering, is shown

in Table 1.

The point cloud generated before harvesting for the

selected field (Field 1) is shown in Fig. 4. Each point

represents the positioning (X, Y) and the elevation (Z) in the

same coordinate system. Considering all fields, an average

point density of 14 points m-2 was obtained for the data

acquisition performed before harvesting. 35% of the total

points were classified as ground for the first data

acquisition.

It was observed that the overlap from ALS influenced on

digital models due to the density of points; thus a nor-

malization of the elevation values was performed. Crop

mapping using ALS provides a more detailed characteri-

zation of the plant profile due to the multiple pulses emitted

by the laser sensor and enables the data acquisition for

large-scale and shorter time. Also, the data acquisition

from ALS is unlimited by the availability of crop inter-row

at the field. Jimenez-Berni et al. (2018) described LiDAR

as a direct measurement of the crop canopy height that

allows a multi-temporal and non-destructive assessment of

ground cover and above-ground biomass of wheat. Also,

point cloud has been considered a technique that provides

more robust dataset to guide agronomic interventions.

Colaço et al. (2018) discussed the potential application of

high-resolution 3D modeling for precision horticulture

according to the volume variability of tree canopies.

Fig. 3 Schematic of the LiDAR data acquisition and data processing workflow

Table 1 Descriptive statistics of the point clouds considering all fields

Point cloud n Density Minimum Maximum Mean Median SD CV (%)

points m-2 Elevation (m)

Before harvesting 4,895,596 13.60 459.19 505.77 474.88 474.98 4.61 0.97

After harvesting 4,684,655 13.01 459.29 495.88 474.29 474.27 4.20 0.88

n—number of samples, SD—standard deviation, CV—coefficient of variation
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Digital Terrain Models

The point density achieved was sufficient to generate the

DTM (Fig. 5a) for the first data acquisition, which had a

similar distribution of the elevation values from DTM after

harvesting (Fig. 5b). The relationship between both DTMs

for one field (Field 1) is shown in Fig. 5c, demonstrating

that the linear regression provided an accuracy of

R2 = 0.997 and RMSE of 0.13 m.

The settings adopted for the data acquisition by an ALS

enabled the detection of ground points in a condition of

sugarcane pre-harvest period (high-density distribution of

the plants and overlapping leaves). This result was obtained

for the specific field conditions found on the period of the

data acquisition, and other field conditions should be

investigated to verify if a single flight is sufficient to

generate the DTM. Hämmerle and Höfle (2014) reported

the effect of reduced point density of laser sensor data on

generating digital models for grain crop fields. They found

that the accurate measurement of the crop height did not

always improve with increasing on point density. Other

studies also related the effect of point density reduction on

Fig. 4 Point cloud generated before harvesting (a); representation of a point cloud section: 2D (b); 3D (c)

Fig. 5 Digital terrain models for before harvesting (a); and after harvesting (b); Relationship between both digital terrain models (c). The dashed

line represents the 1:1 line and the solid line represents the fitted linear function
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digital models as a parameter to help choose the settings for

the data acquisition (Luo et al. 2016; Silva et al. 2017).

Comparing 3D Data and Field Measurements

The descriptive statistics of the validation points (Table 2)

showed that the minimum sugarcane stalk height and crop

canopy height were 1.20 m and 2.44 m, respectively. The

maximum values were of 2.90 m and 4.30 m, respectively.

