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Abstract The selection of sugarcane cultivars adapted to

different environments becomes difficult when there is

genotype–environment interaction (GEI). The data were

analyzed from twenty sugarcane genotypes evaluated in

eight locations over two crop cycles to identify megaenvi-

ronments (ME), through GEI methods for higher cane yield

measured in tons of cane per hectare (TCH) and percentage

of sucrose (Pol% cane) using biplot multivariate GEI

models. The best genotypes and the environment were

determined with better mean yield by the two-table cou-

pling coinertia method. Additive main effects and multi-

plicative interaction (AMMI) analyses revealed significant

GEI with respect to both variables. The AMMI stability

value exposed high genotypes stability for Pol% cane, but

for TCH just G4, G8, G1, G20 and G17 have stability in all

environments. The site-type regression SREG-GGE biplot

showed two ME for TCH and one for Pol% cane. Although

both yield variables showed mean negative correlation,

through coinertia analysis it was possible to determine that

G15, G17 and G13 were the best genotypes for both vari-

ables in all environments, besides ‘‘Los Tamarindos’’ was

the best environment, with both variables correlated posi-

tively, and G11, G13, G12 could be considered the better

genotypes. This work revealed the necessity of using

coinertia as a complementary analysis to AMMI and GGE,

which needs to be applied to determine the genotypes and

environments that favor multiple yield variables, in order to

increase the productivity.

Keywords AMMI analysis � SREG-GGE biplot �
Coinertia analysis � Pol% cane � Saccharum spp.

Introduction

In Venezuela, sugarcane is cultivated under different soil

types, fertility levels and humidity. The unequal performance

of genotypes in different environments (genotype 9 envi-

ronment interaction or GEI) in yield assays is a challenge for

breeders. It has been shown that GEI reduces selection pro-

gress and complicates the identification of superior cultivars

of sugarcane in regional trials (Rea et al. 2011; Rea and De

Sousa-Vieira 2002). When GEI is present, one of the options

is to use stability analysis to identify cultivars with higher and

more stable yields. Therefore, several statistical methods have

been proposed and used to study adaptation and stability of

varieties in different locations (Roostaei et al. 2014; Dolédec

and Chessel 1994; Dray et al. 2003b). Some multivariate

models such as additive main effects and multiplicative

interaction (AMMI), site regression model (SREG) and

coinertia analysis have been used for the interpretation of

GEI. The AMMI and SREG models are similar, but in SREG

the linear terms of genotypes (G) and environments (E) are

not considered individually, instead they are added to the

multiplicative term of genotype 9 environment (GE) inter-

action (Crossa et al. 2002; Silveira et al. 2013; Yan 2011).

AMMImodels are capable of measuring the weight of the

environments, the genotypes and their interactions
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throughout a value that measures how stable a genotype is in

all environments in terms of yield. In contrast, the SREG

emphasizes the behavior of genotypes through a regression

upon locations, which is important for studying the possible

existence of different megaenvironments in a region (Yan

et al. 2007). In fact, SREG models include G ? GE or

E ? GE in the bilinear terms and provide a graphical

analysis of easy interpretation called GGE biplot (Yan and

Tinker 2006) that has been used in many cultivar 9 envi-

ronment interaction studies (Akcura et al. 2011; Jalata 2011;

Mortazavian et al. 2014; Rodrı́guez et al. 2012; Ramburan

and Zhou 2011; Rao et al. 2011; Rea et al. 2011). The biplot

representation displays the grouping of genotypes and

environments with similar response patterns and permits to

identify the most representative and most discriminating

environments (Yan 2011). GGE biplot is developed from the

first two principal components (PC) of the SREG model.

