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Abstract The Sugarbeet is one of the main sugar crops in

the world. In the search for sustainability and economic

value, the complete utilization of the crop is necessary. In

addition to sugar and animal feed, sugarbeets can provide

many value-added co-products for biofuels, human nutri-

tion, plastics, and pharmaceuticals. Current research efforts

are reviewed.
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Introduction

Economic Impact and Value

Sugarbeet (Beta vulgaris) provides about 20 % of the

global demand for sugar. The European Union is one of the

global leaders in sugar production along with the United

States. The United States provides about 11 % of the

world’s supply of beet sugar (Biancardi et al. 2010). Sug-

arbeet and sugarcane dominate the U.S. domestic market;

mainly due to preferential international trade and agricul-

ture agreements. In 2012, over 1.2 million acres were

planted in the United States yielding over 35 million tons

of Sugarbeets (National Agricultural Statistics Service

2013a). Primary growing regions are California, the Upper

and Central Great Plains, the Upper Midwest and the

Northwest. The value of the U.S. Sugarbeet crop in 2011

was in excess of $2.0 trillion with an average price of

$69.50 per ton (National Agricultural Statistics Service

2013b). In other markets, the value of Sugarbeet to sugar

production and its co-products is more limited. For

example, in China, Sugarbeets only account for about 6 %

of the total sugar output in 2006 (Wei and Li 2006).

Brief History of the Sugarbeet

Before 1750, all sugar production came from sugar cane

grown in the tropics and shipped around the world

(Alamzan et al. 1998). Around this time, a German chemist

extracted the sugar from beets (B. vulgaris) grown pri-

marily as animal fodder, and discovered beet sugar was

exactly the same as cane sugar: sucrose (Cooke and Scott

1993; Jodidi 1911). It took 50 years for a large scale pro-

duction method to be developed. Economic embargoes of

sugar during decades of war made it necessary for conti-

nental Europe to develop its own sugar industry using

sugarbeets (Fig. 1a). In the late 19th century and the

beginning of the 20th century, Sugarbeets were introduced

into the United States and facilitated by the U.S. Depart-

ment of Agriculture through its network of agricultural

colleges, experiment stations and cooperative extensions

(Fig. 1b) (Alamzan et al. 1998; Cattanach et al. 1991).

Sugarbeets are very tolerant of different climates and soils

and could be grown on marginal land. Plant breeding

programs have selected for nutrition, sugar content, yield,

and disease/pest resistance (Stevanato and Panella 2013).

In addition, the whole beet with its coproducts of greens,

molasses, and pulp residue could be utilized as an animal

feed or a feedstock for alcohol production. Detailed

information on breeding, cultivation, protection, harvest

V. L. Finkenstadt (&)

National Center for Agricultural Utilization Research,

Agricultural Research Service, United States Department of

Agriculture, 1815 North University Street, Peoria, IL 61604,

USA

e-mail: victoria.finkenstadt@ars.usda.gov

123

Sugar Tech (Oct-Dec 2014) 16(4):339–346

DOI 10.1007/s12355-013-0285-y



and storage of Sugarbeets may be found in Draycott’s 2006

work, Sugar Beet (Draycott 2006).

Sugar Production and Its Co-products

Sugar (sucrose) is extracted from beets using hot water in a

multi-step step process: the initial extraction of a syrup

then concentration followed by cyclic washing and finally

drying the Sugar Association (2013). In general, modern

sugarbeets have around 20 % sugar by weight. The non-

crystallized syrup is called Beet molasses which has

upwards of 50 % by weight of sugar. Beet molasses is

usually fermented into alcohol. The leftover molasses is

rich in nitrogen and is used either as animal feed or as a

fertilizer. Once the sugar is extracted, the ‘‘pressed’’ and

dehydrated beet pulp is normally fed to animals. Sugarbeet

pulp (SBP) also contains a significant fraction of cell wall

polysaccharides including pectin and dietary fiber. Utili-

zation of the co-products reduce waste and add value to the

crop (Broughton et al. 1975).

