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Abstract
This paper reviews recent advances in robust portfolio selection problems and their 
extensions, from both operational research and financial perspectives. A multi-
dimensional classification of the models and methods proposed in the literature is 
presented, based on the types of financial problems, uncertainty sets, robust opti-
mization approaches, and mathematical formulations. Several open questions and 
potential future research directions are identified.

Keywords Robust optimization · Portfolio selection problem · Comprehensive 
literature review

1 Introduction

The portfolio selection problem (PSP) is a fundamental problem in finance that aims 
at optimally allocating funds among financial assets to maximize return and/or mini-
mize risk. Different variants of the problem arise in reality due to the different risk 
attitudes of investors (risk-neutral vs. risk-averse), investment strategies, measures 
used to quantify risk (e.g., variance, VaR), methods used to calculate return (e.g., 
log-return) and planning horizon (single-period vs. multi-period), among other fac-
tors. Consequently, the PSP literature has grown considerably in terms of both size 
and diversity, allowing for several classification schemes to be employed.

An obvious classification is based on the risk measure to be optimized. Generally 
speaking, two broad classes of risk measures have been proposed: volatility-based 
and quantile-based. While variance has been the most widely-used risk measure in 
both theory and practice since the seminal work of Markowitz (1952), it has its defi-
ciencies. First, it equally considers both positive and negative deviations around the 
expected return as undesirable risk, despite the desirability of the positive deviations 
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for investors. Alternatively, downside risk measures that consider only the negative 
deviations of returns, like the lower partial moment (LPM), can be used. Further-
more, given that variance is a nonlinear risk measure, it leads to more complex for-
mulations than those corresponding to linear risk measures like the mean absolute 
deviation (MAD) proposed by Konno and Yamazaki (1991). Related to volatility 
risk measures, Sharpe (1966) and Bernardo and Ledoit (2000), introduced Sharpe 
ratio and Omega ratio, respectively, to evaluate the performance of portfolios based 
on risk and return simultaneously. The most famous quantile-based risk measures 
are Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR). The former quanti-
fies the maximum loss at a specific confidence level, whereas the latter represents 
the expected value of losses greater than VaR at a confidence level. For details about 
quantile-based risk measures, interested readers are referred to Rockafellar et  al. 
(2000).

Besides risk measures, PSPs can be classified based on investment strategies. 
For example, index tracking, first studied by Dembo and King (1992), is a passive 
investment strategy that tries to follow a market index. On the other hand, active 
investment strategies that involve ongoing buying and selling of assets are optimized 
by solving multi-period PSPs (see Dantzig and Infanger 1993 for an early example). 
Furthermore, hedging gives rise to a popular PSP in which an investment position 
is intended to offset potential losses or gains that may be incurred by a compan-
ion investment. Interested readers are referred to Lutgens et al. (2006) for a detailed 
account of financial hedging strategies. PSPs can be classified also according to 
return calculation methods. Goldfarb and Iyengar (2003) incorporated factors (mac-
roeconomic, fundamental, and statistical) to determine market equilibrium and cal-
culate the required rate of return, whereas Hull (2003) defined the Log-return as the 
equivalent, continuously-compounded rate of return of asset returns over a period of 
time.

Despite being a well-studied problem, a common feature of most PSPs addressed 
in the literature is that the problem parameters are assumed to be known with cer-
tainty. Ignoring the inherent uncertainty in parameters and instead using their point 
estimates often leads to suboptimal solutions. Two widely-used frameworks for deal-
ing with uncertainty are stochastic programming (SP) and robust optimization (RO). 
SP focuses on the long-run performance of the portfolio by finding a solution that 
optimizes the expected value of the loss function. Despite its intuitive appeal and 
favorable convergence properties, SP requires the distribution function of the uncer-
tain parameters to be known. Moreover, its risk-neutral nature does not provide pro-
tection from unfavorable scenarios, rendering it unsuitable for, typically, risk-averse 
investors. On the other hand, RO is a conservative approach that minimizes the loss 
function under the worst-case scenario (within an uncertainty set) and does not use 
information about the probability distribution of the uncertain parameters, making it 
an attractive alternative.

Given the rising interest in robust PSPs in the last two decades, several attempts 
have been made to review the growing robust PSP literature. Among the earliest 
reviews is that of Fabozzi et al. (2010), which concentrates on the application of RO 
on basic mean-variance, mean-VaR, and mean-CVaR problems, but does not cover 
more recent variants of the problem like robust index tracking, robust LPM, robust 
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MAD, robust Omega ratio, and robust multi-objective PSPs. Scutellà and Recchia 
(2010) and Scutellà and Recchia (2013) also review robust mean-variance, robust 
VaR, and robust CVaR problems, but similarly, do not survey other robust PSPs. 
Likewise, Kim et al. (2014a) concentrate on worst-case formulations, while ignor-
ing other important classes, including relative robust models, robust regularization, 
net-zero alpha adjustment and asymmetric uncertainty sets. Another review by Kim 
et al. (2018a) focuses on worst-case frameworks in bond portfolio construction, cur-
rency hedging, and option pricing, while covering a small number of references on 
robust asset-liability management problems, log-robust models, and robust multi-
period problems. Recently, Xidonas et  al. (2020) provided a categorized biblio-
graphic review which broadly covers the area; their aim is to provide a rapid access 
to the topic for finance practitioners, and in general for those interested, but maybe 
not yet in the area.

The main contribution of this review paper is a multi-dimensional classification 
of robust PSPs. The classification scheme of robust PSPs utilized in this review is 
illustrated in Fig. 1. To put together the list of references to be reviewed, we first 
compiled two sets of keywords. The first set includes the following keywords related 
to financial problems: “portfolio selection”, “risk measures”, “VaR”, “CVaR”, 
“mean-variance”, “semi-variance”, “mean absolute deviation”, “index tracking”, 
“factor-based portfolio”. The second set includes the robust optimization keywords: 
“robust optimization”, “distributionally robust optimization”, “data-driven”, and 
“uncertainty set”. We then searched all pairs/combinations of the first and second 
keyword sets on both Scopus and Web of Science databases, and also using the 
Google Scholar search engine. The references retrieved from these searches were 
carefully screened to make sure that they are related to the robust financial prob-
lems. If a paper was deemed related to the scope of this review, we searched the ref-
erences cited in it and those that cited it to find additional references to be included. 
This process was repeated multiple times until no new references could be found.

Fig. 1  A schematic diagram of the classification scheme of robust PSPs utilized in this review
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Figure 2 portrays a breakdown of the reviewed articles by publication year, span-
ning between the years 2000 and 2021. We note that out of the 142 articles reviewed, 
14 appeared in 2021, thus were not included in any of the previous reviews. Our 
review focuses on articles published in peer-reviewed journals. These articles 
appeared in a large number ( n = 54 ) of finance and operations research (OR) jour-
nals. Figure 3 shows a breakdown of the reviewed papers by journal (sorted alpha-
betically). We note that most robust PSP articles were published in OR journals.

A major challenge when reviewing the robust PSP literature is the absence of 
a unified set of nomenclatures and notations for describing and formulating the 
problems. To be able to link and contrast different variants of the problem, we 

Fig. 2  A breakdown of the reviewed article by publication year

Fig. 3  A breakdown of the reviewed articles by journal



3207

1 3

Robust portfolio selection problems: a comprehensive review  

use, throughout our review, a unified set of most used notations, shown in Table 1. 
The notations that are used once are defined in the text. Our strategy for including 
mathematical formulas was to begin with the simplest and most general ones, then 
incrementally add new or alternative items (e.g., terms in the objective function, 

Table 1  Notations and symbols

Symbol/notation Definition

x ∈ ℝ
n Decision variable, xj the proportion of the available budget invested in asset j

r ∈ ℝ
n Asset return vector

rL ∈ ℝ
n Minimum asset return vector

rU ∈ ℝ
n Maximum asset return vector

rf ∈ ℝ Risk-free asset return
Q ∈ ℝ

n×n Variance-covariance matrix of the assets
QL ∈ ℝ

n×n Minimum variance-covariance matrix of the assets
QU ∈ ℝ

n×n Maximum variance-covariance matrix of the assets
E ∈ ℝ Portfolio expected return
v ∈ ℝ Portfolio variance
e Vector of size n whose components are ones
� ∈ ℝ Risk aversion coefficient
UQ Uncertainty set of Q , which has the same dimensions of the uncertain parameter
Ur Uncertainty set of r , which has the same dimensions of the uncertain parameter
Γ ∈ ℝ

+ Non-negative scalar that controls the size of uncertainty set
Prj ∈ ℝ Price of asset j
Ei ∈ ℝ Exchange rate of currency i
Σ ∈ ℝ

n×n Covariance matrix of the estimated expected returns
� Nominal distribution function
p True distribution function
� A random variable
A ∈ ℝ

n×n A positive semi-definit matrix
�i A positive scalar
t Indices of scenarios
kmin ∈ ℝ

n Lower bound of decision variables
kmax ∈ ℝ

n Upper bound of decision variables
cj Binary variable, if the asset j is selected it takes one, otherwise zero
L ∈ ℤ , H ∈ ℤ Integer scalars that show the minimum and maximum number of assets in the 

portfolio
s Indices of period
W0 ∈ ℝ Initial wealth of the investors
� ∈ ℝ Confidence level
VaR Value at Risk
CVaR Conditional Value at Risk
f (x, r) Loss function
Δ ∈ ℝ , � ∈ ℝ Transaction costs (buying and selling)
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constraints, risk measures, levels of optimization) at their first use in the robust PSPs 
literature. We also chose to include formulas that are commonly used and that con-
stitute significant contributions, leaving behind some outliers and minor changes for 
brevity.

The remainder of this review paper is organized as follows. The next section pro-
vides a brief introduction to RO for non-specialists. Section 3 surveys robust PSP 
formulations based on volatility measures. Section 4 reviews quantile-based PSPs, 
which include Value at Risk (VaR), Conditional Value at Risk (CVaR), and their 
extensions with worst-case RO methods, relative RO and distributionally robust 
optimization (DRO). Furthermore, the relationship between uncertainty sets and 
risk measures, application of soft robust formulation with risk measures, worst-case 
CVaR and its relationship with uniform investment strategy, and robust arbitrage 
pricing theory with worst-case CVaR are also discussed in Sect. 4. Section 5 pro-
vides a review of RO in multi-period PSPs and asset-liability management (ALM) 
problems. Besides these two main problems, robust control formulations of invest-
ment problems are reviewed in this section. Section 6 reviews other financial prob-
lems that are not covered in the above-mentioned categories like robust log-return, 
index-tracking, hedging problem, risk-adjusted Sharpe ratio, robust scenario-based 
formulation, and robust data envelopment analysis. The last section provides conclu-
sions and open issues in this context.

2  A brief introduction to robust optimization

This section provides a brief introduction to RO for readers who are not familiar 
with the topic. RO is a framework for dealing with the uncertainty of parameters in 
optimization problems by assuming that the parameters belong to an uncertainty set 
and optimizing over the worst realization in this set. The first RO formulation was 
developed by Soyster (1973) and used a box (hypercubic) uncertainty set that speci-
fies an interval for each individual uncertain parameter. Even though this approach 
usually leads to tractable formulations, it is too conservative since it is based on the 
assumption that all parameters will take their worst possible values simultaneously, 
which rarely happens in reality. To overcome this issue, Ben-Tal and Nemirovski 
(1998) proposed an ellipsoidal uncertainty set that is centered at some nominal 
value and has a size (radius) that controls the conservatism of the solution based on 
the decision maker’s aversion to uncertainty. Nevertheless, tractable reformulations 
of RO problems with ellipsoidal uncertainty sets give rise to nonlinear formulations 
that, generally, have a higher complexity than the nominal problem. Later, Bertsimas 
and Sim (2004) developed a special class of polyhedral uncertainty set, referred to 
as budget, that enables the level of conservatism to be controlled while preserving 
the tractability of the reformulated problems. All of the aforementioned uncertainty 
sets are symmetric, meaning that they are based on the assumption that forward and 
backward deviations around the nominal value are equal. Chen et al. (2007) argued 
that this assumption is not valid in many practical settings and proposed an asym-
metric uncertainty set that is particularly suitable for financial applications.
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Despite the protection it provides against adverse scenarios, classical RO is still 
considered overly conservative and pessimistic by many practitioners. To alleviate 
this concern, several RO variants have been developed. Scherer (2007) proposed 
adding a net-zero alpha adjustment constraint to any uncertainty set to guarantee 
that for any downward adjustment in the uncertain parameter, there is an offsetting 
upward adjustment, thus reducing the level of conservatism. Kouvelis and Yu (1997) 
proposed a relative RO approach that uses a regret function under the least desirable 
scenario. Although this approach provides solutions that perform better, on average, 
than classical RO, it suffers from intractability since it results in a three-level optimi-
zation problem.

