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Abstract
Technological advancement, the emergence of more complex production systems, 
and the need for greater manufacturer competition have caused production systems 
to shift from a centralized environment to a decentralized one. Researchers have 
paid more attention to distributed flow shop scheduling problems and investigated 
various features and issues related to them in recent years. However, special types 
of these problems, in which the network structure is serial and inter-factory trans-
portation is significant, have received less attention. This study investigated the two-
machine decentralized flow shop scheduling problem, in which inter-factory trans-
portation is handled by a batch delivery system. The goal was to simultaneously 
reduce the costs of makespan and batch delivery. A mixed-integer linear program-
ming model capable of solving small-size instances in a logical running time was 
presented to better describe the problem. Then, in order to solve large-size instances 
in a logical running time, a fast branch and bound algorithm with a heuristic method 
were developed to obtain the appropriate upper bound as well as the tight lower 
bounds at each node. The computational results indicated that the B&B algorithm 
performed very well in terms of problem-solving running time. The findings also 
demonstrated that the heuristic method can solve the most complex instances by 100 
jobs with less than 13% error.
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1  Introduction

Flow shop scheduling problems are among the most common in the field of pro-
duction planning, where several machines in a series are in charge of complet-
ing the manufacturing process. The Flow shop production system is used in most 
complex industries, such as automotive assembly lines, drug production, and so 
on. Researchers have considered the distribution of production capacity between 
several production sites in the form of a supply chain in recent years due to cus-
tomer needs and also improving the competitive situation Olhager and Feldmann 
(2018). Although it has limitations such as production capacity, capabilities, and 
labor, production operations at multiple sites can affect system efficiency and 
reduce overall network costs Lohmer and Lasch (2021).

When there are multiple production sites, transportation times can affect produc-
tion planning. However, most studies on distributed flow shop scheduling problems 
have not taken transportation times into account Lohmer and Lasch (2021). Most 
distributed flow shop problems are structured in such a way that the main problem 
is divided into two sub-problems. Each job is assigned to one of the factories in the 
first sub-problem. After the job assignment, the production scheduling is considered 
in the second sub-problem Lei et al. (2021). One of the distributed flow shop prob-
lems is when the production network structure is in series and jobs must go through 
at least two production stages distributed across multiple sites to complete their pro-
duction process Lei et al. (2021). Inter-factory transportation should be considered 
in this case because it can affect the optimal production schedule. In fact, such sys-
tems are known as decentralized flow shop systems.

Recently, the subject of production scheduling in a network consisting of mul-
tiple factories has gained significant attention. Multi-factory scheduling problems 
are more complicated than scheduling problems with a single factory (Marandi 
and Ghomi 2019). There are different ways to transport jobs between factories, 
one of which is the use of a batch delivery system Hall and Potts (2003). Never-
theless, the use of a batch delivery system between factories may cause delays in 
the completion of jobs at each stage, resulting in delays in dispatching orders to 
customers and their dissatisfaction. As a result, deciding between delivery and 
completion costs is a difficult decision in the production planning of decentralized 
flow shop systems. Therefore, to reduce the total cost of transportation, tardiness, 
and holding throughout the supply chain network, it is important to consider the 
job transition between factories along with the scheduling of jobs. On the one 
hand, production managers try to schedule jobs so that the production program 
is completed and orders are delivered to customers as soon as possible. However, 
logistics managers strive to dispatch orders as close together as possible in order 
to reduce delivery costs. The purpose of the current study is to investigate the 
two-machine decentralized flow shop scheduling problem considering the inter-
factory batch delivery system, minimizing the costs of makespan plus the batch 
delivery costs at the same time. As an innovative aspect of the present research, a 
fast branch and bound algorithm with a heuristic method are developed to obtain 
the appropriate upper bound as well as the tight lower bounds at each node.
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The production scenario in the real world behind the scheduling model presented 
in this research is all two-stage production industries where the production location 
is not centralized and the time interval between the two production stages is signifi-
cant from the scheduling point of view. The application of such a model is in indus-
tries such as casting (Wanapinit et al. 2021), pharmaceutical (Salehi et al. 2022), and 
assembly (Villalonga et al. 2021). In the current research, a real case study in the 
field of casting is presented. This study proves that the investigated problem has a 
strong practical aspect in the real world.

The rest of this paper is organized as follows. Section 2 reviews the related lit-
erature. In Sect.  3, the problem is fully described and its assumptions are stated. 
Section 4 then presents a MILP that can solve small-size instances in a logical run-
ning time using commercial solvers. In Sect. 5, a fast branch and bound algorithm 
is developed to solve large-size instances by proposing the structural features of the 
problem and using the appropriate lower and upper bounds. Section  6 shows the 
computational results related to the evaluation of the solution methods. Finally, in 
Sect. 7, conclusions and future studies are proposed.

2 � Literature review

At the beginning of the new century, the production scheduling problem with batch 
delivery systems was explored by Wang and Cheng (2000). After that, during the 
last two decades, a lot of research has been done in the field of supply chain sched-
uling. According to the literature review, most of the research in this field has been 
done in a single-machine environment. Hall and Potts (2003) examined the complex-
ity of different problems based on different objective functions and used dynamic 
programming to solve some small-size problems. He was followed by extensive 
research in the single-machine environment, including the research of Mazdeh et al. 
(2007), Mazdeh et al. (2008), Ji et al. (2007), Yin et al. (2013), Mazdeh et al. (2013), 
Rostami et  al. (2015), Qi and Yuan (2017), Noroozi et  al.(2018), Rostami et  al. 
(2020) and Rostami (2021). Noted that they all tried to investigate different types of 
this problem using exact solution methods. Due to the complexities of supply chain 
scheduling problems, it seems that the use of heuristic and meta-heuristic methods 
may be more appropriate Hamidinia et  al. (2012). Among the scholars who have 
tried to solve supply chain scheduling problems in a single machine environment 
with heuristic approaches, we can mention Ahmadizar and Farhadi (2015), Abedi 
and Seidgar (2016), Yin et al. (2018), Noroozi et al. (2019) and Gharaei and Jolai 
(2021).