Genotypes close to each other in the biplot indicate similar

response patterns across environments. Meanwhile, nearby

environments exhibit an acute angle between them, indi-

cating similar environmental conduct. The lack of associa-

tion between environments is given by a 90� angle between
vectors and negative association by angles greater than 90�–
180� (Ibáñez et al. 2006). Genotypes located on the vertices
of the polygon performed either the best or the poorest in

one or more environments (Yan and Tinker 2006). Per-

pendicular lines drawn on each side of the polygon form

groups of locations or genotypes with similar behavior. In

turn, coinertia analysis is a multivariate method that iden-

tifies trends or co-relationships in multiple datasets that

contain the same samples and simultaneously finds ordina-

tions (dimension reduction diagrams) from the datasets that

are most similar. It does this by finding successive axes from

the two datasets with maximum covariance (Culhane et al.

2003; Dray et al. 2003a). Separate analyses find axes max-

imizing inertia in each hyperspace. These axes are projected

in a subspace, and each individual is represented by an

arrow, where the beginning of the arrows is the position of

the variety described by one data matrix and the arrowhead

is the position of the variety described by the other matrix

(Dolédec and Chessel 1994). The aim of this study was to

identify megaenvironments (ME) and to determine optimal

genotypes and environments for higher sugarcane yield

measured by tons of cane per hectare (TCH) and percentage

of sucrose (Pol% cane).

Materials and Methods

Material Selection

To carry out this work, data from the regional (outfield)

trials of sugarcane in the last stage of selection breeding

program at the National Institute for Agricultural Research

(INIA) were used. These assays were performed using a

randomized complete block design with three replicates

and experimental units of 45 m2 (3 rows of 10 m with

1.5 m spacing). These assays were conducted for 2 years

with successive cuts (plant and first ratoon).

Locations and Genotypes

The trials locations in Venezuela were: Quebrada Arriba

(QA) and Montaña Verde (MV) located in Lara state; Las

Majaguas (LM), Ivonne (Iv) and Castillera (Ca) in Por-

tuguesa state; Santa Lucı́a (SL) and FUNDACAÑA (FC) in

the Yaracuy state, and Los Tamarindos (LT) in Aragua

state (Table 1). The main characteristics of soils and

rainfall of these areas are also given in Table 1. The

evaluated experimental material consisted of the following

clones: V91-1 (G1), V91-2 (G2), V91-6 (G3), V91-8 (G4),

V91-15 (G5), V98-62 (G6), V98-86 (G7), V98-120 (G8),

V99-117 (G9), V99-190 (G10), V99-203 (G11), V99-208

(G12), V99-213 (G13), V99-217 (G14), V99-236 (G15),

V99-245 (G16), V00-50 (G17) and three reference clones:

B80-408 (G18), C323-68 (G19) and CP74-2005 (G20).

Analyzed Yield Variables

The analyzed variables were agronomic performance in

tons of cane per hectare (TCH), determined by weighing

the effective area of each experimental unit at harvest time

and the estimate of industrial yield (sugar) through Pol%

cane, determined by laboratory tests on samples composed

of 10 stalks per experimental unit.

Statistical Analyses

To evaluate yield (TCH and Pol% cane) and to consider

general and specific adaptability and possible groupings of

environments, AMMI and GGE biplot methodologies were

performed (Crossa et al. 2002; Yan 2011). AMMI models

Table 1 Main characteristics of soil and precipitation/year of the

locations tested

Location Soil (texture) Precipitation

(mm/year)

pH

Quebrada Arriba (QA) Clay loam 1101 7.7

Santa Lucia (SL) Silty clay loam 700 8.0

Montaña Verde (MV) Loam 1048 7.3

Las Majaguas (LM) Clay loam 1500 7.0

Ivonne (Iv) Clay loam 1500 7.0

Castillera (Ca) Clay loam 1500 7.0

FUNDACAÑA (FC) Silt loam 1111 8.1

Los TamarindoT (LT) Sandy loam 1051 6.7
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were performed using R package ‘‘agricolae’’ (De Mendi-

buru 2015). SREG-GGE biplot analyses were performed

using R package ‘‘GGEBiplotGUI’’ (Frutos et al. 2014). To

identify genotypes and environments with positive rela-

tionship between both yield characteristics simultaneously

(TCH and Pol% cane), coinertia analysis (Dolédec and

Chessel 1994; Dray et al. 2003b) was performed using R

package ‘‘ade4’’ (Dray and Dufour 2007; Chessel et al.