Another way to achieve less conservative solutions is to use available partial 
information about the distribution function of the uncertain parameters rather than 
completely overlook them. A framework referred to as distributionally robust opti-
mization (DRO), that dates back to the seminal work of Scarf (1958), has gained 
considerable attention recently. It assumes that the unknown probability distribution 
of the uncertain parameters belongs to a set of distributions called the ambiguity set, 
and optimizes the expected value of the objective function, where the expectation 
is taken with respect to the worst distribution in this set. Clearly, the tractability, 
convergence and out-of-sample performance guarantee offered by the DRO solution 
obtained depends on the ambiguity set used. Generally speaking, there are two main 
types of ambiguity sets: moment-based and discrepancy-based. The former includes 
distributions that enjoy some parametric properties, e.g., mean or variance, whereas 
the latter include distributions that are within a certain “distance” (e.g., the Kull-
back–Leibler divergence or the Wasserstein metric) from a reference distribution. 
The interested reader is referred to Delage and Ye (2010), Esfahani and Kuhn (2018) 
and Rahimian and Mehrotra (2019) and the references therein for more information 
about DRO.

3  Robust PSPs with volatility‑based risk measures

In this section, we review the application of RO in PSPs with volatility-based risk 
measures, which include mean-variance, mean absolute deviation, lower partial 
moment, systematic risk, and factor-based portfolio models.

3.1  Mean‑variance PSP

The mean-variance PSP was proposed by Markowitz (1952). In its general form, it 
assumes n risky assets, each has an expected rate of return denoted by the vector r , 
whereas v is the portfolio variance and Q is the variance-covariance matrix of the 
assets. In Markowitz’s model, the variance of the portfolio is the risk measure to 
be optimized. The decision variable of this mathematical formulation is [xj]j=1,…,n , 
which represents the proportion of the available budget invested in asset j . When 
xj ≥ 0 , it means that short selling is not allowed.
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Moreover, E = x�r is the portfolio expected return, v = x�Qx is the portfolio variance, 
and E0 is the minimum required expected rate of return. Then, the minimum variance PSP 
is minx∈X(v = x�Qx) s.t. x�r ≥ E0 where X = {x ∶ e�x = 1, xj ≥ 0, j = 1,… , n} , and 
e is a vector of size n whose components are ones. Another version of the mean-variance 
PSP, called the risk-adjusted expected return, takes the form maxx∈X(x

�r − �x�Qx) . This 
formulation has the dual objectives of maximizing the portfolio return and minimizing its 
variance, where � is a risk aversion coefficient set by the investor. In reality, however, the 
true values of the expected rate of return and the covariance matrix are not known with 
certainty.

3.1.1  Classical uncertainty sets for the mean‑variance PSP

The general robust counterparts of the aforementioned PSPs are minx∈X maxQ∈UQ

(x�Qx) s.t. minr∈Ur
x�r ≥ E

0
 , and maxx∈X minr∈Ur , Q∈UQ

(x�r − �x�Qx) , respectively, 
where UQ and Ur are the uncertainty sets for the covariance matrix and the return 
vector, respectively. Tütüncü and Koenig (2004) used symmetric box uncertainty 
sets defined as Ur ∶= {r ∶ rL ≤ r ≤ rU} and UQ =∶ {Q ∶ QL ≤ Q ≤ QU ,Q ⪰ 0} , 
where rL and rU are, respectively, the lower and upper bounds of the asset returns 
and QL and QU are the lower and the upper bounds of the covariance matrix ele-
ments while stipulating also that Q must remain positive semi-definite (PSD). It 
has been shown that, with these uncertainty sets, the robust counterparts could be 
tractably formulated as minx∈X(x

�QUx) s.t. x�rL ≥ E0 , and maxx∈X(x
�rL − �x�QUx) , 

respectively. Khodamoradi et al. (2020) used similar uncertainty sets for a cardi-
nality-constrained mean-variance PSP that allows short selling. Swain and Ojha 
(2021) also analyzed the robust mean-variance, and mean-semi-variance PSPs 
with box uncertainty sets, where both the expected return vector and the covari-
ance matrix are uncertain parameters. However, Chen and Tan (2009) argued that 
deviations of the expected asset returns from their nominal values are not sym-
metric, meaning that the upside deviation is different from the downside devia-
tion, thus are not accurately captured by classical symmetric uncertainty sets. 
Instead, they used non-symmetric interval uncertainty sets for the expected vec-
tor and covariance matrix of asset returns. The element-wise uncertainty interval 
was defined as Uri

= [r̄i − 𝜃1
i
, r̄i + 𝜃2

i
] and Uqij

= [q̄ij − 𝜏1
ij
, q̄ij + 𝜏2

ij
] , where r̄i and q̄ij 

are elements of r and Q , respectively, that represent the nominal values of mean 
and covariance, whereas �1

i
 and �2

i
 are the downside and the upside deviations for 

the mean and �1
ij
 and �2

ij
 are the downside and the upside deviations for the covari-

ance, respectively. To propose a robust counterpart, optimistic fopt and pessimis-
tic gpes values are defined as fopt = minri∈Uri

(x�r) , and gpes = maxqij∈Uqij

(x�Qx) , 
respectively. Alternatively, Fabozzi et  al. (2007) defined an ellipsoidal uncer-
tainty set for asset returns as Ur ∶= {r ∶ (r − r̄)Q−1(r − r̄)� ≤ Γ2} , where r̂ is the 
nominal return and Γ2 is a non-negative scalar that controls the size of the uncer-
tainty set. Hence, the robust counterpart can be tractably formulated as 
{minx∈X −r̄

�x + Γ
√
x�Qx + 𝜆x�Qx} . However, the uncertainty of the covariance 

matrix was not considered, making the solution robust only against perturbations 
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in the return vector. Pınar (2016) developed a robust mean-variance PSP with the 
same ellipsoidal uncertainty set while allowing short selling, which was also 
extended to the multi-period case.

Even though RO accounts for uncertainty in the problem parameters, Zymler 
et al. (2011) argued that if the uncertainty set is not set large enough, the solution 
might maintain its robustness only under normal market conditions, but not when 
the market crashes. Instead, they proposed using European-style options to hedge 
the mean-variance portfolios against abnormal market conditions. Two guarantee 
types were provided: weak, and strong. The weak guarantee applies under normal 
market conditions when the rate of the return is varying in an ellipsoid uncertainty 
set, whereas the strong guarantee applies to all possible asset returns by using the 
European-style options in the form of constraints in the optimization problem. 
Hence, the strong guarantee is not based on RO formulation but on the mechanism 
of options to protect the portfolio in market crashes. Ashrafi and Thiele (2021) also 
used the idea of strong and weak guarantees. For the strong guarantee, an option 
is used in PSP, whereas for the weak guarantee, a budget uncertainty set for asset 
returns is used. Hence, the problem can be reformulation as a linear program (LP).

According to Lu et al. (2019), an important drawback of the mean-variance PSP 
is that its inputs are computed using only historical market returns, thus specific 
earnings announcements cannot be used to support the portfolio selection process. 
To overcome this issue, Black and Litterman (1990) proposed the BL method, which 
consists of both a market model and a view model. Lu et al. (2019) improved the 
view model of the BL method by using fuzzy logic to make it quantitative. Moreo-
ver, they incorporated multiple expert views instead of just one individual expert 
view in their formulation. To handle the heterogeneity of data collected from dispa-
rate sources, they applied RO with an ellipsoidal uncertainty set for the mean return 
vector and the return covariance matrix.

Fonseca and Rustem (2012) asserted that an important strategy in the PSP is 
diversification, which may eliminate some degree of risk since financial assets are 
less than perfectly correlated. To make a portfolio more diversified, investors can 
invest in foreign assets. However, foreign exchange rates’ fluctuations may erode the 
investment’s return. Moreover, both the asset returns and the currency rates are 
uncertain. Hence, Fonseca and Rustem (2012) and Fonseca et al. (2012) proposed a 
robust formulation for the international PSP with an ellipsoidal uncertainty set, 
which leads to a non-convex bilinear optimization problem. The problem considers 
n assets from m foreign currencies, where Pr0

j
 and Prj are, respectively, the current 

and future prices of asset j , and E0
i
 and Ei , respectively, are the current and future 

exchange rates of currency i . Therefore, the local return of asset j is ra
j
= Prj∕Pr

0
j
 

and the exchange rate return of currency i is re
i
= Ei∕E

0
i
 . Using the auxiliary binary 

matrix O = [oji] , where oji equals 1 if asset j is traded in currency i and 0 otherwise, 
the international PSP is formulated as maxx∈X min(ra,re)∈Ura ,re

[diag(raOre)]�x , where 
the objective of this formulation is to maximize the worst-case return within all real-
izations in the uncertainty set Ura,re . A semi-definite programming (SDP) approxi-
mation is proposed to handle the non-linearity of the robust international PSP. Even 
though a robust international portfolio provides some level of guarantee against the 
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uncertainty, investors might alternatively use forward contracts and quanto options 
(an exotic type of options translated at a fixed rate into another currency) to hedge 
risk. To make the formulation more practical, Fonseca and Rustem (2012) extended 
the robust international PSP with forward contracts and quanto options to reach a 
less conservative formulation.

Another classical uncertainty set used for robust PSPs is the budget uncertainty 
set proposed by Bertsimas and Sim (2004), which has the advantage of leading to 
tractable reformulations with the same complexity of the nominal problems. Sadjadi 
et  al. (2012) considered a robust cardinality constrained mean-variance PSP with 
ellipsoidal, budget, and general-norm uncertainty sets and proposed a genetic algo-
rithm to solve them. It was shown that using a budget uncertainty set has led to 
better rates of return compared to other uncertainty set types. Gregory et al. (2011) 
also tested a budget uncertainty set for the uncertain returns in a PSP to show the 
impact of the uncertainty set size on the portfolio return. The uncertainty set in this 
formulation is defined as Ur = {r ∶ r = r̄ + r̂𝜁 , ||𝜁 ||1 ≤ Γ, |𝜁 | ≤ 1} , where r̄ is 
nominal value, r̂ is the deviation of return, � is the random variable, and Γ is the 
price of robustness that control the size of uncertainty set. The final formulation is 
maxx∈X, z≥0, q≥0 r̄

�x − Γz − e�q s.t. z + qi ≥ r̂ixi, ∀i . It has been shown that using the 
mean or the median of the asset returns as nominal values leads to the most robust 
portfolios.

Bienstock (2007) postulates that the solution methodology of RO is often cho-
sen at the expense of the accuracy of the uncertainty model. Moreover, classical 
uncertainty sets might lead to overly conservative solutions. Alternatively, Bienstock 
(2007) proposed a data-driven approach to construct the uncertainty set by using 
uncertainty bands, each showing a different level of the return shortfall, which is 
an amount by which a financial obligation or liability exceeds the required amount 
of cash that is available. Hence, it is possible to specify rough frequencies of return 
shortfalls to approximate the return shortfall distribution. The robust models are for-
mulated by allowing the uncertain parameter (asset returns) to deviate from the dis-
tribution by incorporating constraints related to the frequency of the return shortfall 
in different bands, an approach referred to as robust histogram mean-variance PSP. 
Although this formulation provides more flexibility than classical RO, the robust 
counterpart is an intractable mixed-integer program (MIP); thus, a cutting plane 
algorithm is proposed to solve it.

3.1.2  Robust mean‑variance and multi‑objective solution methods

Fliege and Werner (2014) studied a robust multi-objective optimization (MOO) 
version of the mean-variance PSP while considering minimizing the variance and 
maximizing the mean return of the portfolio as the two objectives. Two MOO meth-
ods were applied: the �-constraint scalarization (ECS) method, which pushes one 
of the objective functions, namely return maximization, to the constraints, and the 
weighted-sum scalarization (WSS) method, which combines the two objectives into 
a single one by assigning proper weights to them. Both methods lead to the same 
efficient frontier in the nominal case, but not for the robust problem. Fliege and 
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Werner (2014) defined the location characteristics of the robust Pareto frontier with 
respect to the non-robust Pareto frontier, and demonstrated that standard techniques 
(ECS and WSS) from MOO can be used to construct the robust efficient frontier.

