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Abstract
Cold chain logistics requires low-temperature transportation, which consumes more 
energy and has higher distribution costs than ordinary logistics. Moreover, as the 
scale of cities continues to expand, traffic congestion is becoming more frequent. 
Therefore, it is particularly important to plan the distribution route reasonably. 
In this paper, we study the problem of cold chain logistics vehicle path planning 
based on travel time prediction. First of all, multiple connected routes with real-time 
changes in traffic conditions between customers in the road network were considered 
to describe the distribution scene. Second, a genetic algorithm-optimized backprop-
agation algorithm fused travel time predictions for road segments based on fixed 
detector technology and floating car technology to improve the accuracy of road 
segment travel time prediction. Then, based on the prediction of road segment travel 
time, a method for predicting the travel time of the route is proposed, and the actual 
road network is transformed into a travel time network for each customer. Finally, 
the vehicle routing problem in cold chain logistics was investigated using predicted 
travel time as input. This problem is formulated as a bi-objective model aimed at 
minimizing costs and carbon emissions. To address this problem, the Non-domi-
nated Sorting Genetic Algorithm-II (NSGA-II) was proposed. The study provides 
support for cold chain logistics distribution companies to develop distribution strate-
gies based on local environmental policies and their own operational conditions.

Keywords Cold chain Logistics · Vehicle routing problem · Data fusion technology · 
Travel time prediction · GA-BP · NSGA-II
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1 Introduction

In recent years, there has been a significant enhancement in people’s living stand-
ards, leading to a rapid surge in the demand for fresh products. However, fresh 
products, being perishable and delicate, necessitate heightened consumption of 
fuel to sustain a low-temperature environment during the distribution process. 
Consequently, this imposes stringent requirements on cold chain logistics and dis-
tribution, resulting in elevated energy consumption and costs. Therefore, how to 
reasonably plan the distribution route to ensure customer demand while reducing 
costs and environmental pollution has become a key issue in cold chain logistics 
and distribution.

With the continuous expansion of urban areas, the demand for transportation 
has surged, leading to escalating road traffic loads. Consequently, urban traffic 
congestion and traffic accidents have become more frequent, exacerbating envi-
ronmental pollution. In 2020, the global transportation sector emitted 8.258 bil-
lion tons of carbon dioxide, accounting for 24% of total global emissions and 
ranking second in the world (Guo et al. 2023). Compared to conventional logis-
tics, cold chain operations necessitate increased fuel consumption to maintain 
low-temperature environments, resulting in approximately 30% higher exhaust 
emissions from refrigerated trucks (Kim et  al. 2016). Consequently, mitigating 
the carbon footprint of cold chain logistics and distribution is imperative, with a 
shift towards low-carbon strategies becoming an inevitable necessity for its sus-
tainable development (Guo et al. 2017; Chen et al. 2021).

Due to the perishable and delicate nature of cold chain products, the distri-
bution process incurs additional costs and carbon emissions. Strategic planning 
of distribution routes has the potential to enhance distribution efficiency, lead-
ing to cost savings and reduced carbon emissions. However, the rapid growth of 
the cold chain industry has resulted in limited research on Vehicle Routing Prob-
lems (VRP) in cold chain logistics that take carbon emissions into account. Con-
sequently, addressing the low-carbon VRP in cold chain logistics and minimiz-
ing costs and carbon emissions have emerged as central challenges in cold chain 
logistics distribution.

However, most existing studies on low-carbon vehicle routing problems in 
cold chain logistics have overlooked the impacts of road network complexity and 
time-varying traffic conditions (Zheng et  al. 2021; Li and Li 2022; Stellingw-
erf et  al. 2021). The complexity of the road network is evident in the presence 
of multiple interconnected paths between customers in the actual road network. 
The constantly changing traffic conditions are manifested in the real-time fluc-
tuations in the traffic situation along each path connecting customers. Essentially, 
current studies typically formulate a Vehicle Routing Problem (VRP) model for 
cold chain logistics with objective functions including vehicle operating costs, 
transportation costs, product freshness costs, quality loss costs, penalty costs, 
and carbon emission costs, without accounting for the influence of road network 
complexity and dynamic traffic conditions on route planning. Instead, they often 
assume that there is only one connection route with Euclidean distance between 
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each customer point, with constant traffic conditions along the route. It is crucial 
to recognize that, apart from vehicle operating costs, all these identified costs are 
either directly or indirectly linked to travel time. Hence, developing a low-carbon 
VRP model for cold chain logistics based on travel time prediction holds signifi-
cant importance. It not only enables cold chain logistics companies to circumvent 
heavily congested road segments and enhance delivery efficiency but also facili-
tates cost reduction and carbon emission mitigation.

The main contributions of this paper are summarized as follows: 

(1) A bi-objective mixed integer programming model considering the complexity 
of the road network and the time-varying traffic conditions is proposed for the 
cold chain logistics vehicle routing problem.

(2) Based on fixed detector data and floating vehicle data, a data fusion prediction 
model for travel time prediction is proposed to quantify time-varying travel 
time in complex road networks, laying the foundation for research on cold chain 
logistics vehicle routing problems.

(3) The GA-BP algorithm is developed to solve the data fusion model for travel time 
prediction.

(4) The NSGA-II algorithm is used to solve the bi-objective mixed integer program-
ming model on the vehicle routing problem.

The remainder of this paper is as follows. Section 2 presents relevant literature. In 
Sect. 3, we studied the travel time prediction first. And then build a cold chain logis-
tics vehicle routing planning model based on the travel time prediction. The solution 
method is proposed in Sect. 4. Section 5 is based on a simulation case to solve the 
model and analyze the results. In Sect. 6, the work of this article is summarized and 
the future research direction is pointed out.

2  Literature review

This section respectively reviews the existing research on travel time prediction and 
Cold Chain Logistics VRP.

2.1  Investigation VRP for cold chain logistics

Cold chain logistics distribution, as the circulation method of fresh products, has 
increasingly become a research hotspot for many scholars and experts  (Lim et  al. 
2022; Al Theeb et al. 2020; Diabat et al. 2019). This section mainly introduces the 
research status of VRP considering carbon emissions for cold chain logistics, and 
VRP considering traffic conditions for cold chain logistics.

The VRP for cold chain logistics, also known as the cold chain logistics 
distribution problem (Zhang et  al. 2018), aims to deliver fresh produce from 
distribution centers to customers with minimal cost, maximizing customer 
satisfaction or other objectives. Cold chain logistics is more sensitive to temperature 
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and time. Compared with other delivery issues, cold chain VRP generates higher 
costs, including quality loss costs, refrigeration costs, and penalty costs, in addition 
to transportation costs and vehicle operating costs (Li et al. 2019; Bai et al. 2022). 
Ma et  al. (2016), Akkerman et  al. (2010), and Diabat et  al. (2019) proposed a 
mathematical model with the objective of minimizing the total cost to optimize the 
vehicle routes for distributing fresh products. Song and Ko (2016) proposed a model 
that defines customer satisfaction in terms of freshness, aiming to enable planned 
vehicle routes to maximize the quality of perishable products. Amorim and Almada-
Lobo (2014) proposed a bi-objective model to examine the relation between cost 
and freshness with the objective of minimizing cost and maximizing freshness.

