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Abstract Dextranase from Chaetomium gracile is gener-

ally considered safe for use in the sugarcane industry.

Herein, a truncated and codon-optimised a-dextranase gene
from C. gracile was successfully cloned and expressed in

Saccharomyces cerevisiae for the first time. The optimum

conditions of fermentation was achieved when the maxi-

mum dextranase activity reached to 58.45 U/mL after 48 h

in shake flasks. The optimal pH and temperature were 5.5

and 60 �C, respectively. The recombinant dextranase

remained stable between pH 4 and 6 and temperature

between 55 and 60 �C. The findings in the present study

could facilitate large-scale production of food-grade

recombinant dextranase for use in the sugar industry.

Keywords Dextranase � Chaetomium gracile �
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Introduction

Dextrans are the collective name for high molecular weight

polymers composed of D-glucose units connected via a-1,2,
a-1,3 and a-1,4 main-chain linkages (Zhang et al. 2017).

Dextrans are synthesised from sucrose by the enzyme

dextransucrase secreted by bacteria such as Leuconostoc

mesenteroides (Fraga Vidal et al. 2011). The presence of

dextrans in syrup enhances the viscosity and thereby

affects filtration, clarification and crystal formation, lead-

ing to economic losses (Eggleston and Monge 2005; Pur-

ushe et al. 2012). Physical methods such as ultrafiltration,

dialysis and reverse osmosis have proven useful for

removing dextrans from sugarcane juice yet are not

implemented in the sugarcane industry due to high costs

(Mao et al. 2018).

Commercial dextranase has been used in sugarcane

factories to degrade dextrans into smaller molecules by

endogenously hydrolysing the a-(1,6) linkages, as exem-

plified in the extraction of sugar from sugar beet (Li et al.

2017). Dextranases are present in a wide variety of fungi

and bacteria, and fungi are the main commercial sources

(Khalikova et al. 2005). Most commercial dextranases in

the USA are produced from either Penicillium spp. or

Chaetomium spp. (Eggleston 2009). However, there are

safety concerns, and relatively low productivity restricts

their application in the sugar-making process (Zhang et al.

2018). To solve these problems, researchers have focused

on recombinant enzymes to meet the immense demand for

dextranases in the in food, medicine and chemical indus-

tries. Although various dextranases of bacterial and fungal

origin have been previously reported, few are currently

employed in the sugar industry (Khalikova et al. 2005;

Bertrand et al. 2014) due to high enzyme cost, cumbersome
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in dextranase purification and toxic by-products from fungi

(Rerngsamran et al. 2014).

A solution is the deployment of engineered strains to

produce dextranases, among which Escherichia coli,

Pichia pastoris and Saccharomyces cerevisiae are the three

most commonly used heterologous expression systems.

Dextranase genes from bacteria and fungi have been

heterologously expressed in E. coli, often as insoluble

inclusion bodies (Purushe et al. 2012; Khalikova et al.

2005). Although the methylotrophic yeast P. pastoris is

widely used for the heterologous production of recombi-

nant proteins (Macauley-Patrick et al. 2005), including

dextranases (Kang et al. 2009; Chen et al. 2008), volatile

toxic compounds such as methanol can impact food safety

of products from this organism. S. cerevisiae is easily

cultivated, has been used successfully in industrial appli-

cations for many years and has Generally Recognised as

Safe (GRAS) status (Liu et al. 2013). Kang et al. (2005)

reported the cloning and characterisation of a dextranase

gene from Lipomyces starkeyi and its heterologous

expression in S. cerevisiae, but the activity of the recom-

binant enzyme was not given, and the optimal temperature

of the recombinant enzyme was 37 �C, which is too low for

use in the sugarcane industry.

China is the fourth largest producer of sugarcane in the

world, producing * 10 million tons of sugarcane per year,

but residual dextrans in syrup result in large economic

losses. Also, the sugar-making process usually requires

high temperatures, and hence, thermostable enzymes are

needed. In the present study, an optimised dextranase-en-

coding gene from Chaetomium gracile was expressed in S.

cerevisiae, and various enzymatic properties of the

recombinant enzyme, including optimal temperature, pH,

thermal and pH stabilities, were studied. We also optimised

the fermentation conditions to maximise dextranase pro-

duction in engineered S. cerevisiae strains.

