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Abstract
This paper presents a bi-objective model for the design and optimization of a sus-
tainable hierarchical multi-modal hub network. The proposed model focuses on sus-
tainability by considering economic, environmental, and social aspects of the deci-
sions in a hierarchical network. A case of Turkish network for freight transportation 
is used to validate the proposed model. To solve the small-sized problems, the aug-
mented epsilon constraint method version 2 (AUGMECON2) is applied. It can be 
inferred from the Pareto-optimal set obtained by AUGMECON2 that the effect of 
increasing the number of hubs after a threshold is marginal. The current contribu-
tion proposes two multi-objective genetic algorithms (NSGA-II and NRGA), which 
incorporate LP solving and Dijkstra algorithm. The results show the superiority of 
NRGA compared to NSGA-II in terms of solution time. Also, we present an alterna-
tive, more efficient formulation to the problem. Based on the alternative formulation, 
in addition to AUGMECON2, we use two exact methods, including Torabi and Has-
sini (TH) method and augmented weighted Tchebycheff procedure (AWTP), to find 
Pareto-optimal solutions for small, medium, and large-sized problems (including the 
case study). The performance of the proposed solution methods is measured using 
some multi-objective indicators. The results show the superiority of AUGMECON2.
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1  Introduction

Hubs are facilities that reduce the number of connections in a network. Instead of a 
direct link between pairs of Origin/Destination (O/D) nodes, each node connects to 
a hub and, through it, with indirect and fewer connections, connects to other nodes.

Hub-and-spoke design problem, also called hub location problem (HLP), seeks to 
find a set of nodes named hub to minimize the defined cost in the problem in a way 
that there is at least one route between each pair of O/D nodes. Three main charac-
teristics are attributed to the classic HLP. First, a complete architecture is assumed 
for a hub network, i.e., every two hubs are connected via a link. Second, economies 
of scale on transportation costs, between hubs and between O/D nodes and hubs, are 
made possible by the consolidation of flows. Third, direct connection between O/D 
pairs without the use of hub(s) is not allowed.

The telecommunication networks, airlines, and cargo delivery systems are some 
well-known instances for the applications of the HLP (Nasiri et al. 2018b; Wasner 
& Zäpfel 2004). This research mainly considers a freight transport company in Tur-
key that cares about sustainability. A typical freight transport system is composed of 
area and central offices. Area offices receive and deliver shipments from/to custom-
ers directly, and central offices receive and deliver shipments from/to area offices 
or send shipments to another central office. Although more than one area office can 
exist in a town, it may have no central office. Therefore, each area office should be 
allocated to a central office.

As a result of the above description about a freight transport system, freight trans-
port networks are very similar to hub networks (Arbabi et al. 2021). In this way, area 
and central offices in freight transport networks correspond to demand nodes and 
hubs, respectively. Moreover, economies of scale are obtained due to the consolida-
tion of shipments that are supposed to be transported between central offices. Con-
sequently, the freight transport problem can be recognized as a HLP (Alumur et al. 
2012b; Dukkanci and Kara 2017).

Road freight transport has been a rapidly growing contributor to carbon dioxide 
(CO2) emissions (European_Commission 2015; Ahmad et  al. 2022) and requires 
effective policy towards achieving zero carbon (Kannan et  al. 2022; Karthick and 
Uthayakumar 2022). Moreover, social responsibility is a major concern of the com-
panies, and they take the social issues into account in their decision-making (Govin-
dan 2022a; Zarbakhshnia et al. 2022). However, classic HLPs traditionally focus on 
minimizing the total transportation cost.

Consider a freight shipping (or parcel delivery) company that uses ground and air 
transportation modes in a hierarchical structure to transport the customer’s demand 
from an origin to a destination. The model presented in this paper can help the man-
ager of this company to minimize the current investment costs. In addition, pursuing 
sustainable development, the company intends to create at least a certain number 
of jobs and to ensure its produced emissions will not exceed a predetermined level. 
Also, to improve the level of service, the maximum travel time in its network should 
be minimized (as an index of responsiveness). Note that opening the hubs creates 
fixed job opportunities such as managerial positions, which do not depend on the 
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transportation flow in a particular hub. In addition, by opening the hubs, variable 
job opportunities are created that depend on the amount of incoming flow to the hub 
(such as workers operating on the incoming flows). In this study, it is assumed that 
only one shipping company is responsible for the freight. Also, for each shipment, 
from origin to destination, only one shipment contract is concluded. For this reason, 
the network under consideration is multi-modal.

If a freight company wants to increase its level of service and to improve its social 
and environmental sustainability aspects while paying attention to the minimization 
of economic costs of network design, the decisions resulting from separately solving 
each of these problems will not necessarily be the optimal decisions for the com-
pany. The objectives of these two problems are in conflict with each other, so the 
best decisions that can be made for each problem are not necessarily desirable or 
even feasible for the other problem. In this research, the hierarchical HLP and sus-
tainable HLP are considered as an integrated problem. A freight company that only 
seeks to minimize transportation costs and fixed network design costs should design 
a network that selects facilities with lower fixed costs. In addition, the routes should 
be selected in such a way that reduces transportation costs. But if the company pays 
attention to sustainability aspects in addition to the economic costs, it should design 
the network so that the travel time is reduced for the most distant demands, routes 
are selected that reduce emissions, and hubs are selected that increase employment 
levels. Moreover, in order to increase the level of employment, more flows should 
enter the hubs. These are not necessarily choices that will minimize economic costs. 
Therefore, in the present study, the aim is to provide decisions to the company man-
ager in which the above objectives are met simultaneously.

The remainder of this paper is organized as follows. Section 2 gives the litera-
ture review, and Sect. 3 presents a mathematical model for Sustainable Hierarchical 
Multi-modal Hub Network Design Problem (SHMHNDP). In Sect. 4, an alternative 
formulation for the problem is presented. In Sect.  5, multi-objective optimization 
methods are proposed to solve the problem. Section 6 presents the numerical experi-
ments. Finally, conclusions and future research are discussed in Sect. 7.

2 � Literature review

The concept of hub was first developed by Goldman, (1969), which was an exten-
sion of Hakimi (1964)’s switching centers’ location problem. The first formulation 
of HLP was developed as a quadratic model by O’kelly (1987). Moreover, the lin-
ear model of HLP was presented by (Campbell 1994, 1996). (Aykin 1994, 1995a, 
1995b) and (Klincewicz 1991, 1992) proposed various extensions of HLP. The 
application of the hub location idea in telecommunication and air transportation was 
examined by Bryan and O’kelly (1999). A survey on hub location models, classifica-
tion, solution methods, and applications were carried out by Farahani et al., (2013).

A common assumption in many HLPs is that only one transportation mode exists 
between demand nodes and hubs and between hubs. A limited number of stud-
ies relaxed this assumption and took multiple transportation modes into account 
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(Alumur et al. 2012a, 2012b; Ambrosino and Sciomachen 2016; Karimi et al. 2018; 
Maiyar and Thakkar 2018).

In recent years, considering sustainability in any new design and innovation is 
converted into an important issue (Govindan 2022a, b; Sharma et  al. 2022; Kan-
nan 2021). In particular, several studies take sustainability into account in HLPs. 
Mohammadi et  al. (2014) presented a hub covering location problem considering 
environmental objectives. The objectives include minimizing greenhouse gas emis-
sions and noise pollution. Moreover, they investigated the importance of considering 
vehicle speed in a sustainable HLP. Zhalechian et  al. (2017b) presented a mathe-
matical model for a multi-modal HLP considering the following objectives: mini-
mization of total transportation and investment costs, minimization of the maximum 
transportation time between nodes, and minimization of noise pollution costs. To 
optimize the social and environmental impacts and costs of a biofuel supply chain, 
(Roni et  al. 2017) developed a mixed-integer linear mathematical model to mini-
mize the hub location cost and the unmet demand penalty cost. In their study, envi-
ronmental and social issues have been taken into account, and a case of the Mid-
west region of United States was examined. Xu et al. (2018) dealt with designing an 
intermodal transportation network, as a special case of HLP, associated with the port 
competition while considering environmental concerns of stakeholders. As can be 
seen from researches mentioned above, although considering sustainability in multi-
modal networks is more practical, it is not yet widely studied.

Moreover, in the traditional HLP, only two layers exist in the network: one among 
hubs and the other between hubs and demand nodes. However, real-world networks 
are more complex and involve more than two levels. A hierarchical hub structure 
is, hence, a more practical network. Yaman (2009) proposed a model for the single 
assignment hierarchical hub location in a three-level network. In this model, regard-
ing delivery time constraints, the objective was to minimize the costs of transporta-
tion and hub establishment. Lin (2010) proposed a model for the design of a hierar-
chical hub network for a dual express system with the aim of minimizing fixed costs 
and transportation costs. The novelty of this model was to consider time constraints 
for demand pairs.

Later on, Alumur et al. (2012b) developed a hierarchical multi-modal hub loca-
tion model with time-definite deliveries in a star network. The objectives in this 
model were the minimization of transportation costs and fixed costs of the links. 
The novelty was to consider a defined time for departing vehicles from the hubs. 
Yaman and Elloumi (2012) introduced a star p-hub center problem with the aim of 
minimizing the maximum path in the network and a star p-hub median problem with 
the aim of minimizing routing costs in a star/star network with a central hub. Davari 
et al. (2013) studied an incomplete hub covering location problem with the aim of 
maximizing the credibility of satisfying each flow in the network in less than a pre-
defined time. Karimi et al. (2014) studied a capacitated single allocation hierarchi-
cal hub median location problem with the aim of minimizing total routing costs. 
Rajabi and Avakh Darestani (2015), regarding dispersion criterion for central hubs 
in a three-level network, attempted to locate hierarchical hubs in order to minimize 
transportation costs. Dukkanci and Kara (2017) studied routing and scheduling 
issues in the hierarchical HLP. Zhong et  al. (2018) proposed a hybrid method for 
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using hierarchical hub locations with the aim of integrating urban and rural public 
transportation.

In the context of hub center location problems, which are related to the present 
study, we refer to the research by Campbell (1994) and Kara and Tansel (2000). In 
these studies, minimization of service or cost measures is considered. These meas-
ures include the maximum travel time or flow cost between all demand nodes or arcs 
in the network and the maximum travel time or flow cost associated with an access 
arc. Campbell et al. (2007) and Ernst et al. (2009) also played an important role in 
developing mathematical models for this problem. Table 1 shows the studies which 
considered sustainability aspects or hierarchical network for HLP.

Recent works on hierarchical multi-modal HLP include the following: Shang 
et al. (2020) proposed a memetic algorithm and a Monte Carlo simulation to solve 
a stochastic hierarchical multi-modal HLP in a ring-star-star network. In addition, 
Ma et  al. (2020) proposed a mixed-integer programming model for hierarchical 
multi-modal HLP considering time restrictions for a China railway express network. 
Moreover, Korani et  al. (2020) developed mathematical models and a Lagrangian 
relaxation solution method for a reliable hierarchical multi-modal HLP. Later on, 
Shang et  al. (2021) proposed two heuristic solution methods based on variable 
neighborhood search and multi-objective genetic algorithm for a bi-objective hierar-
chical multi-modal HLP. The objectives of the problem were minimization of over-
all system-wide costs and the maximum delivery time.

To the best of our knowledge, sustainability aspects have not been considered in 
hierarchical hub location models. The main contribution of this study, which dis-
tinguished our efforts from related studies, is designing a hierarchical multi-modal 
hub network considering economic, environmental, and social aspects. Given that 
the present model is multi-objective, the modelling approaches to multi-objective 
HLPs and the proposed solution methods for these problems are listed in Table 2. 
According to Table 2, researchers have used various methods, including exact, heu-
ristic, metaheuristic, and hybrid methods, to solve the multi-objective HLP. In this 
research, to solve the present problem, we use three exact solution methods (AUG-
MECON2, TH, and AWTP) and two metaheuristic solution methods (NSGA-II and 
NRGA).

3 � Mathematical modelling

In this section, a mathematical formulation for SHMHNDP is proposed. In this 
model, two transportation modes are studied: truck and airplane. The customers are 
served by a set of trucks and airplanes from P opened ground or airport hubs. There 
is an airport as a central hub, and other airport hubs are directly connected to the 
central hub. The transportation at the links between airport hubs and the central hub 
is done by airplane, and transport at other links is performed using the trucks. An 
instance of the hierarchical network is shown in Fig. 1.

In Fig.  1, there is a central hub (circle), three airport hubs (triangles) that are 
directly connected to the central hub, seven ground hubs (squares), and the other 
demand nodes allocated to the hubs. The network studied in this research is the same 
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network used by Alumur et al. (2012b), with the difference that in this network, if 
two ground hubs are assigned to an airport hub, the two hubs will be connected to 
each other. While in the network used by Alumur et al. (2012b), this is not necessar-
ily the case (i.e., two ground hubs can be connected or not).