2004; Dray et al. 2007). For the selection of genotypes, it

was used two n 9 p matrices, one for each yield variable,

where the genotypes were classified as individuals and the

environments were the variables. On the other hand, for

best environment determination, the above matrices were

transposed so the environments were the individuals and

the genotypes the variables. Then, each matrix was used for

a principal components analysis (PCA), and then, each pair

of matrices was constrained into a subspace of maximal

coinertia and maximal correlation between both yield

variables. To determine the best suited genotypes for the

best environment taking into account both yield variables,

a covariance analysis was performed, applying the formula:

ðGij TCH � Gi TCHÞðGij Pol% � Gi Pol%Þ

where GijTCH is the value of TCH of a genotype i in an

environment j. Gi TCH is the mean value of TCH of a

genotype i in all environments. Gij Pol% is the mean value

of Pol% cane of a genotype i in an environment j. Gi Pol% is

Table 2 Mean squares analysis of variance for cane yield (TCH) and

Pol% cane

Source df TCHa Explained

variation

(%)

Pol% cane Explained

variation

(%)

Treatments 159 4340.54** 1819.38**

Environment

(E)

7 48,801.08** 49.50 83.89** 32.27

Genotype (G) 19 11,902.64** 32.77 47.21** 49.29

GEI 133 920.22* 17.73 2.52* 18.45

Error 800 839.65 1.69

df degrees of freedom

*, ** Significant at 5 and 1 % probability, respectively
a Tons of cane per hectare

Table 3 Average yield in tons of cane per hectare (TCH) of twenty sugarcane genotypes at eight locations in two cycles of harvest

Genotypes/

locations

Quebrada

Arriba (QA)

Santa

Lucia

(SL)

Fundacaña

(FC)

Montaña

Verde

(MV)

Las

Majaguas

(LM)

Ivonne

(Iv)

Castillera

(Ca)

Los

Tamarindos

(LT)