Livestock Feed

The primary market for Sugarbeets as fodder is ruminants

such as cows and pigs (Teimouri Yansari 2013; Zijlstra and

Beltranena 2013). Beet tops with or without the crowns can

be left in the field or ensilaged for animal feed. Generally,

the crude protein of beet tops is around 15 % (dry weight

basis) and has a D-value (digestibility) of 55. They are

considered slightly inferior or equivalent to alfalfa in

feeding cattle and sheep. In comparison, sugar cane tops

and bagasse has a D-value of 57 with 6–8 % crude protein

(Steg and Van Der Meer 1985). If harvest is not possible,

the entire beet can be left in the field as forage. Beet pulp,

leftover from sugar production, may also be used as animal

feed and contains about 9 % crude protein and a D-value of

75 (Hartnell et al. 2005). There are research efforts to

increase the protein content by fermentation (Iconomou

et al. 1998). Because specific nutritional requirements of

ruminants and their feed composition are beyond the scope

of this paper, the reader is invited to explore numerous

articles in both scientific literature and trade publications;

two reviews may be of particular interest (Fadel et al. 2000;

Kelly 1983).

Current Research Efforts on the Utilization

of Sugarbeet

In the search for sustainability and profitability of a crop,

the utilization of the entire plant is mandatory beyond the

traditional roles of harvesting for food or feed and then

directly or indirectly returning the residue to the soil,

burning for fuel or non-environmental disposal. The com-

position of SBP suggests that it could be used to produce

several value-added products (Table 1).

Food Ingredients

Fiber products from SBP have been Generally Recognized

as Safe (GRAS) since 1991 (Nordic Sugar 2012) and are

produced with a relatively simple process. Nutritional data

from commercial products show that beet fiber contains

around 8 % protein (by weight) and 67 % carbohydrates

Fig. 1 Historical posters from

United States National Archives

and Records Administration.

a Source Office for Emergency

Management. Office of War

Information. Domestic

operations branch. Bureau of

special services. 1943–1945.

b Source United States

Department of Agriculture.

Production and Marketing

Administration, 1946

340 Sugar Tech (Oct-Dec 2014) 16(4):339–346

123



such as hemicelluloses (28 %), cellulose (19 %), and

pectin (18 %) (Michel et al. 1988). Dietary fiber available

for human digestion is generally more than 20 % (Cho

2001). Fiber products from Sugarbeets can be either the

whole pulp or a purified pectic substance like arabinan

(Goodban and Owens 1956) and have a wide range of

beneficial effects on human health (Ralet et al. 2009).

Excellent reviews on dietary fiber in food and its effects on

human nutrition/health can be found in the Handbook for

Dietary Fiber (Cho 2001) and Fiber Ingredients (Cho and

Samuel 2009). For example, the effect of SBP on choles-

terol levels was investigated with positive results (Leon-

towicz et al. 2001). The use of Sugarbeet fiber in processed

foods is limited by its texture and taste. It is generally used

in meat patties, bakery products, cereals and assorted

products that need thickening or bulking agents (Dhingra

et al. 2012).

In the 1990s, some effort was made to evaluate Sugar-

beet leaf protein as a food component in comparison to

other leafy green matter (Fantozzi 1990; Jwanny et al.

1993). Beet tops are considered a healthy choice in both

salads and juices.

One recent health claim is that the pectic oligosaccha-

rides in SBP, such as arabinan, may function as a prebiotic

in the human gut (Tamimi et al. 2006). Prebiotics affect the

microbial population in the human gut and generally favor

bacteria beneficial to human health.

The phenolic compounds may be extracted from SBP

and used as antioxidants in food (Mohdaly et al. 2010).

Sugarbeet molasses can be used as the sugar/carbon

source for Xanthan fermentation by micro-organisms

(Moosavi and Karbassi 2010). Xanthan is used extensively

as a thickener in the food industry.