Materials and Methods

Microorganisms, Plasmids and Culture Medium

Escherichia coli JM109 was used as the recipient strain for

cloning manipulation and plasmid amplification and was

cultivated in Luria–Bertani (LB) medium containing tryp-

tone (10 g/L), yeast extract (5 g/L) and NaCl (10 g/L) with

or without 100 lg/L of ampicillin. S. cerevisiae CEN.

PK2-1B (MATa; his3D1, trp1-289, leu2-3, 112, ura3-52,
MAL2-8c, SUC2) was obtained from EUROSCARF

(Frankfurt, Germany) and used for genetic manipulation.

Engineered S. cerevisiae strains were grown in yeast

extract–peptone–dextrose (YPD) medium (2% glucose, 2%

tryptone, 1% yeast extract) or yeast nitrogen base (YNB)

medium (0.17% yeast nitrogen base without amino acids,

0.5% ammonium sulphate, 2% glucose, supplemented with

50 lg/mL of each of the required amino acids). All

chemicals were of reagent grade and were obtained from

commercial sources.

Construction and Transformation of Recombinant

Plasmids

The plasmid T-vector pMD19 (Simple) was purchased

from TaKaRa (Dalian, China), and the yeast expression

plasmid pY26-TEF1-GPD1 was kindly provided by Li

et al. (2007). Plasmid pRS306 was kindly provided by

Sikorski and Hieter (1989).

SignalP 4.1 (http://www.cbs.dtu.dk/services/SignalP/)

was used to predict the signal peptide sequence of the a-
dextranase gene from C. gracile (GenBank: KC707808.1),

suggesting the first 54 bp encodes a signal peptide, and the

4–54 bp region was truncated in the codon-optimised dex

gene synthesised by Sangon (Shanghai, China). The

sequence of the dex gene is provided in Supplementary

data.

The synthesised dex gene was cloned into the pY26 and

pRS306 vectors to obtain the expression constructs pY26-

dex and pRS306-dex, which were verified and transformed

into S. cerevisiae CEN.PK2-1B using Fast-Yeast Trans-

formation regent (G-Biosciences, St. Louis, MO) according

to the manufacturer’s instructions. Strains harbouring

integrated plasmids containing auxotrophic selection

markers were screened using corresponding auxotrophic

YNB plates and verified by PCR analysis.

Enzyme Assays and Sodium Dodecyl Sulphate–

Polyacrylamide Gel Electrophoresis (SDS–PAGE)

In this study, dextranase was produced by S. cerevisiae as

an intracellular hydrolase, and snailase was used to destroy

the yeast cell wall. Yeast cells were harvested by cen-

trifugation (1500g at 25 �C for 5 min), and cell pellets

were resuspended in 5 mL of solution containing 1.0 M

sorbitol, 250 lL of 20 9 phosphate-buffered saline (PBS)

and 1% snailase (Sigma, Shanghai) and incubated at 37 �C
for 1 h. Then, the cells were further treated with glass

beads (0.4–0.6 mm, OMEGA) by vortex. The supernatant

of cell-broken cells was used as crude enzyme.

Dextranase activity was measured using the dinitrosal-

icylic acid (DNS) method by incubating 100 lL of enzyme

with 900 lL of 2% dextran T2000 (Sigma) as previously

reported (Li et al. 2006). One unit of dextranase (U/mL) is

defined as the amount of enzyme that degrades dextran

T2000 to produce reducing sugar per min under assay

conditions at 37 �C. Crude dextranase was analysed by
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SDS–PAGE, and gels were stained with Coomassie Bril-

liant Blue R-250 (Kang et al. 2009).

Optimisation of Fermentation Conditions

To determine the initial culture pH, we varied the substrate

pH range from pH 4.0 to 7.0, and the enzyme activity of the

recombinant dextranase was calculated as described above.

To investigate the optimum temperature for enzyme pro-

duction, culturing was carried out at different temperatures

between 26 and 34 �C.
In this experiment, we tested the effects of different

substrates and substrate concentration on dextranase pro-

duction. Glucose (1% w/v) present in the basal medium

was replaced by sucrose, glycerol, fructose, lactose or

starch. Meanwhile, tryptone (2% w/v) present in the basal

medium was substituted by organic and inorganic nitrogen

sources including casein, ammonium chloride and urea.