With the advancement of technology and more complex manufacturing pro-
cesses, production environments have also moved towards the use of multiple 
machines. Although it is very difficult to solve supply chain scheduling problems 
in Flow shop and parallel environments, there are a number of researches in the 
literature with the help of exact methods such as branch and bound algorithms 
and dynamic programming, including Mazdeh and Rostami (2014), Cakici et al. 
(2014), Gong et al. (2015) and Kong et al. (2020). However, most scholars in this 
field have tried to solve large-size problems with the help of heuristic methods. 
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Wang et  al. (2017) examined the permutation Flow shop problem by consider-
ing multiple customers in a supply chain environment. To solve this problem, 
they proposed two heuristic methods and a new GA-TVNS method. Considering 
a supply chain consisting of several serial factories joined together, Karimi and 
Davoudpour (2017) developed a mathematical model to solve the supply chain 
scheduling problem with stage-dependent inventory holding cost. Kazemi et  al. 
(2017) tried to minimize the total tardiness in a two-stage assembly flow shop 
environment and used the Imperialist Competitive (IC) algorithm. Moreover, 
Basir et  al. (2018) solved the same problem with the help of a bi-level genetic 
algorithm. Rostami and Shad (2020) solved the two-machine flow shop schedul-
ing problem with a batch delivery system by developing a hybrid bee algorithm. 
In recent years, the distributed flow shop scheduling problem with batch delivery 
systems has also been considered. Li et al. (2021a, b) investigated the distributed 
flow shop scheduling problem with the aim of minimizing makespan and energy 
consumption simultaneously and used a Wale Optimization (WO) algorithm to 
solve the problems. Yang and Xu (2021) also examined the distributed assembly 
flow shop scheduling problem, in which the assembly stage is flexible and uses 
a batch delivery system for customers. They proposed seven different heuristic 
and meta-heuristic algorithms to evaluate different instances. Zhang et al. (2023) 
investigated the distributed flow shop scheduling with reconfigurable elements. 
To solve this scheduling problem, they proposed a mixed-integer linear program-
ming model (MILP) and a nested variable neighbourhood descent algorithm. Fu 
et  al. (2023) examined a scheduling problem considering service resource rout-
ing. In their problem, the sharing strategy is applied among multiple home health 
care centers. They proposed a MILP model and a multi-objective artificial bee 
colony algorithm to solve the problem.

The literature review clearly shows that all of the studies considering the batch 
delivery system in combination with the production schedule have used this sys-
tem to dispatch the final products to customers. However, researchers have not 
considered its use for inter-factory transportation. Of course, this does not imply 
that inter-factory transportation has been overlooked in production scheduling 
problems. Moon et  al. (2002) as well as Chan et  al. (2008) examined plant-to-
plant transportation. De Matta and Miller (2004), Ruifeng and Subramaniam 
(2011) and Sun et al. (2015) investigated the problem of inter-factory transporta-
tion in multi-stage production environments. Table 1 presents a tabular compari-
son review method in the related field. A review of these studies shows that the 
use of a batch delivery system for flow shop scheduling problems has not been 
considered in multi-factory transportation planning. However, with the help of 
a batch delivery system, a large part of the inter-factory logistics costs can be 
reduced. For this reason, this study examines for the first time the two-machine 
decentralized flow shop scheduling problem considering the inter-factory batch 
delivery system. The goal is to minimize the costs of makespan plus the batch 
delivery costs at the same time. A fast branch and bound algorithm with a heu-
ristic method are developed to obtain the appropriate upper bound as well as the 
tight lower bounds at each node.
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3 � Problem definition

In the problem under study, there are n jobs that must be processed in series by 
two machines, the distance between the two machines is significant. After pro-
cessing the jobs in the first machine, these jobs must be dispatched to the second 
machine using a batch delivery system. The capacity of the batches is unlimited 
and they have the same delivery cost. In the current batch delivery system, the 
continuous batching strategy is selected to form the batches. Under this strat-
egy, the jobs that make up a batch are processed continuously. Both machines 
are available at time zero. Moreover, in both stages, each machine can process 
only one job at a time. Preemption in both stages is not allowed. The goal is to 
minimize the maximum completion times and batch delivery costs. Since the first 
part of the objective function is of the time type, it can be easily converted to cost 
with the help of the time-to-cost conversion factor β.

According to the standard classification of Chen (2010), the prob-
lem under study in this research can be represented in the form of 
F2|De|V(∞,∞)‖‖�Cmax + �D . In this classification, F2 represents the two-
machine flow shop environment. De means that the machines are decentralized, 
as a result of which the time distances between the machines will be significant. 
V(∞,∞) indicates that there are enough vehicles in the batch delivery system 
that have sufficient capacity. In the fourth part of this classification, the num-
ber of customers is determined, which is empty due to the fact that it is without 
the presence of the customer. Finally, the objective function of the problem is 
expressed, where � and D represent the number of dispatched batches and the cost 
of dispatching each batch from the first machine site to the second machine site, 
respectively.

4 � Mixed‑integer linear programming model

In this section, in order to better describe the problem as well as solve small-size 
instances, a mixed-integer linear programming model (MILP) is presented. The 
main idea of the mathematical modeling method is borrowed from the research 
of Mazdeh et  al. (2013). Given that the capacity of vehicles is unlimited and a 
sufficient number of them is available, so initially as the number of jobs, i.e. n, 
the hypothetical batch, each of which has n positions, is considered. After com-
pleting the process on the first machine, each job is assigned to a specific batch 
and a specific position. Therefore, in each position of each batch, a maximum of 
one job can be placed. However, some batches and some positions may be left 
blank. After this allocation, the production scheduling process will be such that 
jobs in batches and positions with lower numbers will have a higher priority for 
processing. For a simpler explanation of this idea, Fig. 1 shows how to assign 3 
jobs to batches. As can be seen, jobs 3 and 2 are initially processed, respectively, 
and dispatched together in a batch. Job 1 is then processed and dispatched in a 
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separate batch to the second machine site. It should be noted that some hypo-
thetical batches may remain unallocated (such as Batch 2) that will not affect the 
solution.

The notations used in the mathematical model are defined as follows:
Sets:

I	� Jobs ( i ∈ I ) i = 1,…,n

J	� Positions ( j ∈ J ) j = 1,…,n

K	� Batches ( k ∈ K ) k = 1,…,n

Parameters:

p1i 	� Processing time related to job i on machine 1

p2i 	� Processing time related to job i on machine 2

Dis 	� Time distance between machine 1 and 2

D 	� Batch delivery cost

� 	� Time to cost coefficient

M	� A positive big number

Binary variables:

Fig. 1   An example of how jobs are assigned to different batch positions
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xijk 	� Equals to 1 if job i is assigned to batch k and position j

yk 	� Equals to 1 if batch k is formed

xij 	� Equals to 1 if job i is assigned to position j on machine 2

Positive variables:

Cbk 	� Completion time related to batch k

Cjk 	� Completion time related to position j of batch k

Si 	� Arrival time of job i to machine 2

CTj 	� Completion time of job assigned to position j on machine 2

Cmax 	� Maximum completion time of jobs on machine 2

Accordingly, the linear programming model related to the problem is as follows:

s.t:

(1)Min z = �Cmax +
∑
k∈K

ykD

(2)Cmax ≥ CTj ∀j

(3)

�
CTj ≥ CTj−1 +

∑
i∈I

xijp2i ∀j(CT0 = 0)

CTj +M
�
1 − xij

�
≥ Si + p2i ∀i, j

(4)

⎧⎪⎨⎪⎩

∑
j∈J

xij= 1 ∀i

∑
i∈I

xij= 1 ∀j

(5)
∑
j∈J

∑
k∈K

xijk= 1∀i

(6)
∑
i∈I

xijk ≤ 1∀j, k
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where Eq. (1) minimizes the value of the objective function. This objective function 
includes the maximum completion time, which is converted to cost by � , as well 
as the sum of batch delivery costs. Constraint (2) is given to calculate the makes-
pan. Constraints (3) and (4) are given in order to calculate the completion times 
of the positions on the second machine. What is clear is that the process of a job 
on the second machine can start when, firstly, the completed part of it has arrived 
from the first machine (the arrival time of job i) and secondly, the second machine 
is empty. Equation (5) forces that each job must be assigned to only one position of 
a batch. Constraint (6) forces that in each position of a batch a maximum of one job 
can be assigned. Constraints (7) are provided to specify the formation of batches. 
Constraint (8) determines the arrival time of each job to the location of the sec-
ond machine. Constraint (9) Calculates the completion time of each batch, which 
is equivalent to the maximum completion time of the positions in that batch. Con-
straints (10) and (11) are provided to calculate the completion time of the positions 
in each batch. Finally, the constraint (12) defines the decision variables.

