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Abstract The present study has been conducted to

investigate the effects of vinasse and press mud (PM)

(sugar industry by-products) applications on sugarcane soil

microbial population, its enzyme activities and biomass

carbon and nitrogen in order to work out its potential to be

used as bio-friendly fertilizer. The treatments were com-

pared with traditional chemical fertilizer (CF) applications.

Vinasse and PM amended soils were found to have slightly

lower pH and higher total N and C content, however, the

difference was insignificant with CF amended soils. Both

the treatments increased sugarcane yield compared to

chemical fertilizer, but this increase was not significant in

PM amended soils. The populations of fungi, bacteria and

actinomycetes increased in vinasse and PM amended soils.

This increase in former one was significant in PM amended

soils only, and that of the latter in vinasse amended soil.

The biomass C and N contents were also higher in both the

treatments, however, only the former one had significant

difference with CF. Amongst the soil enzymes, the

activities of cellulase, phosphatase and aminopeptidase

were significantly higher in PM treatment while these were

at par in vinasse and CF treatments. These results showed a

potential possibility of substituting chemical fertilizers

with vinasse and press mud which besides improving soil

health and enhancing sugarcane productivity, can also

solve the problem of their disposal in free environment.

Keywords Sugarcane soil � Vinasse � Press mud �
Soil enzymes � Biomass C and N

Introduction

Since 1993, the Guangxi province is the top sugarcane and

sugar producer of China and accounts for more than 65 %

sugar production of nation (Li 2004). During the year

2009–2010, the sugarcane crop was cultivated on 103.14

million ha area and yielded 71.2 million tons of sugarcane.

Besides producing sugar and alcohol, the sugarcane

industries release a large amount of by-products, the dis-

posal of which has become a great problem and threat to

the environment. The sugar industry in Guangxi produces

approximately more than 5 million tons of vinasse (a liquid

by-product of alcohol industry) every year (Ou et al. 2002).

During the past decades, the vinasse was discharged

directly into the river which has caused serious water

pollution and threat to the aquatic organisms. Since the

year 2003, the researchers began to use the diluted con-

centrations of vinasse as liquid fertilizer in sugarcane

fields. The results showed significant improvement in yield

of sugarcane, vis-à-vis, soil’s physico-chemical properties

without any hardening symptoms (Li et al. 2007; Zhu et al.

2009). There have been some reports about the effects on

soil properties including physical, chemical and microbial
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aspects (Su et al. 2008, 2009a, 2009b), however, more

evidences are needed to illustrate the mechanisms of vin-

asse application on promotion of plant growth. Microflora

and fauna are of immense importance to soils and any

changes made to them would affect soils health as well as

the yield of crops. In view of this, an experiment has been

conducted to elucidate the effects of vinasse application in

sugarcane fields on changes in bacterial and fungal com-

position of soil and activities of certain enzymes, and

growth and yield of sugarcane.

Materials and Methods

Treatments

The experiment was conducted in the sugarcane fields of

Qianjiang Farm (109�360S, 23�360E), Guangxi, China, the

variety of sugarcane was used in ‘‘ROC 22’’, and consisted

of three treatments. In the first treatment (T1), the suitably

diluted (1:5; vinasse:water) vinasse @ (120 t ha-1) was

applied in furrows before planting sugarcane, in the month of

February. In the second treatment (T2), press mud (obtained

after cane juice filtration) was applied in the sugarcane fields

@150,000 kg ha-1. The third treatment (T3) included the

application of N, P and K (in 8:5:7 ratios) fertilizer in the

form of urea, P2O5 and K2O of potash. Vinasse and press mud

were supplied by the Qianjiang Sugar Mill Limited,

Qianjiang, China. The soil samples from each treatment were

collected at 6 months after treatment to analyze soil char-

acteristics, number of bacteria and fungi, and the activities of

some soil specific enzymes. Every sample was a mixture of

soils taken from 5 to 10 locations from 0 to 30 cm depth.

Each soil sample was sieved through stainless steel mesh

(2 mm) and stored at �C in refrigerator for analysis.

Soil Analysis

The solution of air dried soil with distilled water (1:2.5)

was shaken for 1 h and measured with a glass pH electrode.

Total C and N were analyzed with air dried soil samples

using NC-analyzer (Sumigraph NC-80 AUTO, Sumitomo

Chemical Co., Ltd., Japan). The amount of available

phosphate (Truog-P) was determined using the vanado-

molybdate method after extraction with 0.001 mol L-1

H2SO4 at a ratio of 1:200 (w/v) (Truog 1930).