Properties of Recombinant Dextranase

To determine the optimum pHof the recombinant dextranase,

dextran T-2000 (2%) was dissolved in different substrate

solutions at pH 3.0–8.0 using citrate–phosphate buffers. The

pH stability was assessed by treating recombinant dextranase

at pH 3.0–8.0 for 1 h, and the residual activity at each pHwas

expressed relative to the highest activity (100%). All experi-

ments were performed in triplicate.

To determine the optimum temperature for dextranase

catalysis, enzyme was incubated with dextran T-2000 (2%)

at different temperatures between 30 and 80 �C, and ther-

mostability was assessed by incubating dextranase at

30–80 �C for an h. The activity at each temperature was

expressed relative to the highest activity (100%). All

experiments were performed in triplicate.

Results

Expression of Codon-Optimised Dextranase in S.

cerevisiae

To evaluate the expression of dextranase from C. gracile in

S. cerevisiae, the codon-optimised dex gene encoding the

synthase was expressed in S. cerevisiae CEN. PK2-1B

using the episome plasmid pY26-TEF-GPD, resulting in

the engineered S. cerevisiae strain XD02. The SDS–PAGE

results verified the secretion of the 63 kDa dextranase by

the XD02 cells, and no comparable band was visible with

the XD01 control strain carrying empty pY26-TEF-GPD

(Fig. 1). The DNS results indicated that dextranase pro-

duction by XD02 in YNB medium reached a maximum of

17.86 U/mL after 72 h of cultivation.

We also evaluated the expression of dex following

incorporation into the chromosome of S. cerevisiae CEN.

PK2-1B using the integrant plasmid pRS306, resulting in

engineered S. cerevisiae strain XD03. When cultured in

YPD medium, the cell density of S. cerevisiae strain XD03

increased rapidly during the first 36 h and then remained

consistent after 48 h. Despite the slower cell growth after

24 h of incubation indicating stationary phase, more dex-

tranase was produced between 24 and 48 h, suggesting

cells at stationary phase produced more target enzyme. The

maximum dextranase activity of strain XD03 was obtained

after 60 h (40.42 U/mL), slightly higher than that after 48 h

(40.26 U/mL; Fig. 2). Afterwards, dextranase production

declined gradually to the end of the incubation, as cell

growth further declined (data not shown). Previous

research reported that production of C. gracile dextranase

was maximal after incubation for 96 h (Li et al. 2017).

Thus, our results indicate that heterologous gene expres-

sion in S. cerevisiae is more rapid than the time-consuming

fermentation of C. gracile. Since the engineered S. cere-

visiae strain XD03 exhibited superior dextranase produc-

tion compared with strain XD02, XD03 was employed for

dextranase production in subsequent experiments.

1 2 3 4 5

20.1

29.0

44.3

66.4

97.2

kDa

Fig. 1 SDS–PAGE analysis of recombinant dextranase expressed in

S. cerevisiae. Lane 1, S. cerevisiae CEN. PK-1B (negative control);

lane 2, supernatant of S. cerevisiae XD02 wall-broken cells; lane 3,

cell suspension of S. cerevisiae XD02 wall-broken cells; lane 4,

supernatant of S. cerevisiae XD03 wall-broken cells
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Effects of Medium pH and Incubation Temperature

on Dextranase Production

Relatively few studies have explored the influence of initial

pH and temperature of the medium on yeast intracellular

recombinant protein production, although both parameters

are known to affect fugal growth. In the present study, the

influence of initial pH and culture temperature on dex-

tranase production in engineered S. cerevisiae was exam-

ined. Strain XD03 cells were incubated in YPD medium in

500 mL flasks with a working volume of 50 mL and

incubated at 30 �C for 60 h. Maximum growth was

observed at pH 6.0, at which the absorbance at 600 nm

(OD600) reached 10.3. Maximum dextranase production

was achieved at pH 5.5, at which dextranase activity

reached 42.1 U/mL. These results indicate dextranase

production over a broad pH range (pH 4.0–7.0; Fig. 3a).

Thus, pH 5.5 was considered the most suitable pH for

achieving the highest yield of dextranase in engineered

yeast strain XD03.