With environmental problems becoming more and more severe today, more 
and more scholars in the field of cold chain logistics have focused their attention 
on the research of low-carbon VRP for cold chain logistics that reduce energy 
consumption and pollution emissions (Li et al. 2019; Chen et al. 2021; Kim et al. 
2019). A VRP model with carbon emission constraints is proposed by Tang et al. 
(2021), and an improved ant colony system algorithm is proposed to solve it. Kang 
et al. (2019) comprehensively considered the various costs in the cold chain logistics 
and distribution process, constructed a vehicle routing optimization model for fresh 
agricultural products that considered carbon emissions, and used an improved 
genetic algorithm to solve examples to verify the effectiveness of the model and 
algorithm.

The above research makes the distribution scene of cold chain logistics descrip-
tion in terms of the goal of minimizing distribution costs gradually closer to real-
ity, but the above research does not consider the traffic situation in the distribution 
process. However, traffic conditions will affect the speed and duration of refriger-
ated truck delivery, which in turn will affect various costs in the delivery. Therefore, 
researchers in the field of cold chain logistics have produced numerous research 
results taking traffic conditions into consideration  (Zhu and Hu 2019; Xiao and 
Konak 2016; Liu et al. 2020). Xiao and Konak (2016) proposed a low-carbon VRP 
model with a time window that uses time division to reflect the impact of traffic on 
distribution. Experiments show that this model can reduce carbon emissions by 8%. 
A model is proposed by Wu and Ma (2017) for time-dependent production-delivery 
problems with time windows for perishable foods and verified that the time-depend-
ent characteristics of road networks have a significant impact on routing decisions. 
Zhao et al. (2020) and Liu et al. (2020) considered the impact of traffic congestion 
on delivery costs, and divided the delivery time into congestion and non-congestion 
periods, thereby integrating road congestion factors into the VRP model for cold 
chain logistics, the improved ant colony algorithm, genetic algorithm and two-stage 
optimization algorithm are used to solve the problem.

In summary, the research on VRP for cold chain logistics has produced more 
research results, but there are also some limitations: (1) The current research on 
the VRP for cold chain logistics mainly discusses economics, and there is little 
involvement in vehicle energy saving, emission reduction and environmental 
protection. (2) Most of the existing research results of VRP for cold chain logistics 
assume constant traffic conditions. Although there are a few research that considered 
traffic conditions, most of them divide the delivery time into multiple periods and 
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assume the traffic situation is constant in each time period, which is far from the 
actual situation.

2.2  Investigation of travel time prediction

Currently, there has been extensive research on predicting travel times for road seg-
ments. These studies can be categorized into three major types: parametric methods, 
nonparametric methods, and hybrid integration methods.

The parametric method refers to learning a predetermined functional form that 
is used to reveal the mathematical relationship between travel time and contribut-
ing variables (Lin et al. 2022). The parametric methods mainly include exponential 
smoothing methods (Gao et al. 2004; Kumar et al. 2017), time series models(Kumar 
et al. 2017), and linear regressive models (Rice and Van Zwet 2004). These models 
are relatively simple and only use average travel time data to identify rule changes 
or statistical patterns. However, when the data volume is large, parameter estimation 
is complex, or traffic conditions change drastically, it is difficult to guarantee predic-
tion accuracy.

Different from parametric methods, non-parametric methods involve learning 
a function form that changes with the circumstances (dataset), and the number of 
parameters increases with the growth of data. Examples include artificial neural net-
works (Tang and Hu 2020), support vector machines, etc (Zheng et al. 2019). These 
methods use high-dimensional kernel functions to process complex nonlinear traffic 
data and can better reflect the traffic characteristics of the real world.

The hybrid integration method is a method that combines parametric methods 
with non-parametric methods. For example, Zhang et  al. (2017) presented back 
propagation (BP) neural network algorithm and time series analysis to predict travel 
time.

However, most existing studies that use these three methods to predict travel time 
are mostly based on a single data source, either fixed detector data or floating car 
data  (Zhang et al. 2017; Tang and Hu 2020). Prediction studies based on a single 
data source suffer from the drawback that prediction accuracy is affected by the pre-
cision of the collecting instruments and the sample size, thus limiting the accuracy 
of the prediction results. Therefore, some studies combine data from both sources. 
For example, Xing and Liu (2021) considered the complementary and comprehen-
sive advantages of integrating data and constructed a data fusion powered bi-direc-
tional long short-term memory model for individual lan and aggregate traffic flow, 
and through case analysis proves that the accuracy of traffic flow prediction results 
of multi-source traffic data fusion is higher than that of a single data source.

In conclusion, numerous scholars and experts have conducted extensive research 
on the prediction of road segment travel time, yielding a significant body of results. 
However, existing research in this field predominantly relies on either fixed detector 
data or floating car data, with limited exploration into the fusion of these two data 
sources for prediction.

Addressing the shortcomings of previous studies, this paper incorporates the 
intricacies of the road network and dynamic traffic conditions. Firstly, a data fusion 
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model centered on predicting road segment travel time is developed to enhance pre-
diction accuracy. Secondly, a routine travel time weighted on the current time seg-
ment travel and historical road segment travel time prediction model is established. 
Lastly, a vehicle routing model is constructed for low-carbon cold chain logistics 
using the predicted road segment travel time and routing travel time models. This 
aims to assist logistics companies in formulating superior distribution strategies, 
enhancing distribution efficiency, lowering distribution costs, reducing carbon emis-
sions, boosting customer satisfaction, and offering robust support for the distribution 
activities of cold chain logistics firms.

3  Problem description and model formulation

Most previous studies on vehicle routing problems (VRP) in cold chain logistics 
have overlooked the complexity of the road network and have oversimplified the 
consideration of time-varying traffic conditions. Consequently, accurate distribu-
tion costs and carbon emissions have been difficult to obtain, rendering the planned 
distribution routes meaningless. Recognizing the limitations of prior research, this 
paper addresses the complexity of actual road networks and the dynamic nature of 
traffic conditions. Initially, the study focuses on predicting travel times and con-
verting the real road network into a travel time network. Subsequently, the analysis 
incorporates both economic and environmental costs to minimize the total distribu-
tion cost and carbon emissions. Furthermore, a vehicle routing planning model for 
cold chain logistics is developed.

3.1  Problem description and hypothesis

There is a cold chain distribution center. Z refrigerated trucks are responsible for 
distributing goods to N customers. The maximum load of the vehicle, customer 
demand, and soft time window are known. Each refrigerated truck returns to the 
distribution center after completing the distribution task.

For the convenience of research, refer to Wang et al. (2018), and make the follow-
ing assumptions: 

(1) There is only one type of refrigerated truck.
(2) The demand of each customer must be met and can only be visited once.
(3) The total customer demand on each distribution route cannot exceed the maxi-

mum load of the refrigerated truck.
(4) The demand of a single customer is less than the maximum load of the refriger-

ated truck. that is, the refrigerated truck can deliver to multiple customers.