Microbial Numbers

Microbial number was determined using the method of agar

plate dilution amended with cycloheximide (100 lg L-1), as

described by Martin (1950). Rose bengal-streptomycin agar

medium and starch casein medium were used to determine

the number of fungi and actinomycetes in fresh soil samples

as described by Miyashita (1997). The pH of medium was

adjusted to 6.8 with HCl or NaOH. The microbial, fungi and

actinomycetes were counted in 5 replicates.

Microbial Biomass

The contents of soil microbial biomass N (MBN) and soil

microbial biomass C (MBC) were determined using the

chloroform fumigation-extraction method as described by

Brookes et al. (1985) and Vance et al. (1987).

Activity of Soil Enzymes

Cellulase Activity

b–Glucosidase (EC.3.2.1.21) and exocellulase (EC.3.2.1.91)

assays were based on p-nitrophenol ( pNP) release after

cleavage of a synthetic substrate ( p-nitrophenyl-b-D-gluco-

side and p-nitrophenyl-b-D-cellobioside, respectively). The

color of released p-NP was measured at 400 nm in a spec-

trophotometer (UV-1700, Shimadzu, Japan). A standard

curve was plotted using 0–80 lg mL-1 concentrations of

p-NP. The enzyme activities were expressed as n moles pNP

released per g dry soil per minute (n mol pNP g-1 min-1).

Phosphatase Activity

Phosphatase (Phosphodiesterase and phosphomonoester-

ase) activity in soils was estimated by measuring the

amount of p-NP released after incubating the samples with

p-nitrophenyl-phosphate (Alef et al. 1995). In a reaction

tube, 0.25 mL toluene, 4.0 mL modified universal buffer

(59 MUB; pH 6.0; made by dissolving 12.1 g tris, 11.6 g

maleic acid, 14.0 g citric acid and 6.3 g boric acid in

500 mL 1 M NaOH and making the volume 1 L) and

1.0 mL p-nitrophenyl-phosphate (15 mM) were added to

1.0 g soil sample and the mixture was incubated at 37 �C

for 1 h. The reaction was terminated by adding 1.0 mL of

0.5 M CaCl2 and 4.0 mL of 0.5 M NaOH to the mixture

prior to filtration. The absorbance of released pNP was

taken at 400 nm in a spectrophotometer (UV-1700,

Shimadzu, Japan) and the phosphatase activity was

expressed in mg p-NP g-1 h-1.

Protease Activity

Aminopeptidase activity was measured by the method as

described by Pansombat et al. (1997) using 0.002 M N-

benzyl-oxycarbonyl glycyl L-phenylalanine (ZGP). The

absorbance was measured in spectrophotometer at 570 nm

wavelength. All the analyses were conducted in 5

replicates.
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Statistical Analyses

Statistical analyses were carried out using multiple range

test at a 0.95 level of probability) to determine significant

differences (p B 0.05) between the treatments.

Results and Discussion

Soil Properties and Cane Yield

Both the vinasse and press mud treatments significantly

decreased the pH of soil, however, this decrease was more

pronounced in press mud treatment. Generally, both of these

by-products have significant amount of nutrients and organic

matter, which is useful for soil health. Slightly acidic soils

facilitate the availability of micronutrients to the plants and

enhance the growth and development processes. Both the

treatments also recorded higher C and N content in the soils

compared to T3, however, no significant differences were

observed between treatments T1 and T2. The soils treated

with T1 and T2 recorded lower C/N ratios which indicate

greater N availability and its solubilization in the treated soils.

Vinasse treatment enhanced available P content of the soil,

but it decreased in T2 compared to T3. The improvement in

soil mineral and organic matter content and facilitated

nutrient availability due to application of vinasse and press

mud resulted in slightly higher cane yield in both treatments

compared to T3, however, the increase in cane yield was not

significant in the press mud treatment (Table 1). These results

suggested a potential possibility of vinasse and press mud to

be used as fertilizers which besides improving soil health and

enhancing sugarcane productivity, can also solve the problem

of their disposal in free environment.

Microbial Numbers

Fungi along with bacteria and actinomycetes play a vital

role in the decomposition of organic matter in soil, thus

releasing the nutrients locked up in the dead organic matter

of plant, animal and microbial matter and bringing about

the recycling of nutrients in nature. In soil, microbes oxi-

dize organic carbon to CO2 and liberate bound materials.