Since the value of M has a significant effect on the performance of CPLEX, 
so it is important to determine the appropriate value for it so that it does not 
cause validity problems for the model and is not too large. Here it is suggested 
that M =

∑
i∈I p1i +

∑
i∈I p2i + Dis which has both of the above conditions.

(7)

⎧
⎪⎨⎪⎩

−
∑
i∈I

∑
j∈J

xijk+Myk ≥ 0 ∀k

∑
i∈I

∑
j∈J

xijk+M
�
1 − yk

�
> 0 ∀k

(8)Si +M

(
1 −

∑
j∈J

xijk

)
≥ Cbk + Dis∀i, k

(9)Cbk ≥ Cjk ∀j, k

(10)Cjk ≥ Cj−1,k +
∑
i∈I

xijkp1i ∀j, k

(11)
{

C0k = Cn,k−1 ∀k

Cn0 = 0

(12)
xijk, xij, yk ∈ {0, 1}

Cmax,Cbk,Cjk, Si,CTj ≥ 0
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5 � Branch and Bound algorithm

5.1 � Structural features

In this section, some theorems and lemmas are presented that are used for the branch 
and bound algorithm.

Theorem 1.  On the second machine, the optimal sequence of jobs is based on the 
Earliest Arrival Time (EAT) rule. It means that the jobs with lower arrival times 
have priority over others.

Proof  (By interchange). After processing the first stage of the jobs on machine 1 and 
dispatching them by the batch delivery system, each job arrives at the second fac-
tory site (machine 2) at a specific time. Therefore, in the second factory (machine 2), 
the problem can be converted to the form of 1||ri||�Cmax , in which the release time of 
each job on machine 2 is equal to the arrival time of its work in process ( Si ), which 
can be calculated from the previous stage.

It should be noted when release times exist, the Makespan will be equal to the 
sum of jobs processing times plus the sum of idle machine time, i.e. 

∑
i p2i +

∑
i Ii . 

Since 
∑

i p2i has always a constant value, minimizing 
∑

i Ii can lead to minimized 
Makespan.

Suppose there are two jobs i and j, and Si > Sj . Figure 2 illustrates the sequence S 
where i is followed by j, while Fig. 3 shows the sequence S’ where i is preceded by j.

Here, Ii and Ij are idle machine times occur before jobs i and j in each sequence, 
respectively. These variables are obtained from Eqs. (13)–(16):

(13)IS
i
= max

{
0, Si − t

}

(14)IS
j
= max

{
0, Sj − t − p2i − IS

i

}
= 0

Fig. 2   Sequence of jobs in S 

Fig. 3   Sequence of jobs in S 
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In the above relations, t is the time that has passed before starting the partial 
schedule. It must be taken into account in Eq.  (14) that the job with a bigger 
arrival time in the sequence S is processed first. Therefore, the completion time 
for job i is greater than the arrival time of job j, and as a result, the machine idle 
time before job j will always be zero. With regard to the equations below and 
knowing that the maximum value of relation (16) is equal to Si − t − p2j:

Four states can be considered:

The conclusion of these four states demonstrates that if two jobs i and j were 
Si > Sj , then preceding i by j can decrease the total machine idle times and 
Makespan.

Lemma 1.  In the optimal solution of the problem under consideration, the sequence 
of the jobs is the same on both machines.

(15)IS
�

j
= max

{
0, Sj − t

}

(16)IS
�

i
= max

{
0, Si − t − p2j − IS

�

j

}

(17)IS
�

i
+ IS

�

j
=

{
0 +max

{
0, Si − t − p2j

}
if Sj ≤ t

Sj − t +max
{
0, Si − Sj − p2j

}
if Sj > t

State1. If Sj ≤ t, Si ≤ t

⇒

{
IS
i
+ IS

j
= max

{
0, Si − t

}
IS

�

i
+ IS

�

j
= max

{
0, Si − t − p2j

} ⇒ IS
i
+ IS

j
= IS

�

i
+ IS

�

j
= 0

State2. If Sj ≤ t, Si > t

⇒

{
IS
i
+ IS

j
= Si − t

IS
�

i
+ IS

�

j
= max

{
0, Si − t − p2j

} ⇒ IS
i
+ IS

j
> IS

�

i
+ IS

�

j

State3. If Sj > t, Si ≤ t

⇒ Infeasible

State4. If Sj > t, Si > t

⇒

{
IS
i
+ IS

j
= Si − t

IS
�

i
+ IS

�

j
= Sj − t +max

{
0, Si − Sj − p2j

}

⇒ IS
i
+ IS

j
> max

{
IS

�

i
+ IS

�

j

}
⇒ IS

i
+ IS

j
> IS

�

i
+ IS

�

j
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Proof.  Based on the result of Theorem 1, a job on the second machine has a priority 
for processing that has an earlier arrival time. On the other hand, jobs that are pro-
cessed earlier on the first machine and dispatched with earlier batches have earlier 
arrival times. Therefore, it can be said that the jobs that are processed on the first 
machine earlier, have a higher priority for processing on the second machine.

Corollary 1.  The jobs dispatched through the same batch to the second machine have 
the same arrival time. Therefore, according to Theorem 1, their sequence on the sec-
ond machine has no effect on the optimal solution. As a result, it can be claimed that 
there is no unique optimal sequence.

Lemma 2.  In each batch, the sequence of jobs for processing on machine 1 has no 
effect on optimality.

Proof.  It is clear that in each batch the completion time of all jobs on machine 1 
is equal to the completion time of the last job in which the batch is processed, i.e. 
Makespan. Due to the fact that in a single machine scheduling problem, the sequence 
of jobs has no effect on Makespan, so changing the sequence of jobs in each batch at 
the first machine has no effect on the arrival time of the jobs to the second machine 
and so does not affect the optimality.

Theorem  2.  In the two-machine decentralized flow shop scheduling problem with 
the inter-factory batch delivery system, for a set of formed batches, the sequences 
arranged by the Effective Johnson (EJ) rule are optimum with regards to minimizing 
maximum completion time, with effective processing times p1b and p2b for batch b on 
machines 1 and 2, respectively: p1b =

∑
i∈Ib

p1i and p2b =
∑

i∈Ib
p2i , where Ib is a set 

of jobs in batch b.