Alternatively, robustness in multi-objective PSPs can be achieved by a resam-
pling method without classical uncertainty sets, which provides a wider range for 
uncertain parameters and solutions instead of the worst-case scenario RO with a 
specific uncertainty set. This approach requires replacing the parameters in the fit-
ness functions at every generation. Hence, the evolution process would favor the 
solutions that show good performance in terms of risk and return over different sce-
narios (see e.g., Shiraishi 2008; Ruppert 2014). García et al. (2012) argued that one 
of the main problems portfolio managers face is uncertainty regarding the expected 
frontier derived from forecasts of future returns. Very often, expected frontiers lie 
far from the actual return, resulting in inaccurate forecasts of the portfolio risk/
return profile. García et  al. (2012) demonstrated that robustness of results can be 
achieved by avoiding optimization based on a single expected scenario that may pro-
duce solutions that are hyper-specialized and might be extremely sensitive to likely 
deviations. They tackle the problem of achieving robust or stable portfolios by using 
a multi-objective evolutionary algorithm that replaces the traditional fitness function 
with an extended one that uses a resampling mechanism and an implicit third objec-
tive to control the robustness of the solutions.

The formulations of Fliege and Werner (2014) and García et al. (2012) are based 
on differentiable functions. However, classical RO methods cannot be used on non-
smooth and non-differentiable functions. To address this issue, Fakhar et al. (2018) 
developed the necessary and sufficient optimality condition for a MOO problem 
with nonsmooth, e.g., non-differentiable or discontinuous, functions, and proved that 
strong duality holds when these functions are convex. Moreover, they introduced the 
concept of saddle-point for MOO under uncertainty.

3.1.3  Robust optimization based on the estimation error

Ceria and Stubbs (2006) demonstrated that the mean-variance PSP is very sensitive 
to small variations in expected returns. They, instead, proposed a formulation for the 
robust PSP based on estimation errors. In this formulation, three distinctive Markow-
itz efficient frontiers were introduced: the true frontier calculated based on the true, 
yet unobservable, expected returns, the estimated frontier calculated based on the 
estimated return, and the actual frontier calculated based on the true expected 
returns of the portfolios on the estimated frontier. To have a portfolio as close as 
possible to its true frontier, the maximum difference between the estimated frontier 
and the actual frontier was minimized. Ceria and Stubbs (2006) modified the maxi-
mum difference between the estimated frontier and the actual frontier by adding a 
linear constraint. They assumed that the true returns lie inside the confidence region 
(r − r̄)�Σ−1(r − r̄) ≤ k2 , where k2 ∼ �2

n
 , and �2

n
 is the inverse cumulative distribution 

function of the chi-squared distribution with n degrees of freedom. Points on the 
efficient frontier are calculated by solving max r̄′x s.t. x′Qx ≤ v , where v is the maxi-
mum acceptable variance. The optimal solution of this optimization problem is 
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x =
√

�

r�Q−1r
Q−1r . By considering r∗ as the true, but unknown, expected return vec-

tor and r̄ as an expected return, the true expected return of a portfolio on the esti-
mated frontier is computed as 

√
𝜈

r̄�Q−1 r̄
r∗�Q−1r̄ . Ceria and Stubbs (2006) assumed 

that x̃ is the optimal portfolio on the estimated frontier for a given target risk level. 
Then, the difference between the estimated expected return and the actual expected 
return of x̃ is r̄�x̃ − r∗�x̃ . Consequently, the maximum difference between the 
expected returns on the estimated efficient frontier and the actual efficient frontier is 
computed by solving max (r̄�x̃ − r�x̃) s.t. (r − r̄)�Σ−1(r − r̄) ≤ k2 . In this formulation 
x̃ is fixed and optimization is over r . Hence, the optimal solution is r = r̄ −

√
k2

x̃
� Σx̃

Σx̃ . 
Moreover, the lowest value of the actual expected return is r̄�x̃ = r̄�x̃ − k||Σ1∕2x̃|| . 
Finally, the maximum difference between the estimated frontier and the actual fron-
tier is r̄�x̃ − (r̄�x̃ − k||Σ1∕2x̃||) = k||Σ1∕2x̃|| . Effectively, minimizing the maximum 
difference between the actual and the true frontiers leads to a robust mean-variance 
PSP with an ellipsoidal uncertainty set, while the covariance matrix of estimation 
error is also captured using an ellipsoidal uncertainty set. Garlappi et al. (2007) also 
claimed that the estimation error is ignored in mean-variance PSPs. They propose a 
robust mean-variance PSP that is a special case of the PSP in Ceria and Stubbs 
(2006) since asset returns are assumed to be normally distributed. Multiple histori-
cal data sets are used to estimate the random variable of asset returns. The problem 
is formulated as maxx∈X minr x

�r − 𝜆x�Qx s.t. f (r, r̄,Q) ≤ 𝜀 , where r̄ is the estimated 
return, f (.) is a vector-valued function, � is a vector of constants that captures the 
investor’s uncertainty- and ambiguity-aversion. The additional constraint, represent-
ing the confidence interval of the normal assets return, shows that the decision 
maker accepts the possibility of estimation error. Garlappi et  al. (2007) compared 
their results for different f (⋅) selections with the results of the traditional Bayesian 
models and showed that their models are risk-averse while the Bayesian models are 
risk-neutral towards the uncertainty in parameters.

3.1.4  Net‑zero alpha adjustment for the mean‑variance

Scherer (2007) analyzed the results and models of robust estimation error by Ceria 
and Stubbs (2006) and robust mean-variance with box uncertainty set by Tütüncü 
and Koenig (2004) and showed that the results of the robust mean-variance PSP are 
equivalent to the results of the mean-variance PSP with Bayesian shrinkage estima-
tors for the uncertain parameters (for more details about Bayesian shrinkage estima-
tors , see e.g., Lemmer 1981). The RO framework is criticized because it merely 
increases the complexity of the PSP while the solutions of the robust optimiza-
tion, which depends on the choice of uncertainty set, are usually over-conservative. 
A method, referred to as net-zero alpha adjustment, is developed, by which add-
ing a constraint to the uncertainty set ensures that for any downward adjustment in 
the uncertain vector, there is an offsetting upward adjustment. For example, with 
the uncertainty set U = {r = r̄ + 𝜁 ∶ 𝜁 �Σ𝜂 ≤ 1} , where Σ is the covariance matrix 
of estimation errors and � is a deviation vector, the constraint e�� = 0 is added. 
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Gülpınar et al. (2011) applied this method for a cardinality-constrained mean-vari-
ance PSP and found that adding a net-zero alpha adjustment to the ellipsoidal uncer-
tainty set led to less conservative solutions than traditional robust mean-variance 
PSPs.

3.1.5  Distributionally robust mean‑variance

RO is a worst-case approach which assumes that the distribution function of uncer-
tain parameters is unknown. However, partial information about the distribution 
function is often available, enabling less conservative distributionally robust optimi-
zation (DRO) formulations to be used. Several DRO models have been proposed for 
the mean-variance PSP.

Calafiore (2007) developed distributionally robust PSPs where two types of prob-
lems with different risk measures were addressed: the mean-variance PSP, which uses 
the mean and variance, and the mean absolute deviation PSP, which replaces the vari-
ance with the absolute deviation. Let us assume r(1),… , r(T) are T possible scenarios 
for the outcome of random return vector r , and pt is the probability associated to the 
scenario r(t) , where {pt ≥ 0, t = 1,… , T ,

∑T

t=1
pt = 1} . Then, the expected value is 

defined as 𝜇(x, p) = �[r�x] =
∑T

t=1
ptr

�(t)x = (
∑T

t=1
ptr

�(t))x = r̄�(p)x , where 
r̄(p) = �[r] =

∑T

t=1
ptr(t) . A risk measure can be quantified as the variance: 

v(x, p) = �[(r�x − �[r�x])2] = x�Q(p)x , where Q(p) is the covariance matrix of r , and 
Q(p) = �[(r − r̄(p))(r − r̄(p))�] =

∑T

t=1
pt(r(t) − r̄(p))(r(t) − r̄(p))� . Another risk 

measure in this concept is the expected absolute deviation (EAD) 
EDA(x, p) = �[�r�x − E{r�x}�] =

∑T

t=1
pt�r�(t)x − �(x, p)� . By defining � ≥ 0 as a risk 

aversion ratio, then the mean-variance PSP is minx∈X v(x, p) − ��(x, p) , and the PSP 
based on the absolute deviation measure is minx∈X EDA(x, p) − ��(x, p) . A discrep-
ancy-based ambiguity set based on the well-known Kullback-Leibler (KL) divergence, 
which measures the “distance" between a nominal distribution vector (�) and the 
unknown “true" distribution vector (p) is used, defined as KL(p,�) =

∑T

t=1
ptlog

pt

�t
 . 

Then p is only known to lie within KL distance d ≥ 0 from � , 
K(�, d) = {p ∶ KL(p,�) ≤ d} , where K(�, d) is the ambiguity set for the return dis-
tribution. This ambiguity set leads to a SDP formulation for the mean-variance PSP 
that is solvable using interior-point methods. The distributionally robust absolute devi-
ation PSP is convex in the decision variable for any given distribution function. Conse-
quently, a sub-gradient method combined with a proposed cutting plane scheme was 
used to solve the worst-case mean absolute deviation PSP in polynomial-time. Baviera 
and Bianchi (2021) also applied KL divergence in the mean-variance PSP. However, 
unlike Calafiore (2007), they considered continuous distribution functions for the asset 
returns.

A limitation of Calafiore (2007) is that, while the probabilities of scenarios are 
uncertain, the scenarios themselves are assumed to be known with certainty, which 
is not always the case in reality. Pınar and Paç (2014) formulated a semi-deviation 
PSP while considering uncertainty in both asset returns (through an ellipsoidal 
uncertainty sets) and in the distribution function of returns (through a moment-
based ambiguity set). Both single and multi-period cases were considered.
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As Ding et  al. (2018) argued, the Kullback–Leibler (KL) divergence used in 
Calafiore (2007) is a special case of Rényi divergence with order one, hence they 
used it in a more general DRO formulation of the mean-variance PSP. Besides the 
risky assets having a multivariate normal distribution, they considered a risk-free 
asset with a fixed rate of return rf  in their formulation. By allowing short selling and 
using E as a target average return of the portfolio, the problem is formulated as 
minx∈X x

�Qx s.t. x�(r − rf ) ≥ E − rf  . In the nominal case, the empirical distribution, 
obtained from historical data, is used , assuming that p ∼ N(r,Q) . Since there is 
ambiguity about the true distribution of returns, an ambiguity set is constructed that 
contains all distributions within a certain distance, measured using Rényi diver-
gence, from the empirical distribution. Renyi divergence is defined as 
Dr(p,�) =

1

r(r−1)
ln ∫ pr(�)�r−1(�)d�, r ≠ 0, 1 , where �(�) and p(�) are the probabil-

ity density function under measures � and p , respectively. Hence, the final formula-
tion of the distributionally robust PSP is maxx∈X minr,Q x�r − �x�Qx + ��Dr(p,�) . 
Their model was solved in three cases: only the mean return vector is uncertain, only 
the covariance matrix is uncertain, and both are uncertain. It is worth mentioning 
that even though the ambiguity set used in Ding et al. (2018) is more general than 
the KL-divergence, their formulations are special cases from the distribution func-
tion perspective since both the empirical and the true distribution function of the 
asset returns are assumed to be multivariate normal.