All the treatments showed similar trend of the bacterial and

fungi population. The soils treated with press mud recorded

maximum population of these two microorganisms which

was significantly highest amongst all the treatments. Vin-

asse was not found to alter the bacterial or fungal popu-

lation as it showed no significant difference with the soils

treated with chemical fertilizer. On the other hand, acti-

nomycete population differed significantly amongst all the

treatments. Application of vinasse recorded the highest

number of actinomycete followed by the press mud and

chemical fertilizer treatments. The population of microor-

ganism in soil was affected greatly by its organic matter

content (Pansombat et al. 1996). The organic residues or

substances of soil are first attacked by bacteria and fungi

and later by actinomycetes, because they are slow in

activity and growth than bacteria and fungi. The presence

of high number of actinomycetes in soils treated with

vinasse might be due to its complex organic compounds.

Microbial Biomass

Soil microorganisms are the main participant in soil formu-

lation and nutrient recycling (Spedding et al. 2004). Size and

activity of microbial biomass are greatly stimulated by the

addition of manure. Soil microbial biomass is the living

component of soil organic matter (Zhang and Zhang 2003;

Gil-Stotres et al. 2005). And it generally comprises 1–5 % of

total organic matter content (Nsabimana et al. 2004).

Microbial biomass measurements have been used to give an

early indication of the changes in the organic matter content

of a soil as a result of variation in soil management (Garcia-Gil

et al. 2000; Hargreaves et al. 2003; Insam et al. 1989; De

Varies et al. 2007; Zhang et al. 2004). Amongst all the

treatments, application of press mud resulted in the highest

microbial C and N, followed by the soils treated with vinasse

and chemical fertilizer (Fig. 1). However, no significant

difference was observed between the vinasse and press mud

treatments. This might be due to the microbial activities

during long time storage duration of vinasse and press mud.

Higher total C and N contents in the soils with T1 and T2

treatments (Table 1) acted as an energy source for the

autochthonous microorganisms (Perucci 1992) and signifi-

cantly increased the microbial numbers (fungi, bacteria and

Table 1 Physico-chemical characteristics of soil and millable cane yield of sugarcane

Soil sample Depth pH TC TN C/N Av. P2O5 Millable cane yield

(cm) (H2O) (%) (%) Ratio (mg kg-1) (t ha-1)

Vinasse (T1) 0–30 5.51bB 1.29aA 0.123aA 10.5 15.9aA 109.4aA

Press mud (T2) 0–30 5.08cC 1.17bB 0.116aA 10.1 9.8bB 104.5aA

Chemical fertilizer (T3) 0–30 5.70aA 1.09bB 0.096bB 11.4 14.9aA 104.2aA

Different small and capital letters are showing significant difference at P \ 0.05 and P \ 0.01
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actinomycetes) (Fig. 2). The results of the present study are

in accordance with those of Leita et al. (1999) who reported

that the soil microbial biomass, which represents approxi-

mately 1–4 % of total soil organic C, is a more sensitive

indicator of changing soil conditions than direct analysis of

the organic C content.

Soil Enzyme Activities

Cellulases Activity

b-Glucosidase and exocellulase (C1 enzyme) activities play

an important role in carbon metabolism in soils. Especially,

the b-glucosidase, an enzyme involved in the carbon cycle,

has been widely used in quality evaluation of soils subjected

to different management procedures (Gil-Stotres et al. 2005).

In the present study, the highest activity of b-glucosidase

was found in press mud treated soils (0.320–0.339 lg

p-NP g-1 h-1), followed by the chemical fertilizer treated

soils (0.312–0.334 lg p-NP g-1 h-1) (Fig. 3a). The soils

treated with vinasse recorded the lowest activity. However,

no significant difference was observed in exocellulase

activity amongst different treatments. The difference

between T1 and T2 was significant at 0.05 as well as 0.01

P level, however, T2 and T3 differed significantly at 0.05

P. Furthermore, contrary to the findings of Chang et al.

(2008), significant negative correlations of b-glucosidase

activity with biomass C (r2 = -0.32) and biomass N

(r2 = -0.20) were observed (Table 2) which suggested

higher activity of this enzyme was related with the decom-

position of organic material (Dinesh et al. 2004), and dif-

ference in enzyme activity was due to different types of

fertilizers (Chang et al. 2008). Besides this, positive corre-

lations were also found between the enzyme activity and the

number of fungi (r2 = 0.73) and bacteria (r2 = 0.68), sug-

gesting their role in promotion on this enzyme. However, the

b-glucosidase activity was found negatively correlated with

the actinomycetes population.
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Protease Activity

Within organic farming in particular, increasing amounts of

waste products from the food industry are being used in

addition to manure to cover crop nitrogen (N) needs. These

different organic fertilizers release N at different and often

unknown rates. To achieve high N use efficiency with

maximized yield return and minimized N loss to the envi-

ronment, the availability of N from organic fertilizers must

be synchronized with crop uptake. By documenting the

course of mineralization under field conditions, it could be

possible to estimate when as yet non-mineralized nitrogen

becomes plant-available in relation to the time of fertiliza-

tion. It needs to determine when to fertilize to get the

maximum N utilization efficiency. The course of minerali-

zation for a number of organic fertilizers has been studied

under controlled laboratory conditions (Griffin and Honey-

cutt 2000; Raupp 2005; Cordovil et al. 2007). In the present

study, it was found that the different fertilizers application

differently affected the soil aminopeptidase activity

(Fig. 3b). Similar to phosphatase activity, the activity of

aminopeptidase was also found the highest in press mud

treated soils, followed by the vinasse treated soils. Loll and

Bollag (1983) reported that soil amended with organic

compounds, such as straw, increase the protease activity.