Proof (Through contradiction).
 Based on Johnson’s rule, the optimal sequence is found in such a way that 

batches are partitioned into two sets, i.e. Set I and Set II. All batches with p1b ≤ p2b 
assign to set I and other jobs with p2b < p1b assign to set II. Then, the optimal sched-
ule is obtained based on the SPT(1)-LPT(2) rule: All batches of Set I are scheduled 
first in increasing order of p1b(SPT). Other batches in Set II are scheduled afterwards 
in decreasing order of p2b(LPT).

Suppose that the sequence S (see Fig. 4) is the optimal schedule for the problem 
in which batch b1 is followed by b2 such that one of the following states holds:

State 1. Batch b1 belongs to Set II and batch b2 belongs to Set I.
State 2. Batch b1 and b2 belong to Set I and p1b1 > p1b2.
State 3. Batch b1 and b2 belong to Set II and p2b1 < p2b2.
Now, suppose sequence S’ where batch b1 and b2 are swapped (see Fig. 4). In Fig. 4, 

batches l and h are scheduled exactly before and after batches b1 and b2, which remain 
unchanged. It is clear that the start time of batch h on machine 1 will not change. There-
fore, it is enough to obtain the start time of this batch (equivalent to the completion 
time of the previous batch) on machine 2 in sequences S and S’ and compare them with 
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each other. Cmk and C′
mk

 are completion times of batch k on machine m in sequence S 
and S’, respectively:

And similar to the above equation:

In state 1: p1b1 > p2b1 and p1b2 ≤ p2b2

In state 2: p1b1 ≤ p2b1 , p1b2 ≤ p2b2 and p1b1 > p1b2

(18)

C2b2 = max
{
max

{
C2l,C1l + p1b1 + Dis

}
+ p2b1,C1l + p1b1 + p1b2 + Dis

}
+ p2b2

= max
{
C2l + p2b1 + p2b2,C1l + p1b1 + Dis + p2b1 + p2b2,C1l + p1b1 + p1b2 + Dis + p2b2

}

(19)C�
2b1

= max
{
C2l + p2b2 + p2b1,C1l + p1b2 + Dis + p2b2 + p2b1,C1l + p1b2 + p1b1 + Dis + p2b1

}

⇒ C1l + p1b1 + p1b2 + Dis + p2b2 > C1l + p1b2 + Dis + p2b2 + p2b1

⇒ C1l + p1b1 + Dis + p2b1 + p2b2 ≥ C1l + p1b2 + p1b1 + Dis + p2b1

⇒ C2b2 ≥ C′
2b1

⇒ reached a contradiction

Fig. 4   Sequence of batches on two-machine flow shop environment
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In state 3: Similar to Case 2 (reversibility property):

Therefore, it was proved that the theorem is true.

Lemma 3.  In a feasible schedule, if there is at least one batch (or single-job-batch) 
between priorities j to n-1 that Relation (20) is satisfied for it, then that schedule 
is not optimal. Where Imiddle

[i]
 is the middle idle times of the second machine before 

batch in priority i and p1[j] is the processing time of batch in priority j on the first 
machine.

Proof.  Without losing the generality, it is assumed that there are two batches in pri-
ority k-1 and k that Relation (20) is true for batch [k]. Now suppose that batch [k] is 
inserted into batch [k-1]. It is clear that if the batches of [k-1] and [k] are combined, 
the arrival time of batches [k-1] will increase by p1[k] . Therefore, the completion 
time of the batches of [k-1] and [k] on the second machine increases by p1[k] . In this 
case, two states may occur:

State 1. 
∑

i=k to n I
middle
[i]

≥ p1[k] ⇒ In this case, the start time of batch [k + 1] on the 
second machine and thus the value of makespan do not change. Therefore, by insert-
ing the batch [k] to [k-1], the number of dispatching batches is reduced by one unit, 
and so the objective function is reduced.

State 2. 
∑

i=k to n I
middle
[i]

< p1[k] ⇒ In this case, the start time of batch [k + 1] on the 
second machine and thus the value of makespan increase by p1[k] −

∑
i=k to n I

middle
[i]

 . 
By inserting the batch [k] to [k-1], the number of dispatching batches is reduced by 
one unit, and thus the objective function is reduced. According to Relation (20), the 
increase in makespan costs is less than the cost of dispatching a batch 
( D > 𝛽

�
p1[k] −

∑
i=k to n I

middle
[i]

�
 ), and therefore the objective function will eventually 

decrease.

Lemma 4.  In a partial sequence, where some batches have been formed and no 
decision has been made yet on batching the remaining ’un-batched’ jobs, the lower 
bound in the makespan is equal to the makespan obtained in a sequence formed 
by remarking each un-batched job as a single-job-batch and scheduling all batches 
with EJ rule.

⇒ C1l + p1b1 + Dis + p2b1 + p2b2 ≥

{
C1l + p1b2 + Dis + p2b2 + p2b1
C1l + p1b2 + p1b1 + Dis + p2b1

⇒ C2b2 ≥ C′
2b1

⇒ reached a contradiction

⇒ C2b2 ≥ C′
2b1

⇒ reached a contradiction

(20)
∑
i=j to n

Imiddle
[i]

+
D

𝛽
> p1[j] for j = 2, ..., n − 1



	 M. Rostami, M. Mohammadi 

1 3

39  Page 16 of 37

Proof.  Forming any batch with more than one job from un-sequenced jobs cer-
tainly increases the arrival time of some jobs and can therefore affect the makespan. 
Hence, by considering un-sequenced jobs as single-job-batch this negative impact is 
prevented. Consequently, the schedule obtained from the EJ rule guarantees that this 
sequence has the lowest makespan, according to Theorem 2.

5.2 � Branch and bound procedure

Based on what was specified in Sect. 4, three decisions must be made in this matter: 
(1) scheduling the processing of jobs on the first machine (2) how to batch the jobs 
processed on the first machine (3) scheduling the processing of jobs on the second 
machine. According to lemma 1, lemma 2 and theorem  2, it can be claimed that 
decisions 1 and 3 can be answered if the batching scheme is specified. Because first 
of all, it was proved that the sequence of jobs is the same on both machines. Second, 
the sequence of jobs in each batch has no effect on optimality, and third, the optimal 
batch sequence will be achieved according to the EJ rule. Therefore, in this section, 
a fast branch and bound (B&B) algorithm is presented to determine the batching 
scheme and obtain the optimal solution of the problems. This algorithm has a binary 
structure that uses a depth-first search strategy. At each stage, it is checked whether a 
job forms a batch with another job (or batch) or not.