3.1 � Assumptions

In the proposed formulation for SHMHNDP, the following assumptions are 
considered:

•	 The number of hubs is predetermined.
•	 The location of the central hub is specified.
•	 Two transportation modes (airplane and truck) are considered.
•	 There are direct links between the central hub and the other airport hubs.
•	 Each demand node is allocated to exactly one hub (single allocation).
•	 There is no direct link between the airport hubs.
•	 The flow quantity from the origin to the destination is determined.
•	 All of the parameters are considered to be deterministic.
•	 The capacity of the hubs is assumed unlimited.

4 � Notations

In this subsection, sets, parameters, and variables used in the mathematical model-
ling are presented. The order of presentation is as follows: sets used in hub network 
design (including demand nodes, candidate nodes for hubs, and central hub), param-
eters (except parameters related to the calculation of emissions), decision variables, 

Fig. 1   An instance of the net-
work of the considered problem



1 3

Sustainable hierarchical multi‑modal hub network design… Page 9 of 62  35

variables used in the linearization of nonlinear terms of the model, and parameters 
used in the calculation of emissions.

Sets

N Demand nodes
H ⊆ N Candidate nodes for hubs
A ⊆ H Candidate nodes for airport hubs
o ∈ A Central hub

Parameters

P The number of hubs (central and non-central)
wij Demand flow from node i ∈ N to node j ∈ N

tij Travel time by trucks between nodes
tP
ij

Travel time by airplanes between nodes
� Discount factor for travel time using trucks on inter-hub links
cij Unit cost of routing from node i ∈ N to node j ∈ N if one of nodes is hub and 

another is non-hub
cP
jo

Routing cost from node j ∈ A�{o} to the central hub

cP
oj

Routing cost from the central hub to node j ∈ A�{o}

cT
jk

Routing cost (for trucks) from node j ∈ H to node k ∈ H if both nodes are hubs
FEij Fixed cost of establishing a link between node i ∈ N and node j ∈ H

FET
jk

Fixed cost of establishing a truck link between node j ∈ H and k ∈ H�{j}

FEP
j

Fixed cost of establishing a link between node j ∈ A�{o} and the central hub
FJGj Fixed job opportunities created by the establishment of ground hub j ∈ H

FJAl Fixed job opportunities created by the establishment of airport hub l ∈ A

UJGj Unit job opportunities (related to flow) in ground hub j ∈ H

UJAl Unit job opportunities (related to flow) in airport hub l ∈ A

OFi =
∑

s∈N wis Total flow originated from node i ∈ N

DFi =
∑

s∈N wsi Total flow delivered in node i ∈ N

Emissions The maximum allowable amount of emissions
Jobs The number of job opportunities to be created

Decision variables

zij Binary variable for allocation of node i ∈ N to hub j ∈ H

hjl Binary variable for allocation of hub j ∈ H to airport hub l ∈ A

rl
jk

Binary variable that is equal to 1 if j ∈ H and k ∈ H�{j} are hubs and both are allocated to the same 
airport hub l ∈ A

Yi
jk

Flow amount, initiated from node i ∈ N and passes node j ∈ H and k ∈ H�{j} by trucks

Xi
jo

Flow amount, initiated from node i ∈ N and passes node j ∈ A�{o} toward the central hub

Xi
oj

Flow amount, initiated from node i ∈ N and passes the central hub toward node j ∈ A�{o}
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� Variable that denotes the maximum travel time in the network

Variables for the linearization

�ijl Binary variable that is equal to 1 if node i ∈ N is allocated to hub j ∈ H and hub j ∈ H is allocated 
to hub l ∈ A

Parameters used for modelling the emission of trucks

M Truck mass (summation of carried and 
empty load) ( kg)

g Constant of gravity (9.81 m∕s2)
a Acceleration of truck ( m∕s2)
vij Velocity of truck in arc (i, j) ( m∕s)
�ij Angle of road in arc (i, j) (degree)
� Air density ( kg∕m3)
AR Frontal surface area of the truck ( m2)
Cd Factor of the drag resistance
Cr Factor of the rolling resistance
LW Weight of load carried by each truck ( kg)
EW Weight of empty truck ( kg)
dij Distance between nodes i  and j ( m)
� Particular fixed value of the truck
�ij Particular fixed value of arc (i, j)

The particular fixed value of arc (i, j) and the particular fixed value of the truck 
are calculated as Eqs. (1) and (2), respectively:

Finally, the amount of emission produced by trucks can be calculated to be used 
as the left-hand side of constraint (25) of Sect. 3.3.

4.1 � Mathematical model

Here, a mathematical formulation is suggested for SHMHNDP.

(1)�ij = a + gsin�ij + gCrcos�ij

(2)� = 0.5CdAR�
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subject to:

(3)

Min
∑

i∈N
(
∑

j∈H
(cijOFi + cjiDFi)zij +

∑

j∈H

∑

k∈H∖{j}
cTjkY

i
jk

+
∑

j∈A∖{o}
(cPjoX

i
jo + cPojX

i
oj)) +

∑

i∈N

∑

j∈H
FEijzij

+
∑

l∈A

∑

j∈H

∑

k∈H∖{j}
FET

jkr
l
jk +

∑

j∈A∖{o}
FEP

j hjj

(4)Min�

(5)
∑

j∈H

zij = 1 ∀i ∈ N

(6)zij ≤ zjj ∀i ∈ N, j ∈ H

(7)
∑

l∈A

hjl = zjj ∀j ∈ H

(8)hjl ≤ hll ∀j ∈ H, l ∈ A

(9)
∑

j∈H

zjj = P

(10)hoo = 1 ∀o ∈ A

(11)rl
jl
= hjl ∀j ∈ H, l ∈ A�{j}

(12)rl
lj
= hjl ∀j ∈ H, l ∈ A�{j}

(13)rl
jk
≤ hjl ∀j ∈ H, k ∈ H�{j}, l ∈ A

(14)rl
jk
≤ hkl ∀j ∈ H, k ∈ H�{j}, l ∈ A

(15)rl
jk
≥ hjl + hkl − hll ∀j ∈ H, k ∈ H�{j}, l ∈ A

(16)
∑

k∈H�{j}

Yi
jk
−

∑

k∈H�{j}

Yi
kj
=
∑

s∈N

wis

(

zij − zsj
)

∀i ∈ N, j ∈ H�A
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(17)

∑

k∈H�{j}

Yi
jk
+ Xi

jo
− Xi

oj
−

∑

k∈H�{j}

Yi
kj
=
∑

s∈N

wis

(

zij − zsj
)

∀i ∈ N, j ∈ A�{o}

(18)

∑

k∈H�{o}

Yi
ok
+

∑

j∈A�{o}

Xi
oj
−

∑

j∈A�{o}

Xi
jo
−

∑

k∈H�{o}

Yi
ko
=
∑

s∈N

wis

(

zio − zso
)

∀i ∈ N

(19)Yi
jk
≤

∑

s∈N

∑

l∈A

wisr
l
jk

∀i ∈ N, j ∈ H, k ∈ H�{j}

(20)Xi
jo
+ Xi

oj
≤

∑

s∈N

wishjj ∀i ∈ N, j ∈ A�{0}

(21)� ≥ tijzij + tjszsj ∀i ∈ N, s ∈ N�{i}, j ∈ H

(22)
� ≥

(

tij + �tjl
)

zijhjl +
(

�tlk + tks
)

zskhkl

∀i ∈ N, s ∈ N�{i}, j ∈ H, k ∈ H�{j}, l ∈ A�{o}

(23)� ≥ tijzij + �tjkr
l
jk
+ tkszsk ∀i ∈ N, s ∈ N�{i}, j ∈ H, k ∈ H�{j}, l ∈ A

(24)
� ≥

(

tij + �tjl + tP
lo

)

zijhjl +
(

tP
ou
+ �tuk + tks

)

zskhku

∀i ∈ N, s ∈ N�{i}, j ∈ H, k ∈ H�{j}, l ∈ A�{o}, u ∈ A�{l}, {o}

(25)

(EW + LW)

(

∑

i∈N

∑

k∈H

∑

k∈H∖{j}
�jkYi

jkdjk +
∑

i∈N

∑

j∈H

(

OFi + DFi
)

dijzij

)

+ �

(

∑

i∈N

∑

j∈H
v2ijdijzij +

∑

i∈N

∑

j∈H

∑

k∈H∖{j}

∑

l∈A
v2jkdjkr

l
jk

)

≤ Emissions

(26)

∑

j∈H∖A
FJGjzjj +

∑

l∈A
FJAlhll +

∑

i∈N

∑

j∈H∖{A}
UJG(OFi + DFi)zij

+
∑

i∈N

∑

j∈A
UJA(OFi + DFi)zij ≥ Jobs

(27)zij ∈ {0, 1} ∀i ∈ N, j ∈ H

(28)hjl ∈ {0, 1} ∀j ∈ H, l ∈ A

(29)rl
jk
∈ {0, 1} ∀j, k ∈ H�{j}, l ∈ A
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In this formulation, the summation of transportation costs in the hierarchical net-
work and fixed costs of the links constitute the first objective function in Eq. (3). The 
costs of transportation are calculated according to the flows. These flows include 
flows between demands and hubs, flows in track routes, and flows in air routes. 
The second objective function, Eq. (4), minimizes the maximum travel time in the 
network.

Constraint (5) ensures that every demand node is exactly allocated to one hub 
(single allocation). By constraint (6), if and only if a node is selected to be a hub, 
demand nodes can be assigned to it. Constraint (7) expresses single allocation in the 
first level (allocation to airport hubs). By constraint (8), ground hubs can be assigned 
to a node if and only if it is selected as an airport hub. Constraint (9) ensures that 
P hubs (in total) must be located. Due to constraint (10), node o must be the central 
hub. Constraints (11)–(14) specify how to choose truck routes. By constraint (15), 
ground hubs assigned to a common airport hub must be connected to each other. 
Constraints (16)–(20) are related to routing flows in a hierarchical network. Con-
straint (21) specifies routes that consist of two links and have a hub. In constraint 
(22), routes consist of an airport hub and two ground hubs, and ground hubs are 
allocated to the airport hub.

Constraint (23) includes the routes in which there are two ground hubs that are 
connected to each other. Constraint (24) is related to the routes in which there are a 
central hub, two airport hubs, and two ground hubs.

In constraints (21)–(24), the travel times for all routes are calculated. Variable 
ϕ must be greater than or equal to all calculated travel times. Constraint (25) states 
that the total amount of emissions produced by the trucks must not be greater than 
a specified value. Constraint (26) guarantees that at least a specified number of jobs 
must be created. Constraints (27)–(31) describe the type of decision variables.

In constraints (22) and (24), the nonlinear term zijhjl can be linearized as Eqs. 
(32) and (33):

The proposed SHMHNDP after linearization, in the worst case, when we have 
|N| =|H| =|A|= n, involves a total of 3n3 + n2-2n + 1 decision variables. Of these, 2n3 
variables are binary variables, and n3 + n2-2n + 1 variables are continuous variables. 
Thus, the number of decision variables in the worst case is O(n3). Furthermore, the 
number of problem constraints equals n6-3n5 + 4n4 + 4n3-n + 4. Of these, there are 
n6 − 3n5 + 4n4 − 2n3 constraints related to the calculation of the maximum travel 
time (constraints (21)–(24)), and 6n3 − n + 4 constraints constitute other constraints. 
Thus, the number of constraints in the worst case is O(n6). It is observed that a high 

(30)Yi
jk
≥ 0 ∀i ∈ N, j ∈ H, k ∈ H�{j}

(31)Xi
jo
,Xi

oj
≥ 0 ∀i ∈ N, j ∈ A�{o}, o ∈ A

(32)�ijl ≥ zij + hjl − 1∀i ∈ N, j ∈ H, l ∈ A�{o}

(33)�ijl ≤ (zij + hjl)∕2∀i ∈ N, j ∈ H, l ∈ A�{o}
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percentage of the problem constraints are related to the maximum travel time con-
straints. For example, if there are only ten demand nodes on the network, in the 
worst case, the problem would be 743,994 constraints. Of these, 738,000 constraints 
are related to the calculation of the maximum travel time on the network, and the 
number of other constraints is 5994.

5 � Alternative formulation

In this section, we present an alternative formulation to reduce the number of con-
straints of the initial formulation and to solve more instances. First, we introduce 
some valid inequalities to improve the initial formulation. These inequalities are 
implied from constraints (21), (23), and (24).