To address the effect of temperature on dextranase

production, XD03 cells were cultured in YPD medium in a

500-mL flask with a working volume of 50 mL at various

temperatures from 26 to 34 �C for up to 60 h. Cell density

and dextranase production were analysed, and the results

are summarised in Fig. 3b. Maximum cell growth rate was

achieved at 28 �C, and cell growth decreased gradually

thereafter with increasing temperature. The optimal tem-

perature for dextranase production was 30 �C, at which

activity reached 42.13 U/mL. Thus, to maximise dex-

tranase production, we selected 30 �C as the optimum

temperature in subsequent experiments.

Effects of Nitrogen and Carbon Source

on Dextranase Production

We also studied the effects of different carbon and nitrogen

sources on dextranase production at different concentra-

tions. While keeping all other culture conditions unchan-

ged, the sole carbon source was sequentially replaced by

sucrose, glucose, glycerol, fructose, lactose and starch. As

shown in Fig. 4a, dextranase production and cell growth of

strain XD03 on glycerol, fructose and glucose were clearly

higher than on sucrose, lactose or starch. Maximal growth

of XD03 cells occurred using glycerol, and the highest

dextranase yield was achieved using glucose. Thus, glucose

was regarded as the best alternative carbon source for

dextranase production. With increasing glucose concen-

tration, the growth of yeast cells increased almost propor-

tionately, suggesting the carbon source was growth

limiting. We established that the optimal glucose concen-

tration was 25 g/L (Fig. 4b). Previous reports also

emphasised that obtaining the maximum biomass does not

guarantee successful fermentation and production of target

molecules (Martinez-Moreno et al. 2012).

We also investigated effect of nitrogen source at dif-

ferent concentrations and found that tryptone and casein

stimulated greater enzyme production than other nitrogen

sources such as ammonium chloride and urea. Furthermore,

the optimal casein concentration was 25 g/L, the same as

the optimal glucose concentration (Fig. 4c, d). Conse-

quently, 25 g/L casein was regarded as the best nitrogen

source for dextranase production. Using the optimal fer-

mentation conditions, we achieved dextranase production

of 58.45 U/mL in 48 h, * 1.45-fold higher than the initial

fermentation conditions.

Characterisation of Recombinant Dextranase

Temperature and pH are two fundamental factors involved

in enzyme catalytic activity. By subjecting recombinant

dextranase to different pH conditions ranging from pH 3.0

to 8.0, maximum dextranase activity was observed at pH

5.5 (Fig. 5a). To assess the pH stability of recombinant

dextranase, dextranase activity was measured after a 1-h

incubation at pH 3.0–8.0. The results showed that the

enzyme maintained more than 90% activity at pH 4–6

(Fig. 5b).

Temperature and thermal stability are generally regar-

ded as the primary factors determining whether an enzyme

is suitable for industrial applications. To determine the

optimal temperature, dextranase activity was measured at

temperatures ranging from 30 to 80 �C. As shown in

Fig. 5c, enzymatic activity increased with increasing tem-

perature and exhibited maximal activity at 60 �C, but

activity decreased sharply thereafter at higher
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Fig. 2 Cell growth and dextranase production in the engineered S.

cerevisiae strain. The solid black and open blue squares represent the

absorbance at 600 nm and dextranase activity of strain XD03,

respectively. The solid black and blue open triangles represent the

absorbance at 600 nm and dextranase activity of strain XD02,

respectively. The results are presented as means and standard

deviations of at least three independent experiments
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temperatures. Recombinant enzyme retained[ 80% of

initial activity after incubation at 50–60 �C for 1 h

(Fig. 5d). These results were similar to those of previous

characterisations of thermostable dextranases from Talar-

omyces pinophilus (Zhang et al. 2017) and Chaetomium

erraticum (Virgen-Ortı́z et al. 2015).

Discussion

Given the importance of dextranases in the sugar industry

for alleviating the viscosity of syrups and cleaning blocked

machines (Chen et al. 2009), much effort has gone into

screening high-level dextranase-producing strains, includ-

ing expressing dextranase genes from Streptococcus rattus

and P. minioluteum in E. coli or P. pastoris (Roca et al.