Our results of total N contents (Table 1) in the soils are in

accordance with the enzyme activity. The present study also

revealed a significant correlation of biomass N content with

the aminopeptidase activity. A strong positive correlation

was also observed between the enzyme activity with

bacterial and fungal populations (Table 2).

Phosphatase Activity

In soil, phosphorus exists mostly in organic and inorganic

forms, both of which are important sources of P for plant and

microbial uptake. The organic form exists mostly in humus

and other organic materials. P availability is also controlled

by environmental conditions such as soil organic matter

moisture content and aeration which influence microbial

activity and eventually microbial transformations of phos-

phorus. Soil phosphatase, the enzyme that transforms

organic P to inorganic P is mostly of plant and microbial

origin and consists of alkaline and acid types. The alkaline

phosphatase is mostly of microbial origin. Loss of moisture

likely to influence the activity of the microbial populations

and in turn influences the phosphorus mineralization pro-

cess. Phosphatases are important in soils because these

extracellular enzymes catalyze the hydrolysis of organic

phosphate esters to orthophosphate, thus they form an

important link between biologically unavailable and mineral

P (Kanazawa et al. 2005; Amador et al. 1997). Phosphatase

activity is sensitive to soil pH, organic amendments and

fertilizer additions etc. In the present study, the activity of

phosphodiesterase enzyme was found the highest in soils

treated with press mud followed by vinasse treatments. It

varied from 0.360 to 0.574, 0.421–0.603 and

0.310–0.397 lg p-NP g-1 h-1 in soils treated with vinasse,

press mud and chemical fertilizer treatments, respectively

(Fig. 3c). No significant variation was observed between the

T1 and T2, however, both the treatments showed significant
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Table 2 Linear correlation

coefficients between selected

biological properties and the

enzymatic activities of the soils

* P \ 0.05; ** P \ 0.01

Biomass C Biomass N Fungi Bacteria Actinomycetes

b-Glucosidase -0.316 -0.197 0.735* 0.678* -0.930**

Exocellulase -0.101 0.021 0.865** 0.822** -0.830**

Phosphodiesterase 0.925** 0.964** 0.727* 0.780** 0.298

Aminopeptidase 0.579 0.675* 0.981** 0.994** -0.257
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differences (P B 0.05) with the T3. The enhancement in

enzyme activity in the T1 and T2 might be related with the

decrease in soil pH (Table 1) (Dick et al. 2000).

Conclusions

The results of the present study clearly showed that the

application of vinasse and press mud in sugarcane fields

significantly improved the soil fertility status by enhancing

soil C and N contents. Lower C/N ratios in the amended

soils indicated higher N mineralization by microbial

activities. Vinasse treatment enhanced available P content

in the soil, however, it decreased in the press mud amended

soils. High millable cane yield under vinasse amended

conditions might be attributed to the higher micronutrient

availability under slightly acidic conditions caused by

vinasse application. In addition, enhancement in fungal and

bacterial populations by application of press mud and

actinomycetes population in vinasse treated soils suggesting

their roles in decomposition of organic materials to release

nutrients for plants growth and development. Furthermore,

the higher biomass C and N contents in the soils treated with

vinasse and press mud showed changes in soil organic

matter content caused by microbial enzymatic activities.

The present study revealed higher cellulase, phosphatase

and protease activities in the vinasse and press mud treated

soils which facilitated the process of carbon, phosphorus

and nitrogen mineralization in the soils and improved the

fertility status. These results suggested a potential possi-

bility of vinasse and press mud to be used as fertilizers

which besides improving soil health and enhancing sugar-

cane productivity, can also solve the problem of their dis-

posal in free environment. Decomposition of soil organic

matter, as well as the organic matter presented in vinasse

and press mud, is a slow process. These organic fertilizers

besides adding nutrients to the soil, sustained the microbial

growth and a medium for enzymatic activities which might

be more useful for enhancing the productivity of the ratoon

crop, and will reduce the application of chemical fertilizers.
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