The CV values indicated that there was a greater variability

of the stalk height (19%) in relation to the crop canopy

height (9%). Considering all fields, the RMSE between the

laser sensor data and the field data ranged from 0.47 to

0.62 m for stalk height, and from 0.70 to 0.81 m for crop

Table 2 Descriptive statistics of the validation points for each field

Field n Minimum Maximum Mean Median SD RMSE CV (%)

Stalk height (m) 1 63 1.34 2.52 1.87 1.86 0.26 0.62 13.90

2 62 1.20 2.90 2.07 2.09 0.41 0.51 19.80

3 37 1.57 2.71 2.07 2.06 0.27 0.47 13.04

Canopy height (m) 1 63 2.59 4.10 3.22 3.12 0.34 0.81 10.56

2 62 2.44 4.30 3.70 3.10 0.41 0.70 11.08

3 37 2.61 3.90 3.17 3.20 0.29 0.72 9.14

CHM (m) 1 63 1.80 3.09 2.45 2.44 0.28 – 11.43

2 62 1.57 3.23 2.47 2.57 0.37 – 14.98

3 37 1.44 3.03 2.48 2.53 0.32 – 12.90

CHM—canopy height model, n—number of samples, SD—standard deviation, RMSE—root mean squared error, CV—coefficient of variation

Fig. 6 Canopy height model (a); Relationship between the validation points and predicted values from CHM for field 1 (b); field 2 (c); field 3

(d). The dashed line represents the 1:1 line and the solid line represents the fitted linear function
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canopy height. This error for estimating plant height is

associated with the influence of several factors, such as

lodging plants that could compose a source of error for

using high-resolution data. This condition is a common

characteristic of pre-harvest condition, mainly due to the

environmental factors (Canata et al. 2019; Cholula et al.

2020), and it was observed during the field measurements

of the current study.

The lower RMSE (0.47 m) obtained for crop canopy

height from Field 3 can be explained by the field condition

and also by the capacity of the laser sensor to emit multiple

pulses of signal and detecting the returns associated with

the crop canopy (the highest data from point cloud). Harkel

et al. (2020) reported similar results for modeling different

crops (potato, sugar beet, and winter wheat) based on plant

height indicated by laser sensor, they found RMSE values

from 0.12 to 0.34 m, comparing manual plant height

measurements and LiDAR data. The CHM generated to

map the spatial variability of sugarcane fields is shown in

Fig. 6a. The variation of the plant height indicated by the

CHM would be a potential tool for detecting different

levels of sugarcane production and, consequently, to help

improve harvest planning and within-field management.

Colaço et al. (2019) identified the spatial variability of

orange orchards using TLS to provide site-specific man-

agement according to the height and volume of the plants.

The relationship between the observed and predicted

crop height from CHM for each field (Field 1—Fig. 6B,

Field 2—Fig. 6c, Field 3—Fig. 6d) showed that the accu-

racy (R2) of the method ranged from 0.31 to 0.38, with the

highest R2 (0.38) for Field 3 considering both variables

(stalk and canopy height). This effect can be associated

with the maximum values considered for the interpolation

used to generate DSM from the point cloud and to the

structural condition of the plants at the field.

The descriptive statistics of LiDAR-derived metrics

extracted from the point cloud is shown in Table 3 for the

same validation points. These metrics can support prelim-

inary filtering of the point cloud to eliminate signal noise

and outliers from elevation data (Walter et al. 2019). The

CV values ranged from 42 to 69% considering all fields,

and the highest value was verified for P50th (69%—Field

3). This variation indicated a high level of spatial vari-

ability in sugarcane fields. The maximum values from

percentiles P90th to P99th were similar to the maximum

values of stalk height (2.70 m), indicating that extracting

percentiles from point cloud would be a strategy to spa-

tialize crop height without the influence of discrepant

values. Overall, the CHM and the percentiles showed a

systematic overestimation of the plant height that is partly

affected by the spatial resolution compared to the size of

the objects (plants), and the capacity to reconstruct the

Table 3 Descriptive statistics of the LiDAR-derived metrics

Plant height (m)