Valid inequality 1. For each feasible solution of the problem, Eq. (34) is valid:

Proof  If zij = 1 and zsk = 1 , then the right-hand side of Eq. (34) is the same as the 
right-hand side of Eq.  (22). Because in this case zjj = 1 and zkk = 1 . If zij = 1 and 
zsk = 0 , two cases occur: if zkk = 1 , the above relation provides a lower bound for 
� . If zkk = 0 , the above relation provides a lower bound for the travel time between 
node i and any hub allocated to node l . The case zij = 0 and zsk = 1 is the same as 
before. If zij = 0 and zsk = 0 , then two cases occur. If zjj = 1 and zkk = 1 , the right-
hand side indicates the travel time between the hubs j and l . If zjj = 1 and zkk = 0 , 
the right-hand side of the above relation provides a lower bound for the travel time 
between node j and any hub assigned to node l . The case zjj = 0 and zkk = 1 is 
shown similarly, and the case zjj = 0 and zkk = 0 is easy.

Valid inequality 2. Constraint (21) can be replaced by Eq. (35):

Proof  If zij = 1 and zsj = 1 , the right-hand side of Eq. (35) is equal to the right-hand 
side of Eq. (21). But if zij = 1 and zsk = 1 for j, k ∈ H, j ≠ k , the right-hand side of 
the above relation is less than or equal to the right-hand side of Eq. (23). The above 
relation has fewer constraints than Eq. (21).

Valid inequality 3. Constraint (23) can be replaced by Eq. (36):

(34)
� ≥ tijzijhjl + �tjlzjjhjl + tkszskhkl ∀i ∈ N, s ∈ N�{i},

+�tlkzkkhkl j ∈ H, k ∈ H�{j}, l ∈ A�{o}

(35)� ≥

∑

j∈H

(

tijzij + tjszsj
)

∀i ∈ N, s ∈ N�{i}

(36)� ≥ tijzij +
∑

l∈A

�tjkr
l
jk
+ tkszsk ∀i ∈ N, s ∈ N�{i}, j ∈ H, k ∈ H�{j}
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Proof  Hub j ∈ H and hub k ∈ H�{j} can only be allocated to one common airport 
hub l ∈ A . Therefore, for index l of the common airport hub, the right-hand side of 
Eq. (36) and the right-hand side of Eq. (23) are the same.

Equation (36) has fewer constraints than Eq. (23).
In order to provide an alternative formulation, we define some variables. Variable �j 

represents the value of the longest travel time from the nodes assigned to node j . We 
also consider variable �j as the value of the longest travel time from node j to nodes 
assigned to node j . Variable �l represents the longest travel time from demand nodes 
to airport hubs, and variable �l represents the longest travel time from airport hubs to 
demand nodes. Variable �o represents the longest travel time from the demand nodes to 
the central hub, and variable �o represents the longest travel time from the central hub 
to the demand nodes. According to these definitions, the constraints related to the cal-
culation of the maximum travel time can be replaced by Eqs. (37)–(47).

(37)�j ≥ tijzij ∀i ∈ N, j ∈ H

(38)�j ≥ tjizij ∀i ∈ N, j ∈ H

(39)�l ≥ �j +
∑

l∈A{o}

�tjlhjl ∀j ∈ H�{o}

(40)�l ≥
∑

l∈A{o}

�tljhlj + �j ∀j ∈ H�{o}

(41)� ≥ �j +
∑

l∈A

�tjkr
l
jk
+ �k ∀j ∈ H, k ∈ H�{j}

(42)�o ≥ �j +
∑

l∈A{o}

(

�tjl + tP
lo

)

hjl ∀j ∈ H�{o}

(43)�o ≥
∑

l∈A{o}

(

tP
ol
+ �tlj

)

hjl + �j ∀j ∈ H�{o}

(44)� ≥ �l + �l

(45)� ≥ �o + �o

(46)�j, �j ≥ 0 ∀j ∈ H

(47)�l, �l, �o, �o ≥ 0
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Thus, the alternative formulation simultaneously optimizes the first and second 
objective functions (Eqs. (3) and (4)) subject to Eqs. (5)–(20), (25)–(31), (35), and 
(37)–(47).

The alternative formulation of the SHMHNDP, in the worst case, when we have 
|N| =|H| =|A|= n, involves a total of 2n3 + n2 + 5 decision variables. Of these, n3 vari-
ables are binary variables, and n3 + n2 + 5 variables are continuous variables. Thus, 
the number of decision variables in the worst case is O(n3). Also, the number of 
problem constraints equals 4n3 + 6n2 + n + 2. Thus, the number of constraints in the 
worst case is O(n3). Note that in the initial formulation, the number of constraints 
related to the calculation of maximum travel time was n6-3n5 + 4n4-2n3, that is 
O(n6). While, in the alternative formulation, the number of constraints of calculating 
the maximum travel time equals 4n2 + 2n-2, that is O(n2). For example, if |N|= 10, 
then in the initial formulation, we have 738,000 constraints, and in the alternative 
formulation, we have 418 constraints related to the calculation of the maximum 
travel time.

6 � Multi‑objective optimization methods

Multi-objective optimization seeks to find one or more optimal solutions in prob-
lems with more than one objective. These objectives are often in conflict with each 
other, and thus finding an optimal solution for all objectives at the same time is usu-
ally impossible.

6.1 � Domination and Pareto optimality

Domination is the basic concept considered in multi-objective optimization (all of 
the min type), which is defined as follows:

Consider a problem with � objectives. The solution p dominates the solution q 
(p ≺ q ) if the following conditions are met:

(1) In none of the objective functions, the value of p is worse than the value of q:

(2) At least in one of the objective functions, the value of p is strictly better than 
the value of q:

In this case, the solution p is non-dominated, and the solution q is dominated. In 
a set of solutions, a member is a non-dominated solution if no other member domi-
nates it. In addition, the set of non-dominated solutions is called the Pareto set.

(48)fi(p) ≤ fi(q)∀i ∈ {1, 2, ..., �}

(49)∃i ∈ {1, 2, ..., 𝜅}|fi(p) < fi(q)
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6.2 � The Epsilon constraint method

The epsilon constraint method can find efficient solutions for multi-objective prob-
lems. In this method, we optimize one of the objective functions while the other 
objective functions are included in the problem constraints. An improved version 
of the original epsilon constraint method, named augmented epsilon constraint 
method (AUGMECON), was proposed by (Mavrotas 2009). Then, (Mavrotas and 
Florios 2013) presented a novel version of the epsilon constraint method, namely, 
augmented epsilon constraint method version 2 (AUGMECON2). In this method, 
the information of slack variables is used to reduce computational time by avoiding 
redundant iterations. More details about the AUGMECON2 method are described in 
Appendix A.

6.3 � Multi‑objective genetic algorithm

The classic HLP is NP-hard (Skorin-Kapov et al. 1996). The hierarchical HLP is also 
NP-hard, because the classic HLP is a special case of the hierarchical HLP (Yaman 
2009). In addition, in our problem, there are many constraints related to the calcula-
tion of maximum travel time on the network, which can increase the complexity of the 
problem in terms of the solution space and solution time. Besides, as the size of the 
problem increases, the solution time increases exponentially, and general solvers can-
not solve the problem in a reasonable time. Therefore, in this section, we present two 
metaheuristic algorithms to solve the problem in larger scales. Among the developed 
metaheuristic algorithms, the multi-objective genetic algorithm is popular because of 
its capability in providing Pareto solutions that are uniformly distributed in the search 
space and are more desirable for the decision-maker. This algorithm maintains the 
diversity among non-dominated solutions through the crowding mechanism and does 
not require other control tools. Further, this algorithm is elitist and retains the Pareto 
solutions found in previous generations. Two of the most powerful algorithms for solv-
ing multi-objective problems are Non-dominated Sorting Genetic Algorithm version 
2 (NSGA-II) and Non-dominated Rank-based sorting Genetic Algorithm (NRGA), 
which were proposed by (Deb et al. 2002). The steps of these algorithms are as follows:

6.3.1 � Solution representation

At this stage, the way of coding the solutions of the problem is determined. The string 
or vector of genes, which shows a coded solution, is called a chromosome. An example 
of the solution representation for the present model is shown in Fig. 2.

Fig. 2   The solution representation
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In this solution representation, each chromosome consists of two parts. The first 
part shows how to allocate demand nodes to the located hubs (both ground and airport 
hubs). The second part describes how to allocate ground hubs to airport hubs. In the 
second part, when separating airport hubs from ground hubs, the numbers related to air-
port hubs appear twice, and the numbers related to ground hubs appear only once. Note 
that the content of the last two genes in each chromosome is always equal to 0 (node 0 
is the central hub and it is not allocated to any other hub). According to Fig. 2, because 
the numbers 2 and 0 appear twice in the second part, these two nodes are selected as 
airport hubs, and other hubs that appear only once include ground hubs (hubs 1, 8, and 
3). The numbers that appear between the two airport hubs show how the ground hubs 
are assigned to the right-hand side airport hub. Therefore, ground hub 3 is assigned 
to the central hub, and ground hubs 1 and 8 are assigned to airport hub 2. Once the 
hubs are located, and the ground hubs are allocated to the airport hubs, it is possible to 
determine how the other demand points are allocated to the hubs. In the first part of the 
chromosome, the numbers between the two hubs indicate how the other demand nodes 
are allocated to the right-hand side hub. If no number is seen between the two hubs, it 
means that no node is assigned to the hub on the right-hand side. Therefore, in Fig. 2, 
the nodes are allocated to the located hubs as follows: nodes 4 and 5 to hub 3, node 7 
to hub 1, node 6 to hub 2, and node 9 to hub 8. A schematic representation of the above 
solution is depicted in Fig. 3.

6.3.2 � Creating an initial population

After identifying an appropriate mechanism to convert any solution to a chromosome, a 
set of chromosomes creates the initial population. In this study, the initial population is 
generated randomly, and the number of its members is considered to be (npop).

6.3.3 � Fitness evaluation

In this step, the fitness of each individual is calculated. As we discussed in Sect. 3, 
the complexity of the problem is mainly related to the high number of constraints for 

Fig. 3   Schematic representation 
of the solution in Fig. 2
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calculating the maximum travel time on the network. Therefore, for specific values 
of binary variables that are determined from the chromosome, in calculating the 
value of the first objective function, we relax these constraints because they only 
include binary variables and maximum travel time variables that are not entered in 
calculating the first objective function value (continuous variables Yi

jk
 , Xi

jo
 , and Xi

oj
 

do not exist in constraints of calculating the maximum travel time). In addition, to 
calculate the maximum travel time, we use a Dijkstra algorithm with polynomial 
time complexity. In this study, for calculating the value of the first objective, we use 
the following approach. At first, the values of binary variables are determined based 
on the individual. Then, these values of binary variables are entered in a commer-
cially available mathematical programming solver (e.g., CPLEX) as parameters, and 
the first objective function subject to the constraints (16)–(20), (25), (26), (30), and 
(31) is solved. The reason for the omission of constraints (5)–(15) is that they are 
already considered in the solution representation. In addition, constraints (21)–(24) 
are only used for obtaining the second objective; they are not required for calculat-
ing the first objective. Because no integer variable exists in the resulting model, it is 
an LP instead of a MIP problem, and therefore, it can be solved in polynomial time. 
After solving the LP, if the problem is infeasible, a penalty is considered for the 
objective functions.

To calculate the second objective function value, the values of binary variables 
are determined based on the individual, and the corresponding graph structure 
related to that chromosome is specified. Then, the adjacency matrix of the graph and 
the travel times between the vertices of the graph (after applying parameter α) are 
given as inputs to the Dijkstra algorithm. The Dijkstra algorithm calculates the mini-
mum travel time between each pair of vertices of the graph, and the maximum of the 
minimum travel times (for all pairs) is considered as the second objective function 
value.

6.3.4 � Non‑dominating sorting

In this step, each solution is ranked based on the times it is dominated by the other solu-
tions. The solutions that are not dominated by any of the other solutions are located on 
the first front and assigned rank one. The solutions dominated by at least one of the first 
front solutions are placed on the second front and assigned rank two, and likewise, all 
the solutions are sorted out.

6.3.5 � Calculation of the crowding distance

After fronting the solutions, the crowding distance criterion is used to evaluate the 
solutions at a front. In this step, the crowding distance for each solution in each front is 
calculated, and the closeness of the solution to the other solutions is determined. The 
solution has a greater crowding distance if it is located in a less crowded space. To 
determine the crowding distance of the solution i, the average distance of the solution 
to the two adjacent solutions (in a front) for each objective (m) is calculated, and the 
summation for all objectives is shown by di as Eq. (50).
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6.3.6 � Selection mechanism

The only difference between the two algorithms NSGA-II and NRGA used in this study 
is the implementation of this step outlined below:

•	 The NSGA-II selection method: In the NSGA-II algorithm, the binary tournament 
selection method is used. In this method, the selection is based on the following two 
conditions:

•	 Population rank: The population is selected at lower front ranks.
•	 Crowding distance: Assuming that p and q are two members of the same front rank, 

a member is selected that has a greater crowding distance. In other words, the selec-
tion priority is based on the rank and crowding distance, respectively.