3.1.6  Relative robust mean‑variance

Hauser et al. (2013) suggested that some professionals such as investment managers are 
frequently evaluated against their competitors and not on the absolute terms (worst-case 
solutions). The relative RO is the best possible approach to handle this situation where 
a regret function (the distance to the “winner” under the least desirable scenario) is 
used to propose an intractable three-level optimization problem. Hauser et al. (2013) 
incorporated a relative robust formulation into the mean-variance PSP where the regret 
function is RgrtU,B(x) = maxQ∈U lB(x,Q) = maxQ∈U(

√
x�Qx −minb∈B

√
b�Qb) , x is 

the decision variable, Q is the variance-covariance matrix, U is an uncertainty set, and 
B = b1,… , bm ⊆ Rn is the set of benchmarks. To solve the proposed model, a polyno-
mial-time solvable approximation for the inner problem was developed. The formula-
tion of Hauser et al. (2013) does not provide any control over regret value since the 
objective function is a regret function. Hence, Simões et al. (2018) extended a relative 
robust mean-variance PSP when a regret function is a constraint that provides more 
control over the regret value. Moreover, they defined proportional regret as an objective 
function, which is more perceivable by investors. Results show that the regret minimi-
zation seems to provide a greater degree of protection when it is compared to absolute 
robust optimization. Caçador et al. (2021) proposed a new methodology for computing 
relative-robust solutions for mean-variance and minimum variance PSPs. This solution 
methodology is based on a genetic algorithm (GA), allowing the transformation of the 
three-level optimization problem into a bi-level problem.
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3.1.7  Robust minimum variance

In the mean-variance PSP, it is assumed that there is a positive correlation between 
the expected return and the variance, which means more/less risk (variance) results in 
more/less profit (return). However, Baker et  al. (2010) showed that in a long-term 
investment strategy, low-volatility portfolios outperform high-volatility portfolios. 
Consequently, a PSP that minimizes just the variance of the portfolio (i.e., global 
minimum variance portfolio) might have a better performance than the mean-vari-
ance PSP. Maillet et al. (2015) showed that the optimal solution of the global mini-
mum variance portfolio can be calculated by solving a least-square regression while 
the covariance matrix of assets is uncertain. Hence, a robust least-square regression is 
proposed where the uncertainty set is based on the Frobenius norm, leading to a sec-
ond-order cone program (SOCP). Maillet et al. (2015) formulated the nominal global 
minimum variance PSP as minx∈X x

�Q̄Sx , where Q̄S is an estimate of the covariance 
matrix, leading to the closed-form optimal solution x∗ = Q̄−1

S
e

e�Q̄−1
S
e
 . They also showed 

that the optimal solution of this PSP can be computed as x∗ = e

n
−M𝜁∗ , where n is 

the number of stocks, M is an n × (n − 1) matrix having the following properties: 
M�e = 0 and M�M = In−1 , where In−1 is the ( n − 1 ) identity matrix. 𝜁∗ can be calcu-
lated based on the least square regression formulation 𝜁∗ = argmin 𝜁 ||y − X𝜁 ||2 , 
where X = Q̄

1∕2

S
M , and y = Q̄

1∕2

S

e

n
 . Moreover, Q̄1∕2

S
 is calculated from Q̄S = Q̄

1∕2

S
Q̄

1∕2

S
 . 

For the robust PSP, Maillet et al. (2015) assumed that the pair (X, y) is uncertain and 
belongs to a family of matrices (X + ΔX, y + Δy) , where Δ = [ΔX,Δy] is a perturba-
tion matrix while ||Δ||F = ||[ΔX Δy]||F ≤ � is the uncertainty set, ||.||F is the Frobe-
nius norm and � ≥ 0 . Consequently, the robust counterpart of the least square regres-
sion is 𝜁(𝜌) = argmin 𝜁 max||ΔX,Δy||F≤𝜌 ||(y + Δy) − (X + ΔX)𝜁 ||2 . Monte Carlo 
simulation was used to test the robust formulation, showing that it dominates the non-
robust one with respect to weight stability, portfolio variance, and risk-adjusted 
returns. To make the formulation of Maillet et  al. (2015) more practical, Xidonas 
et al. (2017a) augmented it into the cardinality-constrained global minimum variance 
PSP using the approach proposed by Cornuejols and Tütüncü (2006), which uses sce-
narios instead of uncertainty sets to capture parameter uncertainty, making the for-
mulation easier to handle. The problem is formulated as 
minx∈X x

�Qx s.t. L ≤
∑n

j=1
cj ≤ H, cjkmin ≤ xj ≤ cjkmax, ∀j = 1,… , n . Xidonas et al. 

(2017a) defined a set of scenarios, indexed by t ∈ T , that describe the assets’ perfor-
mance, each has an expected return vector rt and a covariance matrix Qt . They also 
defined v2

t

∗ as the minimum variance of a portfolio under scenario t , which is calcu-
lated by solving the classical mean-variance PSP for Q = Qt . The final formulation 
tries to find the optimal solution in the worst-case situation as minx∈X,s s.t. x�Qtx
≤ (1 + s)v2

t

∗
, ∀t ∈ T , L ≤

∑n

j=1
cj ≤ H, cjkmin ≤ xj ≤ cjkmax, ∀j = 1,… , n , where s 

is the relative worst variance aggravation based on the robust solution.
The risk parity or the equal risk contribution is a new asset allocation strategy in 

which all of the underlying assets in the portfolio contribute equally to the risk. It 
has been argued that risk parity results in a superior Sharpe ratio than the mean-var-
iance PSP (see, e.g., DeMiguel et al. 2009). However, inputs of the risk parity for-
mulations are often subject to uncertainty, which leads to sub-optimal solutions. 
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DeMiguel et al. (2009) assumed that �(⋅) is a continuously differentiable convex risk 
measure, and bj are the risk budgets assigned by the investor. The risk budgeting 
problem becomes x∗ = xj

��(x)

�xj
= bj ∀j, x ∈ X , where ��(x)

�xj
 is the marginal risk contri-

bution and xj
��(x)

�xj
 is the risk contribution of asset j , which has the optimal solution 

x∗ =
w∗

e�w∗
 , where w∗ = argmin w≥0{�(w) −

∑n

j=1
bj lnwj} . Kapsos et al. (2018) used 

the variance of the portfolio, which is uncertain and belongs to an uncertainty set 
UQ , to quantify risk. With that, the robust counterpart of the risk budgeting problem 
becomes minx∈X maxQ∈UQ

(x�Qx −
∑n

j=1
ln bjxj) , which is equivalent to 

minw≥0 maxQ∈UQ
(w�Qw −

∑n

j=1
ln bjwj) , where x∗ = w∗

e�w∗
 is a normalization of deci-

sion variables. Kapsos et al. (2018) proposed three robust risk budgeting formula-
tions, for which the covariance matrix of assets belongs to; a discrete uncertainty 
set, a box uncertainty set while the upper bound is a PSD matrix, or a box uncer-
tainty set without restrictions on its bounds. In the last case, the formulation is trans-
formed to a semi-infinite problem that is solvable using an iterative procedure pro-
posed by the authors.

3.1.8  Other extreme cases of the mean‑variance

Worst-case RO is an extreme case, which finds the optimal solution of an optimiza-
tion problem for the worst possible situation. However, this approach is over-con-
servative. The goal of reducing the conservatism of RO solutions can be achieved 
by using other extreme cases than worst-case. Chen and Wei (2019) incorporated 
set order relations of solutions into a multi-objective mean-variance PSP with an 
ellipsoidal uncertainty set to show the relationship between optimization solutions 
and their efficiency by comparing multiple objective function values. These rela-
tions can be interpreted as extreme cases. The first relation, called “upper set less 
ordered relation”, is the best solution for the worst-case situation, which is equiva-
lent to the robust formulation. The second case is “lower set less ordered relation” 
which practically means the best-case solution. Third, “alternative set less ordered 
relation”, is the intersection of the best-case and the worst-case solutions, i.e., 
Xalternative = Xbest-case ∩ Xworst-case . This study assumed that the distributions of asset 
returns are normal. Chen and Zhou (2018), however, argued that practical and theo-
retical evidence shows that the distribution function of asset returns has a fat-tail. 
Hence, they applied the relation structure of Chen and Wei (2019) and the idea of 
other extreme cases in PSP without the normality assumption by using the higher 
moments (skewness and kurtosis) in their formulation. Both Chen and Wei (2019) 
and Chen and Zhou (2018) used a multi-objective particle swarm optimization algo-
rithm to solve other extreme cases of the mean-variance PSP.

Extreme cases (worst-case, best-case, and the intersection of the best-case and the 
worst-case solutions, can be implemented in different market conditions. Bai et al. 
(2019) considered different realizations of the uncertain parameters in different mar-
ket conditions by dividing the market situation into bull market, bear market, and 
steady market. In the bull market condition, it is assumed that the best-case scenario 
will happen, hence a best-case formulation (i.e., min–min or max–max) is used. 
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Conversely, in the bear market condition, it is assumed that the worst-case scenario 
will happen, leading to a typical worst-case RO. In the steady market, an alternative 
scenario, namely the intersection of solutions of the best-case and the worst-case 
scenarios is assumed to happen. In contrast to Chen and Zhou (2018) and Chen and 
Wei (2019), Bai et al. (2019) used a single objective mean-variance PSP.

3.1.9  Robust mean‑variance and regularization

An important criticism of the classical mean-variance PSP is its weak performance 
in out-of-sample data due to overfitting. It also has been shown that, for a large 
number of periods, the classical formulation of the mean-variance PSP amplifies 
the effects of noise, leading to an unstable and unreliable estimate of decision vec-
tors. To reduce these effects, Dai and Wang (2019) proposed a sparse robust for-
mulation for the mean-variance PSP, which places controls on the asset weights 
in the portfolio. The process of adding information to solve an ill-posed problem 
is called regularization. Dai and Wang (2019) defined rs = (r1s, r2s,… , rns) ∈ ℝ

n 
as a vector of asset returns at time s, (s = 1,… , S) . Moreover, �[rs] = r̄ and 
Q = �[(rs − r̄)(rs − r̄)�] are mean vector and covariance matrix, respectively. The 
portfolio variance is x�Qx = �[|x�r̄ − x�rs|2] =

1

S
||x�r̄e − Rx||2

2
 , where R is a matrix 

whose s th row equal to rs . If the expectations are replaced by the sample average, 
then the model can be expressed as a statistical regression, which takes the form 
minx∈X

1

S
||x�r̄e − Rx||2

2
 , where || ⋅ ||2 is the l2 norm. If the size of R is large, then it 

amplifies the effects of noise, leading to an unstable and unreliable estimate of the 
vector x . To overcome this issue, a regularization is applied in the formulation as 
minx∈X(

1

S
||x�r̄e − Rx||2

2
+ 𝜏||x||1

1
) , where � is the parameter for adjusting the relative 

importance of the l1 norm penalty in the objective function. However, this sparse 
formulation does not consider return as an uncertain parameter. Consequently, two 
robust formulations of the mean-variance PSP with box and ellipsoidal uncertainty 
sets are proposed. The results showed that the sparse robust mean-variance PSP has 
better out-of-sample performance than other mean-variance formulations. Lee et al. 
(2020) extended the same concept to a robust sparse cardinality-constrained mean-
variance PSP with ellipsoidal uncertainty set and l2 norm regularization to achieve a 
better control over decision variables. This formulation results in a non-convex NP-
hard problem. Hence, a relaxation to a SDP problem is proposed to make it more 
tractable.

Alternatively, it is possible to prevent the negative impact of noisy inputs by add-
ing restrictions on the estimated parameters instead of restricting the decision vari-
ables. Plachel (2019) used the restricted estimators method with a box uncertainty 
set to derive a robust regularized minimum variance PSP based on the decomposi-
tion of covariance matrix proposed by Laloux et al. (1999). The proposed formula-
tion was tested with the three major turmoils of the financial market (Black Monday, 
the Dotcom Bubble, and the Financial Crisis) and the results showed that the joint 
problem regularization and robustification outperforms the classical non-robust min-
imum variance and the non-regularized minimum variance PSP.
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3.1.10  Robust estimators for the mean‑variance PSP

The classical mean-variance PSP is based on the Gaussian distribution assumption 
of asset returns. Based on historical evidence, Lauprete et al. (2003) showed that the 
returns of assets follow a heavy-tail distribution. Given that the uncertainty associ-
ated with the deviation of actual distribution functions from theoretical distribution 
functions might lead to sub-optimal solutions, they proposed a robust estimation that 
immunizes the estimators against uncertainty. DeMiguel and Nogales (2009) used two 
types of robust estimators (M-estimator and S-estimator) in the mean-variance PSP. 
M-estimator and S-estimator are based on convex symmetric and Tukey’s bi-weight 
loss functions, respectively. The S-estimator has the advantage of not being sensitive 
to data scaling. DeMiguel and Nogales (2009) analyzed the sensitivity of M-portfolios 
and S-portfolios’ (corresponding to M-estimator and S-estimator, respectively) weights 
with respect to the changes in the distribution of the asset returns. Results showed that 
these formulations are more robust than the traditional mean-variance PSP.