Pectin

Pectin is a cell-wall polysaccharide consisting of galact-

uronic acid with ramnose sidechains in varying propor-

tions. Pectin is best known for its gelling properties in fruit

products (Norsker et al. 2000). Beet pectin exhibits better

emulsifying properties than other sources of pectin (Ma

et al. 2013). Pectin can be obtained in good yields (?95 %)

from SBP by pectinolytic enzymes and mild, organic acids

(Concha-Olmos and Zuniga-Hansen 2012). The effects of

extraction temperature, time and pH on the yield, color,

rheological and emulsifying properties of sugarbeet pectin

has been reported (Lv et al. 2013). The structure of pectin

includes functional groups such as acetic and ferulic acids.

These functional groups provide pectin with the ability to

form networks through Calcium bridges, acid-sugar

bridges and oxidative crosslinks (Oosterveld et al. 2000).

There is some evidence that the excellent stabilization

properties of sugar beet pectin in emulsions is due to the

attachment of a protein (Fishman et al. 2013; Kirby et al.

2006).

Araban (or Arabinan), a low molecular weight colloid,

was isolated from SBP and could be used as an adhesive,

emulsion stabilizer (Fishman et al. 2009) and suspension

agent in cosmetics or pharmaceuticals (Goodban and

Owens 1956). For example, Sugarbeet pectin can be used

to suspend colorants such as anthocyanins from berries

(Buchweitz et al. 2012).

There has been recent interest in isolating cellulose

microfibrils (Fishman et al. 2011) while degrading the

pectin into its constituent monomers (Leijdekkers et al.

2013). The cellulose would be used in polymer composites

while the monomers would be used in other high-value

ways (Dufresne et al. 1997; Leitner et al. 2007).

Plastics and Composites

Plastics are prevalent in the global market. Most are

derived from petroleum, and there are many research

efforts to replace petro-plastics with bioplastics derived

from renewable resources. In some cases, plant polymers

only need be extracted before use while others need to be

synthesized from small molecules also derived from plants.

Sugar beet pulp was processed in a twin-screw extruder

using plasticizers to obtain thermoplastic films (Liu et al.

2011b; Rouilly et al. 2006, 2009). The resulting composite

could be characterized as cellulose microfibrils suspended

in a pectin matrix. SBP was also used as a polyol source for

the production of urethanes (Pavier and Gandini 2000).

Sugarbeet pulp was combined with a biobased polymer,

polylactic acid, to form polymer composites that had

similar tensile properties to commodity plastics (Chen et al.

2008; Finkenstadt et al. 2008). The SBP could be

Table 1 Fermentable sugars in SBP (Kuhnel et al. 2011)

Component Dry weight (%)

Carbohydrate 68

Glucose 22

Arabinose 18

Uronic acids 18

Galactose 5

Rhamnose 2

Xylose 2

Mannose 1

Saccharose (residual) 4

Ester-linked substituents of polysaccharides

Ferulic acid 0.5

Acetic acid 1.6

Methanol 0.4

Protein 8
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plasticized and used as a co-polymer rather than as a filler

in both PLA and poly(butylene adipate-co-terepthalate)

(Liu et al. 2011a).

Microbial and plant sourced polyesters such as polyhy-

droxyalkanoates (PHA) are making inroads into the plastics

market. Sugarbeet juice was used as a sugar feedstock for

the production of PHAs such as poly(hydroxybutyrate)

(Wang et al. 2013). PHB is an important biobased polymer

with plastic properties similar to synthetics such as poly-

propylene. It is also compostable and environmentally

friendly. The ‘‘carbon source’’ cost of PHA production,

calculated based on Sugarbeet molasses as a sole feedstock,

was approximately $1.40/kg (Castilho et al. 2009).

Pectin, extracted from SBP, is also used in plastic

packaging materials (Li et al. 2012; Liu et al. 2012). In

some cases, pectin can be used to protect active ingredients

from thermal shock during processing into thin films for

food packaging (Liu et al. 2007).