1996; Igarashi et al. 2004). At present, commercial sources

of dextranase from Chaetomium spp. require long fer-

mentation times, and enzymes from Penicillium spp. can

suffer from food safety issues (Eggleston 2009). Addi-

tionally, the main two dextranase producers mentioned

above usually utilise expensive dextran as a carbon source.

Thus, efficient production of food-grade dextranase from

cheap substrates could benefit the sugar-making process.

To our knowledge, this is the first report of the production

of recombinant dextranase from C. gracile in S. cerevisiae.

S. cerevisiae is a well-characterised eukaryotic model

organism for the production of heterologous proteins (Liu

et al. 2012), and this organism has been used safely for

food production for thousands of years. S. cerevisiae strains

have many advantages including a well-understood genetic

background, easy cultivation, a cheap substrate spectrum,

and many years of use in industrial-scale fermentation

processes (Lian et al. 2018). The food safety of dextranase

from C. gracile was confirmed in the USA in 1986, it has

Generally Recognised as Safe (GRAS) status, and it has

been applied industrially (Eggleston and Monge 2005;

Virgen-Ortı́z et al. 2015). To achieve food-grade dex-

tranase production, we chose S. cerevisiae as host and the

C. gracile dextranase gene, and no resistance markers were

introduced in the present work. Heterologous gene

expression can suffer from low productivity due to the

presence of a signal peptide, which has an adverse impact

on protein folding (Ljungdahl and Daignan-Fornier 2012).

In the present study, we removed the region of the dex-

tranase gene predicted to encode a signal peptide, and the

rest of the gene encoding the remaining residues was

synthesised using codon optimisation. Following cloning
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dextranase production by S.
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represent the absorbance at

600 nm, and closed blue squares

represent dextranase activity.
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of the resulting gene into appropriate expression vectors,

culturing resulted in detectable dextranase production in

the engineered S. cerevisiae strains (Figs. 1, 2).

Cheap substrates can reduce the cost of fermentation

processes and thereby decrease product price. Much

research has been conducted on optimising the production

of valuable products using low-cost substrates in fermen-

tation processes in S. cerevisiae (Kwak and Jin 2017).

Carbon sources are indispensable nutrients for microbial

growth and metabolite accumulation and can impact on

microbial growth and metabolism, and thus enzyme pro-

duction (Luo et al. 2018). Nitrogen sources are also vital

for the synthesis of microbial cell proteins and nucleic

acids and can have an important influence on cell growth

and the accumulation of metabolites (Armando et al. 2013).

In the present study, we evaluated the influence of different

carbon and nitrogen sources on dextranase production in S.

cerevisiae, and optimum concentrations were also deter-

mined (Fig. 4). Optimising the culture medium in this way

resulted in a 44.6% increase compared with the initial

medium. Moreover, the fermentation time was shortened

from more than 96 h in Chaetomium spp. to 48 h in

engineered S. cerevisiae cells.

In general, weak acidic conditions can decrease non-

specific reactions and the accumulation of undesirable by-

products that may be accrued under alkaline and high-

temperature conditions (Chen et al. 2018). In the present

work, the recombinant dextranase exhibited high activity

and stability under weak acid conditions (Fig. 5). Also,

industrial production is often carried out at high tempera-

tures; in the sugar-making process, the temperature is

generally[ 60 �C (Eggleston and Monge 2005). The

recombinant dextranase produced in the present work

exhibited high enzyme activity and thermal stability at high

temperatures (Fig. 5).

In summary, a truncated dextranase from C. gracile was

recombinantly expressed in S. cerevisiae, and the enzyme

exhibited high pH and thermal stability, making it suit-

able for use in industrial applications. Dextranase produc-

tion by the engineered S. cerevisiae strain XD03 was
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Fig. 4 Effects of carbon and nitrogen source on dextranase produc-

tion and cell growth. a Different carbon sources; b different glucose

concentrations; c different nitrogen sources; d different casein

concentrations. Columns represent the absorbance variation at

600 nm, and filled blue squares represent dextranase activity changes
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increased significantly following optimisation of the fer-

mentation conditions. This work provides a strategy for

expression dextranase genes from C. gracile in recombi-

nant S. cerevisiae for dextranase production. Although the

engineered dextranase displayed good food safety and

thermostability credentials, further studies are needed to

assess the large-scale application of this enzyme.
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