3.1.11  Experimental analysis of the robust mean‑variance

Kim et al. (2013b) identified a gap in the literature about the experimental evidence 
of the robust PSP. They analyzed the robust mean-variance PSP with box and ellip-
soidal uncertainty sets. Results showed that weights in the robust mean-variance PSP 
align with assets having a higher correlation with the Fama–French three factors model 
which bets on fundamental factors of assets. Interested readers are refereed to Fama 
and French (2021) for more detail about Fama–French three factors model. Kim et al. 
(2014b) also concluded that robust solutions of the mean-variance PSP depend on 
fundamental factors movements. In another analysis, Kim et al. (2013a) showed that 
robust equity mean-variance portfolios have four advantageous characteristics com-
pared to non-robust mean-variance PSPs: (1) fewer stocks, (2) less exposure to each 
stock (the amount of money that the investor could lose on an investment), (3) higher 
portfolio beta, and (4) large negative correlation between weight and stock beta. Kim 
et al. (2018b) concluded that the robust mean-variance PSP leads to the most efficient 
investment strategies that allocate risk efficiently. Kim et al. (2015) also illustrated that 
the robust approach is the best method for formulating the mean-variance PSP while 
the market switches between multiple states.

Similarly, Schöttle and Werner (2009) analyzed the Markowitz efficient frontier of 
robust mean-variance PSP with ellipsoidal and joint ellipsoidal uncertainty sets. They 
showed that the efficient frontiers of both robust formulations are exactly matched 
with the efficient frontier of the classical mean-variance PSP up to some level of risk. 
This means that the classical mean-variance PSP is already robust without applying 
RO methods. However, the robust mean-variance formulation identifies the unreliable 
upper part of the efficient frontier.

Recently, Yin et al. (2021) proposed a practical guide to robust portfolio optimiza-
tion based on mean-variance formulations. They assumed that asset returns are uncer-
tain and belong to either box or an ellipsoidal uncertainty sets. By using practical exam-
ples, they showed that the robust mean-variance PSP with an ellipsoidal uncertainty set 
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provides a more robust formulation than its corresponding problem with a box uncer-
tainty set.

3.2  Robust mean absolute deviation

Konno and Yamazaki (1991) argued that calculating the covariance matrix in large 
mean-variance PSPs is a challenging task. Hence, they proposed the mean abso-
lute deviation as an alternative volatility-based risk measure that reduces the com-
putational complexity of the covariance matrix. The MAD PSP is formulated as 
minx∈X

1

S

∑S

s=1
�
∑n

j=1
(rjs − rj)xj� s.t.

∑n

j=1
rjxj ≥ EW0 . This formulation can be 

transformed to an LP as minx∈X,y
1

S

∑S

s=1
ys s.t. ys +

∑n

j=1
(rjs − rj)xj ≥ 0, ∀s,

ys −
∑n

j=1
(rjs − rj)xj ≥ 0, ∀s,

∑n

j=1
rjxj ≥ EW0 . Besides being reformable as an LP, 

the MAD PSP has another advantage over the mean-variance PSP of not requiring 
the normality assumption for asset returns. However, MAD penalizes both positive 
and negative deviations equally, though positive deviations are desirable by investors. 
Moreover, in the classical MAD PSP, future asset returns are assumed to be known 
with certainty.

To handle the uncertainty of asset returns in the MAD PSP, Moon and Yao 
(2011) proposed a robust MAD PSP with a budget uncertainty set. However, Li 
et  al. (2016) suggested that classical uncertainty sets do not capture the asymme-
try in asset returns and, instead, proposed a robust MAD PSP with the asymmetric 
uncertainty set first introduced by Chen et al. (2007). Ghahtarani and Najafi (2018) 
developed a robust PSP based on m-MAD, a downside risk measure proposed by 
Michalowski and Ogryczak (2001) that penalizes only negative deviations. Chen 
et al. (2011a) proposed an alternative robust downside risk measure, referred to as 
lower partial moment (LPM), and used it, along with a moment-based ambiguity set, 
for single and multi-stage robust PSP that uses an S-shape value function. An impor-
tant advantage of robust LPM over robust m-MAD is that the former can be used 
also to develop robust VaR/CVaR formulations with moment-based ambiguity sets. 
To avoid the over-conservatism of worst-case approaches, Xidonas et  al. (2017b) 
employed a robust min–max regret approach in a multi-objective PSP. The objec-
tives to be optimized are expected asset returns and MAD. The proposed approach 
results in solutions that do not have to be safe according to the worst realization of 
the parameters, but to the relevant optimum of each scenario.

3.3  Factor‑based portfolio models

Factor-based models are financial models that incorporate factors (macroeconomic, 
fundamental, and statistical) to determine the market equilibrium and calculate the 
required rate of return. Goldfarb and Iyengar (2003) developed a robust factor-based 
model for a PSP where uncertainty is considered by its sources, namely fundamental 
factors. The basic formulation of a factor-based model is r = � + V

�

f + � , where 
� ∈ ℝ

n is the mean returns vector, f ∼ N(0,F) is the vector of the factors that drive 
the market, V ∈ Rm×n is the matrix of the factor loading of n assets, and � ∼ N(0,D) is 
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the vector of the residual returns. Uncertain parameters are the mean return, the fac-
tor loading, and the covariance of residuals that belong to uncertainty sets with upper 
and lower bounds. Goldfarb and Iyengar (2003) defined uncertainty sets for these 
parameters as Ud = {D ∶ D = diag(d), dj ∈ [ d

j
, d̄j], ∀j} , U� = {V ∶ V = V0 +W,

||Wj||g ≤ �j, ∀j} , and Um = {� ∶ � = �0 + �, |�j| ≤ �j, ∀j} , where Wj is the jth col-
umn of W and ��w��g =

√
w�Gw is an elliptic norm of w with respect to G . The return 

on a portfolio x is given by rx = r�x = ��x + f �Vx + ��x ∼ N(x��, x�(V �FV + D)x) . 
Both f  and � are assumed to follow normal distributions, thus rx also follows a nor-
mal distribution. The robust factor-based model is developed based on two alternative 
assumptions. First, uncertainty in the mean is independent of the uncertainty in the 
covariance matrix of returns, which leads to a SOCP. Second, uncertainty in the mean 
depends on the uncertainty in the covariance matrix of the returns, which results in a 
SDP formulation for the worst-case VaR. It should be noted that the uncertainty sets 
in the robust factor-based models of Goldfarb and Iyengar (2003) are separable, lead-
ing to two important drawbacks: the results are conservative, and the robust portfolio 
constructed is not well diversified. Alternatively, Lu (2006) and Lu (2011) proposed 
robust factor-based models with a joint ellipsoidal uncertainty set that can be refor-
mulated as a tractable cone programming problem. Additionally, Ling and Xu (2012) 
developed a robust factor-based model with joint marginal ellipsoidal uncertainty sets 
and options to hedge risks that generates robust portfolios with good wealth growth 
rates even if an extreme event occurs.

An important input to factor-based models is the “factor exposure”, which meas-
ures the reaction of factor-based models to risk factors. Kim et al. (2014c) argued 
that factor-based models are not robust against the uncertainty of risk factors such 
as macroeconomic factors. They proposed a robust factor-based model with an ellip-
soidal uncertainty set that is robust against uncertainty and has the desired level of 
dependency on factor movements. This model manages the total portfolio risk by 
defining a robustness measure and a constraint that restricts the factor exposure of 
robust portfolios. Another evidence to support the use of robust factor-based mod-
els comes from Lutgens and Schotman (2010). They compared the Capital Asset 
Pricing Model (CAPM), the international CAPM, the international Fama, and the 
French factor-based models and showed that robust portfolios of factor models lead 
to better diversified portfolios.

3.4  Robust utility function PSP

Most PSPs are based on the return-risk trade-off concept. However, financial deci-
sions might be made based on a utility function. Popescu (2007) developed a robust 
PSP for the expected utility function (the utility that an entity or aggregate econ-
omy is expected to reach under any number of circumstances) where the distribu-
tion function of asset returns is partially known and belongs to an ambiguity set 
with predetermined mean vector and covariance matrix. Natarajan et al. (2010) also 
proposed a less-complex robust formulation of the expected utility function PSP 
that uses a piecewise-linear concave function to model the investor’s utility. Besides 
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the ambiguity set of Popescu (2007), Natarajan et al. (2010) considered the case in 
which the mean vector and covariance matrix of uncertain parameters belong to box 
uncertainty sets. Ma et al. (2008) incorporated a robust factor model with a concave-
convex utility function to seize the advantages of both approaches. They assumed 
that the mean returns vector, the factor loading covariance, and the residual covari-
ance matrix are uncertain and belong to uncertainty intervals. The robust coun-
terpart turned out to be a parametric quadratic programming problem that can be 
solved explicitly. Biagini and Pınar (2017) proposed a min–max robust utility func-
tion for Merton problem. Merton’s portfolio problem is a well-known PSP problem 
where the investor must choose how much to consume and how allocate the remain-
ing wealth between risky assets and a risk-free asset to maximize expected utility. 
An ellipsoidal uncertainty set is assumed to contain the drift from a compact values 
volatility realization.

4  Robust PSPs with quantile‑based risk measures

This section reviews robust quantile-based PSPs, which include PSPs based on the 
Value at Risk (VaR), Conditional Value at Risk (CVaR), and their extensions with 
worst-case RO, relative RO and distributionally robust optimization (DRO) meth-
ods. Furthermore, the relationship between uncertainty sets and risk measures, 
application of soft robust formulation with risk measures, worst-case CVaR and its 
relationship with the uniform investment strategy, and robust arbitrage pricing the-
ory with worst-case CVaR are also discussed.

VaR is the maximum loss at a specific confidence level. In other words, VaR is 
the quantile of a loss distribution function, which is neither a convex nor coherent 
risk measure. A coherent risk measure is a function that satisfies the properties of 
monotonicity, sub-additivity, homogeneity, and translational invariance which pro-
vide computational advantages for a risk measure (see Artzner et al. 1999 for details 
about coherent risk measures). CVaR is a coherent risk measure that denotes 
expected loss greater than VaR for a specific confidence level. Let f (x, r) be a loss 
function. For a given confidence level � , the Value at Risk is defined as 
VaR�(x) = min{� ∈ ℝ ∶ Ψ(x, �) ≥ �} , where Ψ(x, �) = ∫

f (x,r)≤� p(r)dr . Conditional 
Value at Risk is the expected loss that exceeds VaR�(x) , mathematically defined as 
CVaR�(x) =

1

1−�
∫
f (x,r)≥VaR� (x)

f (x, r)p(r)dr . Rockafellar et  al. (2000) proved that 
CVaR can be formulated as an optimization problem by defining an auxiliary func-
tion F�(x, �) = � +

1

1−�
∫
y∈Rm[f (x, r) − �]+p(r)dr , where [⋅]+ = max{⋅, 0} and 

CVaR�(x) = min�∈R F�(x, �) . They also proved that CVaR can be reformulated as an 
LP when using discrete scenarios for asset returns. An important input to these for-
mulations is p(⋅) , which is often not known or only partially known. Considering the 
ambiguity of p(⋅) leads to worst-case VaR and CVaR formulations.
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4.1  Worst‑case VaR and CVaR