Mean

Genotypes

ASV Rank of

ASV

V91-1 (G1) 127.69 92.25 117.22 129.80 88.86 96.53 69.70 145.46 108.44 0.99 3

V91-2 (G2) 126.06 75.44 116.96 122.42 102.61 78.15 84.30 108.37 101.79 2.88 12

V91-6 (G3) 149.21 57.73 110.76 137.87 102.48 90.26 97.69 122.91 108.61 3.47 14

V91-8 (G4) 125.15 86.67 109.62 126.67 100.51 87.79 96.18 132.16 108.09 0.21 1

V91-15 (G5) 110.14 96.59 108.68 147.11 110.98 100.49 111.65 190.48 122.01 6.28 20

V98-62 (G6) 165.67 111.52 140.55 178.31 146.32 104.48 108.75 142.00 137.20 3.59 16

V98-86 (G7) 113.77 86.86 94.21 118.25 106.52 112.03 94.37 130.14 107.02 2.20 9

V98-120 (G8) 163.78 116.46 128.04 179.91 138.16 116.80 126.67 166.54 142.04 0.77 2

V99-117 (G9) 122.67 98.88 135.79 129.16 112.45 84.17 113.74 143.55 117.55 1.99 8

V99-190 (G10) 177.54 121.25 122.38 147.87 110.33 103.20 115.40 159.65 132.20 4.06 18

V99-203 (G11) 160.97 121.61 110.81 140.70 117.57 107.85 103.54 153.75 127.10 3.56 15

V99-208 (G12) 186.65 105.56 119.51 144.38 148.22 115.64 124.49 173.03 139.68 4.35 19

V99-213 (G13) 136.12 103.95 140.53 168.03 146.31 118.29 124.72 163.95 137.74 2.78 11

V99-217 (G14) 126.41 88.19 92.66 137.97 98.05 106.99 94.93 138.53 110.47 1.88 7

V99-236 (G15) 171.29 97.83 143.54 156.35 122.55 107.48 121.00 159.37 134.93 2.30 10

V99-245 (G16) 89.02 60.80 103.44 132.84 64.93 79.29 78.05 109.88 89.78 3.60 17

V00-50 (G17) 147.69 110.04 133.07 161.04 148.79 120.92 133.98 166.84 140.30 1.28 5

B80-408 (G18) 119.70 75.92 137.18 130.66 115.04 105.95 100.46 140.85 115.72 3.17 13

C323-68 (G19) 155.80 89.23 132.01 156.89 124.13 111.99 103.87 152.33 128.28 1.55 6

CP74-2005 (G20) 111.53 80.69 98.85 112.40 93.31 88.69 93.95 122.35 100.22 1.12 4

Mean locations 139.34 93.87 119.79 142.93 114.91 101.85 104.87 146.11 120.46

MSD a = 0.05 30.68 28.83 32.32 22.23 30.53 49.79 40.74 20.08

Rank of ASV: Ranking orders of the 20 genotypes

ASV AMMI stability values, MSD minimal significant difference
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the mean value of Pol% cane of a genotype i in all

environments.

All three programs ‘‘agricolae,’’ ‘‘GGEBiplotGUI’’ and

‘‘ade4’’ were developed as Comprehensive R Archive

Network (CRAN) in R software.

Results and Discussion

Interrelationship Between Genotypes and Locations

The average sugarcane yield (TCH) and Pol% cane were

significantly affected by environmental and genotypic effects

(p B 0.01). Environmental effects accounted for 49.50 and

32.77 %, while genotypic effects explained 32.27 and

49.29 % of the total (E ? G ? GEI) variation (Table 2).

This response to environmental and genotypic effects coin-

cides with those found by Rea et al. (2011). Average TCH

yields of genotypes ranged from 89.78 for V99-245 to 142.04

for V98-120, while TCH yield per location ranged from

93.87 for Santa Lucı́a to 146.11 for Los Tamarindos

(Table 3). The average sugar content expressed in Pol% cane

ranged from 12.29 % for V91-15 to 15.51 % for V99-245,

while Pol% cane per location ranged from 12.54 % in

Montaña Verde to 14.63 % in Santa Lucia (Table 4).

Also, the AMMI stability values (ASVs) are reported,

noticing that for the case of TCH (Table 3), there are

genotypes with high values of ASV, mainly G5 and G12,

which means more unstability; in other words, the envi-

ronments tend to affect more strongly the sugarcane growth

rate. In the case of yield measured in Pol% cane (Table 4),

all genotypes are relatively low (stable) in all studied

environments which means the sucrose content is not so

affected by environment like TCH.

Biplots of AMMI models for both yield variables were

generated using genotypic and environmental scores of the

first two AMMI components (Rea et al. 2011). AMMI

stability values of the genotypes in all environments are

graphically represented for both yield variables (Figs. 1, 2).

The statistically stable genotypes are represented by points

near the origin in the AMMI2 biplot, with values near zero

for the two axes of interaction (IPCA1 and IPCA2).

Distribution of genotype points in the AMMI2 biplot for

TCH (Fig. 1) revealed that the genotypes G4, G8, G1, G20

Table 4 Average yield in Pol% cane of twenty sugarcane genotypes at eight locations in two cycles of harvest

Genotypes/

locations

Quebrada

Arriba

(QA)

Santa

Lucia

(SL)

Fundacaña

(FC)

Montaña

Verde

(MV)

Las Majaguas

(LM)

Ivonne

(Iv)

Castillera

(Ca)

Los

Tamarindos

(LT)