•	 The NRGA selection method: The selection mechanism in the NRGA algorithm 
is based on a roulette wheel. In the roulette wheel, the selection mechanism is 
designed such that better possible members are selected. Each member of the popu-
lation has two attributes: (a) rank of front, which is located on, and (b) member rank 
within the front based on the crowding distance. Thus, to select a solution, first, a 
non-dominated front should be selected. Then, a solution must be selected within 
that front. The probability of selecting the non-dominated front i is calculated as 
Eq. (51):

•	 where ranki is the rank of the front i, and Nf is the number of fronts determined in 
the non-dominated sorting step.

The probability of selecting the solution j in the non-dominated front i is calcu-
lated as Eq. (52):

(50)di =

�
∑

m=1

f i+1
m

− f i−1
m

f max
m

− f min
m

(51)Pi =
2 × ranki

Nf × (Nf + 1)

Fig. 4   The single-point crossover
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where Ni represents the number of solutions on the front i, and rankji denotes the 
rank of the solution j in the front i, based on the crowding distance.

By defining s1 = ∑Pi and s2 = ∑Pji, the roulette wheel will be defined on two real 
intervals: [0,s1] and [0,s2]. Based on the calculated probability values, each front 
occupies a value in the interval [0,s1], and each solution occupies a value in the 
interval [0,s2]. Then, two random numbers between zero and one are selected. The 
first random number is used to select the front in [0,s1], and the second random num-
ber is used to select one of the solutions in the selected front in the interval [0,s2].

•	 Implementing crossover and mutation to produce new offspring

A crossover operator for information exchange between chromosomes in geno-
type space is used to create offspring chromosomes. The crossover operation can 
be done in different ways: single-point, two-point, multi-point, and uniform. In this 
study, the single-point crossover (like Fig. 4) is used. In our implementation, a ran-
dom point is selected from the allocation part of chromosomes, and the contents of 
genes before and after that point are exchanged.

In the crossover operation, there may be some repetitive numbers, or some num-
bers may not appear in the permutation. Hence, repairing of offspring is needed. 
Thus, repetitive numbers should be removed, and numbers that are not in the permu-
tation need to be added (Fig. 5).

(52)Pji =
2 × rankji

Ni × (Ni + 1)

Fig. 5   Repairing the result of crossover

Fig. 6   The mutation operator
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The mutation operator prevents the algorithm from being trapped in local opti-
mum points. In the mutation operation, offspring receives different characteristics 
from parents. In this study, in order to perform mutation, two points from the alloca-
tion part of a chromosome are selected randomly, and contents of genes are replaced 
(see Fig. 6).

6.3.7 � Combining offspring and parent population

In this step, by merging the offspring and parent population, a new population is 
created. The new population is first sorted based on ranking, during which solu-
tions with worse ranks are eliminated. The remaining population is also sorted 
according to the crowding distance. Then, the first (npop) individuals are trans-
ferred to the next generation of the algorithm.

6.3.8 � Termination condition

The number of function evaluations (NFE) is used in this study as the termination 
condition of the algorithms.

6.3.9 � Performance criteria

Because in multi-objective problems, a set of non-dominated solutions is selected 
as optimal solutions for setting parameters and comparing their efficiency, four 
comparison criteria (multi-objective indexes) are considered; they are summa-
rized as follows:

•	 Quality metric (QM)

The most important criterion for comparing the quality of the solution meth-
ods is QM, which is simply obtained in three steps. At first, the results obtained 
through algorithms are placed in a new archive. Then, all the solutions are again 
mutually compared to each other to update the archive. Finally, QM is calculated 
as the number of non-dominated solutions that belong to the results of each algo-
rithm to the number of non-dominated solutions in the archive. The higher per-
centage indicates the higher quality of the algorithm.

•	 Mean ideal distance (MID)

This criterion value is equal to the distance of the Pareto solutions of the algo-
rithm from the ideal point. For a bi-objective problem, MID is calculated as Eq. (53):

(53)
MID =

∑n

i=1

�

�

f1i−f
Best
1

f max
1,total

−f min
1,total

�2

+

�

f2i−f
Best
2

f max
2,total

−f min
2,total

�2

n
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In which n is the number of Pareto solutions, f max
i,total

 is the maximum value of 
objective functions in all algorithms, and f min

i,total
 is the minimum value of objective 

functions in all algorithms. In the above equation, the ideal solution is 
(

f Best
1

, f Best
2

)

.

•	 Spacing metric (SM)

This criterion measures the uniformity of set points in the solution space. Equa-
tion (54) presents how to calculate the criterion:

where n is the number of Pareto solutions, di is the Euclidean distance between solu-
tion i and solution (i + 1) in solution space, and d is the mean of distances di.

•	 Diversification metric (DM)

This criterion shows the extent of Pareto solutions of an algorithm. DM is calcu-
lated using Eqs. (55) and (56).

In which � is the number of objective functions. Also, f i
m
 and f jm are the values of 

the objective function m for the two Pareto solutions i and j.

6.4 � Torabi‑Hassini method and augmented weighted Tchebycheff procedure

In the following, we will use two exact solution methods to solve the SHMHNDP. 
The methods include the Torabi and Hassini (TH) method and the Augmented 
Weighted Tchebycheff Procedure (AWTP). The TH method is an interactive method 
to solve multi-objective optimization problems. This method was introduced by Tor-
abi and Hassini, (2008). The TH method can determine the satisfaction degree of 
objective functions with respect to decision-maker preferences. This method solves 
a single-objective parametric mathematical programming problem to get compro-
mise solutions. The TH method details are presented in Appendix B. The AWTP 
is one of the developed methods for solving multi-objective optimization problems 
based on reference points. The AWTP was introduced by Steuer and Choo, (1983). 
This method can find efficient Pareto solutions. The AWTP details are described in 
Appendix C.

(54)
SM =

�

∑n−1

i=1

�

di−d
�2

n

d

(55)d
�

i
= max

j

{

�
∑

m=1

(

f i
m
− f j

m

)2

}

(56)DM =

√

√

√

√

n
∑

i=1

d
�

i
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7 � Numerical experiments

In this section, the results of the proposed solution methods are presented. Com-
putations are carried out on a laptop with the following characteristics: processor 
Intel(R) Core (TM) i5-5200U CPU @ 2.20  GHz and 6  GB of RAM. The AUG-
MECON2, TH, and AWTP methods are coded in GAMS software version 24.1.2 
and the CPLEX solver version 12.5.1.0 is applied to solve instances. NSGA-II and 
NRGA are implemented in MATLAB software version 2014a.

7.1 � Test problems and case study

To validate the proposed model, six test problems are solved and the results are 
reported. Test problems #1 to #5 are generated based on the Turkish dataset (with 
81 demand nodes) in Operations Research (OR) library (Beasley 1990), while test 
problem #6 (hereafter called the case study) is exactly the case study of the Turkish 
network for freight transportation mentioned by Alumur et al. (2012b). In addition, 
test problems #1-#6 consist of |N|= 10, 12, 15, 17, 50, 81 demand nodes, respec-
tively. Candidate nodes for hubs consist of |H|= 5, 6, 7, 11, 17, 22 nodes, and candi-
date nodes for airport hubs consist of |A|= 4, 4, 5, 7, 15, 19 nodes, respectively. Also, 
the number of hubs that must be located are P = 3, 3, 4, 5, 6, 8, respectively. Demand 
flows, travel times using ground transportation, transportation costs (distances 

Fig. 7   Candidate nodes for hubs and location of central hub in the case study

Table 3   Levels of factors Factors Levels

Down Medium Up

Initial population 80 100 120
Percent of crossover 0.7 0.8 0.9
Percent of mutation 0.1 0.2 0.3
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between the nodes), and fixed costs of establishing the links between the nodes are 
available in OR library. Other parameters of the model that we needed for test prob-
lems are not available in OR library. So, the values of some of these parameters are 
generated based on the work of Alumur et al. (2012b). The demand points and the 
candidate nodes for hubs are shown in Fig. 7, and Ankara is selected as the central 
hub. All of the candidate nodes for hubs are candidates for airports except nodes 3, 
68, and 81. Travel time between the central hub and other airport hubs are calculated 
based on the average speed of airplane (700 km/h). It should be noted that data on 
the distance is updated due to the construction of new highways within Turkey, and 
we use the updated data given in OR library via a link. The value of parameters 
related to emissions and jobs and other characteristics of the generated test problems 
are presented as online supplementary in Appendixes D and E.

7.2 � Parameter setting

Parameters like crossover probability and mutation probability can significantly 
affect the performance of NSGA-II and NRGA (Gupta et  al. 2019). In order to 
set the parameters of the proposed methods, the Taguchi design of experiment is 
applied. The way it works is that first, different levels are considered for the param-
eters that need to be set. Then, the experiments suggested by the Taguchi method 
should be performed. These experiments involve solving the problem by both 

Table 4   Result of the criteria Experi-
ment no.

Algorithm QM MID SM DM (× 109)

1 NSGA-II 0.38 0.61 2.91 1.01
NRGA​ 0.33 0.73 2.02 1.50

2 NSGA-II 0.45 0.67 3.04 1.70
NRGA​ 0.18 0.75 2.61 0.06

3 NSGA-II 0.16 0.84 2.48 0.76
NRGA​ 0.54 0.56 2.79 1.33

4 NSGA-II 0.17 0.93 1.51 2.09
NRGA​ 0.29 0.77 2.30 3.75

5 NSGA-II 0.46 0.68 2.64 0.54
NRGA​ 0.13 0.92 2.50 2.62

6 NSGA-II 0.28 0.42 3.37 1.45
NRGA​ 0.14 0.80 3.27 0.94

7 NSGA-II 0.28 0.74 2.52 1.67
NRGA​ 0.32 0.96 2.51 2.12

8 NSGA-II 0.03 0.82 2.55 2.38
NRGA​ 0.43 0.52 4.10 0.51

9 NSGA-II 0.42 0.79 4.26 1.25
NRGA​ 0.08 0.97 4.01 0.97
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algorithms considering different levels for the parameters (according to the proposed 
levels of the Taguchi method). After solving the problem, the values of multi-objec-
tive indicators must be calculated. In order to calculate a response for each experi-
ment, the indicators need to be normalized according to their nature, and a specific 
weight must be considered for each indicator. After determining the responses, the 
best levels for the parameters are calculated using the S/N ratio.

Hence, the input parameters of the proposed algorithms and their levels are deter-
mined according to Table 3. To determine the most efficient levels of each parameter in 
the Taguchi method, by using the Minitab software, the orthogonal array L9 is used and 
nine experiments are set.

By solving the problem, with respect to the Pareto solutions obtained by NSGA-
II and NRGA, the four defined criteria are calculated for NSGA-II and NRGA 
(Table 4). Note that each experiment is repeated six times, and the average of indexes is 
calculated.

Subsequently, in order to create an output of each experiment, all criteria will be 
converted to a response by using the following method:

(1) At first, the positive or negative nature of each criterion must be specified. Here, 
the QM and DM are positive in nature, and thus, higher values are better for them. 
Instead, the MID and SM are negative in nature. Figure 8 shows the criteria and differ-
ent situations (the designed experiments).

In Fig. 8, Oi and Xj represent situation i and criterion j , respectively. Also, rij is the 
value of situation i in criterion j . The number of experiments is �.

(2) The obtained values of the parameters are normalized using the linear normali-
zation technique (Çelen 2014) as Eqs. (57) and (58).

(57)X+
j
→ Rij =

rij − min
i=1∶n

(

rij
)

max
i=1∶n

(

rij
)

− min
i=1∶n

(

rij
)

Fig. 8   The matrix of results for 
experiments
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Table 5   Normalization for 
NSGA-II and NRGA​

Experi-
ment no.