Field P50* P90* P91* P92* P93* P94* P95* P96* P97* P98* P99*

Minimum 1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

3 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

Maximum 1 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70

2 2.51 2.70 2.70 2.71 2.71 2.72 2.72 2.73 2.75 2.78 2.81

3 2.88 2.95 2.95 2.96 2.96 2.96 2.96 2.97 2.97 2.97 2.97

Mean 1 1.41 1.65 1.65 1.66 1.66 1.67 1.67 1.68 1.78 1.69 1.69

2 1.27 1.50 1.50 1.51 1.52 1.52 1.53 1.53 1.54 1.54 1.55

3 1.08 1.54 1.54 1.57 1.58 1.60 1.61 1.62 1.64 1.65 1.66

Median 1 1.54 1.73 1.73 1.74 1.75 1.75 1.76 1.76 1.68 1.78 1.78

2 1.43 1.73 1.73 1.73 1.73 1.73 1.74 1.74 1.74 1.74 1.75

3 1.07 1.72 1.72 1.72 1.72 1.72 1.72 1.73 1.73 1.73 1.73

SD 1 0.72 0.70 0.70 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.72

2 0.78 0.80 0.80 0.80 0.80 0.80 0.81 0.81 0.81 0.81 0.81

3 0.75 0.76 0.76 0.77 0.77 0.78 0.79 0.79 0.80 0.81 0.81

CV (%) 1 50.79 42.78 42.78 42.63 42.55 42.48 42.43 42.38 42.34 42.30 42.26

2 61.41 53.06 53.06 52.92 52.85 52.79 52.73 52.68 52.62 52.57 52.53

3 69.84 49.24 49.24 48.98 48.88 48.81 48.77 48.75 48.75 48.77 48.81

Pn*—percentile of the n percentage, SD—standard deviation, CV—coefficient of variation
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canopy structure (Bareth et al. 2016; Holman et al. 2016).

Other studies described the digital model applications for

agriculture, Brocks and Bareth (2018) used digital models

as a non-destructive method for monitoring the vegetative

development of barley and for predicting dry matter bio-

mass with high accuracy (R2 = 0.79). Schirrmann et al.

(2016) elaborated crop surface models for monitoring

agronomic parameters of winter wheat using UAV ima-

gery, which enabled them to detect the variations in early

crop senescence and to model biophysical wheat

parameters.

The relationship between the field measurements and the

LiDAR data indicated the potential of RS tools to identify

the spatial variability of sugarcane fields through the plant

height mapping in the pre-harvest condition. This approach

can provide relevant information to support site-specific

management for sugarcane growers, and a suitable alter-

native to the multispectral information obtained during the

crop maturation stage from aerial platforms. The eco-

nomical and practical aspects also should be deeply dis-

cussed to enable the use of LiDAR-based platforms in the

agricultural environment, considering that it tends to make

feasible for long-term. As an alternative to minimize the

measurement error of stalk height, future studies should

develop the data filtering according to the returns of laser

sensor to characterize better the structure of sugarcane

plants.

Conclusion

The LiDAR-derived metrics associated with 3D sensing

data processing were obtained to provide the characteri-

zation of the spatial variability of commercial sugarcane

fields. The DTMs generated before and after harvesting

were numerically the same regarding the elevation values,

indicating that a single flight would be required to generate

digital models in similar field conditions of the current

study. The plant height distribution within-field was map-

ped through the CHM obtained from a dense point cloud.

The RMSE was 0.47 m considering the comparison

between the field measurements (sugarcane stalk height)

and LiDAR data. LiDAR technology demonstrated poten-

tial to assess the spatial variability of sugarcane fields for

the pre-harvest condition (crop maturation stage). The

contribution of the technology to sugarcane industry

involves large-scale crop mapping with more representa-

tive data previous harvesting.
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Piracicaba: FEALQ.

Gorgens, Eric Bastos, Ruben Valbuena, and Luiz Carlos Estraviz.

Rodriguez. 2017. A method for optimizing height threshold
when computing airborne laser scanning metrics. Photogram-
metric Engineering & Remote Sensing 83 (5): 343–350.

https://doi.org/10.14358/PERS.83.5.343.

Hämmerle, Martin, and Bernhard Höfle. 2014. Effects of reduced
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