Conversion to Platform Chemicals

The search for renewable and sustainable fuels has driven the

development of technology for complete utilization of bio-

mass (Hood et al. 2013). In general, lignocellulosic grasses

or woody plants garner most of the attention of technology

developments to harvest fermentable sugars for conversion

to a wide range of platform chemicals; ethanol being the

current favorite. The low lignin content and the high

digestibility of its carbohydrates (Table 1) make SBP a

feedstock candidate for biorefineries. Fermentation requires

the breakdown of cell wall networks and their components

like, in the case of SBP, pectin and cellulose. The severity of

the pre-treatment and the use of different enzyme treatments

affect the fermentable sugar yield from SBP (Kuhnel et al.

2011; Martinez et al. 2009; Micard et al. 1997).

Both the small amounts of ferulic acid and large

amounts of cellobiose (glucose) extracted from SBP could

be used to produce ‘‘natural’’ vanillin in a bioconversion

process using fungal enzymes (Bonnin et al. 2000). Ferulic

acid is used as a pre-cursor in the food and drug industries

(Kroon et al. 1996).

Sugar beet vinasse, leftover from ethanol production,

contains Betaine (15 %) which is used as amphoteric sur-

factants in personal care products. Betaine, and other

polyphenols, can be recovered using ion-exchange resins

(Caqueret et al. 2008; Soto et al. 2011).

Galactinol dehydrate and myo-inositol were first iso-

lated from Sugarbeet syrup in 1965 and are used in pro-

teomics and pharmaceutical applications (McCready et al.

1965).

Oxalic acid can be formed from Sugarbeet molasses

using a vanadium catalyst with a 75 % yield (Guru et al.

2001).

In order to design an efficient and (relatively) inexpen-

sive conversion of any vegetal matter, one needs accurate

knowledge of the structure and composition of the com-

ponents, the interaction and structure between the compo-

nents, and the synergistic effects of thermochemical and

enzymatic treatments to separate and purify the constitu-

ents (Van Dyk et al. 2013). This is not a trivial matter when

designing a production facility to process different crops all

with different compositions.

Energy Production

Energy production from renewable resources is increasingly

in demand. Using Sugarbeets as the feedstock, the main

target for biofuel production is ethanol. Once extracted,

sucrose can be directly fermented into ethanol using any

number of traditional, industrial-scale methods. In contrast,

starchy crops need additional processing steps to obtain

fermentable sugars. Advances in lignocellulosic bioconver-

sion will allow the use of the beet tops and SBP for bioenergy

production. For example, ethanol production was demon-

strated using SBP and a mixed enzymatic culture to solubi-

lize pectin and cellulose and then the sugars were converted

via fungal enzymes (Sutton and Doran-Peterson 2001). In

this case, the Sugarbeet would become a dual purpose crop:

sugar and energy (Panella 2010). A combined sugar-ethanol

plant was studied while introducing beet co-products in

various stages (Krajnc et al. 2007) including the immobili-

zation of a prevalent yeast, Saccharomyces cerevisiae (Vu-

curoviç and Razmovski 2012), in a single-tank hydrolysis

and fermentation process (Reziç et al. 2013). A study on the

integration of the storage, hydrolysis and fermentation of

sugar beet pulp has shown that ethanol production can be

increased by 50 % over current methods (Zheng et al. 2012).

Optimization of the biofuel production process is ongoing;

for example, there have been recent developments into

membrane ultafiltration for increasing the ethanol yields of

Sugarbeet feedstocks (Kawa-Rygielska et al. 2013). Of

course, environmental impacts must be considered; for

example, water usage is one of the more important factors

imported into any model (Gerbens-Leenes and Hoekstra

2012). To be viable as a biofuel, ethanol must have high net

energy gain, be competitive in price, provide ecological

benefits, and have the ability to be produced on a large scale.

The design and introduction of new technologies (Santek

et al. 2010) and the assessment of environmental advantages

(Salazar-Ordonez et al. 2013) will increase the sustainability

and profitability of the Sugarbeet. Regional efforts are aimed

at designing ethanol plants with minimal waste generation

using locally grown energy crops such as Sugarbeet (Vu-

curoviç et al. 2012).