At root, all jobs are considered as single-job-batch, and their optimal sequence is 
obtained based on the EJ rule. The first job in this sequence is considered as a basic 
batch, and the next job is considered as a transition job. At each stage, two children 
are generated from the parent node. One examines the insertion of the transition job 
to the basic batch (merge node) and the other examines the non-batching of the two 
jobs together (Non-merge node). After each merge node, the basic batch is updated, 
which includes the previous basic batch plus the transition job. In this case, the job 
after the previous transition job is considered as a new transition job and this pro-
cess continues until it reaches the leaf node. After each None-merge node, only the 
transition job is updated, which is equivalent to the next job of the previous transi-
tion job. This process continues until there is no job to be considered as a transition 
job. After that, the basic batch must be changed, which is equivalent to a single-job 
batch following the last one. The continuation of the process will be the same as the 
previous description.

In this tree, the NB parameter is defined to calculate the minimum batch needed 
to dispatch jobs in each node. This parameter is equal to 1 at the root, and for each 
basic batch that has changed, one unit is added only for the first related non-merge 
node (NB = NB + 1). The pseudocode related to the branching and production of 
children in this algorithm is as follows:
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PPrroocceedduurree 11:: BBrraanncchhiinngg ooppeerraattiioonn aanndd tthhee ggeenneerraattiioonn ooff nneeww nnooddeess

SStteepp 11. (Ini�al se�ng)
- Sort jobs according to EJ rule in root node,
- Set NB=1
- consider the first job in the sequence as the basic batch and select the job in the next posi�on, as transi�on job (j)
- par��on root into two child nodes
SStteepp 22. (Generate child nodes)
RReeppeeaatt
- Checking whether transi�on job adds to the basic batch (merge node) or not (non -merge node)
- j=j+1
-IIff the none-merge node is the first one for a basic batch TThheenn NB= NB + 1 
- par��on each node into two child nodes
UUnnttiill no job remains to be compared with the basic batch
SStteepp 33. (Changing the basic batch)
IIff the next job a�er old basic batch is not the last job in the sequence
tthheenn consider this job as new basic batch, and the next single -job-batch as transi�on job and go to step 2 
SStteepp 44. End.

Procedure 1   Branching operation and the generation of new nodes
Note that the above method of generating a tree guarantees that it will generate all 

possible feasible solutions in the most pessimistic state. Therefore, it is claimed that 
the proposed branch and bound algorithm can reach the optimal solution.

5.3 � Heuristic upper bound based Decreasing Neighborhood Search (HDNS)

For complex problems, one of the best ways to get good solutions is to use heu-
ristic methods. Heuristic methods are generally able to obtain near-global optimum 
solutions in a very short time. Heuristic methods can also be used in the structure 
of branch and bound algorithms in order to prune more nodes. It is necessary to 
use a heuristic method in the body of the branch and bound algorithm to obtain 
an appropriate and acceptable initial solution. The methods based on neighborhood 
search are one of the most agile methods to find the appropriate upper bound in the 
B&B algorithm. Their advantage over meta-heuristic algorithms is their high speed 
of operation along with appropriate accuracy (Mazdeh et al. 2013).

The main contribution in the field of solution method in the current research is to 
present the exact B&B method to obtain the global optimal solution. The heuristic 
method is an auxiliary tool to speed up the B&B algorithm. Although meta-heuristic 
methods such as genetic algorithm are used in some researches in the body of B&B, 
it should be noted that the use of meta-heuristic methods in the body of the B&B 
method is generally a hybridization with this method (Ozkan et  al. 2020). In this 
way, the power of the method in creating feasible solutions or improving the result-
ing solutions will increase by integrating the B&B method with the meta-heuristic 
method.

Therefore, the significant aspect of providing the HDNS method is not to pro-
vide a new solution method but to help the newly developed B&B method to speed 
up reaching the optimal global solution. However, the solution is not guaranteed by 
heuristic and meta-heuristic methods such as the genetic algorithm.
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As stated in subSect. 5.2 if there is a batching scheme, an optimal schedule can 
be generated. The heuristic method developed in this section has two phases. In the 
first phase, a local optimum solution is created. In the second phase, some improve-
ments are made to the initial solution with the help of lemma 3 and a variant of the 
neighborhood search method so that we can move towards optimization.

In Phase I, jobs are first sorted according to the EJ rule. Then the first job is 
selected as the basic batch and the next job is selected as the transition job (j). The 
insertion process then begins, during which the eligibility of inserting the transi-
tion job into the basic batch is examined in terms of the objective function. If this 
change improves the objective function, it will be fixed; otherwise, the next job will 
be selected as the new transition job and the above process will be repeated until 
the checking last job. After that, the basic batch is changed and the next job is then 
selected as the new basic batch and the above process is repeated again to finally 
reach a good feasible solution.

In phase II, the first improvement occurs with the help of lemma 3 results. If we 
represent the total number of batches generated in the phase I solution with K, then 
the counter � is defined as � = K − 1 . For the batch in � , if relation (20) is true, then 
this batch merges with the batch in priority K-2. In this case, the value of K and 
the objective function are updated and � = K − 1 again. But if Eq. (20) is not true, 
� = � − 1 and the above process is repeated until � = 1 is reached.

The second improvement occurs using the Decreasing Neighborhood Search 
(DNS) method developed by Mazdeh et al. (2013) for a scheduling problem. One 
of the disadvantages of the initial solution created in phase I is that it generally gen-
erates more batch than the optimal solution. This is because the search process is 
based on very close neighbors, and jobs at a greater distance are ignored. To do 
this, the output of the first improvement with K batches is considered as the input of 
the second improvement. First K neighbors are created. The neighborhood structure 
is such that two batches are randomly selected and merged with each other. After 
generating the neighbors their objective functions are calculated and if the input 
solution improves, the upper bound value is replaced with it and the above process 
continues until the stop condition is reached. The stop condition is when either the 
generated neighborhoods do not improve the input solution or K = 1. Pseudocode 
related to the HDNS method is as follows:
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PPrroocceedduurree 22:: HHeeuurriissttiicc mmeetthhoodd bbaasseedd DDeeccrreeaassiinngg NNeeiigghhbboorrhhoooodd SSeeaarrcchh ((HHDDNNSS))

PPhhaassee II::
SStteepp11.. Ini�al sequence (S):
- Sort jobs (single- job- batches) by EJ rule
- Set job 1 as basic batch (bb) 
SStteepp22.. Set  the job a�er basic batch as transi�on job ( j=bb+1);
IIff j>n go to step 6
SStteepp33.. Let S' be the new sequence by inser�ng transi�on job in basic batch 
SStteepp44.. IIff the objec�ve func�on has decreased
tthheenn S =S', else set j=j+1
SStteepp55.. IIff j ≤ n go to step 3
SStteepp66.. IIff bb< n tthheenn set bb=bb+1 and go to step2
SStteepp77.. Set K=number of batches and end of Phase I.