Ghaoui et al. (2003) were the first to propose a tractable reformulation for the worst-case 
VaR, defined as VaRp(x) = min � s.t. sup{ProbΨ(x, �) ≥ �} ≤ � , where 
VaRoptimum

p
= minVaRp(x) s.t. x ∈ X . The distribution function of asset returns is 

assumed to be partially known and belongs to one of the four moment-based ambiguity 
sets: (1) the first two moments (mean vector (r̂) and covariance matrix (Σ) ) of the loss dis-
tribution function are known and fixed. (2) the moments (Σ, r̂) of the loss distribution func-
tion are known to belong to the convex set, assuming that there is a point in U such that 
Σ ≻ 0 . By introducing U+ ∶= {(Σ, r̂) ∈ U|Γ ≻ 0} , the worst-case VaR for this case is for-
mulated as VaRp(x) = sup−r�x s.t. (Σ, r̂) ∈ U+ . (3) polytopic uncertainty set defined as 
the convex hull of the vertices (r̂1,Σ1),… , (r̂l,Σl) . The polytope uncertainty set U is then 
constructed as U = Ur × UΣ , where Ur = Co{r̂1,… r̂l} and UΣ = Co{Σ1,… ,Σl} . By 
assuming that Σi ≻ 0, i = 1,… , l , the worst-case VaR is formulated as 
VaRp(x) = k(𝜀)

√
maxΣ∈UΣ

x�Σx −minr̂∈Ur
r̂�x = max

1≤i≤l k(𝜀)||Σ
1∕2

i
||
2
−min

1≤i≤l r̂
�
ix , 

where k(�) =
√

1−�

�
 . Ghaoui et al. (2003) showed that this formulation can be transformed 

to a SOCP model. (4) componentwise bounds for moments. Ghaoui et al. (2003) also con-
sidered the worst-case VaR when the return of assets in the loss function is based on the 
factor model r = Vf + � , where f  is an m-vector of random factors, � is the residual (unex-
plained) return, and V is an n × m matrix of sensitivities of the returns. The covariance 
matrix of returns is stated as Σ = D + VSV � , where D is the diagonal covariance matrix of 
residuals and S is the covariance matrix of factors. Two cases of parameter certainty are 
considered: uncertainty in the factor’s mean and covariance matrix, and uncertainty in the 
sensitivity matirx. In contrast to Ghaoui et al. (2003), the factor model of Goldfarb and 
Iyengar (2003) assumed that uncertainty in the mean is independent from that of the covar-
iance matrix, leading the expected value of error term of the factor model to be equal to 
zero. This uncertainty structure leads to a SOCP reformulation, compared to the SDP 
reformulation of Ghaoui et al. (2003).

It is argued that the worst-case VaR is unrealistic and conservative. Therefore, 
a way to enforce the worst-case probability distribution to some level of smooth-
ness was proposed by adding a relative entropy constraint (i.e., KL divergence) with 
respect to a given “reference” probability distribution. Whereas Ghaoui et al. (2003) 
assumed that the return of assets follows a Gaussian distribution, Belhajjam et al. 
(2017) argued that the distribution function of return is asymmetric. Hence, extreme 
returns occur more frequently than would be under the normal distribution. Hence, 
they proposed a multivariate extreme Value at Risk (MEVaR) formula based on 
a multivariate minimum return that considers extremums of returns, i.e., the low-
est and highest daily returns. Since there is no guarantee that uncertain parameters 
belong to a symmetric uncertainty set, Natarajan et  al. (2008) applied the asym-
metric uncertainty set introduced by Chen et  al. (2007) to develop a worst-case 
VaR measure. Results show that Asymmetry-Robust VaR (ARVaR) is an approxi-
mation of CVaR. Similar to Ghaoui et al. (2003), Natarajan et al. (2008) assumed 
that asset returns follow a factor model. Moreover, an asymmetric uncertainty set 
for the worst-case VaR leads to a tractable second-order cone program. Another 
less complex method to consider asymmetric uncertainty is to use interval random 



3225

1 3

Robust portfolio selection problems: a comprehensive review  

uncertainty sets. Chen et al. (2011b) developed a worst-case VaR assuming that the 
expected vector and covariance matrix of the returns are uncertain and belong to 
interval random uncertainty sets.

Huang et  al. (2007) demonstrated that the exit time of investment (or the 
investment horizon) which is traditionally assumed to be deterministic, can, in 
reality, depend on market conditions. Consequently, they considered a conditional 
distribution function of the rate of return based on different exit times instead of 
the unconditional distribution function previously used in Ghaoui et  al. (2003). 
Three robust portfolio formulations were proposed: (1) a portfolio formulation 
with componentwise uncertainty on moments of the conditional distribution 
function of exit time. (2) a portfolio formulation with semi-ellipsoidal uncertainty 
set on exit time. (3) moments of the conditional distribution function of exit time 
belonging to a polytope uncertainty set for each exit time. Huang et  al. (2008) 
also assumed that the density function of exit time is only known to belong to an 
ambiguity set that covers all possible exit scenarios. They developed two formu-
lations: a worst-case VaR with no information about exit time, and a formulation 
with partial information about exit time.

Kelly Jr (1956) proposed an investment strategy in the financial market (known 
as Kelly Strategy), which maximizes an expected portfolio growth rate. From 
a mathematical perspective, implementing the Kelly strategy is synonymous 
with solving a multi-period investment strategy, making it amenable to robust 
approaches for handling uncertainty. Rujeerapaiboon et  al. (2016) considered 
Kelly’s strategy under return uncertainty and proposed a formulation that includes 
the constraint ℙ(total portfolio return ≥ �) ≥ 1 − � , where � is an expected total 
portfolio return, and 1 − � is the confidence level. This chance constraint is, sim-
ply, the definition of VaR. In this formulation, the distribution function of asset 
returns is assumed to be uncertain and belongs to the class of moment-based 
ambiguity set introduced in Delage and Ye (2010). This ambiguity set leads to a 
SDP formulation for the worst-case VaR.

As mentioned earlier, VaR has a high computational complexity since it is not con-
vex. Zhu and Fukushima (2009) proposed a PSP that maximizes the worst-case CVaR, 
defined as sup�∈P CVaR�(x) , with three cases of uncertainty set for the probabilities of 
discrete return scenarios: a mixture distribution, a box uncertainty set, and an ellipsoi-
dal uncertainty set. The last case led to a SOCP, whereas the first two cases resulted in 
LPs. A mixture distribution (PM) is defined as � ∈ PM = {

∑I

i=1
�ip

i(⋅) ∶
∑I

i=1
�i = 1,

�i ≥ 0, i = 1,… , I} , which leads to: WCVaR�(x) = min�∈ℝ maxi∈l F
i
�
(x, �) , where 

l = [1,… , I] . The box uncertainty set for probability distribution is defined as 
𝜋 ∈ P

𝛽
𝜋 = {𝜋 ∶ 𝜋 = 𝜋0 + 𝜁 , e

�

𝜁 = 0, 𝜁 ≤ 𝜁 ≤ 𝜁} , whereas the ellipsoidal uncer-
tainty set for probability distribution function is defiend as � ∈ P� = {� ∶ � = �0

+A� , e�A� = 0, �0 + A� ≥ 0 ||� || ≤ 1} , where ��� �� =
√
� ��  and �0 is the nominal 

distribution. Doan et al. (2015) extended the worst-case CVaR formulation of Zhu and 
Fukushima (2009) by proposing a data-driven approach to construct a class of distri-
butions for asset returns, known as Fréchet distributions, that leads to less conservative 
solutions than the worst-case CVaR. Moreover, Hasuike and Mehlawat (2018) incor-
porated the arbitrage pricing theory (APT) model, which is a multi-factor model, in a 
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bi-objective PSP that aims at maximizing the expected return and minimizing the 
worst-case CVaR of a portfolio. Ghahtarani et al. (2018) proposed a robust CVaR for-
mulation by considering the uncertainty of the return distribution’s parameters. They 
proposed a robust mean-CVaR PSP with a chance constraint when asset returns follow 
a Gaussian distribution with uncertain moments. Hellmich and Kassberger (2011), in 
contrast, developed a worst-case CVaR model with asset returns that follows a heavy-
tail multivariate generalized hyperbolic distribution. Their formulation can also cap-
ture the asymmetrical nature of asset returns.

One way to alleviate the over-conservatism of the worst-case VaR/CVaR solu-
tions is to use a data-driven joint ellipsoidal uncertainty set in which the first two 
moments of the distribution function of asset returns are in an ellipsoid norm. Lotfi 
and Zenios (2018) proposed an algorithm for constructing data-driven ambiguity 
sets based on an optimization model to find the centers of joint ellipsoidal uncer-
tainty sets. In another attempt, Liu et al. (2019) used the data-driven moment-based 
ambiguity set introduced in Delage and Ye (2010) to propose a worst-case CVaR 
in both single and multi-period PSPs. In this formulation, for each period there is 
a separate ambiguity set. They demonstrated that a robust counterpart of the multi-
period mean-CVaR PSP can be solved as a sequence of optimization problems based 
on an adaptive robust formulation. Kang et al. (2019) argued that the ambiguity set 
of Delage and Ye (2010) leads to solutions that are too conservative. Therefore, they 
altered it by adding a zero-net adjustment constraint. Huang et al. (2021) proposed 
a distributionally robust mean-CVaR PSP with a moment-based ambiguity set. 
Besides DRO, they used an l1 norm to limit the weights (decision variables) of the, 
so called, sparse PSP to limit the impact of noisy data. Results provide evidence 
that a sparce mean-CVaR PSP has better performance than a non-sparce formula-
tion with respect to net portfolio return, Sharpe ratio, and cumulative return. Moreo-
ver, Zhao et al. (2021) formulated a cardinality-constrained rebalancing worst-case 
CVaR with a moment-based ambiguity set. The proposed formulation enhances the 
portfolio diversification.

Huang et al. (2010) claimed that investors usually do not want to pay the price 
of full robustness to protect their portfolios against the worst possible scenario. In 
an uncertain environment, investors may rather choose a strategy that avoids falling 
behind their competitors. According to this point of view, for each choice of deci-
sion variables and each scenario, the decision-maker compares the resulted objective 
value to the optimal value obtained under model uncertainty described by the sce-
nario. The difference or the ratio of these two values is a regret measure. To minimize 
these regrets measures, Huang et al. (2010) developed a relative CVaR formulation, 
mathematically described as RCVaR�(x) = sup�∈P{CVaR�(x,�) − CVaR�(z

∗(�),�)} , 
where z∗(�) = argmin z∈XCVaR�(z,�) . However, since the true distribution ( � ) is 
not known, decision-makers try to make the relative CVaR as small as possible by 
considering all possible � values. Consequently, a finite number of forecasts for the 
distribution function of asset returns is considered. Results showed that the relative 
CVaR is less conservative than the worst-case CVaR for optimal portfolio return. 
Alternatively, Yu et al. (2017) proposed a relative CVaR and a worst-case CVaR by 
adjusting the required return from a fixed rate to a floating rate that changes accord-
ing to market dynamics. Moreover, the formulation was extended by allowing short 
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sale and adding a transaction cost constraint. Results showed that a relative CVaR 
yields slightly higher realized returns, lower trading costs, and better portfolio diver-
sification than its corresponding worst-case CVaR model when the required return 
is fixed. Additionally, the out-of-sample performance of floating-return models 
compared to fixed-rate models is significantly better during periods when a market 
recovers from a financial crisis. Finally, robust floating-return models have a better 
asset allocation, save transaction costs, and attribute to superior profitability. Benati 
and Conde (2021) proposed a model that minimizes the maximum regret on the 
expected returns while the conditional value-at-risk is bounded under different sce-
nario settings. To solve this problem, a cutting plane approach was proposed.

An investment strategy that is widely used in financial markets is the uniform 
investment strategy or 1∕N rule, which divides the budget among assets equally. 
Pflug et  al. (2012) demonstrated that the uniform investment strategy is the best 
strategy for investment under uncertainty. They proposed robust mean-CVaR and 
mean-variance PSPs where the distribution function of asset returns is uncertain 
and belongs to a Kantorovich or Wasserstein metric-based ambiguity set. Results 
showed that when the size of the Wasserstein ambiguity set is infinity, solutions of 
the robust PSPs are equal to the uniform investment strategy. Hence, the optimal 
investment strategy in a high ambiguity situation is the uniform investment or 1∕N 
rule. However, Pflug et al. (2012) assumed that all assets are subject to uncertainty 
though it is possible to use fixed-income assets with no ambiguity or uncertainty in 
the portfolio. Therefore, Paç and Pınar (2018) extended the robust uniform strategy 
of Pflug et al. (2012) by considering both ambiguous and unambiguous assets. They 
showed that by increasing the ambiguity level, measured by the radius of the ambi-
guity set, the optimal portfolio tends to use equal weights for all assets. Also, high 
levels of ambiguity result in portfolios that avoid ambiguous assets and favor unam-
biguous assets.