The symbols used in this paper are shown below 
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Sets Description

N Set of demand points
Z Set of refrigerated truck
B Set of route between 

two demand points

Parameters Description

t1 Road segment travel time predicted based on fixed detector technology
td Normal travel time through the road segment
tl Delay time due to signal lights
L Length of the road segment
v̄ Average speed of a vehicle passing a fixed detector
c Traffic signal cycle
� Effective green light time ratio
q traffic flow
� Probability of delay due to the signal light
x Lane saturation
C Practical saturated capacity of the entrance road
t2 Road segment travel time predicted based on the floating car technology
vf Average speed of the floating car
Co Vehicle operating cost
P1 The fixed cost of the vehicle
Cf Product freshness cost
Cf1 Transportation product freshness cost
Cf2 Unloading product freshness cost
Cr Product freshness cost per unit time during the transportation
Cd Unloading freshness cost per unit time during the transportation
tz
i,s

Service time of vehicle z at customer i
Cl Quality loss cost
Cl1 Transportation quality loss cost
Cl2 Unloading quality loss cost
P2 The unit price of the goods
qi Demand of the customer i
�1 The rate of decrease in the freshness of the goods during transportation
�2 The rate of decrease in the freshness of the goods during unloading
tz
0

The moment vehicle z leaves the distribution center
cew The penalty cost per unit of time for vehicles arriving early
clw The penalty cost per unit of time for vehicles arriving late

W
(

Q
b,z

ij

)

Fuel consumption per unit time of the vehicle z on the b−th route between customer

points i and j with a load of Q.
W0 Fuel consumption per unit time when vehicle z is unloaded
W1 Fuel consumption per unit time when vehicle z is fully loaded
Q∗ Maximum load of vehicle z
P3 Unit price of fuel



 Q. Bai et al.

1 3

   55  Page 8 of 34

Parameters Description

tb
ij

Predicted travel time of the b−th route from the customer i to j.
Cc Carbon emission cost
Cc1 Transportation carbon emission cost
Cc2 Refrigeration carbon emission cost
eco2 Emission coefficient of co2
� Carbon emission produced by refrigeration equipment per unit weight of goods per unit 

time

Decision variables Description

az 1 if vehicle z is used, 0 otherwise

y
b,z

ij
1 if vehicle z passes through the b−th route of 

customer points i and j, 0 otherwise
tz
i

The moment the vehicle z arrives at customer point i

3.2  Travel time prediction

This section uses data fusion methods to study travel time prediction. The specific 
details are as follows: Firstly, the road travel time prediction model is established 
based on fixed detector technology and floating car technology, respectively. Sec-
ondly, the GA-BP algorithm is used to fuse the two results to improve prediction 
accuracy. Finally, on the basis of road segment travel time prediction, a route travel 
time prediction model weighted based on current time data and historical data is 
proposed, which lays a foundation for the subsequent study of VRP for cold chain 
logistics.

3.2.1  Road segment travel time prediction based on fixed detector technology

At present, the study of travel time prediction based on fixed detector technology has 
been very much and very mature. Most scholars and researchers have accepted and 
adopted the method proposed by Cheu et al. (2001) to obtain the travel time of the 
road segment. That is, the road travel time t1 can be divided into two parts: the time 
td of the vehicle normally passing the road segment and the delay time tl caused by 
the signal light (Fig. 1). The details are as follows:

(1)t1 = td + tl

Fig. 1  The diagram of the road segment
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among them,

Detailed derivation of the above equation, which is based on deterministic queuing 
theory, can be found in Cheu et al. (2002)

3.2.2  Road segment travel time prediction based on floating car technology

The driving speed of the floating car can be obtained directly, so most scholars and 
experts use the method of calculating the average speed when conducting research on 
the road segment travel time prediction based on the floating car technology.

There are many types of vehicles in the actual road network, and all types of vehicles 
should be considered for the calculation of travel time. According to Robinson (2005), 
the vehicles in the road network can be divided into the following four types: 

(1) Vehicles that stop during driving (for example, taxis, buses, etc. stop to let pas-
sengers get on and off the bus).

(2) Vehicles that can not comply with standard traffic rules due to the particularity 
of the vehicle (such as emergency vehicles, etc.).

(3) Vehicles that drive irrationally (for example, a sightseeing vehicle that deliber-
ately idles).

(4) Vehicles that drive rationally, that is, vehicles that have been excluded from the 
above three types.

Therefore, when calculating the travel time of the road segment based on the floating 
car technology, taking these four types of vehicles into account, we can get:

among them,

(2)td =
L

v

(3)tl = 0.9 ∗ � ∗

[

c(1 − �)
2

2(1 − �x)
+

x2

2q(1 − x)

]

(4)x = q∕(�C)

(5)� =

{ (c−g)q−L2
(c−g)q

, (c − g)q ≥ b

0, (c − g)q < b

(6)t2 =
L

vf

(7)vf =
v2v3v4 + v1v3v4 + v1v2v4 + v1v2v3

4v1v2v3v4



 Q. Bai et al.

1 3

   55  Page 10 of 34

where  v1 , v2 , v3 , and v4 are the average speeds of the four types of vehicles, 
respectively.

3.2.3  Road segment travel time prediction based on GA‑BP

GA-BP algorithm can automatically learn the previous experience from the massive 
historical data in the past and automatically approach the characteristics of the func-
tion that best reflects the historical law. So it has a great advantage when dealing 
with function problems with unknown prior relations, especially complex nonlinear 
problems. Therefore, this section uses the GA-BP algorithm to fuse the road seg-
ment travel time prediction results based on the fixed detector technology and the 
floating car technology to improve the accuracy of the road segment travel time pre-
diction results. Here we only show the BP network structure (Fig. 2). The remaining 
can be seen in Sect. 4.

Let sample t =
[

t1, t2
]

 be the travel time of the road segment predicted based on 
the fixed detector technology and the floating car technology. The input layer neuron 
is I =

[

t1, t2
]

 . The hidden layer neuron is H = [h1, h2,… , hj] . The weight between 
the input layer neuron and the hidden layer neuron is �ij . The weight between hidden 
layer neurons and output layer neurons is �jk , the threshold value of hidden layer 
neurons is bj , and the threshold value of output layer neurons is ck . f (⋅) is the transfer 
function of the hidden layer. In this paper, the S-tangent function is used as the 
transfer function of the hidden layer neuron, that is f (x) = 2

1+e−2x
− 1 . g(⋅) is the 

transfer function of the output layer, and the sigmoid logarithmic function is used as 
the transfer function of the neurons in the output layer, that is g(x) = 1

1+e−x
 . N1 , N2 , 

N3 are the number of neurons in the input layer, hidden layer, and output layer, 
respectively.