Algorithm QM MID SM DM Response

1 NSGA-II 0.69 0.66 0.49 0.26 75.99
NRGA​ 0.60 0.44 0.81 0.39 65.08

2 NSGA-II 0.82 0.53 0.44 0.45 88.40
NRGA​ 0.31 0.39 0.60 0.00 35.06

3 NSGA-II 0.25 0.24 0.65 0.19 28.47
NRGA​ 1.00 0.74 0.54 0.34 108.24

4 NSGA-II 0.27 0.07 1.00 0.55 29.10
NRGA​ 0.52 0.37 0.71 1.00 57.23

5 NSGA-II 0.83 0.52 0.59 0.13 89.34
NRGA​ 0.21 0.09 0.64 0.69 22.90

6 NSGA-II 0.49 1.00 0.33 0.38 59.76
NRGA​ 0.21 0.32 0.36 0.24 25.03

7 NSGA-II 0.48 0.41 0.63 0.44 53.63
NRGA​ 0.58 0.01 0.64 0.56 59.01

8 NSGA-II 0.00 0.27 0.62 0.63 3.91
NRGA​ 0.79 0.82 0.06 0.12 86.95

9 NSGA-II 0.76 0.32 0.00 0.32 79.07
NRGA​ 0.11 0.00 0.09 0.25 11.26

Table 6   The suitable levels for 
parameters

Algorithm Parameters

Initial popu-
lation

Percent of crossover Percent 
of muta-
tion

NSGA-II 80 0.9 0.2
NRGA​ 80 0.7 0.3

Table 7   Payoff table for test 
problem 1

Objective 1 (× 109) Objective 2

Min objective 1 0.9196669 1354.00
Min objective 2 1.1037738 1017.70

Table 8   Pareto optimal set for 
test problem 1

No. of Pareto solution Objective 1 value 
(× 109)

Objective 2 value

1 0.9196669 1354.00
2 0.9294985 1294.00
3 0.9692458 1140.36
4 1.1037738 1017.70
5 1.1037738 1017.70
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Table 9   Payoff table for test 
problem 2

Objective 1 (× 109) Objective 2

Min objective 1 1.4434876 1354.00
Min objective 2 1.7160678 977.01

Table 10   Pareto optimal set for 
test problem 2

No. of Pareto solution Objective 1 value 
(× 109)

Objective 2 value

1 1.4434876 1354.00
2 1.4590930 1294.00
3 1.5035329 1140.36
4 1.6679073 1017.70
5 1.7160678 977.01
6 1.7160678 977.01

Table 11   Payoff table for test 
problem 3

Objective 1 (× 109) Objective 2

Min objective 1 1.5829094 1354.00
Min objective 2 2.1659409 958.00

Table 12   Pareto optimal set for 
test problem 3

No. of Pareto solution Objective 1 value 
(× 109)

Objective 2 value

1 1.5829094 1354.00
2 1.5921493 1294.00
3 1.6207446 1140.36
4 1.9671608 1017.70
5 2.0218509 978.39
6 2.0324962 968.66
7 2.1659409 958.00
8 2.1659409 958.00

Table 13   Payoff table for test 
problem 4

Objective 1 (× 109) Objective 2

Min objective 1 5.9463858 890.00
Min objective 2 6.1033836 573.31
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Table 14   Pareto optimal set for 
test problem 4

No. Pareto solution Objective 1 value 
(× 109)

Objective 2 value

1 5.9463858 890.00
2 5.9612748 693.26
3 6.1033836 573.31
4 6.1033836 573.31

Table 15   Payoff table for test 
problem 5

Objective 1 (× 1010) Objective 2

Min objective 1 1.122588 973.31
Min objective 2 1.149932 784.00

Table 16   Pareto set for test 
problem 5

No. Pareto solution Objective 1 value 
(× 1010)

Objective 2 value

1 1.122588 973.31
2 1.136085 890.00
3 1.149932 784.00
4 1.149932 784.00

Table 17   Payoff table for test 
problem 6

Objective 1 (× 1010) Objective 2

Min objective 1 1.845360 784.00
Min objective 2 2.081206 578.00

Table 18   Pareto set for test 
problem 6

No. Pareto solution Objective 1 value 
(× 1010)

Objective 2 value

1 1.845360 784.00
2 1.905312 697.20
3 1.925274 691.20
4 2.000482 651.31
5 2.002719 634.00
6 2.013095 612.97
7 2.081206 578.00
8 2.081206 578.00
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In this technique, criteria with negative nature become positive.
(3) In this step, a Total Weighted Normalized Indicator (TWNI) of the four crite-

ria (Nasiri et al. 2018a) is calculated according to their importance and considered 
as response. In this problem, the following weights based on the importance of each 
criterion are intended.

(4) where (wQM,wMID,wSM,wDM) = (102,10,1,1). The results of normalization and 
calculation of the responses are collected in Table 5.

After obtaining the values for four multi-objective criteria, the response values 
of each experiment for NSGA-II and NRGA are calculated (column “response” in 
Table 5). Next, the S/N ratio is used to obtain the suitable level of each input param-
eter, which is shown in Table 6. The results of Taguchi experiments are reported in 
Appendix F.

7.3 � The performance of multi‑objective optimization methods

7.3.1 � Results of AUGMECON2 for the alternative formulation

The alternative formulation has fewer constraints than the initial formulation, and 
it is computationally more efficient. The test problems #4, #5, and #6 (case study), 
which could not be solved with the initial formulation, can be solved with this for-
mulation. The results of solving test problems #1-#6, including the payoff table 
and Pareto-optimal solutions obtained by AUGMECON2 method, are presented in 
Tables 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, and 18. The solution times for test 

(58)X−
j
→ Rij =

max
i=1∶n

(

rij
)

− rij

max
i=1∶n

(

rij
)

− min
i=1∶n

(

rij
)

(59)Responsei =

n
∑

j=1

Rijwj

Fig. 9   Representation of Pareto-optimal solution #4 for case study obtained by AUGMECON2
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problems #1-#6 are 0.72, 1.52, 2.14, 11.13, 69.08, and 538.94 s, respectively. The 
Pareto-optimal solution #4 for test problem #6 (case study) is shown in Fig. 9.

Fig. 10   Pareto frontier for test problems a #1, b #2, c #3, d #4, e #5, f #6 (case study)
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7.3.2 � Results of NSGA‑II and NRGA​

The Pareto solutions obtained by AUGMECON2, NSGA-II, and NRGA for test 
problems #1-#3, and the Pareto solutions obtained by NSGA-II and NRGA for test 

Table 19   Results of indexes for 
test problems 1, 2, and 3

Test 
problem 
no.

Solution method QM MID SM DM (× 109)

1 AUGMECON2 0.42 0.84 0.69 0.39
NSGA-II 0.08 0.97 0.97 0.36
NRGA​ 0.08 0.96 0.14 0.03

2 AUGMECON2 0.43 0.73 0.67 0.62
NSGA-II 0.14 0.66 0.67 0.48
NRGA​ 0.07 0.96 0.71 0.71

3 AUGMECON2 0.50 0.78 0.76 1.48
NSGA-II 0.00 1.00 0.78 0.72
NRGA​ 0.00 1.04 0.72 0.02

Table 20   Characteristics of test 
instances on three datesets

Instance size Instance 
number

|N| |H| |A| o P

Small 1 18 10 7 1 4
2 19 10 7 1 4
3 20 11 8 1 5
4 21 11 8 1 5
5 22 11 8 1 5
6 23 12 9 1 6
7 24 12 9 1 6
8 25 13 10 1 7

Medium 9 26 13 10 1 7
10 28 14 11 1 7
11 30 15 12 1 8
12 32 15 12 1 8
13 34 15 12 1 8
14 36 16 13 1 9
15 37 16 13 1 9

Large 16 40 16 13 6 9
17 47 17 14 6 10
18 54 17 14 6 10
19 61 18 15 6 11
20 68 18 15 6 11
21 75 19 16 6 12
22 81 20 16 6 12
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Table 21   Calculated indexes for the small-sized instances

Number of nodes Algorithm QM MID SM DM (× 109) CPU (s)

18 NSGA-II 0.38 0.59 1.29 1.68 2286.92
NRGA​ 0.16 0.82 1.59 3.27 2677.60

19 NSGA-II 0.25 0.81 1.16 0.91 1996.29
NRGA​ 0.32 0.84 1.16 0.96 2134.80

20 NSGA-II 0.54 0.68 1.29 1.70 3092.67
NRGA​ 0.09 0.93 1.24 1.75 3047.74

21 NSGA-II 0.50 0.59 1.18 2.93 3267.57
NRGA​ 0.12 0.82 1.00 3.18 2995.83

22 NSGA-II 0.40 0.66 0.89 2.79 3236.22
NRGA​ 0.12 0.80 0.86 2.14 3206.47

23 NSGA-II 0.15 0.68 0.97 1.56 3354.27
NRGA​ 0.36 0.59 1.06 3.48 3198.35

24 NSGA-II 0.34 0.75 0.94 3.31 3474.62
NRGA​ 0.40 0.68 0.79 1.29 3206.90

25 NSGA-II 0.19 0.77 1.04 4.81 3509.34
NRGA​ 0.50 0.72 1.01 3.66 3235.98

Mean NSGA-II 0.34 0.69 1.10 2.46 3027.24
NRGA​ 0.26 0.77 1.09 2.46 2962.96

Table 22   Calculated indexes for the medium-sized instances

Number of nodes Algorithm QM MID SM DM (× 109) CPU (s)

26 NSGA-II 0.50 0.70 1.46 0.16 1903.58
NRGA​ 0.10 0.90 1.28 0.12 1789.38

28 NSGA-II 0.54 0.77 1.10 0.26 2287.60
NRGA​ 0.19 0.95 0.87 0.14 2168.27

30 NSGA-II 0.27 0.93 1.14 0.22 2355.02
NRGA​ 0.41 0.68 1.43 0.18 2041.87

32 NSGA-II 0.27 0.58 0.93 0.20 2733.12
NRGA​ 0.23 0.94 1.04 0.58 2302.63

34 NSGA-II 0.30 0.70 1.45 0.65 2874.00
NRGA​ 0.40 0.62 1.52 0.33 2607.68

36 NSGA-II 0.25 0.89 0.88 0.30 4108.18
NRGA​ 0.56 0.76 0.96 0.58 3951.71

37 NSGA-II 0.46 0.76 0.87 1.16 4369.51
NRGA​ 0.20 0.57 0.79 0.29 4234.59

Mean NSGA-II 0.37 0.76 1.12 0.42 2947.29
NRGA​ 0.30 0.78 1.13 0.32 2728.02
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problems #4-#6 are shown in Fig. 10. According to Fig. 10a, the number of Pareto 
solutions obtained from AUGMECON2 and NSGA-II is greater than the number of 
Pareto solutions obtained from NRGA. A Pareto solution has been found by all three 
algorithms. Also, AUGMECON2 covers a larger area of the solution space. Accord-
ing to Fig. 10b, AUGMECON2 has found more solutions than the other two algo-
rithms. According to Fig. 10c, the number of Pareto solutions generated by AUG-
MECON2 is greater than NSGA-II and NRGA. Also, the Pareto solutions generated 
by AUGMECON2 dominate all the Pareto solutions of NRGA and NSGA-II.

In order to compare the Pareto solutions obtained from AUGMECON2, NSGA-
II, and NRGA (depicted in Fig. 10), multi-objective indexes for these solution meth-
ods are reported in Table 19. According to Table 19, AUGMECON2 outperforms 
NSGA-II and NRGA in terms of QM.

7.3.3 � A comparison between NSGA‑II and NRGA​

In the following, the performance of the two metaheuristic algorithms (NSGA-II 
and NRGA) are compared. The purpose of this section is to investigate which of 
the metaheuristic algorithms performs better in terms of multi-objective indicators 
(including QM, MID, SM, and DM). For this purpose, it is necessary to prepare 
different instances of the problem with different sizes and use these instances to 
make statistical inferences on the performance of these algorithms. After identifying 
instances, each of these instances must be solved by both algorithms, and the values 

Table 23   Calculated indexes for the large-sized instances

Number of nodes Algorithm QM MID SM DM (× 1010) CPU (s)

40 NSGA-II 0.14 0.94 1.12 0.91 3370.07
NRGA​ 0.36 0.65 1.03 0.73 3114.98

47 NSGA-II 0.46 0.66 0.83 0.58 4436.59
NRGA​ 0.17 1.00 1.04 0.49 4130.79

54 NSGA-II 0.55 0.63 1.28 0.80 5820.74
NRGA​ 0.20 0.82 0.85 0.69 5154.23

61 NSGA-II 0.19 0.68 1.22 1.04 7939.07
NRGA​ 0.37 0.67 0.90 1.18 7492.89

68 NSGA-II 0.11 0.87 0.83 1.29 9198.52
NRGA​ 0.48 0.70 1.06 1.98 8891.14

75 NSGA-II 0.40 0.69 0.86 0.70 12,553.96
NRGA​ 0.37 0.75 0.94 1.10 11,995.01

81 NSGA-II 0.17 1.03 0.92 1.19 14,758.99
NRGA​ 0.40 0.59 0.93 0.49 13,495.83

Mean NSGA-II 0.29 0.79 1.01 0.93 8296.85
NRGA​ 0.34 0.74 0.96 0.95 7753.55
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Fig. 11   Indexes of NSGA-II and NRGA for various instances and statistical comparison
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Fig. 12   A comparison between solution times of NSGA-II and NRGA for various datasets

Table 24   Results of TH method for test problem 1

� �1 �2 Obj.1 �1(x) Obj.2 �2(x) TH obj. value CPU (s)

0 0.05 0.95 1,103,773,787.5861 0.000 1017.70 1.000 0.950 0.66
0 0.8 0.2 919,666,880.9961 1.000 1354.00 0.000 0.800 0.72
0.8 0.5 0.5 969,245,761.0892 0.731 1037.26 0.942 0.752 0.61

Table 25   Results of TH method for test problem 2

� �1 �2 Obj.1 �1(x) Obj.2 �2(x) TH obj. value CPU (s)

0 0.1 0.9 1,716,067,799.9999 0.000 980.00 0.992 0.893 0.74
0 0.05 0.95 1,716,067,800.0000 0.000 980.00 0.992 0.942 0.76
0 0.8 0.2 1,443,487,612.6171 1.000 1354.00 0.000 0.800 0.65
0.6 0.5 0.5 1,503,532,943.7102 0.780 1037.26 0.840 0.792 0.63

Table 26   Results of TH method for test problem 3

� �1 �2 Obj.1 �1(x) Obj.2 �2(x) TH obj. value CPU (s)

0 0.1 0.9 2,021,850,910.5764 0.247 980.00 0.944 0.874 2.44
0 0.2 0.8 1,620,744,567.3785 0.935 1037.26 0.800 0.827 0.99
0 0.95 0.05 1,582,909,438.1937 1.000 1354.00 0.000 0.950 0.77
0 0.05 0.95 2,154,294,488.5298 0.020 980.00 0.944 0.897 1.15
0.4 0.5 0.5 1,620,744,567.3785 0.935 1037.26 0.800 0.840 0.74
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of multi-objective indicators for each instance are calculated. Then, by statistical 
tests, the performance of these two algorithms is compared.