Mean

Genotypes

ASV Rank of

ASV

V91-1 (G1) 13.59 15.82 14.81 13.47 13.14 14.72 13.99 14.92 14.31 0.54 9

V91-2 (G2) 11.12 13.54 12.04 11.35 12.11 11.91 10.80 14.77 12.20 0.51 8

V91-6 (G3) 11.96 14.05 13.37 11.98 13.45 13.10 12.52 14.16 13.07 0.42 5

V91-8 (G4) 12.34 13.32 11.73 11.04 11.73 13.79 13.16 14.29 12.67 0.56 10

V91-15 (G5) 11.09 14.21 12.01 10.82 12.64 12.75 11.96 12.82 12.29 0.22 3

V98-62 (G6) 13.87 14.34 14.15 13.06 12.36 13.26 12.57 14.04 13.45 0.62 11

V98-86 (G7) 14.15 15.66 13.75 11.64 13.96 14.73 13.99 15.85 14.22 0.97 19

V98-120 (G8) 12.88 14.08 13.93 13.00 12.43 13.64 13.76 13.50 13.40 0.77 16

V99-117 (G9) 11.85 13.09 12.66 11.11 12.64 13.02 12.38 13.19 12.49 0.15 1

V99-190 (G10) 11.92 14.48 13.35 11.76 11.38 13.12 13.30 14.35 12.96 0.48 7

V99-203 (G11) 12.88 14.53 13.30 11.38 12.02 14.43 12.93 15.81 13.41 0.72 14

V99-208 (G12) 12.75 14.60 13.62 14.79 13.09 14.37 13.73 15.33 14.03 0.93 18

V99-213 (G13) 13.07 14.93 14.42 13.33 13.18 13.72 14.13 15.80 14.07 0.20 2

V99-217 (G14) 12.45 13.86 12.33 10.65 13.10 12.92 12.64 14.29 12.78 0.72 13

V99-236 (G15) 14.23 16.13 15.51 12.92 13.94 15.75 14.95 15.82 14.91 0.44 6

V99-245 (G16) 14.34 17.14 16.34 14.10 15.91 15.27 15.51 17.72 15.79 0.62 12

V00-50 (G17) 13.73 14.48 14.92 13.03 14.33 14.34 14.01 15.40 14.28 0.32 4

B80-408 (G18) 13.59 15.44 14.10 14.22 13.37 15.46 14.74 14.91 14.48 0.78 17

C323-68 (G19) 11.60 14.33 14.35 13.54 13.56 14.92 13.87 15.16 13.92 0.74 15

CP74-2005 (G20) 13.48 14.55 15.94 13.72 16.35 15.55 14.94 16.99 15.19 1.24 20

Mean locations 12.84 14.63 13.83 12.54 13.23 14.04 13.9 14.50 13.69

MSD a = 0.05 1.68 1.60 1.39 1.74 1.47 1.48 1.35 1.37

Rank of ASV: Ranking orders of the 20 genotypes

ASV AMMI stability values, MSD minimal significant difference
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and G17 scattered close to the origin, indicating minimal

influence of these genotypes with environments. The

remaining 15 genotypes scattered away from the origin in

the biplot, indicating that the genotypes were more sensitive

to environmental interactive forces. Meanwhile,

distribution of genotype points in the AMMI2 biplot for

Pol% cane (Fig. 2) revealed that all genotypes are close to

the origin (note the scales of both axis), indicating that all

are stable in terms of sucrose production, but not the

environment.
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interactive forces. Principal components explained 55.1 % of GEI

interaction. G1 V91-1; G2 V91-2; G3 V91-6; G4 V91-8; G5 V91-15;

G6 V98-62; G7 V98-86; G8 V98-120; G9 V99-117; G10 V99-190;

G11 V99-203; G12 V99-208; G13 V99-213; G14 V99-217; G15 V99-

236; G16 V99-245; G17 V00-50; G18 B80-408; G19 C323-68; G20
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percentage in the analysis of variance (Table 2). Principal

components explained 54.1 % of GEI interaction. G1 V91-1; G2
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Megaenvironment and Genotype Representativeness