Fig. 2  Topology map of road segment travel time prediction model based on neural network
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The number of neurons in the hidden layer is based on the empirical formula:

Then, the input layer I is:

The hidden layer H is:

The output layer Q is:

3.2.4  Routing travel time prediction

In actual distribution activities, due to the difference in customer demand and the 
limited loading capacity of refrigerated trucks, it is necessary to determine which 
customer’s goods are loaded on the refrigerated truck before the refrigerated truck 
departs, and then plan the optimal delivery route, which makes the delivery cost and 
the smallest carbon emissions.

The method for predicting the travel time of a particular road segment has been 
studied previously. Due to the time-varying characteristics of the road network, the 
traffic flow parameters collected at the time of departure are unable to accurately 
describe the traffic conditions of downstream road segments after the refrigerated 
truck has driven several road segments along the planned route. However, when the 
future traffic condition is unknown, the greatest indicator of the traffic condition’s 
changing trend is the corresponding period’s historical traffic flow data. Therefore, 
this section proposes a road segment travel time prediction model weighted based on 
the current time predicted road segment travel time and the historical average road 
segment travel time. The model is constructed as follows:

Suppose the vehicle departs from customer A to customer B at time t, and there 
are n road segments between customer A and B. The traffic data is collected at a 

(8)N2 = 2N1 + 1

(9)I =

[

t1
t2

]

(10)H =

⎡

⎢

⎢

⎣

h1
⋮

hj

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f

�

N1
∑

i=1

�i1ti + b1

�

⋮

f

�

N1
∑

i=1

�ijti + bj

�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(11)O =

⎡

⎢

⎢

⎣

o1
⋮

ok

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

g

�

N2
∑

j=1

�j1h1 + c1

�

⋮

g

�

N2
∑

j=1

�jkhj + ck

�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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certain time interval � , and the travel time of the road section is also obtained at 
this time interval, so the time is divided into time intervals based on this time inter-
val, and the vehicle travel time is t ∈ ((k − 1)�, k�], k = 1, 2,… ,

1440

�
 . Therefore, the 

routing travel time prediction model is:

Among them,

where TAB(t) is the predicted travel time of the vehicle through the route AB at time 
t. Ti(t) is the predicted travel time of the vehicle through road segment i at time t. 
Δi−1 is the time spent by the vehicle before the i − 1 th road segment. T∗

i
(k) is the 

predicted value of the travel time of the road segment obtained based on the traffic 
flow data of the starting period. TH

i
(k + Δi−1) is the historical average travel time 

required by the vehicle on the road segment i in the k + Δi−1 period. �(Δi−1) is the 
weight coefficient that varies with the elapsed period of time Δi−1 , the larger the 
Δi−1 , the smaller the �(Δi−1) . [] is a rounding symbol.

According to the actual situation, with the passage of time, in the above road net-
work travel time prediction model, the weight of the current traffic data in the road 
segment travel time prediction will gradually decrease, and the weight of historical 
data will gradually increase. Reference the research of Wu (2015), using the Gauss-
ian function to assign a value to �.

Then, the method of obtaining �(Δi−1) is as follows:

where T∗

i
(k + Δi−1) is the road segment travel time predicted based on the actual 

traffic flow data in the k + Δi−1 period.

3.3  Vehicle routing planning model for cold chain logistics

Based on the estimated travel time obtained in Sect. 3.2, we calculate the costs and 
carbon emissions as follows:

(12)

TAB(t) = T1(t) + T2(t + Δt1) +⋯ + Ti(t + Δti−1) +⋯ + Tn(t + Δtn−1)vspace4pt
= T1(k) + T2(k + Δ1) +⋯ + Ti(k + Δi−1) +⋯ + Tn(k + Δn−1)

(13)Ti(k + Δi−1) = �(Δi−1)T
∗

i
(k) +

[

1 − �(Δi−1)

]

TH
i
(k + Δi−1)

(14)Δi−1 =

�∑i

j=1
Tj(k + Δj−1)

�

�

(15)�
(

i−1

)

= f
(

i−1

)

= (1 − �)e
−

2
i−1

2�2 + �

(16)�(Δi−1) = arg Min
{

[Ti(k + Δi−1) − T∗

i
(k + Δi−1)]

2
}



1 3

Vehicle routing Problem for cold chain logistics based on data… Page 13 of 34    55 

Vehicle operating cost. The operating cost Co is related to fixed costs p1 such as 
driver wages and vehicle maintenance.

Product freshness cost. In the transportation process, a constant low temperature 
must be maintained to ensure the freshness of the goods, so energy will be con-
sumed and transportation refrigeration costs will be generated. During the unloading 
process, due to frequent opening and closing of the compartment doors, in order to 
maintain a constant low temperature in the compartment, energy will also be con-
sumed, and unloading refrigeration costs will be generated.

Therefore, the product freshness cost Cf  is

Quality loss cost. The goods distributed by cold chain logistics are susceptible to 
corruption and deterioration due to environmental temperature, oxygen, water activ-
ity of microorganisms in food, product PH value, and other factors, resulting in loss, 
that is, the quality loss cost. The quality loss cost Cl exists in two aspects: during 
the transportation process, as time accumulates, the freshness of fresh products will 
decrease, resulting in transportation quality loss cost Cl1 . During the unloading pro-
cess, the door of the refrigerated truck has been opened and closed many times to 
cause hot air to enter, which will affect the temperature in the compartment to a 
certain extent. This will also cause the freshness of the fresh products to decrease, 
which in turn will cause the unloading quality loss cost Cl2.

Therefore, the total cargo damage cost Cl is

(17)Co =

Z
∑

z=1

P1az

(18)Cf1 =

Z
∑

z=1

N
∑

i=1

N
∑

j=1

B
∑

b=1

tb
ij
y
b,z

ij
Cr

(19)Cf2 =

Z
∑

z=1

N
∑

i=1

N
∑

j=1

B
∑

b=1

tz
i,s
y
b,z

ij
Cd

(20)Cf = Cf1 + Cf2

(21)Cl1 =

Z
∑

z=1

N
∑

i=1

N
∑

j=1

B
∑

b=1

P2qi
[

1 − e−�1(t
z

i
−tz

0
)
]

(22)Cl2 =

Z
∑

z=1

N
∑

i=1

N
∑

j=1

B
∑

b=1

P2Q
b,z

ij
(1 − e

−�2t
z

i,s )

(23)Cl = Cl1 + Cl2
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Penalty cost. Due to the perishable nature of fresh products, customers typically 
request that the fresh products be delivered within the time window [T1, T2] . If it is 
violated, a corresponding penalty cost Cp will be incurred.

Transportation cost. Vehicles consume fuel during transportation, and the weight of 
the refrigerated vehicle is different, and the fuel consumption per unit of time is also 
different. Therefore, the transportation cost Ct is:

Carbon emission. The carbon emissions in the cold chain distribution process 
mainly include two aspects: carbon emissions from transportation and refrigeration. 
For the carbon emissions generated during transportation, this paper uses this for-
mula: Carbonemission = eco2 × fuelconsumption (Ottmar 2014). The carbon emis-
sions produced by refrigeration are related to the length of delivery time and the 
amount of loading.