PPhhaassee IIII::
IImmpprroovveemmnneett 11::
SStteepp11..
- Set ini�al sequence (S) from Phase I
- Set Ɵ=K-1
SStteepp22.. While  Ɵ>1 do
IIff Rela�on (20) is true for batch in priority Ɵ
TThheenn merge this batch with the batch in K-2 priority , update sequence S, objec�ve func�on and K 

-1
EEllssee -1
End of while.
SStteepp33.. Set K=number of batches and end of Improvement 1.
IImmpprroovveemmnneett 22::
SStteepp 11. Set ini�al sequence (S) from Improvement 1,
SStteepp 22. IIff K=1 go to step 5,
SStteepp 33. Generate K neighbors with special process,
SStteepp 44. Evaluate objec�ve func�ons,
IIff the objec�ve func�on of S has decreased,
TThheenn update sequence S and K. Go to step 2,
OOtthheerrwwiissee go to step 5,
SStteepp 55. End of Improvement 2.
End of Phase II

5.4 � Lower bound

The performance of the branch and bound algorithm is highly dependent on the 
tightness of the lower bound at each node. The tighter lower bound, the higher the 
pruning rate of the nodes and the lower running time. In each node, according to 
lemma 4, the minimum value of makespan can be easily calculated using the EJ rule, 
so that all jobs that have not yet been evaluated are considered as single-job-batch. It 
should be noted that the makespan lower bound is updated only in the merge nodes, 
where two separated jobs are batched together. In other nodes, the makespan lower 
bound is inherited from the father.
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Also, in order to calculate the lower bound for batch delivery costs, it is assumed 
in the root that in the best case, all jobs will be dispatched with one batch (NB = 1). 
For other nodes, based on the NB calculated in each node, the minimum number of 
dispatching batches is specified and the minimum value can be calculated based on 
Eq. (21):

where MakespanL
node

 represents the lower value of makespan in that node and D is 
the cost of dispatching a batch.

5.5 � Fathoming and backtracking

A node is fathomed if:
1. It is a leaf node, meaning all the jobs in the sequence are considered as transi-

tion jobs in one of the father’s nodes.
2. The related makespan lower bound for the node is equal to or greater than the 

upper bound.
When a node is fathomed, backtracking happens. If there are no nodes that should 

be visited in the algorithm, then the branching procedure is interrupted and the cur-
rent upper bound would be considered as the optimal solution.

6 � Computational results

This section tries to examine the validity of the proposed solution methods with 
various evaluations on a number of instances. First, to better understand the branch 
and bound procedure, a small example is solved step by step. Then, a number of 
instances in different dimensions are generated based on benchmark problems in the 
literature, and with the help of it, solution methods are evaluated. The MILP model 
is coded in GAMS software and solved by CPLEX in a computer with a CPU of 
Intel Core i7 1.9 GHz and 8 GB of RAM. Also, the proposed branch and bound 
algorithm and HDNS method are coded by C# and are run on the same computer.

6.1 � Illustrated example

In this section, in order to better describe the branching method as well as the cal-
culations related to the upper and lower bounds in each node, a small example is 
solved step by step. In this example, there are three jobs that must be processed on 
two machines in a series structure. The distance between the two machines is equal 
to 6 h and the cost of dispatching each batch between the two machines is equal 
to $ 300. Moreover, here β = 70. Information related to processing times on both 
machines for these three jobs is shown in Table 2.

First, the above problem is solved using the HDNS method to obtain upper bound 
for starting the B&B algorithm:

(21)LBnode = � ×MakespanL
node

+ NBnode × D
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In phase I, the sequence S is first obtained based on the EJ rule, which will 
be 1 → 2 → 3 . Therefore, job 1 is considered as a basic batch and job 2 is con-
sidered as a transition job (j = 2). In this section, the value of the objective func-
tion is denoted by f (S) . The value of the objective function of sequence S will 
be equal to the cost of makespan plus the cost of dispatching three batches, i.e. 
f (S) = (70 × 26) + (3 × 300) = 2720.

Then we generate the sequence S’ by inserting job 2 in the single-job-batch 1. 
With this change, the total delivery costs are reduced by one batch cost, but on the 
other hand, the makespan cost is equal to 2170. Therefore, the value of the objective 
function of the new sequence is equal to f (S�) = (70 × 31) + (2 × 300) = 2770 , and 
as a result, this change is not fixed and the S sequence does not change.

According to the previous step, j = 2 + 1 = 3, and since j ≤ 3 , then the sequence 
S’ is generated again by inserting job 3 in the single-job-batch 1. With this change, 
the total delivery costs will be reduced by one batch cost, but on the other hand, the 
makespan cost will be equal to 2030. Therefore, the value of the objective func-
tion of the new sequence is equal to f (S�) = (70 × 29) + (2 × 300) = 2630 , and as a 
result, this change is fixed and S = S’.

Now, inserting job 2 into the new basic batch is considered. With this change, 
the total delivery costs are reduced by one batch cost, but on the other hand, the 
makespan cost is equal to 2520. Therefore, the value of the objective function of the 
new sequence is equal to f (S�) = (70 × 36) + (1 × 300) = 2820 , and as a result, this 
change is not fixed and the S sequence does not change.

According to the previous step, j = 3 + 1 = 4 and j > 3 , so bb = 1 + 1 = 2, and 
j = bb + 1 = 3. Here we have only 2 batches, i.e. (1,3), 2 and the end of the algorithm 
will be reached in phase I.

In phase II, it is not possible to run improvement 1 because � = 1 . For the sec-
ond improvement, given that K = 2, two neighbors must be generated. To generate 
each neighbor, two batches must be selected randomly. But because there are two 
batches in total, only one neighbor in the form (1, 2, 3) can be generated. The objec-
tive function of this neighborhood is equal to 2820 and therefore no improvement is 
achieved. Therefore, the final solution of phase I is determined as the output of the 
HDNS method. Figure 5 shows the scheduling of the HDNS solution.

Now we enter the process of branch and bound algorithm. Figure 6 shows a fully 
formed tree related to this example. Nodes are numbered according to their priority. 
The jobs enclosed by () and [] are assigned to a batch. Those enclosed with () can add 
more jobs to them in the continuation of the tree and are so-called open batch. But 
those enclosed with [] are closed batches and it is not possible to add any job to them in 

Table 2   Processing time 
information related to the 
illustrated example

Jobs Processing time on machine 1 Process-
ing time on 
machine 2

1 2 6
2 5 8
3 5 4
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his children. Jobs (or batches) shown with a black arrow are basic batches. Square dot 
black arrows are also related to transition jobs.

The calculations in each node are as follows:

Root ∶ NBRoot = 1,UB = 2630

LBroot = (70 × 26) + (1 × 300) = 2120 < 2630;∴movedown.

Node1 ∶ 1st non − merge node, NBNode1 = NBRoot + 1 = 2, UB = 2630

LBNode1 = (70 × 26) + (2 × 300) = 2420 < 2630;∴movedown

Node2 ∶ 2nd non − merge node, NBNode2 = NBNode1 = 2, UB = 2630

LBNode2 = (70 × 26) + (2 × 300) = 2420 < 2630;∴movedown

Node3 ∶ Leaf node, NBNode3 = NBNode2 + 1 = 3, UB = 2630

LBNode3 = (70 × 26) + (3 × 300) = 2720≮2630;∴ backtracking.