Determination

As reported previously (Yan et al. 2007), the best method-

ology for megaenvironment and genotype representative-

ness determination is GGE biplots. Figures 3 and 4 show the

‘‘which-won-where’’ SREG biplots of TCH and Pol% cane,

respectively, in which it can be observed what genotype

performed better in what location for the yield variable

measured. The angle between the vectors of two environ-

ments is related to the correlation coefficient between them

(Kempton 1984; Yan 2002). The distance between two

environments (locations) measured by the cosine of the

angle between the vectors indicates their similarity or dis-

similarity in discriminating the genotypes (Yan and Tinker

2006). For the case of TCH (Fig. 3), the eight locations can

be grouped into two megaenvironments, one conformed by

QA and FC, in which G11, G19, G10, G15, and in major

extent G6 and G12 are the best genotypes. The other

megaenvironment is formed byMV, LM, SL, Iv, Ca and LT,

in which G8, G17 and G13 are the best genotypes. Due to the

establishment of two megaenvironments and based on the

length of the QA and LT vectors, these would be the ideal

environments for selecting and producing genotypes

adapted specifically to both megaenvironments. LM is the

most representative environment, and G8 and G12 are the

best genotypes in terms of TCH yield.

In the case of Pol% cane (Fig. 4), just one megaenvi-

ronment formation occurs. Based on the length of the

vectors, it can be said that FC is the most representative of

all locations tested and G18, G15, G20 and G16 are the

best adapted genotypes to this environment.

Selection of Best Genotypes in Terms of Both Yield

Variables

As can be noticed, the best genotypes for TCH (Fig. 3)

turned out to be the worst for Pol% cane (Fig. 4), situation

that results challenging for the selection of genotypes with

positive relationship between both yield variables. To

select the best genotypes, a coinertia analysis was per-

formed (Dolédec and Chessel 1994; Dray et al. 2003b).

Coinertia analysis is a multivariate method often

neglected, because it is a bit difficult to interpret, but is a

very powerful methodology based on a different strategy of

data analysis in which, instead of creating a single

table with all variables, they are grouped according to a

particular characteristic and are treated as two
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polygon divide the biplot into several sectors to allow visualization.

Principal components explained 78.7 % of TCH variation. Note the

formation of two megaenvironments. G1 V91-1; G2 V91-2; G3 V91-

6; G4 V91-8; G5 V91-15; G6 V98-62; G7 V98-86; G8 V98-120; G9

V99-117; G10 V99-190; G11 V99-203; G12 V99-208; G13 V99-213;

G14 V99-217; G15 V99-236; G16 V99-245; G17 V00-50; G18 B80-

408; G19 C323-68; G20 CP74-2005. QA Quebrada Arriba, MV

Montaña Verde, LM Las Majaguas, Iv Ivonne, Ca Castillera, SL Santa

Lucı́a, FC FUNDACAÑA, LT Los Tamarindos (color figure online)
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hyperdimensions, which then are coupled so that the

amount of information gathered by the axes of coinertia is

relatively large, making it very efficient.

Coinertia analysis is very flexible and allows many

possibilities for coupling, besides is suitable for quantita-

tive and/or qualitative or fuzzy variables. Moreover, vari-

ous weighting of sites and various transformations and/or

centering of species data are available for this method.

Hence, more biological considerations can be taken into

account in the statistical procedures. Moreover, the prin-

ciple of this method is very general and can be easily

extended to the case of distance matrices (Dray et al.