Ethanol may be driving biofuel technology right now,

but second generation biofuels are being studied such as
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hydrogen, methane, methanol and butanol. The wet storage

difficulty could be leveraged by capturing the biogas pro-

duced during ensilage by anaerobic digestion (Panella

2010). Biogasification (anaerobic digestion) of the molas-

ses co-product by mixed cultures of microorganisms pro-

duces methane and carbon dioxide which can be captured

and used as a fuel for electricity generation (300 kWh/

tonne raffinate) onsite (Polematidis et al. 2010). Work is

continuing to produce methane gas as a biofuel using

Sugarbeet residues (Tian et al. 2013). In addition, there are

a variety of pre-treatments that improve the formation of

biogases from SBP (Zieminski et al. 2012).

In addition to biochemical conversion, there are ther-

mochemical conversion techniques for biomass. Torrefac-

tion, pyrolysis, and gasification are three high-temperature

processes to produce biofuels (Basu 2013). Pyrolysis

(450 �C) and gasification converts solid biomass into liquid

or gaseous fuel. Torrefaction (250–400 �C) is used to

produce value-added products such as biochar and carbon

fibers.

Carbon Materials for Removal of Contaminants

Renewable, sustainable energy research and concerns

regarding the production of greenhouse gases has driven

the need for the utilization of biomass in so-called carbon–

neutral processes. Contamination of water sources by toxic

substances is an ongoing environmental and health con-

cern. Using agricultural materials have some advantages

over conventional processes including low cost, regenera-

tion of biosorbents, and potential recovery of heavy metals

(Kolodynska et al. 2012; Sud et al. 2008). The binding

capacity of SBP as an ion-exchanger can be improved

(Dronnet et al. 1998) making it more valuable in the

market.

Biochar is produced using high temperatures to burn

biomass leaving only carbon (carbonization). Biochar has

been shown to enhance soil fertility and water holding

capability and sequesters carbon. Biochar also has potential

as a low-cost absorbent as it shows high affinity for heavy

metals. While any biomass can be carbonized, economics

suggest that agricultural wastes would be more suitable.

Using slow pyrolysis (600 �C), Sugarbeet residue was

carbonized and was shown to capture phosphates (Yao

et al. 2011). Using high temperature pyrolysis

(500–700 �C), activated carbon was produced using

ZnCl2-activated Sugarbeet bagasse (Demiral and Gun-

duzoglu 2010), and it was successful at removing nitrates

from water. An alternate, low-energy technique converts

lignocelluloses to carbon by sulfuric acid dehydration and

has been shown to absorb heavy metals especially Cr(VI)

(Altundogan et al. 2007). Sugar beet pulp was carbonized

and used to decolor sugar syrups (Mudoga et al. 2008).

Cellulose

Cellulose has been isolated from SBP (Togrul and Arslan

2003), modified, and used to preserve fresh fruit during

Fig. 2 Schematic of complete

utilization of Sugarbeet into

value-added products
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transportation and storage (Togrul and Arslan 2004). In

paper products, treated and untreated SBP has been used to

increase the internal bond strength of paper products

mainly through the suspension of cellulose microfibrils in a

gelatinous matrix of pectin (Dinand et al. 1999; Fiserova

et al. 2007; Gigac et al. 2008).

Conclusions

Utilization of agricultural commodities in sustainable,

economic, and ethical ways is essential in the competitive

global marketplace.

The value-added coproducts of sugarbeet are summarized

in Fig. 2. The complete utilization of the sugarbeet should be

examined on the basis of a biobased economy in order to

select the optimal parameters for the industry (Langeveld

2010; Liang et al. 2012). One must also consider the future

impact of global climate change on the sugarbeet crop

(Angulo et al. 2013; Reineke et al. 2013). Life cycle models

will give researchers and leaders insight into the environ-

mental, economic, political, and social value of sugarbeets.
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