To compare the efficiency of the developed metaheuristic algorithms, twenty-
two instances with different sizes (small, medium, and large) are generated. We 
use three datasets for generating instances with different sizes: CAB (O’kelly, 
1987), for generating instances with 18 to 25 nodes, IAD (Karimi and Bashiri 
2011), for generating instances with 26–37 nodes, and TR (Tan and Kara 2007), 
for generating instances with 40 to 81 nodes. The reason for using different data-
sets is to make a more comprehensive comparison of the mean of multi-objec-
tive indexes in the two metaheuristic algorithms. The number of demand nodes, 
candidate nodes for hubs, candidate nodes for airport hubs, central hub, and the 
number of hubs that must be located are presented in Table 20. Note that sets N, 
H, and A consist of the first |N|, |H|, and |A| nodes from that dataset. Other details 

Table 27   Results of TH method for test problem 4

� �1 �2 Obj.1 �1(x) Obj.2 �2(x) TH obj. value CPU (s)

0 0.2 0.8 6,103,383,570.0778 0.000 573.31 1.000 0.800 4.03
0 0.8 0.2 5,946,385,801.6706 1.000 890.00 0.000 0.800 3.58
0.2 0.8 0.2 5,949,082,771.8631 0.983 890.00 0.000 0.629 3.89
0.8 0.6 0.4 5,961,274,791.6371 0.905 693.25 0.621 0.655 3.59
1 0.6 0.4 5,963,971,761.8296 0.888 693.25 0.621 0.621 4.67

Table 28   Results of TH method for test problem 5

� �1 �2 Obj.1 �1(x) Obj.2 �2(x) TH obj. value CPU (s)

0 0.2 0.8 11,499,318,956.1235 0.000 784.00 1.000 0.800 43.23
0 0.8 0.2 11,225,887,065.7027 1.000 973.31 0.000 0.800 30.25
0.2 0.8 0.2 11,225,888,291.8848 1.000 973.31 0.000 0.640 48.22
0.4 0.8 0.2 11,225,889,948.6723 1.000 973.31 0.000 0.480 60.48
0.6 0.6 0.4 11,360,847,933.4613 0.506 890.00 0.440 0.456 109.20

Table 29   Results of TH method for test problem 6 (case study)

� �1 �2 Obj.1 �1(x) Obj.2 �2(x) TH obj. value CPU (s)

0.2 0.2 0.8 20,812,063,803.4615 0.000 578.00 1.000 0.640 752.44
0.2 0.8 0.2 18,453,604,313.1315 1.000 784.00 0.000 0.640 221.22
0.4 0.2 0.8 20,130,952,989.3223 0.289 612.97 0.830 0.549 472.80
0.4 0.8 0.2 19,053,115,331.8763 0.746 697.20 0.421 0.577 292.86
0.8 0.8 0.2 19,252,743,250.0187 0.661 691.20 0.450 0.484 901.56
1 0.6 0.4 19,704,294,751.7457 0.470 691.20 0.450 0.450 214.92
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of generating instances are provided in Appendix G. The obtained indexes are 
presented in Tables  21, 22, and 23. It should be noted that the results are the 
average of the six times of running the proposed metaheuristics.

Table 30   Results of AWTP for test problem 1

Solution no. �1 �2 Obj1. value Obj2. value � CPU (s)

1 0.1 0.9 976,440,780.8792 1037.2571 0.0523 0.39
2 0.2 0.8 969,245,761.0892 1040.3409 0.0538 0.39
3 0.3 0.7 969,245,761.0892 1056.5129 0.0808 0.40
4 0.4 0.6 969,245,761.0892 1078.0757 0.1077 0.39
5 0.5 0.5 969,245,761.0892 1108.2635 0.1346 0.39
6 0.6 0.4 969,245,761.0892 1153.5453 0.1615 0.39
7 0.7 0.3 969,245,761.0892 1229.0149 0.1885 0.39
8 0.8 0.2 965,693,610.7500 1354.0000 0.2000 0.39
9 0.9 0.1 940,123,205.3333 1354.0000 0.1000 0.38

Table 31   Results of AWTP for test problem 2

Solution no. �1 �2 Obj1. value Obj2. value � CPU (s)

1 0.1 0.9 1,708,273,390.1854 1017.70 0.0971 0.39
2 0.2 0.8 1,599,348,553.6425 1037.26 0.1278 0.39
3 0.3 0.7 1,543,149,789.0525 1037.26 0.1118 0.41
4 0.4 0.6 1,503,532,943.7102 1037.26 0.0958 0.37
5 0.5 0.5 1,503,532,943.7102 1060.05 0.1101 0.39
6 0.6 0.4 1,503,532,943.7102 1101.57 0.1322 0.39
7 0.7 0.3 1,503,532,943.7102 1170.78 0.1541 0.63
8 0.8 0.2 1,503,532,943.7102 1309.19 0.1762 0.38
9 0.9 0.1 1,473,774,288.8888 1354.00 0.1000 0.39

Table 32   Results of AWTP for test problem 3

Solution no. �1 �2 Obj1. value Obj2. value � CPU (s)

1 0.1 0.9 2,021,850,910.5807 991.12 0.0752 0.41
2 0.2 0.8 1,967,160,754.4320 1023.24 0.1318 0.51
3 0.3 0.7 1,854,876,417.3730 1037.26 0.1401 0.51
4 0.4 0.6 1,755,596,638.9144 1037.26 0.1200 0.52
5 0.5 0.5 1,699,538,268.7935 1037.26 0.1000 0.51
6 0.6 0.4 1,655,478,283.9308 1037.26 0.0800 0.51
7 0.7 0.3 1,620,744,567.3785 1037.26 0.0600 0.50
8 0.8 0.2 1,620,744,567.3785 1060.79 0.0519 0.60
9 0.9 0.1 1,620,744,567.3785 1189.28 0.0584 0.51
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In order to compare the performance of the two metaheuristics statistically, 
we use a T-test. In this way, before using the T-test, a “Two-sample F-test” is 
used to investigate the equality of variances. If the variances are equal, a “Two-
sample T-test assuming equal variances” is applied, and if the variances are not 
equal, a “Two-sample T-test assuming unequal variances” is applied. In all tests, 

Table 33   Results of AWTP for test problem 4

Solution no. �1 �2 Obj1. value Obj2. value � CPU (s)

1 0.1 0.9 6,103,383,570.0783 608.49 0.1000 14.05
2 0.2 0.8 6,103,383,570.0783 652.48 0.2000 12.47
3 0.3 0.7 6,079,114,579.0332 693.25 0.2651 18.25
4 0.4 0.6 5,949,082,771.8631 890.00 0.6000 12.97
5 0.5 0.5 5,981,068,269.9291 693.25 0.1893 11.33
6 0.6 0.4 5,981,068,269.9291 693.25 0.1515 16.56
7 0.7 0.3 5,961,274,791.6371 693.25 0.1136 11.41
8 0.8 0.2 5,961,274,791.6371 693.44 0.0758 9.08
9 0.9 0.1 5,961,274,791.6371 843.61 0.0853 9.78

Table 34   Results of AWTP for test problem 5

Solution no. �1 �2 Obj1. value Obj2. value � CPU (s)

1 0.1 0.9 11,499,318,956.1232 805.03 0.0999 141.08
2 0.2 0.8 11,499,318,956.1232 831.32 0.1999 126.22
3 0.3 0.7 11,499,318,956.1232 865.13 0.2999 180.53
4 0.4 0.6 11,455,520,188.5907 890.00 0.3359 828.31
5 0.5 0.5 11,367,238,216.5520 890.00 0.2799 125.08
6 0.6 0.4 11,360,847,933.4613 924.15 0.2961 142.23
7 0.7 0.3 11,332,935,406.4091 973.31 0.3000 130.98
8 0.8 0.2 11,294,246,585.8370 973.31 0.2000 794.06
9 0.9 0.1 11,225,883,179.1968 973.31 0.1000 167.95

Table 35   Results of AWTP for test problem 6 (case study)

Solution no. �1 �2 Obj1. value Obj2. value � CPU (s)

1 0.1 0.9 20,812,063,803.4615 600.88 0.1000 2993.78
2 0.2 0.8 20,130,952,989.3223 614.62 0.1422 2090.98
3 0.3 0.7 20,027,194,400.2719 636.90 0.2001 1612.77
4 0.4 0.6 20,004,824,720.4772 668.32 0.2630 1235.06
5 0.5 0.5 19,749,480,626.6927 691.20 0.2747 3738.26
6 0.6 0.4 19,317,380,243.9019 691.20 0.2198 3523.56
7 0.7 0.3 19,053,115,331.8763 700.18 0.1779 541.09
8 0.8 0.2 19,041,003,820.0991 784.00 0.2000 2410.97
9 0.9 0.1 18,715,453,545.1715 784.00 0.1000 3303.92
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the null hypothesis is that the variances or averages are equal, and the alternative 
hypothesis is that they are different. Results of statistical tests and a graphical 
representation of indexes are shown in Fig. 11.

As shown in Fig.  11, there is no significant difference between the perfor-
mance of the two proposed metaheuristics in the four indexes. A comparison of 
the solution times in the proposed metaheuristics with increasing the size of the 
problem is demonstrated in Fig. 12.

Fig. 13   Representation of solutions obtained by AUGMECON2, TH, and AWTP for test problems a #1, 
b #2, c #3, d #4, e #5, f #6 (case study)
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According to Fig. 12, it can be concluded that by increasing the size of the 
problem, solution times in NSGA-II and NRGA increase but an increase in solu-
tion times is reasonable (the test instance with 81 nodes is solved in about four 
hours). Also, NRGA is faster than NSGA-II except for two instances (instances 
#1 and #2). However, in small problem instances (with 15 nodes or fewer), 
AUGMECON2 outperforms NSGA-II and NRGA in terms of the quality of 
solutions.

Table 36   Results of normalized 
indexes for test problems #1 
to #6

Test 
problem 
no.

Solution method QM MID SM DM TWNI

1 AUGMECON2 0.31 0.30 0.42 1.00 35.14
NSGA-II 0.00 0.00 0.13 0.92 1.04
NRGA​ 0.00 0.02 1.00 0.00 1.23
TH 1.00 0.52 0.35 0.72 106.30
AWTP 0.31 1.00 0.00 0.17 40.94

2 AUGMECON2 1.00 0.56 1.00 0.61 107.22
NSGA-II 0.32 0.73 1.00 0.00 40.14
NRGA​ 0.00 0.00 0.69 1.00 1.69
TH 0.32 0.71 0.00 0.17 39.07
AWTP 0.00 1.00 0.46 0.52 10.98

3 AUGMECON2 1.00 0.41 0.65 1.00 105.78
NSGA-II 0.00 0.06 0.57 0.48 1.68
NRGA​ 0.00 0.00 0.83 0.00 0.83
TH 0.00 0.68 0.00 0.80 7.63
AWTP 0.30 1.00 1.00 0.71 42.15

4 AUGMECON2 0.43 1.00 0.63 0.00 53.48
NSGA-II 0.00 0.00 1.00 0.77 1.77
NRGA​ 0.00 0.03 0.36 1.00 1.65
TH 1.00 0.94 0.00 0.00 109.41
AWTP 0.43 0.97 0.52 0.02 53.09

5 AUGMECON2 0.43 1.00 1.00 0.00 53.86
NSGA-II 0.00 0.00 0.00 1.00 1.00
NRGA​ 0.00 0.18 0.38 0.40 2.57
TH 1.00 0.94 0.24 0.00 109.64
AWTP 1.00 0.96 0.67 0.01 110.32

6 AUGMECON2 1.00 1.00 1.00 0.02 111.02
NSGA-II 0.00 0.05 0.38 1.00 1.90
NRGA​ 0.00 0.00 0.88 0.38 1.26
TH 0.12 0.99 0.00 0.00 21.66
AWTP 0.00 0.99 1.00 0.01 10.90
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7.3.4 � Results of TH method

Tables 24, 25, 26, 27, 28, and 29 show the Pareto solutions obtained by the TH 
method for test problems #1-#6. According to Tables 24, 25, 26, 27, 28, and 29, 
for a certain value for � , with increasing the importance coefficient of an objec-
tive function, the satisfaction degree of that objective function does not decrease. 
Also, for a certain value for importance coefficient, with increasing � , the satis-
faction degree of the second objective function does not decrease, while the sat-
isfaction degree of the first objective function decreases except in one case. In 
Table 29, for �1 = 0.2 and �2 = 0.8 , by increasing � from 0.2 to 0.4, the satisfac-
tion degree of the first objective function increases and the satisfaction degree of 
the second objective function decreases. It can be concluded that the higher value 
of the parameter �  means more attention to the acquisition of a higher lower 
bound for the satisfaction degree of the objective functions and thus more bal-
anced solutions are obtained. Conversely, lower values of � mean more attention 
to the objective function with a higher importance coefficient, and, as a result, 
unbalanced solutions are obtained.