Finally, Natarajan et al. (2009) established the relationship between risk measures 
and uncertainty sets. They showed that using an ellipsoidal uncertainty set for asset 
returns corresponds to the classical mean-variance PSP, whereas the CVaR formula-
tion results from using a special polyhedral uncertainty set. As discussed by Ben-Tal 
et al. (2010), in soft robust formulations, a penalty function is introduced such that 
if uncertain parameters fluctuate in the uncertainty set, the penalty function equals 
zero. Otherwise, the penalty function takes a positive value. Recchia and Scutellà 
(2014) proved that the definition of a convex risk measure is also based on a pen-
alty function that is called norm-portfolio models, where using l∞ , l1 , and D-norm 
result in an LP for a norm-portfolio model. On the other hand, using a euclid-
ean norm results in a SOCP, whereas applying a D-norm, proposed by Bertsimas 
et  al. (2004b), for a penalty function with specific parameters leads to the CVaR 
formulation.

4.1.1  Worst‑case CVaR with copula

Classical multivariate distribution functions make the worst-case CVaR com-
putationally complex. One way to address this issue is to use copulas instead of 
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multivariate distribution functions for asset returns. Copulas are multivariate dis-
tribution functions whose one-dimensional margins are uniformly distributed on a 
closed interval [0, 1] . One-dimensional margins of copulas can be replaced by uni-
variate cumulative distributions of random variables. Hence, copulas consider the 
dependency between marginal distributions of random variables instead of focusing 
directly on dependency between random variables themselves. This characteristic 
makes them more flexible than standard distributions, and also an interesting candi-
date for the distribution function of the rate of return in the worst-case CVaR.

Kakouris and Rustem (2014) used Archimedean copulas to propose worst-case 
CVaR PSPs that avoids the shortcomings of worst-case CVaR PSPs based on a 
Gaussian distribution, which is a symmetric distribution for asset returns. There are 
three Archimedean copulas: the Clayton copula, the Gumbel copula, and the Frank 
copula. Kakouris and Rustem (2014) used a heuristic method to estimate copulas’ 
parameters in the context of a multi-asset PSP. However, simulating data from three 
Archimedian copulas has computational challenges. On the other hand, Han et al. 
(2017) claimed that the formulation of Kakouris and Rustem (2014) is static, mak-
ing it unable to deal with the dynamic nature of the financial market. They, instead, 
proposed a dynamic robust PSP with Archimedean copulas by using dynamic con-
ditional correlation (DCC) copulas and copula-GARCH model to forecast the worst-
case CVaR of bi-variate portfolios. Results show that dynamic worst-case CVaR 
models can put more weight on assets with lower volatility, which leads to a less 
aggressive trading strategy.

CVaR calculates the expected loss based on just one confidence level. However, 
decision-makers might prefer different confidence levels based on their risk attitude. 
One way to increase the flexibility of CVaR related to decision-makers’ risk atti-
tude is to use Mixed-CVaR and Mixed Deviation-CVaR. These mixed risk meas-
ures combine CVaRs with different confidence levels. Goel et al. (2019) proposed 
robust Mixed-CVaR and Mixed Deviation-CVaR Stable Tail-Adjusted Return Ratio 
(STARR), which is the portfolio return minus the risk-free rate of return divided by 
the expected tail loss (at a specific confidence level). Finally, a mixture copula set 
was used to consider distribution ambiguity, which resulted in an LP.

4.2  Robust mean‑CVaR/shortfall PSP

Besides the worst-case VaR and CVaR, some researchers developed robust mean-
CVaR PSPs where the distribution function of the loss function is assumed to be 
deterministic while returns of assets or weights of the mixture distribution func-
tion of the rate of return are uncertain. Thus, classical uncertainty sets are used 
to develop robust mean-CVaR PSPs. Quaranta and Zaffaroni (2008) proposed 
a robust mean-CVaR with a box uncertainty set that leads to an LP. Kara et  al. 
(2019) also proposed a robust mean-CVaR PSP with a parallelepiped uncertainty 
set, developed by Özmen et al. (2011). The parallelepiped uncertainty set is prac-
tically a box uncertainty set while its elements are a convex hull of canonical 
vertices of an uncertain matrix. Elements of this uncertainty set are founded by 
the Cartesian product of uncertain intervals. An advantage of a parallelepiped 
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uncertainty set over a box uncertainty set is that the lengths of intervals may vary 
among each other. Moreover, instead of a single price, it is possible to consider 
multiple and flexible varying prices of assets and also take into account likewise 
flexible returns. To reduce the conservatism of solutions of a robust mean-CVaR 
with a box uncertainty set, Guastaroba et  al. (2011) developed a robust mean-
CVaR with ellipsoidal and budget uncertainty sets, which lead to a SOCP and 
an LP, respectively. Besides the uncertainty of parameters, a mean-CVaR PSP 
has a multi-objective characteristic as it maximizes the expected return while 
minimizing the risk (CVaR). Then, a multi-objective formulation can capture the 
multiple-criteria nature of this problem. Rezaie et al. (2015) developed a robust 
bi-objective mean-CVaR PSP with a budget uncertainty set. An ideal and anti-
ideal compromise programming approach was used to solve the proposed prob-
lem. This method seeks an answer as close as possible to the ideal value and as 
far as possible from the anti-ideal value of each objective. Ideal and anti-ideal 
values reflect investors’ perspectives of the real world.

Another development of a robust mean-CVaR is based on mixture distribution 
functions. There are three reasons for using a mixture distribution function for asset 
returns. First, it is a combination of multiple distribution functions, thus enabling 
different market conditions with different distribution functions to be considered. 
Moreover, it replaces the estimation of the distribution function by a calculation of 
the distribution weights in a mixture distribution function. Finally, since any distri-
bution function can be simulated by using a mixture of Gaussian distribution func-
tions, a mixture distribution function has high flexibility. Zhu et al. (2014) used a 
mixture distribution function for asset returns to propose a robust mean-CVaR PSP. 
The uncertainty in their formulation is about the weights of distribution functions. 
For considering the uncertainty, ellipsoidal and box uncertainty sets were used. The 
former leads to a SOCP and the latter results in an LP.

Shortfall is also a quantile risk measure from the family of VaR and CVaR, intro-
duced by Bertsimas et  al. (2004a). Shortfall measures how great an expected loss 
will be if a portfolio return drops below the �-quantile of its distribution. Mathe-
matically, it is defined as S� = �[r�x] − �[r�x | r�x ≤ q�(r

�x)], � ∈ (0, 1) , where q� 
is the �-quantile of the distribution of random portfolio return. Like CVaR, shortfall 
can be reformulated as an LP while asset returns are subject to uncertainty. Later, 
Pachamanova (2006) developed a robust shortfall with an ellipsoidal uncertainty set, 
which can be reformulated as a SOCP. Their results showed that a robust shortfall 
PSP outperforms its nominal problem in the presence of uncertainty in terms of both 
return and risk. Another quantile-based measure is the conditional expectation type 
reward–risk performance measure developed by Ortobelli et al. (2019). This perfor-
mance measure captures the portfolio’s distributional behaviour on the tails. Kouais-
sah (2021) proposed a robust conditional expectation formulation where the asset 
returns are uncertain and belong to an ellipsoidal uncertainty set. Results of this 
robust formulation demonstrated better out-of-sample performance than its nominal 
counterpart.
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5  Multi‑period PSP

Active strategies which involve ongoing buying and selling of assets are preferred 
by many investors. With an active strategy, investors continuously re-balance their 
portfolios by solving multi-period PSPs. In this section, we review applications of 
RO in this class of problems.

5.1  Robust multi‑period PSP

Dantzig and Infanger (1993) proposed one of the most popular multi-period PSPs. 
Three types of decision variables are used in their formulation: xs

j
, ys

j
 and zs

j
 , denot-

ing, respectively, the amounts of asset j at period s the investors hold, buy and sell. 
There are n risky assets and one risk-free asset. The problem is formulated as 
max

∑n+1

j=1
rS
j
xS
j
s.t. xs

j
= rs−1

j
xs−1
j

− ys
j
+ zs

j
, ∀j, s, xs

n+1
= rs−1

n+1
xs−1
n+1

+
∑n

j=1
(1 − Δs

j
)ys

j

−
∑n

j=1
(1 + �s

j
)zs

j
, ys

j
⩾ 0, zs

j
⩾ 0, ∀j, s, xs

j
⩾ 0 , where the objective function maxi-

mizes the total wealth at the final period. The first constraint is for risky assets bal-
ancing, ensuring that the amount of risky assets held at period s equals the amount 
of assets carried forward from the previous period in addition to the net effect of 
transactions in the current period. The second constraint is for risk-free asset balanc-
ing, where (1 − Δs

j
)ys

j
 is the amount of cash investors receive from selling asset j at 

the beginning of the period s , whereas (1 − �s
j
)zs

j
 is the cash investors use to buy 

asset j at the beginning of period s . The uncertain parameters in this formulation are 
asset returns at each period. Ben-Tal et  al. (2000) reformulated this multi-period 
PSP by defining cumulative asset returns Rs

j
= r0

j
rs
j
… rs−1

j
 , which become the new 

uncertain parameters. By considering these cumulative returns, Ben-Tal et al. (2000) 
defined new variables for their formulation as �s

j
=

xs
j

Rs
j

 , �s
j
=

ys
j

Rs
j

 , and � s
j
=

zs
j

Rs
j

 . The final 

formulation becomes max
∑n+1

j=1
RS+1
j

�S
j
s.t. �s

j
= �s−1

j
− �s

j
+ � s

j
, ∀j, s, �s

n+1
= �s−1

n+1

+
∑n

j=1
As

j
�s
j
−
∑n

j=1
Bs

j
� s
j
, ∀s, �s

j
⩾ 0, � s

j
⩾ 0, ∀j, s, �s

j
⩾ 0, ∀j, s , where As

j
= (1 − Δs

j
)

Rs
j

Rs
n+1

 , 

and Bs
j
= (1 − �s

j
)

Rs
j

Rs
n+1

 . Both SP and RO were applied with the last nominal formula-
tion. Interestingly, the RO problem was shown to be less complex than the SP one. 
An ellipsoidal uncertainty set was used in the robust problem, leading to a SOCP. 
Alternatively, Bertsimas and Pachamanova (2008) used a D-norm to define the 
uncertainty set for cumulative asset returns, thus leading to a tractable LP reformula-
tion. To make the problem more appealing for practitioners and to increase its 
robustness against market volatility, Marzban et  al. (2015) included American 
options in the robust formulation of Bertsimas and Pachamanova (2008). However, 
this change led to more conservative solutions in comparison to those of Ben-Tal 
et al. (2000) and Bertsimas and Pachamanova (2008).

Fernandes et al. (2016) added a loss function with a predetermined threshold as 
a constraint to the formulation of Dantzig and Infanger (1993), leading to a problem 
with a terminal wealth objective that requires a one-step-ahead asset return forecast 
as an input. A linear combination of chosen predictors is employed as a mixed-sig-
nals model that uses the last specific number of trading periods to forecast one-step 
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ahead returns. A polyhedral set, constructed as the convex hull of the observed 
returns, is used as a data-driven uncertainty set. The proposed loss constraints adap-
tively generate different polyhedral feasible regions for investors’ asset allocation 
decisions. Results showed that the data-driven problem led to less conservative solu-
tions than classical RO.

To control the downside of losses, the lower partial moment (LPM) can also be 
used, which is more perceivable by investors than other risk measures. Ling et  al. 
(2019) proposed a multi-period PSP similar to that of Dantzig and Infanger (1993) 
based on a downside risk measure with an asymmetrically distributed uncertainty set. 
The objective function combines the expected terminal wealth of the portfolio with its 
LPM. At each period s = 0,… , S , returns are denoted as rs

0
, rs

1
,… , rs

n
 , where rs

0
 is the 

deterministic risk-free return and rs
j
 is the uncertain return of risky asset j. The decision 

variable xs
j
, j = 0,… , n denotes the dollar amount invested in asset j in period s . With 

that, the terminal value of the portfolio is given by wS = xS
0
(1 + rS

0
) + (e + rS)�xS , and 

the objective function is min−�[WT ] + �.�[(� −WT )+] . Rebalancing constraints, 
similar to those used in Dantzig and Infanger (1993), are included.