2003b). To apply coinertia, two data matrices were gen-

erated, one for each yield variable, in order to perform a

principal components analysis (PCA) for both data matri-

ces. Separate analysis of each data table permits to create

two hyperspaces, one for each yield variable. In each

hyperspace, it can be determined an axis, which is the

vector direction maximizing the projected variability or

inertia. Both axis can be isolated and plotted in a multi-

dimensional subspace so that the covariance between the

two new sets of projected scores is maximal. This maximal

covariance means a maximal correlation between both

yield variables (Fig. 5). Coinertia analysis explained 80.09

and 12.48 % of the observed inertia in the TCH hyper-

space (X matrix in x axis) and the Pol% cane hyperspace

(Y matrix in y axis), respectively. The beginning of the

arrows is the position of the genotypes described by the

TCH data matrix, and the arrowhead is the position of the

genotypes described by the Pol% cane data matrix. Despite

the high quality of representation, measured by the high

quantity of information gathered by the two axes, the

maximal correlation between the behavior of both yield

variables is very low; this is explained by the low value of

the Rv Escoufier similarity coefficient 0.07817213, cor-

roborating that the best genotypes for a variable result in

the worst for the other one. Nevertheless, it can yet be

inferred that the best genotypes with both yield variables

positively correlated must be represented as an arrow

toward the right from the upper left to the upper right

quadrant. In this sense, the best genotypes for all envi-

ronments are G15, G17 and G13 in that order. These

results demonstrate not only the best adapted genotypes to

all environments, but also the large capability of the pro-

posed strategy for data analysis in this paper, which suc-

ceeds in finding the greatest differences between genotypes

minimizing the differences between the environments in

terms of both yield variables.
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Fig. 4 Site regression GGE biplot based on symmetrical scaling for

the which-won-where pattern for Pol% cane yield. In black are shown

the genotypes and in blue are shown the studied environments. Biplot

based on a ‘‘Tester-centered (G ? GE)’’ table, without any scaling

and dual metric preserving. The perpendicular lines to each side of the

polygon divide the biplot into several sectors to allow visualization.

Principal components explained 81.83 % of Pol% cane variation.

Note that despite the environment variability, there is no

megaenvironments formation. G1 V91-1; G2 V91-2; G3 V91-6; G4

V91-8; G5 V91-15; G6 V98-62; G7 V98-86; G8 V98-120; G9 V99-

117; G10 V99-190; G11 V99-203; G12 V99-208; G13 V99-213; G14

V99-217; G15 V99-236; G16 V99-245; G17 V00-50; G18 B80-408;

G19 C323-68; G20 CP74-2005. QA Quebrada Arriba, MV Montaña

Verde, LM Las Majaguas, Iv Ivonne, Ca Castillera, SL Santa Lucı́a,

FC FUNDACAÑA, LT Los Tamarindos (color figure online)
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Selection of Best Environment for Both Yield

Variables

Another strategy of determination of the best suited

genotype was to determine the environment with major

positive correlation between both TCH and Pol% cane

variables and then determining the genotypes most adapted

to that environment.

In this case, another coinertia analysis was performed

but with the transposed matrices of the two yield variables

so the hyperspaces were constructed by the genotypes

information to generate a subspace analysis describing the

environments behavior (Fig. 6). Coinertia analysis

explained 81.482 % in the TCH hyperspace and 10.617 %

in the Pol% cane hyperspace, respectively. Also in this

case, the maximal correlation between the behaviors of

both yield variables is low, Rv Escoufier similarity coef-

ficient of 0.2203166, but taking into account the arrows

interpretation explained above, the better environment

must be represented as an arrow toward left from the upper

right to the upper left quadrant. In this sense, the best

environment, with both yield variables correlated posi-

tively, is Los Tamarindos (LT).

Once it is determined that Los Tamarindos (LT) was the

best environment for growth (TCH) and production (Pol%

cane) of sugarcane, it was decided to establish the best

suited genotypes for that particular environment. A

covariance analysis per genotype between the yield vari-

ables was performed. It can be seen that in LT all geno-

types showed positive numbers, which means that in this
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Fig. 5 Coinertia analysis of the

genotypes combining TCH and

Pol% cane yield variables. a,
b Scatterplots represent the

coefficients of the combinations

of the variables (environments)

for each data matrices to define

the coinertia axes. Separate

analyses find axes maximizing

inertia in each hyperspace.