Therefore, the carbon emissions Cc is

Aiming at the VRP for cold chain logistics, considering the complexity of the actual 
road network and the time variability of traffic conditions, the model is constructed 
through a comprehensive analysis of vehicle operating cost, product freshness cost, 
quality loss cost, penalty cost, transportation cost, and carbon emissions.

s.t

(24)Cp = cew

Z
∑

z=1

N
∑

i=1

max(T1 − tz
i
, 0) + clw

Z
∑

z=1

N
∑

i=1

max(tz
i
− T2, 0)

(25)Ct =

Z
∑

z=1

N
∑

i=1

N
∑

j=1

B
∑

b=1

y
b,z

ij
P3[t

b
ij
×W(Q

b,z

ij
)]

(26)W(Q
b,z

ij
) =W0 +

W1 −W0

Q∗

× Q
b,z

ij

(27)Cc1 = c0

Z
∑

z=1

N
∑

i=1

N
∑

j=1

B
∑

b=1

tb
ij
eco2 ⋅W(Q

b,z

ij
)

(28)Cc2 = c0

Z
∑

z=1

N
∑

i=1

N
∑

j=1

B
∑

b=1

�tb
ij
Q

b,z

ij

(29)Cc = Cc1 + Cc2

(30)MinC = Co + Cf + Cl + Cp + Ct

(31)MinCc
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The load of vehicle z on the b − th route between customer points i and j is 

Q
b,z

ij
=

⎧

⎪

⎨

⎪

⎩

∑N−1

i=0

∑N

j=1

∑B

b
qjy

b,z

ij
− qi−

∑N

h=0

�

qh max
�

tz
i
−tz

h

�
tz
i
−tz

h�
, 0
��

⎫

⎪

⎬

⎪

⎭

 . Constraints (32) indicate that there are N 

customers to be delivered. Constraints (33) indicate that the sum of the customers on 
each delivery route is less than or equal to the maximum load of the refrigerated 
truck. Constraints (34) indicate that each customer is delivered by only one refriger-
ated vehicle, and the distribution center has Z vehicles. Constraints (35) indicate that 
the load when the vehicle leaves the previous customer is the sum of the demand for 
the next customer and the load when it leaves the next customer. Constraints (36) 
show that the distribution process of each refrigerated truck is continuous.

4  Algorithm design

In this section, we proposed GA-BP and NSGA-II algorithms to solve the model. 
First, we use the GA-BP algorithm to fuse the travel time of the road segment based 
on the floating car technology and the fixed detector technology to improve the pre-
diction accuracy. Second, on the basis of the travel time prediction, the NSGA-II 
algorithm is used to solve the vehicle routing planning model. In the following con-
tent, we will introduce the GA-BP algorithm and the NSGA-II algorithm in detail. 
The flowchart is shown in Fig. 3.

(32)
Z
∑

z=1

N−1
∑

i=0

B
∑

b=1

N
∑

j=1

y
b,z

ij
= N

(33)
N−1
∑

i=0

N
∑

j=1

B
∑

b=1

y
b,z

ij
qj ≤ Q∗

(z = 1, 2,… , Z)

(34)
Z
∑

z=1

B
∑

b=1

y
b,z

ij
=

{

1 j = 1, 2,… ,N

Z i = 0

(35)Q
b,z

ij
= qj + Q

b,z

jh
,∀i, j, h ∈ N, b ∈ B, z ∈ Z

(36)tz
j
= tz

i
+ tz

i,s
+ tb

ij
,∀i, j ∈ N, b ∈ B, z ∈ Z
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Fig. 3  Algorithm flow chart
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4.1  GA‑BP algorithm

The GA-BP algorithm consists of three parts: determining the structure of the BP 
neural network, GA optimizing the initial weights and thresholds of the neural, BP 
neural network training and predicting. We have introduced the determination of the 
structure of the BP neural network before, and then we will introduce the remaining 
two parts in detail.

4.1.1  GA optimizing the initial weights and thresholds

The elements of GA to optimize the BP neural network include population ini-
tialization, fitness function, selection, crossover, and mutation operations.

Population initialization.Each chromosome is composed of the connection 
weight �ij between the input layer and the hidden layer neuron, the connec-
tion weight �jk between the hidden layer and the output layer neuron, the thresh-
old value of the hidden layer neuron and the output layer neuron, so its length is 
N1 × N2 + N2 + N2 × N3 + N3 . The chromosomes are coded by real numbers, and 
the value of each gene is in the range of [−1, 1].

Fitness function. The reciprocal of the absolute error between the predicted output 
obtained through the BP neural network and the expected output is used as the fit-
ness function F.

 Selection. The selection operation in this section adopts the roulette method, which 
is based on the fitness ratio. The probability pi that individual i is selected is:

where Fi is the fitness value of individual i, m is the number of individuals in the 
population, and k is the coefficient.

Crossover. The crossover operation in this section uses a partial crossover method. 
The crossover operation method of the l−th chromosome al and the q−th chromo-
some aq at the j−th genes is as follows:

(37)F =
1

∑N3

k=1
abs(yk − ok)

(38)pi =
fi

∑m

i=1
fi

(39)fi =
k

Fi

(40)
alj = alj(1 − b) + aqjb

aqj = aqj(1 − b) + aljb
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where b is a random number with a value in the range of [0,1].
Mutation. The mutation operation in this section adopts a single-point mutation 

method. For example, the j−th gene aij of the i−th individual is mutated, as follows:

where f (g) = r2(1 − g∕Gmax) . r2 is a random number. g is the current iteration num-
ber. Gmax is the maximum evolution number. amax and amin is the upper and lower 
bound of gene aij . r is a random number within the range of [0, 1].

4.1.2  BP neural network training and predicting

The algorithm uses the gradient descent method to minimize the mean square error 
of the error between the actual output value of the network and the expected result, 
which is composed of two processes: the forward propagation of the signal and the 
backpropagation of the error. The forward propagation process, that is, the input sig-
nal is nonlinearly transformed through the hidden layer to produce the output sig-
nal, which acts on the neurons in the output layer. When the actual output does not 
match the expected output, the output error is fed back layer by layer from the output 
layer to the input layer through the hidden layer, which is the backpropagation pro-
cess. Disperse the error to all neurons in each layer through the backpropagation 
process, and use the error signal obtained from each layer as the basis for adjusting 
the weight of each network. Adjust the weights between the input layer neurons and 
hidden layer neurons, as well as between the hidden layer neurons and output layer 
neurons, the threshold value of hidden layer neurons, and the threshold value of out-
put layer neurons through the process of forward propagation and backpropagation. 
Then the error decreases in the direction of the largest decrease (gradient direction). 
After going through these two processes repeatedly, determine the weight between 
each neuron and the threshold of each neuron corresponding to the smallest error.