7.3.5 � Results of AWTP method

Tables  30, 31, 32, 33, 34, and 35 show the Pareto solutions obtained by the 
AWTP method for test problems #1-#6. According to Tables 30, 31, 32, 33, 34, 
and 35, with increasing the weights of the objective functions, the value of that 
objective either improves or remains unchanged except in one case (Table 33). 
In Table 33, by increasing the weight of the first objective function from 0.4 to 
0.5, the first objective function value worsens. Also, by decreasing the weight 
of the second objective function from 0.6 to 0.5, the second objective function 
value improves.

Table 37   A comparison between solution times of the exact methods for the proposed formulations

Solution method Test problem 
no.

Solution time for formulation (s) Improvement (percent)

Initial Alternative

AUGMECON2 1 3.33 0.72  − 2.61 (78.37%)
2 7.05 1.52  − 5.53 (78.43%)
3 30.54 2.14  − 28.40 (92.99%)

AWTP 1 8.73 3.51  − 5.22 (59.79%)
2 15.04 3.74  − 11.30 (75.13%)
3 42.82 4.58  − 38.24 (89.30%)

TH 1 15.95 6.37  − 9.58 (60.06%)
2 39.81 7.37  − 32.44 (81.49%)
3 207.39 9.09  − 198.30 (95.62%)
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7.3.6 � A comparison between the proposed solution methods

The results of solving test problems #1-#6 by AUGMECON2, TH, and AWTP meth-
ods are shown in Fig. 13. According to Fig. 13, the number of solutions obtained by 
the AWTP is more than the other two methods.

The results of multi-objective indicators for the proposed solution methods on 
test problems #1-#6 are shown in Table 36. The results of the TWNI based on the 
normalized indexes are reported in the last column of Table 36. On test problems 
#1-#6, the average values of the TWNI for AUGMECON2, NSGA-II, NRGA, TH, 
and AWTP are 77.75, 7.92, 1.54, 65.62, and 44.73, respectively. Therefore, in terms 
of TWNI, the AUGMECON2 has the best performance among the proposed algo-
rithms. The worst performance is related to the NRGA.

7.3.7 � A comparison between the proposed formulations

In this subsection, the performance of the proposed formulations (initial and alterna-
tive) in terms of solution time are compared. To do this, we optimize the test prob-
lems #1, #2, and #3 using the proposed exact solution methods (AUGMECON2, 
AWTP, and TH) for the initial and alternative formulations. Note that in the TH 
method, the compensation coefficient is considered equal to 0.5 and the importance 
coefficients of the objectives are considered from 0.1 to 0.9 (with a moving step 
of 0.1). The reported solution time is the sum of the solution time of finding the 
PIS and NIS values and solving the single-objective problems of the TH method. 
Also, in the AWTP, the weights of the objective functions are considered from 0.1 
to 0.9 (with a moving step of 0.1). The results are reported in Table 37. Accord-
ing to Table 37, the alternative formulation in all three solution methods improves 
the solution time of the initial formulation. The lowest and highest percentages of 
improvement are 59.79 and 95.62%, respectively, and the average percentage of 
improvement is 79.02%.

Table 38   Pareto set for test problem 3 with four hubs

Pareto solution 
number

First objective 
(× 109)

Second objective Increase in Obj. 1 Increase in Obj. 2

1 1.5829 1354.00 – –
2 1.5921 1294.00 9,239,900  − 60.00
3 1.6207 1140.36 28,595,300  − 153.64
4 1.9672 1017.70 346,416,200  − 122.66
5 2.0218 978.39 54,690,100  − 39.31
6 2.0325 968.66 10,645,300  − 9.73
7 2.1659 958.00 133,444,700  − 10.66
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Fig. 14   Representation of solutions for test problem 3 obtained by minimizing a first objective, b second 
objective, c Pareto solution #4
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Fig. 15   Sensitivity analysis of parameter P for test problem 3

Table 39   Sensitivity analysis of parameter Emissions

Test problem no Emissions

(× 1015)
Objective 1 value 
(× 109)

Objective 2 value Solution time (s)

1 4 0.9262 1314.00 6.41
5 1.0052 1164.80 11.20
6 1.0871 1098.40 13.20

2 7 1.4539 1314.00 16.41
8 1.5844 1126.7 32.71
9 1.6514 1098.40 34.70

3 7 1.5891 1314.00 76.50
8 1.8198 1145.10 125.97
9 1.8936 1083.60 193.57

Table 40   Sensitivity analysis of parameter Jobs

Test problem no Jobs Objective 1 value 
(× 109)

Objective 2 value Solution time (s)

1 5500 1.0052 1164.80 11.20
5575 0.9469 1232.20 7.40

2 8000 1.5844 1126.70 32.71
8180 1.6231 1203.00 23.52

3 10,000 1.8936 1083.60 214.05
10,300 1.8798 1099.40 197.27
10,530 1.6041 1232.20 104.91
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7.4 � Sensitivity analysis

The most important parameters of the model that affect costs and maximum travel 
time are the number of hubs, the allowable amount of emissions, the number of jobs 
that must be created, and discount factor for travel time. Thus, we make a sensitivity 
analysis on these parameters to show their effects on the model. For investigating 
the effect of the number of hubs on the costs and level of service in the hierarchical 
network, we solve the proposed bi-objective model of Sect. 3.3 or Sect. 4 using the 
AUGMECON2 method for different values of parameter P (number of hubs) and get 
the Pareto frontier. Table 38 demonstrates the conflict between objectives using the 
Pareto solutions of test problem #3 with four hubs.

In Fig.  14, the graphical representation of the optimal solutions obtained by 
considering only the first objective, only the second objective, and Pareto-optimal 
solution #4 (Table  38) for test problem #3 with four hubs are shown. According 
to Fig. 14, if we optimize just the first objective, nodes 1, 7, and 16 are selected as 
airports, and other demand nodes are allocated to the central hub and airports in a 
way that transportation costs and fixed costs of links are minimized. If we optimize 

Table 41   Results of test problem 3 for different values of parameters Emissions and Jobs

Emissions = 7 × 1015
Emissions = 8 × 1015

Emissions = 9 × 1015

Obj. 1 (× 109) Obj. 2 Obj. 1 (× 109) Obj. 2 Obj. 1 (× 109) Obj. 2

Jobs = 10300 1.5891 1314 1.8198 1145.10 1.8936 1083.60
Jobs = 10530 1.5891 1314 1.7231 1232.20 1.6041 1232.20

Fig. 16   Sensitivity analysis of parameter α for test problem 5
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just the second objective, airports 7 and 16 and ground hub 5 are selected in order 
to minimize maximum travel time in the network. In this case, hubs have a central 
location, and we pay attention to the far demand points like 8 and 4. In bi-objective 
optimization, both criteria (minimizing costs and minimizing the maximum travel 
time) are considered, and the obtained solution is a combination of locations and 
allocations in two previous cases.

The results of sensitivity analysis of parameter P are shown in Fig. 15.
According to Fig. 15, by increasing the number of hubs, the costs of the hierarchi-

cal network and also the maximum travel time in the network (which is interpreted 
to the level of service) decrease. In addition, as demonstrated in Fig. 15, one can say 
that by increasing the number of hubs, the Pareto frontier is improved. However, the 
amount of improvement can be negligible when the number of hubs increases from 
five hubs. As the number of hubs increases from two hubs to four hubs, the number 
of Pareto solutions increases, which allows the decision-maker to reduce transporta-
tion costs as much as possible. Also, by increasing the number of hubs from two 
hubs to four hubs, the minimum value for the second objective function decreases, 
which means that a higher level of service is achieved to customers. But by increas-
ing the number of hubs from four hubs to six hubs, the minimum value for the sec-
ond objective function does not change, and therefore, the highest level of customer 
service does not increase.

To analyze the sensitivity of objective values concerning parameters for 
Emissions and Jobs , we consider different values and solve the bi-objective model 
to get the Pareto-optimal solutions for test problems. Since each of these two param-
eters appears only in one constraint, the effect of changing their values can be seen 
in a limited number of points (only two or three values are reported for each test 
problem). The results of sensitivity analysis are reported in Tables 39, 40, and 41. 
In Table 39, the average objective function values of all obtained Pareto solutions 
are reported in columns 3 and 4. It can be observed that increasing the allowable 
level of emissions increases the costs of the hierarchical network and decreases the 
maximum travel time in the hierarchical network, which means an improvement in 
the level of service. This phenomenon can be described considering that by altering 
the feasible region, new Pareto solutions with a significantly greater value of the first 
objective can be obtained. Therefore, the average of the first objective values of the 
new Pareto solutions may worsen despite the expansion of the feasible region.

In Table 40, in all cases, by increasing the value of parameter Jobs , the maximum 
travel time in the network increases, and the level of service decreases. Also, system 
costs decrease except in test problem #2.

In Table 41, in a specified level of allowable emissions, by increasing the param-
eter Jobs, in case Emissions = 7 × 1015, the maximum travel time and system costs 
remain constant. In the other cases, system costs decrease and the maximum travel 
time increases. Also, in case Jobs = 10,300, by increasing the allowable level of 
emissions, system costs increase, and the maximum travel time decreases.

Next, to examine the changes in the second objective function value relative to 
the discount factor for travel time, we optimize the second objective function for 
different values of the parameter α. The results are shown in Fig. 16. According to 
Fig. 16, as the value of α increases, a non-decreasing trend is observed in the curve. 
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In two cases, as the value of α increases, there is no change in the second objective 
function value (from α = 0.4 to α = 0.5 and from α = 0.8 to α = 0.9). Between the val-
ues of α = 0.6 and α = 0.8, the objective value increases with a greater slope. It can 
be concluded that for increasing the level of service, the value of the parameter α 
should be reduced.

8 � Conclusions and future research

In this paper, a mathematical model for the design and optimization of a sustain-
able hierarchical hub network was presented. The model considers two objective 
functions, the first of which seeks to minimize transportation costs and the costs 
of establishing links in the network. The second objective is dedicated to minimiz-
ing the maximum travel time in the network. Sustainability aspects (emissions and 
employment) and responsiveness (level of service) were considered in the model. 
This model can be applied in a freight or passenger transport network with two 
transport modes (air and ground), in which there are different levels of service (hier-
archical), and customers are varied in choosing their desired services. Moreover, 
concerning the problem objectives, the maximum travel time is minimized in the 
second objective function, and as a result, the level of service increases.

For solving the model, the AUGMECON2 method was used. Tthe solution time 
of AUGMECON2 was increased exponentially by increasing the size of the prob-
lem. Therefore, two multi-objective genetic algorithms (NSGA-II and NRGA) were 
applied to solve more instances of the problem. Several criteria and statistical tests 
were applied to compare the efficiency of the two proposed metaheuristics. Experi-
mental results demonstrated that NRGA can find solutions with the same quality as 
the NSGA-II in less solution time. Also, an alternative formulation for the problem 
was proposed, which was computationally more efficient than the initial formula-
tion. With the help of this formulation, medium and large-sized problems that could 
not be solved with the initial formulation were solved by three exact multi-objective 
solution methods, including AUGMECON2, TH, and AWTP, and Pareto-optimal 
solutions were reported. In addition, the performance of the proposed solution meth-
ods was measured by some multi-objective indicators. The results showed the supe-
riority of AUGMECON2 over the proposed solution methods.