Fig. 5   Jobs schedule related to HDNS

Fig. 6   The fully formed B&B tree corresponds to the illustrated example
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 End of B&B algorithm and return current UB as optimal solution
According to the result of the branch and bound algorithm, the solution obtained 

by HDNS is the global optimum solution. It should be noted that in order to dem-
onstrate different calculations in this algorithm, an example was solved in which all 
nodes are formed in the tree.

6.2 � Experimental results

In this section, in order to evaluate the proposed solution methods, inspired by Tail-
lard (1993) benchmark Flow shop problems, a number of random instances in differ-
ent sizes are generated and their solving results are reported by all solution methods. 
To generate these instances, the processing times on the machines are aided by 
benchmarking problems. Given that the benchmark problems are for flow shops 
with 5, 10, and 20 machines, the processing times for the first two machines of the 
cases are considered as input. The value of Dis follows the uniform distribution 
function 

�
0.9 ×

∑
i∈I p1i+

∑
i∈I p2i

2n
, 1.1 ×

∑
i∈I p1i+

∑
i∈I p2i

2n

�
 , i.e., choosing this parameter in 

the range close to the average processing times. The value of � is considered to be 
equal to 70. It should be noted that the reason for choosing the above values for the 
parameters is that a proper balance should be created between the two parts of the 
objective function, i.e. the cost of makespan and the delivery cost. The imbalance 
between the two parts may cause the results and analyses to be invalid. Finally, the 
value of D is considered equal to � × Dis , where � is the input parameter for generat-
ing the problem, which is determined in experiments. In fact, the value of � deter-
mines the amount of attention paid to delivery costs compared to the cost of makes-
pan. The larger this parameter, the more significant the delivery costs and therefore 
the greater the tendency to batch jobs together.

Node4 ∶ Leaf node, NBNode4 = NBNode2 = 2, UB = 2630

LBNode4 = (70 × 30) + (2 × 300) = 2700≮2630;∴ backtracking.

Node5 ∶ Leaf node, NBNode5 = NBNode1 = 2, UB = 2630

LBNode5 = (70 × 29) + (2 × 300) = 2630≮2630;∴ backtracking.

Node6 ∶ Merge node, NBNode6 = NBRoot = 1, UB = 2630

LBNode6 = (70 × 31) + (1 × 300) = 2470 < 2630;∴movedown.

Node7 ∶ Leaf node, NBNode7 = NBNode6 + 1 = 2, UB = 2630

LBNode7 = (70 × 31) + (2 × 300) = 2770≮2630;∴ backtracking.

Node8 ∶ Leafnode,NBNode8 = NBNode6 = 1,UB = 2630

LBNode7 = (70 × 36) + (1 × 300) = 2820≮2630;∴backtracking
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In order to evaluate, 360 random instances in three groups of small, medium and 
large sizes have been solved by the methods, and their results are shown in Tables 3, 
5. In each setting, 10 instances are solved and related information is reported. In 
this study, a reasonable running time to solve instances is considered 3600 s. If a 
method does not reach the final solution by this time, the last solution obtained will 
be considered as output. Given that the HDNS algorithm is a heuristic method, it 
does not guarantee global optimization. On the other hand, MILP may have reached 
the running time limitation and its output may not necessarily be a global optimum 
solution, especially for large instances. For this reason, Eq. (22) is used to calculate 
the Relative error:

In relation (22), UBj is the solution obtained by MILP or HDNS and OPTj is the 
global optimum solution obtained by B&B. Table 3 illustrates the results of evaluat-
ing small-size instances. This table shows information about the CPU running times 
of different instances solving by MILP, B&B and HDNS methods as well as the 
relative error rate. This table also specifies the number of instances that have been 
interrupted by the MILP when the running time limit (reslim) or optimization condi-
tion (optcr) is reached.

In this section, in order to compare the average CPU running time of algo-
rithms, statistical tests are used. Wilcoxon signed-rank test is a non-parametric test, 
an alternative for ANOVA, where the normality assumption is not required. Wil-
coxon signed-rank test is used to compare the locations of two populations using 
two matched samples. Here the null hypothesis is that the CPU running time of each 
pairwise method is equal. Figures 7, 8, 9 show the results of statistical tests related 
to the comparison of algorithms for small-size instances.

The p-value is lower than the alpha value of 0.05; therefore, the null hypothesis 
is rejected. As it turns out, the HDNS algorithm is the fastest method to get the final 
solution, followed by the B&B and MILP algorithms, respectively. The CPU run-
ning time in MILP increases dramatically through increasing the number of jobs so 
that for most instances with 15 jobs and all instances with 20 jobs, the commercial 
solver stops the process due to reaching the maximum running time. However, the 
results of the relative error show that most of the instances in which MILP is inter-
rupted by reslim have reached the global optimum solution. Therefore, it can be con-
cluded that CPLEX was not able to terminate the process with the optcr condition 
due to a weak lower bound. Another result of Table 3 is that by increasing � , the 
running time decreases. The reason for this is that with the increase in batch deliv-
ery costs, the importance of batching has increased and jobs are more inclined to 
batch together. Therefore, the search space is pruned quickly and the optimal solu-
tion can be reached with less searching. Figure  10 shows CPU running times for 
solving small-size instances based on different values of �.

Tables  4 and 5 show the results for medium- and large-size instances. These 
tables indicate information about B&B and HDNS running times as well as the rela-
tive error of the heuristic method. Figures 11, 12 show the results of statistical tests 

(22)Relativeerror =
1

10
×

∑
j=1 to 10

UBj − OPTj

OPTj
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related to the comparison of B&B and HDNS for medium and large-size instances, 
respectively.

The p-value is lower than the alpha value of 0.05; therefore, the null hypothesis 
is rejected. As it turns out, the HDNS algorithm, despite its excellent performance 
in terms of speed (see Fig. 13), does not guarantee global optimization, and as the 
size of the instance increases, the error rate also increases (see Fig. 14). The average 
HDNS error rate for the largest instances is 12.4%.

As shown in Fig. 13, by increasing � , the CPU running time decreases. The rea-
son for this is that with the increase in batch delivery costs, the importance of batch-
ing has increased and jobs are more inclined to batch together. Therefore, the search 
space is pruned quickly and the optimal solution can be reached with less searching.

Moreover, the results of Fig.  15 show that the speed of the HDNS method is 
much higher than B&B so that it solves the largest instances in less than 25 s.

Fig. 7   HDNS via B&B for small-size instances
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6.3 � Case study

In the current study, Pars Investment Casting Company (PICC) is considered as 
a case study. PICC as one of the subsidiary companies of Oil Turbo Compressor 
Companies (OTC) and the new owner of Noor Experience Turbine Parts Com-
pany produces all kinds of hot gas turbines. The factory is located in Shahroud, 
Iran. For the production of its parts, this company has two stages of casting and 
machining in two different cities.