The error between the actual and expected outputs is:

When E > 𝜀 (the upper limit of error), adjust the weights between neurons in each 
layer:

(41)aij =

{

aij +
(

aij − amax
)

∗ f (g) r ≥ 0.5
aij +

(

amin − aij
)

∗ f (g) r < 0.5

(42)

E =
1

2

K
∑

k=1

(

yk − ok
)2

=
1

2

K
∑

k=1

[

yk − g

(

J
∑

j=1

�jkhj + ck

)]2

=
1

2

K
∑

k=1

{

yk − g

[

J
∑

j=1

�jkf

(

m
∑

i=1

�ijti + bj

)]}2
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Among them,

where �1 and �2 are the learning efficiency of the hidden layer and the output layer, 
respectively, and n is the number of iterative learning. It should be noted that if 
E(n + 1) < E(n) , the learning efficiency is increased, or otherwise reduced.

4.2  NSGA‑II algorithm

The model we built has two goals: the minimum total cost and the least carbon 
emissions, which belong to the category of multi-objective optimization prob-
lems. There are many optimization algorithms for solving multi-objective prob-
lems. NSGA-II algorithm is used as a benchmark to verify its performance by 
other multi-objective optimization algorithms because of its fast solution speed, 
good solution convergence, robustness and excellent characteristics. There-
fore, the NSGA-II algorithm is widely used in similar research(Kuo et al. 2023; 
Menares et al. 2023). We use the NSGA-II algorithm to solve the model in this 
paper. The details are as follows:

Coding and population initialization. We construct L chromosomes of length N. 
The chromosome code in this article uses natural number coding. Each gene repre-
sents a customer, as shown in Fig. 4 (assuming there are 10 customers):

Fitness function. The fitness function is used to evaluate the pros and cons of 
chromosomes. The higher the fitness value of the chromosome, the greater the prob-
ability it will enter the next generation. so good genes will be inherited. Otherwise, 

(43)

⎧

⎪

⎪

⎪

⎪

⎪
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⎪

⎪

⎪
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Fig. 4  Coding diagram
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the easier it will be to be eliminated. For the bi-objective model established in this 
paper, set the total cost target as object1, the carbon emission target as object2, and 
the fitness function as the reciprocal of the two objective functions.

where F1 is the fitness function of the total cost target, and F2 is the fitness function 
of the carbon emission target.

Crossover. We adopt the partial mapping cross strategy as the method of cross 
operation. The crossover probability is pc. Whether the crossover is performed is 
determined by generating a random number in the range of [0,1]. When the gener-
ated random number is less than the crossover probability, crossover is performed, 
otherwise it is not performed. When performing crossover, the details are shown in 
Fig. 5 (Suppose the crossover occurs at positions 4 and 7).

Because there are duplicate customer point numbers in the same individual after 
the crossover, the non-duplicate customer point numbers are retained, and the con-
flicting customer numbers (with * positions) are eliminated by partial mapping, that 
is to use the corresponding relationship of the middle segment for mapping.

Mutation. In this section, the mutation strategy adopts the method of randomly 
selecting two points and swapping them. The probability of mutation is pm. Whether 

(46)F1 =
1

object1

(47)F2 =
1

object2

Fig. 5  Schematic diagram of a cross operation

Fig. 6  Schematic diagram of 
mutation operation



1 3

Vehicle routing Problem for cold chain logistics based on data… Page 21 of 34    55 

the mutation is performed is determined by generating a random number in the range 
of [0,1]. When the generated random number is less than the mutation probability, 
mutation is performed. Otherwise, it is not performed. When performing mutation, 
the details are shown in Fig. 6 (Suppose the mutation occurs at positions 4 and 7).

Select. The selection operation exists in two processes. The first selection opera-
tion is when the algorithm is just started. The competition selection method is used 
to select individuals from the parents for cross-mutation to generate offspring. The 
second selection operation is through crowding and non-dominated sorting. Use the 
roulette method to select the number to enter the next generation population.

5  Numerical example

In this section, we first validate the effectiveness of the data fusion model to predict 
travel times using the VISSIM traffic simulation software. Then the importance and 
necessity of considering the complexity of the road network is verified based on a 
case with one distribution center and 16 customers.

5.1  Comparison of prediction results of various models

Due to practical reasons, we are unable to obtain the traffic parameters in the actual 
road network. This article uses VISSIM traffic simulation software to simulate the 
operation of urban road traffic. The obtained traffic parameter data is respectively 
based on the fixed detector technology and the floating car technology to predict 
the travel time of the road section. Then the results obtained by the two methods are 
fused by the GA-BP. Finally, the prediction results obtained by various methods are 
compared and analyzed with the actual value (the travel time of the road segment 
obtained by the VISSIM software), as shown in Table 4.

The road segment parameters are shown in Table  1. The traffic light settings 
are shown in Table 2. The vehicle types and their speed distributions are shown in 

Table 1  Table of the segment parameter

The length of road segment (m) Driving direction Number of lanes Lane saturation capacity (puc/h)

900 West to east 1 570

Table 2  Table of traffic light 
parameter

Cycle (s) Red light (s) Green light(s) Yellow light (s)

60 10 47 3

Table 3  Table of vehicle 
parameter

Vehicle type Car Truck Bus

Vehicle speed (Km/h) (48, 58) (40, 45) (30, 35)
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Table  3. According to experience, input the traffic flow from 06:00 to 21:00, the 
sampling period is 5min, and take a total of 180 sets of data, the result is shown 
in Fig. 7. Among them, in the road segment travel time prediction model based on 
GA-BP, 150 sets of data (06:00–18:30) are used to train the network, and 30 sets of 
data (18:30–21:00) are used to detect model accuracy.

Figure 8 is a graph of percentage error based on the comparison between the pre-
diction results of the three methods and the actual value. It can be seen from the 
figure that the results of the data fusion model are more accurate than those based on 
the fixed detector or floating car (Table 4).

Fig. 7  Prediction graph of data fusion model based on genetic algorithm to optimize BP neural network

Fig. 8  Percentage error graph of the prediction results of the three methods



1 3

Vehicle routing Problem for cold chain logistics based on data… Page 25 of 34    55 

After training, the result of the fusion model has a connection weight matrix �ij 
between each neuron in the hidden layer and each neuron in the input layer, a thresh-
old matrixbj of each neuron in the hidden layer, and a difference between each neu-
ron in the hidden layer and each neuron in the output layer, the connection weight 
matrix �jk and the threshold matrix bk of each neuron in the output layer are shown 
in Table 5.

It can be seen from Table 4, the travel time of the road segment predicted based 
on the fixed detector technology is quite different from the real value, and the abso-
lute percentage error is as high as 14–22%. The accuracy of the road segment travel 
time predicted based on the floating car technology is improved compared with the 
predicted value based on the fixed detector. However, in the 30 sets of data, only 9 
sets differ from the actual value within 5%. The 21 sets of data below all have a large 
gap with the actual value. The largest is as high as 19%. The accuracy of the road 
segment travel time predicted by the data fusion model based on GA-BP is greatly 
improved compared with the road segment predicted travel time based on the fixed 
detector technology and the floating car technology. The absolute percentage error 
with the largest difference from the actual value is about 5%. Therefore, it can be 
seen that the road segment travel prediction model based on GA-BP can overcome 
the defect of the large prediction error of a single data source.