These axes of maximum inertia

are projected in (c) scatterplot
on which the genotypes are also

projected. The beginning of the

arrows is the position of the

genotypes described by the

TCH data matrix, and the

arrowhead is the position of the

genotypes described by the

Pol% cane data matrix. The

analysis explained 80.095 % in

the TCH hyperspace and

12.478 % in the Pol% cane

hyperspace of the observed

inertia with a Rv Escoufier

similarity coefficient of

0.07817213. G1 V91-1; G2

V91-2; G3 V91-6; G4 V91-8;

G5 V91-15; G6 V98-62; G7

V98-86; G8 V98-120; G9 V99-

117; G10 V99-190; G11 V99-

203; G12 V99-208; G13 V99-

213; G14 V99-217; G15 V99-

236; G16 V99-245; G17 V00-

50; G18 B80-408; G19 C323-

68; G20 CP74-2005. QA

Quebrada Arriba, MV Montaña

Verde, LM Las Majaguas, Iv

Ivonne, Ca Castillera, SL Santa

Lucı́a, FC FUNDACAÑA, LT

Los Tamarindos

Sugar Tech (July-Aug 2016) 18(4):354–364 361

123



environment all genotypes exhibited results above the

mean of all environments to both, TCH and Pol% cane.

The more positive the result, the more efficient the geno-

type for yield in TCH and Pol% cane in this environment,

so G11, G13 and G12 could be considered the better

genotypes for successive selection processes throughout

adaptation and stability (Table 5).

As demonstrated, this data analysis strategy is robust

and permits to determine the best genotype for a particular

environment or vice versa, depending of the breeding

program needs. Nevertheless, for studies concerning

national production, the genotypes selection process must

be considering the best adapted for the megaenvironments

determined.
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Fig. 6 Coinertia analysis of the environments combining TCH and

Pol% cane yield variables. a, b Scatterplots represent the coefficients

of the combinations of the variables (genotypes) for each data

matrices to define the coinertia axes. Separate analyses find axes

maximizing inertia in each hyperspace. These axes of maximum

inertia are projected in (c) scatterplot on which the environments are

also projected. The beginning of the arrows is the position of the

environments described by the TCH data matrix, and the arrowhead is

the position of the environments described by the Pol% cane data

matrix. The analysis explained 81.482 % in the TCH hyperspace and

10.617 % in the Pol% cane hyperspace of the observed inertia with a

Rv Escoufier similarity coefficient of 0.2203166. G1 V91-1; G2 V91-

2; G3 V91-6; G4 V91-8; G5 V91-15; G6 V98-62; G7 V98-86; G8

V98-120; G9 V99-117; G10 V99-190; G11 V99-203; G12 V99-208;

G13 V99-213; G14 V99-217; G15 V99-236; G16 V99-245; G17 V00-

50; G18 B80-408; G19 C323-68; G20 CP74-2005. QA Quebrada

Arriba, MV Montaña Verde, LM Las Majaguas, Iv Ivonne, Ca

Castillera, SL Santa Lucı́a, FC FUNDACAÑA, LT Los Tamarindos
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Certainly, the environment (when GEI is present) is one

of the most influential factors affecting genotype selection.

Although a hurdle, it should not be seeing as a problem but

as a challenge, grouping the set of variables as any other. It

is just necessary to apply the adequate tools to solve and to

understand the situation. Here, we demonstrate that besides

AMMI models and GGE biplots, it is very necessary to add

another statistical methodology like two-table coupling

methods (coinertia) that expose a lot more information

useful for breeders in this field of genotype 9 environment

interaction studies. AMMI and GGE models permit to

determine stability characteristics, megaenvironments and

determining the best adapted genotype to some environ-

ment, but if coinertia analysis is added, more thorough

conclusions can be obtained, specially because it is neces-

sary to select genotypes with both yield variables positively

correlated; in other words, it is useless to obtain genotypes

with large quantities of TCH if the sucrose quantities are

low or genotypes with high sucrose content but with a low

growth rate. No doubt the use of the coinertia along with

AMMI and GGE methodologies could enhance breeding

programmes to obtain better productivity levels, always

maintaining growth rates, to fulfill required needs.
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