Figure 16 represents the process of production and transportation of semi-fin-
ished parts between two production stages. All the information presented in this 
section has been extracted in real terms.

Fig. 8   HDNS via MILP for small-size instances
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The time interval between the two cities is 3 h, which is significant compared to 
the processing time of the production stages. Table 6 represents the processing time 
of parts in the two stages of machining and casting.

Fig. 9   B&B via MILP for small-size instances

Fig. 10   Avg. CPU running times for small-size instances
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The transportation cost is $80 per shipment and the value of time to cost coef-
ficient ( � ) is considered to be $70. After solving the presented model, the val-
ues of positive variables Cjk , Cbk , Si and CTj have been obtained and shown in 
Tables 7, 8, 9, 10 respectively.

The following binary variables have the value of 1:
x1,2,4 = 1 , x2,1,1 = 1 , x3,2,3 = 1,x4,3,1 = 1 , x1,4 = 1 , x2,2 = 1 , x3,3 = 1 , x4,1 = 1 , 

y1 = 1 , y3 = 1 and y4 = 1.

Table 4   Performance of solving methods for medium-size instances

Setting #Jobs Alpha B&B CPU time (Sec.) HDNS CPU time (Sec.) Avg. HDNS 
Relative error

Avg Min Max Avg Min Max

S13 30 40 73.9 51.7 90.8 3.7 3.3 4.0 0.031
S14 60 59.1 44.2 72.7 3.2 2.9 3.9 0.035
S15 80 27.6 20.5 35.1 1.5 1.2 1.9 0.036
S16 40 40 118.8 92.0 130.9 6.6 5.1 7.4 0.036
S17 60 84.7 69.8 95.1 5.4 4.2 6.0 0.040
S18 80 40.9 33.5 45.3 2.7 2.3 3.2 0.040
S19 50 40 185.4 150.4 196.3 8.0 6.8 9.2 0.038
S20 60 119.5 107.6 134.3 7.3 6.4 7.8 0.043
S21 80 56.2 51.3 64.0 3.8 3.4 4.5 0.048
S22 60 40 214.5 199.6 220.7 12.2 11.3 13.0 0.043
S23 60 149.9 138.4 154.5 9.8 9.2 10.7 0.052
S24 80 72.4 64.1 77.0 5.0 4.3 6.2 0.055

Table 5   Performance of solving methods for large-size instances

Setting #Jobs Alpha B&B CPU time (Sec.) HDNS CPU time (Sec.) Avg. HDNS 
Relative error

Avg Min Max Avg Min Max

S25 70 40 272.3 258.4 280.6 14.6 12.7 15.9 0.067
S26 60 180.2 171.4 193.2 12.1 10.9 13.5 0.069
S27 80 83.7 72.5 88.5 5.7 5.1 6.4 0.068
S28 80 40 298.6 269.4 313.8 19.4 17.6 21.0 0.070
S29 60 223.0 211.0 232.4 15.9 14.5 17.4 0.079
S30 80 108.6 100.6 112.1 8.1 7.5 8.8 0.084
S31 90 40 359.4 348.2 366.8 25.2 24.2 26.5 0.093
S32 60 275.4 265.4 282.0 21.4 19.3 23.0 0.101
S33 80 133.0 119.2 136.4 10.8 9.7 11.9 0.106
S34 100 40 446.5 427.3 455.7 30.9 28.3 33.8 0.099
S35 60 341.8 328.2 350.6 26.8 24.8 28.1 0.112
S36 80 154.2 145.9 160.2 14.5 13.6 15.4 0.124
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All relations between variables and parameters are logical. Finally, values of 64 
and 4720 are obtained for the maximum completion time of jobs on machine 2 and 
the objective function value (total cost), respectively.

7 � Conclusion

The two-machine decentralized flow shop scheduling problem with an inter-
factory batch delivery system was introduced for the first time in this study. 
This issue affects production systems with distributed production environ-
ments and significant distances between their plants. First of all, a linear math-
ematical programming model capable of achieving global optimum solutions for 
small instances was proposed to better introduce the problem. The goal was to 
reduce the total makespan and inter-factory batch delivery costs. The problem’s 

Fig. 11   B&B via HDNS for medium-size instances
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Fig. 12   B&B via HDNS for large-size instances
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	 M. Rostami, M. Mohammadi 

1 3

39  Page 32 of 37

characteristics were then examined, and several theorems and lemmas were pre-
sented to aid in the problem-solving process. These features were used as a basis 
for developing a fast branch and bound algorithm that can solve large instances in 
a reasonable amount of time. For proper tree pruning, this algorithm was outfitted 
with a heuristic upper bound and a tight lower bound.

Fig. 14   Avg. HDNS relative errors for medium and large size instances

Fig. 15   Performance of methods based on CPU running time
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Cas�ng Machining

Semnan City
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B
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D

Batch 1 Batch 2 Batch 3

Shahroud City

Parts
Batch 4

AB CD

Fig. 16   Production process and transportation of parts between production stages in the PICC company

Table 6   Processing time of parts 
in the two stages

Duration (Hour) Part Name 
(job i)

Total Machining Casting

28 5 23 A
31 12 19 B
16 8 8 C
14 8 6 D

Table 7   Results of the 
completion time related to 
positions of batches

Cjk k
1 2 3 4

j 1 19 25 25 33
2 19 25 33 56
3 25 25 33 56
4 25 25 33 56

Table 8   Results of the 
completion time related to 
batches

Cbk k

1 2 3 4
25 25 33 56

Table 9   Results of the arrival 
time of jobs to machine 2

Si i

1 2 3 4
59 28 36 28
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To make the B&B process more transparent, a simple example was solved step 
by step in the computational results section. Then, 360 instances were generated at 
random from benchmark problems in the literature, and the results of their solu-
tion were reported. These results showed that the B&B algorithm performed very 
well in achieving the global optimum solution, with the largest instances (with 100 
jobs) being solved in less than 500 s on average. MILP, on the other hand, is ineffi-
cient even when solving instances with 20 jobs in a logical running time (3600 s). In 
addition to the two exact methods mentioned above, a heuristic algorithm based on 
the Decreasing Neighborhood Search (HDNS) method was presented in this paper, 
which had very good speed performance. This algorithm solved small, medium, and 
large instances with an average error of 2.2%, 4.1%, and 8.9%.

This study faced some limitations. The uncertainty in the parameters, particularly 
in the processing times and the different job release times, was not considered in 
this study. Future studies are hence recommended to take into account this issue. 
Furthermore, in both the first and second stages, production environments were 
assumed to be a single machine, which only covers a portion of the manufacturing 
industry. Future studies are recommended to model this environment as a two-stage 
assembly flow shop or a multi-stage assembly flow shop (more than two stages).

Another area of research for future studies is to simultaneously consider the inter-
factory and outer-factory batch delivery systems in the supply chain network. In 
addition, one of the interesting future studies in this field could be the integration 
of order acceptance decisions with their production schedule in a decentralized flow 
shop environment.
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