5.2  Routing planning case

5.2.1  Traffic data source

The demand and service time window of the cold chain distribution center and each 
customer are shown in Table 6. The parameters of the refrigerated truck are shown 
in Table 7. The values of the relevant parameters of the model are shown in Table 8.

Due to some restrictions, we cannot obtain traffic flow data in the real road net-
work. Therefore, we simulated the actual road network by creating a square grid 
with 64 intersections and 112 two-way road sections in the VISSIM traffic simula-
tion software. The traffic flow data of each road segment at the initial time of the 
delivery day is obtained through VISSIM software simulation, and the historical 
travel time data of each road segment are assumed to be available in advance.

Create a road network in the VISSIM traffic simulation software as shown in 
Fig. 9. The road segment numbering rules are: first number by column, add 1 from 

Table 5  Table of connection 
weights and thresholds between 
neurons in each layer

�ij bj �jk bk

2.0634 −2.9003 −1.7205 0.2165 −1.2224
1.5011 2.3929 −0.9604 −0.6341
−1.6379 −0.7967 −0.6091 −1.7664
2.4307 2.2036 0.4955 2.2472
−0.7314 −0.1392 −1.0608 −1.6581
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left to right, and 10 from top to bottom; then number by row, from top Add 1 to 
the bottom and 10 from left to right. Assuming the refrigerated trucks start delivery 
at 07:00, we collect traffic flow data of each road segment at 07:00 on the day of 
delivery firstly, and then predict the travel time of each road segment based on fixed 
detector technology and floating car technology, and finally, the GA-BP neural net-
work algorithm is used to fuse the two prediction results to get Table 9. The histori-
cal transit time data of each road segment is shown in Table 10.

Since the connecting route between the intersections are two-way, and the traf-
fic conditions on the two-way roads are different, so there are two results after the 
fusion. The first column is the forward travel time of the road segment, and the sec-
ond column is the reverse travel time. Due to the excessive data in the average travel 
timetable of the historical period of each road segment, only part of the data is given 
here. For details, see Online Appendix Table 1.

Table 6  Table of customer and 
distribution center information

tip0 represents the distribution center, 1–16 represents the customer 
point

Customers Demand/t Service time/
min

Time window

0
1 1.62 7 [07:00–18:00]
2 0.61 10 [09:35–10:10]
3 0.54 9 [09:10–09:40]
4 0.74 16 [10:45–11:20]
5 1.42 13 [09:20–09:50]
6 0.98 15 [10:20–10:50]
7 0.74 6 [10:30–11:00]
8 1.64 5 [10:35–11:05]
9 0.42 4 [10:35–11:10]
10 0.88 6 [11:10–11:40]
11 1.25 8 [10:00–10:30]
12 1.36 7 [08:50–09:20]
13 0.26 7 [09:15–09:55]
14 0.35 9 [09:16–09:50]
15 1.73 11 [10:15–10:45]
16 0.37 9 [10:35–11:20]

Table 7  Table of Refrigerator truck parameter

Parameter Parameter value parameter Parameter value

Total mass 16000 kg Load capacity 6000 kg
No-load fuel 16.5L/100 km Full load uniform fuel 37.7L/100 km
Fuel type Diesel
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In the vehicle routing planning model for cold chain logistics that does not 
consider the complexity of the road network and the time-varying traffic condi-
tions, there is one and only one connected route with the length of the Euclidean 
distance between the customers, and the traffic situation is constant. The Euclid-
ean distance matrix between customer points measured in the VISSIM software is 
shown in Online Appendix Table 2. And the default speed of the refrigerated truck 
is 50 Km/H.

5.2.2  Comparative results

This paper used MATLAB 2018b as a simulation experiment tool, a computer with 
a CPU of 1.60 GHZ and a memory of 16 G as the running tool. Figure 10 shows 
the results. Figure 10a show the model’s results built in this paper. Figure 10b show 
the model result without considering the road network’s complexity and the time-
varying traffic conditions. In Fig. 10, the ordinate represents carbon emissions, the 
abscissa represents costs, the curve represents the Pareto frontier, and each point 
on the curve represents a solution. Through the Pareto curve, it can be seen that all 
solutions in the Pareto solution set cannot be better than the other points on both 
objectives. To a certain extent, a small increase in distribution costs can substantially 
reduce carbon emissions. However, after exceeding a certain limit, simply chasing 
the reduction of carbon emissions will significantly increase the distribution cost. 
In real life, cold chain logistics distribution enterprises can choose the appropriate 
solution in the Pareto set according to their own situation, the relevant policies of the 
local government on carbon emissions and the environmental protection situation.

Comparing the model built in this paper with the model that does not consider 
the complexity of the road network and the time-varying traffic conditions, it can 
be seen that the model that does not consider the complexity of the road network 
and the time-varying traffic conditions results in a smaller total distribution cost and 
carbon emissions than the model built in this paper. The reason is that costs and 

Table 8  Table of model related 
parameter values

Parameter Parameter value

P1 200 Yuan
Cr 15 Yuan/h
Cd 20 Yuan/h
P2 1000 Yuan/t
�1 0.002
�2 0.003
cew 80 Yuan/h
clw 80 Yuan/h
P3 7.11 Yuan/L
eco2 2.630 Kg/L
U1 0.377 L/Km
U0 0.165 L/Km
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carbon emissions other than the cost of vehicle use are related to travel time. When 
the complexity of the road network and the time-varying traffic conditions are not 
considered, the travel time is simply treated as the quotient of the Euclidean dis-
tance between customers and the fixed speed of the refrigerated truck. Therefore, 
the travel time is smaller than the model built in this article, resulting in the total 
cost of distribution and carbon emissions being small. In real life, there are multiple 
connected routes between customers, and the length of each connected route often 
differs greatly from the spatial Euclidean distance. Traffic conditions are constantly 
changing due to uncertain factors such as weather conditions, traffic accidents, traf-
fic flow, and road construction, which leads to continuous changes in the speed of 
vehicles during driving. Therefore, regardless of the complexity and time-varying of 

Table 9  Predicted result table of travel time of each road segment at the time of initial delivery

RS, road segment. TT,  travel time

RS TT(s) RS TT(s) RS TT(s) RS TT(s)