For extending the model, other assumptions that exist in real world can be 
included in the model. In this model, capacity constraints for ground and airport 
hubs have not been considered. This is a limitation of the current model and can be 
considered in future research. Also, in the present study, air pollution has not been 
considered for the airplanes, which may be a fruitful search area. Furthermore, a 
similar model can be proposed for other variants of HLP such as the p-hub center 
location problem, hub covering location problem, and continuous HLP. In addition, 
other solution methods for reducing solution time in large scales of the problem can 
be developed by researchers.
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Appendix A

The AUGMECON2 method.
For explaining the AUGMECON2 method, suppose a problem that has p objec-

tive functions. The general form of multi-objective optimization using AUGME-
CON2 is as follows:

Fig. 17   Flowchart of AUGMECON2 (Mavrotas and Floris 2013)
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In Eq. (60), e2, ..., ep are the RHS values for the specific iteration based on grid 
points of objective functions 2, ..., p . epsilon is a constant value between 10–6 and 
10–3. r2, ..., rp are the ranges of objective functions 2, ..., p . The range of each objec-
tive function is the difference between the best and worst value of that objective 
function in the payoff table. F is the feasible region of the problem, and S2, ..., Sp are 
slack variables for the respective constraints. Then, the range of objective function 
k is divided into gk equal intervals using (gk − 1) intermediate grid points. Thus, in 
total, (gk + 1) grid points can be used to vary the RHS of constraint k (i.e. ek ). The 
total number of runs is 

(

g2 + 1
)

× ... × (gp + 1) . The discretization step is calculated 
as Eq. (61).

Then, the RHS of the corresponding constraint in iteration t for objective func-
tion k is as Eq. (62).

In which, fmink is the minimum value of objective function k in the payoff table.
The slack variable of the innermost objective function is checked at each itera-

tion (in our case, objective function 2). Then, the bypass coefficient is calculated as 
Eq. (63).

In which function int() returns the integer part of a real number. If S2 > step2 , the 
same solution is obtained in the next iteration with a smaller slack variable whose 
value is (S2 − step2) . Thus, the next iteration is redundant, and we can bypass it. The 
bypass coefficient indicates how many consecutive iterations can be bypassed. The 
flowchart of the AUGMECON2 method is shown in Fig. 17.

Appendix B

The TH method.
To use the TH method, we need to determine Positive Ideal Solution (PIS), i.e., 

(

ObjPIS
1

, xPIS
1

)

,
(

ObjPIS
2

, xPIS
2

)

 , and Negative Ideal Solution (NIS) for each objective 

(60)

min (f1(x) + epsilon ∗
(

S2∕r2 + 10−1 × S3∕r3 +…+ 10−(p−2)Sp∕rp
)

s.t.

f2(x) + S2 = e2

f3(x) + S3 = e3

⋯

fp(x) + Sp = ep

x ∈ F and S2, S3, ... , Sp ∈ ℝ
+

(61)stepk = rk∕gk

(62)ekt = fmink + t × stepk

(63)b = int(S2∕step2)



1 3

Sustainable hierarchical multi‑modal hub network design… Page 51 of 62  35

function. To obtain the PIS, each objective function must be optimized separately 
under the problem constraints. Also, NIS for each objective function can be esti-
mated using Eq. (64).

The satisfaction degrees for the first and second objective function are calcu-
lated as Eqs. (65) and (66), respectively.

Then, using the aggregation function of the TH method, the bi-objective prob-
lem is converted into a single-objective parametric problem as Eqs. (67)–(69).

In this formulation, parameter � ∈ [0, 1] is the coefficient of compensation, 
and parameter �f ∈ [0, 1] denotes the importance of objective function f  . Also, F 
is feasible region. Note that 

∑2

f=1
𝜋f = 1,𝜋f > 0 . Equation (67) looks for a com-

promise value between the minimum and weighted sum operators. By setting 
the parameters � and �f  at different levels, the TH method finds efficient Pareto 
solutions.

Appendix C

The AWTP method.
To illustrate this method, consider the general form of a multi-objective opti-

mization problem with q decision variables and � objective function as follows:

(64)ObjNIS
f

= max
k=1,2

{Objf (x
PIS
k

)};∀f = 1, 2

(65)𝜇1(x) =

⎧

⎪

⎨

⎪

⎩

1
ObjNIS

1
−Obj1

ObjNIS
1

−ObjPIS
1

0

Obj1 < ObjPIS
1

ObjPIS
1

≤ Obj1 ≤ ObjNIS
1

Obj1 > ObjNIS
1

(66)𝜇2(x) =

⎧

⎪

⎨

⎪

⎩

1
ObjNIS

2
−Obj2

ObjNIS
2

−ObjPIS
2

0

Obj2 < ObjPIS
2

ObjPIS
2

≤ Obj2 ≤ ObjNIS
2

Obj2 > ObjNIS
2

(67)max�(x) = ��0 + (1 − �)

2
∑

f=1

�f�f (x)

(68)s.t. �0 ≤ �f (x), f = 1, 2

(69)x ∈ F, �0 ∈ [0, 1]
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In Eq. (70), x is a solution to the problem and X represents the set of feasible solu-
tions. The objective function vector F(x) maps a decision vector x = (x1, x2,… , xq) 
in the decision space ( X ) to an objective vector z = (z1, z2,… , z�) in the objective 
space ( Z ). In the AWTP, the following single-objective problem should be solved to 
get Pareto-optimal solutions.

In Eq. (71), �t represents the weight of objective function t , which is determined 
by the decision-maker. Parameter r∗

t
 represents the best possible value for the objec-

tive function t . Also, � is a parameter that is usually considered between 0.01 and 
0.001. In this study, it is set at 0.005. This method can find efficient Pareto solutions 
to the problem. Note that in this study to scale objective functions, each objective 
function is divided into its range (difference between the best and worst values of the 
objective function).

Appendix D

Characteristics of the case study problem.
See Tables 42, 43, and 44.

(70)
Minimize F(x) =

(

f1(x), f2(x),… , f�(x)
)

s.t.

x ∈ X

min� − �

�
∑

t=1

(ft(x) − r∗
t
)

s.t.

� ≥ �t
(

ft(x) − r∗
t

)

∀t = 1, … , �

(71)
�
∑

t=1

�t = 1, �t ≥ 0, ∀t = 1,… , �, x ∈ X
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Appendix E

Test problems dataset.
See Tables 45 and 46.

Table 42   Demand nodes

1-ADANA 2-ADIYAMAN 3-AFYON 4-AĞRI
5-AMASYA 6-ANKARA​ 7-ANTALYA 8-ARTVİN
9-AYDIN 10-BALIKESİR 11-BİLECİK 12-BİNGÖL
13-BİTLİS 14-BOLU 15-BURDUR 16-BURSA
17-ÇANAKKALE 18-ÇANKIRI 19-ÇORUM 20-DENİZLİ
21-DİYARBAKIR 22-EDİRNE 23-ELAZIĞ 24-ERZİNCAN
25-ERZURUM 26-ESKİŞEHİR 27-GAZİANTEP 28-GİRESUN
29-GÜMÜŞHANE 30-HAKKARİ 31-HATAY​ 32-ISPARTA​
33-İÇEL 34-İSTANBUL 35-İZMİR 36-KARS
37-KASTAMONU 38-KAYSERİ 39-KIRKLARELİ 40-KIRŞEHİR
41-KOCAELİ 42-KONYA 43-KÜTAHYA 44-MALATYA​
45-MANİSA 46-KAHRAMANMARAŞ 47-MARDİN 48-MUĞLA
49-MUŞ 50-NEVŞEHİR 51-NİĞDE 52-ORDU
53-RİZE 54-SAKARYA​ 55-SAMSUN 56-SİİRT
57-SİNOP 58-SİVAS 59-TEKİRDAĞ 60-TOKAT
61-TRABZON 62-TUNCELİ 63-ŞANLIURFA 64-UŞAK
65-VAN 66-YOZGAT​ 67-ZONGULDAK 68-AKSARAY​
69-BAYBURT​ 70-KARAMAN 71-KIRIKKALE 72-BATMAN
73-ŞIRNAK 74-BARTIN 75-ARDAHAN 76-IĞDIR
77-YALOVA 78-KARABÜK 79-KİLİS 80-OSMANİYE
81-DÜZCE

Table 43   Candidate nodes for hubs

1-ADANA 3-AFYON 5-AMASYA 6-ANKARA​
7-ANTALYA 16-BURSA 20-DENİZLİ 21-DİYARBAKIR
23-ELAZIĞ 25-ERZURUM 26-ESKİŞEHİR 27-GAZİANTEP
34-İSTANBUL 35-İZMİR 38-KAYSERİ 42-KONYA
44-MALATYA​ 55-SAMSUN 61-TRABZON 65-VAN
68-AKSARAY​ 81-DÜZCE

Table 44   Candidate nodes for airports

1-ADANA 5-AMASYA 6-ANKARA​ 7-ANTALYA
16-BURSA 20-DENİZLİ 21-DİYARBAKIR 23-ELAZIĞ
25-ERZURUM 26-ESKİŞEHİR 27-GAZİANTEP 34-İSTANBUL
35-İZMİR 38-KAYSERİ 42-KONYA 44-MALATYA​
55-SAMSUN 61-TRABZON 65-VAN
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Table 46   Test problems #5 and #6 details based on the Turkish dataset

Parameters Values

Test problem #5 Test problem #6 (case study)

N {1, 2,…, 50} {1, 2,…, 81}
H {1,3,5,6,7,16,20,21,23,25,26,27,34,35,38,42,44} {1,3,5,6,7,16,20,21,23,25,26,27,34

,35,38,42,44,55,61,65,68,81}
A {1,5,6,7,16,20,21,23,25,26,27,34,35,38,42} {1,5,6,7,16,20,21,23,25,26,27,34,3

5,38,42,44,55,61,65}
P 6 8
wij OR library OR library
tij OR library OR library

tP
ij

(distanceij∕700) × 60 (distanceij∕700) × 60

� 0.9 0.9
cij distanceij(OR library) distanceij(OR library)

cT
jk

0.75 × cjk 0.75 × cjk
Feij OR library OR library

FeT
jk

0.8 × Fejk 0.8 × Fejk
FeP

j
3500 3500

cP
jo

djo djo

cP
oj

doj doj

FJGj 20 20
FJAl 50 50
UJGj 0.001 0.001
UJAl 0.0005 0.0005
Emissions 5 × 1018 3 × 1020

Jobs 16,000 20,000
g 9.81 9.81
a 0 0
vij (distanceij × 1000)∕(tij × 60) (distanceij × 1000)∕(tij × 60)

�ij 0 0
� 1.2041 1.2041
AR 5 5
Cd 0.7 0.7
Cr 0.01 0.01
LW 1000 1000
EW 4000 4000
dij distanceij × 1000 distanceij × 1000

g 9.81 9.81
a 0 0
vij (distanceij × 1000)∕(tij × 60) (distanceij × 1000)∕(tij × 60)

�ij 0 0
� 1.2041 1.2041
AR 5 5
Cd 0.7 0.7
Cr 0.01 0.01
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Appendix F

S/N ratios for the proposed metaheuristic algorithms’ parameter setting.
See Figs. 18 and 19.

Table 46   (continued)

Parameters Values

Test problem #5 Test problem #6 (case study)

LW 1000 1000
EW 4000 4000
dij distanceij × 1000 distanceij × 1000

Fig. 18   S/N ratios for NSGAII

Fig. 19   S/N ratios for NRGA​
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Appendix G

Test instances on three datasets.
See Table 47.

Table 47   Details of generating instances with different sizes on three datasets

Parameters Values

Small Medium Large

wij From the CAB dataset From the IAD dataset From the TR dataset
tij (distanceij × 1000)∕(vij × 60) (distanceij × 1000)∕(vij × 60) From the TR dataset
tP
ij

(distanceij∕700) × 60 (distanceij∕700) × 60 (distanceij∕700) × 60

� 0.9 0.9 0.9
cij From the CAB dataset From the IAD dataset From the TR dataset
cT
jk

0.75 × cjk 0.75 × cjk 0.75 × cjk
Feij Uniform(10,100) Uniform(10,100) From the TR dataset
FeT

jk
0.8 × Fejk 0.8 × Fejk 0.8 × Fejk

FeP
j

3500 3500 3500

cP
jo

djo djo djo

cP
oj

doj doj doj

FJGj 20 20 20
FJAl 50 50 50
UJGj 0.001 0.001 0.001
UJAl 0.0005 0.0005 0.0005
Emissions 8 × 1016 2 × 1016 3 × 1018

Jobs 45,000 12,000 15,000
g 9.81 9.81 9.81
a 0 0 0
vij Uniform(20,,25) Uniform(20,,25) (distanceij × 1000)∕(tij × 60)

�ij 0 0 0
� 1.2041 1.2041 1.2041
AR 5 5 5
Cd 0.7 0.7 0.7
Cr 0.01 0.01 0.01
LW 1000 1000 1000
EW 4000 4000 4000
dij distanceij × 1000 distanceij × 1000 distanceij × 1000
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