1 73.4/72.7 2 84/83.1 3 105.3/117.1 4 88.6/80.5
5 80.2/105.5 6 86.9/98.6 7 107.1/173.1 8 124.5/167.4
9 144.3/156.7 10 113.2/134.5 11 98.7/124.1 12 118.9/111.8
13 98.3/125.7 14 104.3/116.4 15 118.4/121.5 16 111.4/143.2
17 134.8/146.4 18 87.6/132.4 19 123.8/131.2 20 117.4/123.6
21 89.3/92.7 22 55.3/66.5 23 66.5/70.1 24 88.9/97.4
25 128.6/110.5 26 130.6/113.5 27 88.4/90.7 28 85.5/91.3
29 143.4/151.2 30 93.7/123.4 31 93.4/115.8 32 149.3/159.7
33 114.4/118.3 34 112.8/138.4 35 123.9/99.5 36 52.7/59.2
37 81.4/78.2 38 98.5/118.3 39 89/98.6 40 119.5/124.4
41 137.8/156.2 42 152.5/155.5 43 128.4/136.6 44 115.7/136.4
45 136.4/156.3 46 117.2/145.6 47 150.2/157.1 48 129.3/137
49 156.4/189.2 50 96.7/103.4 51 119.5/131.4 52 156.7/138.1
53 111.8/129.9 54 110.3/90 55 114.3/115.1 56 192.3/137.5
57 112.3/108.2 58 94/98.2 59 122.3/129.7 60 116 /124.3
61 112.4/137.6 62 112.5/167.2 63 114.1/133.1 64 127/126.4
65 132.8/127 66 115.9/148.6 67 123.9/114.2 68 114.2/111.5
69 127.4/118.5 70 138.2/125.9 71 190/116.6 72 128.5/128.2
73 120.8/130.3 74 136.4/123.8 75 142.3/132.8 76 96.4/121.5
77 155.1/145.1 78 155.1/157.7 79 267.3/132.8 80 175.5/144.1
81 213.3/190.4 82 224.2/227.9 83 154.6/206.6 84 181.9/192.1
85 170.8/161.4 86 167.3/187.2 87 152.9/117.8 88 228.7/229.8
89 115.2/101.4 90 110.3/108.8 91 108.8/109.3 92 100.8/98.7
93 145.9/166.4 94 92/162.4 95 124.9/167.3 96 123.2/129
97 157.6/151.3 98 152.3/146.3 99 141.6/161.3 100 154.1/151
101 149.3/147.3 102 153.2/147.3 103 138.5/137.5 104 168.4/158.9
105 193.6/171.6 106 147/152.9 107 142.1/135.6 108 152.8/148.3
109 115.5/149.5 110 132.4/143.2 111 155.4/164.3 112 141.7/148.9
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the road network, the actual delivery scene will be inaccurate. However, the pre-
cise description of the distribution scene is the basic premise of cold chain logistics 

Table 10  The history travel time of each road segement

7:00–7:05

RS TT(s) RS TT(s) RS TT (s) RS TT (s)

1 74.5/76.3 2 86.2/85.3 3 107.3/116.2 4 87.5/82.4
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

109 114.8/152.4 110 134.6/146.5 111 158.7/167.5 112 139.8/152.3

7:05–7:10

RS TT(s) RS TT(s) RS TT(s) RS TT(s)

1 75/100.2 2 87.3/89.3 3 123.8/135.2 4 92.0/89.3
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

109 135/142.1 110 137.7/146.2 111 156.4/162.3 112 158/172.3

17:55–18:00

RS TT(s) RS TT(s) RS TT(s) RS TT(s)

1 78.2/73.6 2 88.3/91.7 3 98.2/111.3 4 106.5/111
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

109 111.7/139.4 110 92.9/116 111 146.2/123.8 112 152.8/178.4

Fig. 9  Customer point distribution map
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distribution routing planning. Once this premise is lost, it cannot get close to the true 
distribution cost and cannot plan the optimal distribution route.

Table 11 lists the three representative solutions of the model built in this article, 
as well as the distribution route, total distribution cost, and carbon emissions corre-
sponding to each solution. Cold chain logistics companies can choose suitable solu-
tions based on their own operating conditions.

5.2.3  The balance between cost and carbon emissions

Based on Fig. 10a, it can be observed that within a certain range, a slight increase 
in cost can significantly reduce carbon emissions. However, beyond a certain limit, 
solely reducing carbon emissions will significantly increase costs. For instance, 
transitioning from solution a to b involves a slight increase in carbon emissions, 
resulting in a substantial cost reduction. Similarly, transitioning from solution 2 to 3 
incurs only a slight increase in distribution costs but leads to a significant decrease 
in carbon emissions. This finding is beneficial for both cold chain logistics enter-
prises and governments.

Fig. 10  The Pareto front of four instances

Table 11  Table of solution result

Delivery route Total cost (Yuan) Carbon 
emission 
(Kg)

0 → 5 → 16 → 11 → 12 → 0 → 1 → 10 → 7 → 14 → 3 → 13 → 2

→ 0 → 6 → 9 → 4 → 15 → 8 → 0

8829.8 3259.2

0 → 5 → 16 → 11 → 10 → 1 → 0 → 12 → 7 → 14 → 2 → 13 → 6

→ 9 → 0 → 4 → 15 → 8 → 3 → 0

9519.3 2697.5

0 → 5 → 16 → 12 → 4 → 1 → 0 → 10 → 7 → 14 → 2 → 13 → 6

→ 9 → 11 → 0 → 15 → 8 → 3 → 0

10079.6 2657.1
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For cold chain logistics enterprises, when devising distribution routes, they can 
opt for schemes that involve a slight increase in carbon emissions while significantly 
reducing costs, provided they comply with relevant environmental protection poli-
cies and laws, thus addressing intense market competition.

For governments, in formulating carbon taxes, they can aim to align enterprise stra-
tegic choices as much as possible with the lower right portion of the curve. Coupled 
with relevant social responsibility education, this approach can guide cold chain logis-
tics enterprises towards strategies that entail a slight increase in distribution costs while 
markedly reducing carbon emissions, thereby achieving sustainable development.

This article can support the distribution activities of cold chain logistics com-
panies and the government to formulate carbon tax policies for environmental pro-
tection. For cold chain logistics companies, when planning distribution routes, they 
must be based on actual distribution scenarios, that is, taking into account the com-
plexity of the road network and time-varying traffic conditions, because such routing 
planning is meaningful.

For government agencies, this research can provide a reference for the formula-
tion of carbon tax policies. That is to say. When the government formulates a carbon 
tax, it can enable companies to choose as much as possible the areas on the curve 
that increase distribution costs and greatly reduce carbon emissions, and cooperate 
with relevant social responsibility education to guide cold chain logistics companies 
to choose their own strategies.

6  Conclusion

With the substantial improvement of people’s quality of life, the demand for fresh prod-
ucts has also increased unprecedentedly. However, because cold chain products are frag-
ile and perishable, more fuel will be consumed during the distribution process to main-
tain a low-temperature environment to ensure the freshness of the goods. Therefore, cold 
chain logistics and distribution have high energy consumption and high costs. Based on 
previous research, this paper considers the complexity of the road network and the time-
varying nature of actual traffic conditions. Complexity means that there are multiple con-
nected paths between customers; time-varying means that the traffic conditions on each 
connected path between customers change in real time. Therefore, this article considers 
the “space-time effect” in path planning. That is, the “shortest path” between customers is 
not the “shortest spatial distance”, but the “shortest travel time”. Based on the above con-
siderations, this article first researches travel time prediction, and then conducts research 
on cold chain logistics vehicle path planning based on travel time prediction.

On the basis of this article, related extended research will be carried out in the 
future. A distribution center with a single type of distribution vehicle was assumed 
in this paper. In future research, the low-carbon cold chain logistics vehicle path 
optimization problem with multiple distribution centers and multiple types of vehi-
cles will be focused on.
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