Risk in a multi-period PSP can also be captured by the volatility of terminal 
wealth using mean-variance multi-period PSPs. Cong and Oosterlee (2017) consid-
ered discrete periods, indexed by s ∈ {0,Δs,… , S − Δs} for investment and denote 
by S the terminal period. Their formulation is based on maximizing the expected 
terminal wealth and minimizing the investment risk, quantified as 
v̂0(W0) = max{x̂s}S−Δss=0

{E[WS|W0] − 𝜆.Q[Ws|W0]} , where v̂ is the value function. In 
this formulation, W is the wealth, which is calculated as Ws+Δs = Ws.(x̂

�
s
re
t
+ rf ),

s = 0, Δs,… , S − Δs , whereas rf  is the return of the risk-free asset and 
re
s
= [re

s
(1),… , re

s
(n)] is the vector of returns of the risky assets during [s, s + Δs] . 

Cong and Oosterlee (2017) argued that solving this problem using dynamic pro-
gramming is difficult because of the non-linearity of conditional variance, so they 
replaced the dynamic mean-variance problem with a dynamic quadratic optimiza-
tion problem. The new formulation is a target-based optimization since the risk aver-
sion coefficient acts similar to an investment target in the problem. Moreover, solv-
ing the dynamic mean-variance PSP based on target-based optimization ensures 
time-inconsistency or “pre-commitment strategy", which means that the investor has 
committed to an initial investment strategy. However, in many cases, investors do 
not want to commit to an initial investment strategy. Therefore, Basak and 
Chabakauri (2010) suggested a time-consistency restriction in the formulation that 
can be solved in a backward recursive manner. Nevertheless, in both cases of pre-
commitment and time-consistency strategies, the mean vector and the covariance 
matrix of returns of risky assets are subject to uncertainty. Hence, Cong and Ooster-
lee (2017) proposed robust pre-commitment and time-consistency strategies where 
stationary and non-stationary formulations generate portfolios with the same Sharpe 
ratio given the risk-free asset as a benchmark. Jiang and Wang (2021) proposed a 
multi-period, multi-objective PSP where the objectives are the expected value and 
variance of the portfolio returns. To consider parameter uncertainty, an ellipsoidal 
uncertainty set is used for asset returns, leading to a SOCP. Moreover, a weighted-
sum approach is used to obtain the Pareto frontier of the solutions.
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Volatility measures can be used to define an arbitrage opportunity, which is a 
portfolio that can be formed with a negative investment while its profit is positive. 
Pinar and Tütüncü (2005) considered n risky assets, where �j is the period-end value 
of $1 invested in asset j at the beginning of the period. They used � = (�1,… , �n) 
as the vector of the end-of-period values, which �̄� is its expected value and Q is 
its covariance matrix. The vector of return is defiend as r = � − e . If � is known 
in advance, a portfolio x that satisfies �̄��

x ≥ 0, x
�

Qx = 0, e
�

x ≤ 0 corresponds 
to an arbitrage opportunity. Since x�Qx = 0 then there is not any deviation in the 
return of assets form their expected values. These conditions mean that there is a 
portfolio that can be formed with a negative investment while its profit is positive. 
In practice x′Qx cannot be equal to zero. An investor can assume that a random 
number is “rarely” less than its mean minus � times of its standard deviation as 
�̄�

�

x − 𝜃
√
x
�
Qx ≥ 0, e

�

x ≤ 0 . Pinar and Tütüncü (2005) demonstrated that these con-
ditions are related to an RO approach with an ellipsoidal uncertainty set. They also 
developed a multi-period PSP formulation by defining a self-financing constraint, in 
which the investment amount in the second period is based on the income of the first 
period. The end-of-period value of $1 invested in an asset at each period is uncertain 
and belong to an ellipsoidal uncertainty set. An adjustable RO approach was used to 
handle uncertainty.

While most robust PSPs are modelled under the assumption that investors are 
perfectly rational beings, Liu et  al. (2015) argued that the rationality assumption 
does not always hold. Studies of behavioral finance have found that the axioms of 
rationality are violated across a range of financial decision-making situations. The 
prospect theory delineates the behavior of investors and asserts that investors value 
gains and losses differently. Liu et  al. (2015) proposed a robust multi-period PSP 
based on the premises of the prospect theory. Instead of classical utility or disutil-
ity functions, an S-shape value function, originally introduced by Kahneman and 
Tversky (2013), is used to model the investor perception towards return. To account 
for uncertainty in cumulative asset returns, a budget uncertainty set whose level of 
conservatism can be controlled is utilized. However, applying the prospect theory 
value function leads to a complex nonlinear programming model that is intractable. 
Therefore, an improved particle swarm optimization (PSO) algorithm was used to 
solve the problem.

Besides the uncertainty of individual asset returns at each period, macroeconomic 
conditions represent another source of uncertainty. Desmettre et al. (2015) proposed 
a formulation for a multi-period investment problem under uncertainty introduced 
by uncertain market crash sizes in an interval. The objective is to maximize the ter-
minal wealth. This problem uses a min–max worst-case scenario formulation that 
can be solved analytically. However, an interval uncertainty set results in over-con-
servative solutions.

Another way to represent the uncertainty of parameters is by using discrete sce-
narios, which often lead to less complex formulations compared to those based on 
continuous uncertainty sets. The next section focuses on the use of discrete scenar-
ios in robust multi-period PSPs.
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5.2  Robust discrete scenarios and decision tree models

Mulvey et al. (1995) developed a robust framework based on discrete scenarios in 
which infeasibility is allowed under some scenarios but is penalized in the objective 
function. Application of this approach to robust multi-period PSPs usually leads to 
less complex formulations than for robust problems that use continuous uncertainty 
sets. Pınar (2007) considered a two-period PSP in which the returns of risky assets 
are uncertain, and used a discrete scenario tree to model uncertainty. In another 
attempt, Oguzsoy and Güven (2007) proposed a robust multi-period PSP with rebal-
ancing and transaction costs. The problem is formulated as an MIP since its decision 
variables are the number of shares. They also developed a scenario-based, multi-
period, mean-variance PSP, in which a decision tree with different levels is used. 
Portfolio rebalancing can happen at any level of the decision tree, and each tree node 
shows different rival scenarios for returns and risk (variance). A min–max formula-
tion is used to find the worst-case robust solution. The robust counterpart consid-
ers risk scenarios at each node, time period and return realization . Since it is very 
unlikely that the worst scenario across all dimensions is realized, this approach leads 
to overly conservative solutions. Conversely, Shen and Zhang (2008) used semi-
variance as a disutility function (i.e., risk measure), which penalizes only negative 
deviations. Both asset returns in each scenario and the conditional probabilities of 
scenarios are treated as uncertain parameters. Ellipsoidal uncertainty sets are for 
returns of assets at each scenario, which leads to a SOCP.

Two-stage stochastic programming is a practical framework for modeling 
uncertainty in optimization problems. In this approach, decision variables are 
divided into “here-and-now” and “wait-and-see” variables. The mathematical for-
mulation of a two-stage stochastic programming is minx∈X c

�x + �[F(x, �(w))] , 
where F(x, �(w)) = min f (w)�y, s.t. A(w)x + Dy = b(w), y ≥ 0 , where x is a 
“here and now” decision variable, y is a “wait and see” decision variable, �(⋅) is 
the expected value, �(w) = (f (w),A(w), b(w)) is the uncertain vectors, and D is the 
fixed recourse matrix. Ling et  al. (2017) argued that because two-stage stochastic 
programming is a risk-neutral approach, it is not suitable for a certain setting, and 
developed a two-stage stochastic program with a mean-risk aversion concept as 
minx∈X c

�x + �[F(x, �(w))] + ��(F(x, �(w))) , where � is a risk measure and � ≥ 0 is a 
trade-off coefficient that captures the risk-aversion attitude of the decision maker. To 
tackle the same problem, Ahmed (2006) used variance as a risk measure, while Ling 
et al. (2017) used CVaR as a risk measure leading to the less complex formulation 
minx∈X c

�x + �[F(x, �(w))] + �CVaR�(F(x, �(w))) . Ling et  al. (2017) assumed that 
asset returns in the first stage belong to a set of scenarios with known probabilities, 
whereas the distribution function of asset returns in the second stage belongs to an 
ambiguity set with uncertainty about the first two moments. This approach results in 
a SDP formulation. Even though using discrete scenarios and a decision tree for a 
multi-period PSPs lead to tractable formulations, identifying all possible scenarios 
might be challenging.
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5.3  Robust regime dependent models

Liu and Chen (2014) argued that stock prices are affected by market conditions, 
which are assumed to follow a Markov regime-switching process. Specifically, in 
each market regime, financial parameters have different distribution functions. An 
approach to deal with parameter uncertainty in different market conditions is by 
using regime-dependent robust formulations. Liu and Chen (2014) described the 
time-varying properties of random returns by using a nonlinear dynamic model 
between periods. They assumed different uncertainty sets for each market situa-
tion. VaR is used as the basic risk measure in the formulation, where the distribu-
tion function of asset returns is uncertain and belongs to a moment-based ambiguity 
set. A restrictive assumption made in this study is that uncertainty sets of adjacent 
periods are independent and static, whereas in reality they usually are dynamic and 
dependent. Liu and Chen (2018) considered dependency of dynamic uncertainty 
sets between adjacent periods in their formulation. Moreover, instead of VaR, they 
used CVaR as the risk measure. Similar to the formulation of Liu and Chen (2014), 
it is assumed that moments of the loss function distribution are known and fixed, 
which leads to a SOCP formulation.

Yu (2016) also applied the regime-switching uncertainty set approach on a 
mean-CVaR PSP where the loss function is assumed to be the difference in wealth 
between times s − 1 and s. This practically means that at each period, there is a dif-
ferent loss function which results in a different CVaR constraint. Because at each 
market state the risk-free rate of return can also change, risky asset returns, risk-free 
asset returns, and the distribution function of the loss function (probability of each 
scenario) are assumed to be uncertain and belong to ellipsoidal uncertainty sets. A 
three-step algorithm is used to find optimal solutions of the multi-period PSP based 
on different market states. An important advantage of this multi-period PSP is that 
it captures both regime-switching and parameter uncertainty simultaneously, leading 
to a more practical formulation than classical robust multi-period PSPs.

5.4  Asset‑liability management problem

Asset Liability Management (ALM) entails the allocation and management of 
assets, equity, interest rate, and credit risk (including risk overlays) to cover the 
commitments (i.e., debts). In this section, we survey applications of RO in ALM 
problems.

Van  Hest and De  Waegenaere (2007) demonstrated that there are two types of 
investment strategies in an ALM problem: passive risk management, and active risk 
management. In the passive strategy, allocation of budget among different bench-
marks such as equity, bonds, real estate etc. is the main decision. In active risk 
management, decisions are about tactical and operational investment activities that 
involve a number of investment managers, each is assigned a specific benchmark 
category. A formulation that calculates the total return of each manager by solving 
a mean-variance PSP based on the calculated expected value and variance of invest-
ment returns is proposed. These parameters are assumed to belong to ellipsoidal 
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uncertainty sets. Practically, this robust ALM problem is a mean-variance PSP while 
the expected return and variance of asset returns belong to uncertainty sets.

Iyengar and Ma (2010) assumed that the source of uncertainty of asset returns are 
fundamental factors. Then, a factor model can capture the true uncertainty of asset 
returns instead of predefined nominal asset returns. Using robust factor models in 
ALM problems can enable the true sources of uncertainty to be captured, leading 
to more realistic formulations with better out-of-sample performance. Iyengar and 
Ma (2010) developed a RO formulation for pension fund management, which is an 
ALM problem with a constraint on funding ratio. This ratio indicates the value of 
assets to the present value of liabilities that are used in a chance constraint, where 
the probability that funding ratio is greater than a threshold should be greater than 
a confidence level. The present value of liabilities depends on the interest rate, 
whereas asset values depend on their rate of return. In the proposed formulation, the 
funding ratio is assumed to be an uncertain parameter that follows a factor model 
by a function that defines stochastic parameters. A Gaussian process for factors of 
uncertain parameters is considered. Parameters of factor models are assumed to 
belong to an ellipsoidal uncertainty set, which results in a SOCP. Platanakis and 
Sutcliffe (2017) proposed a factor model for asset returns and liabilities in which 
factor loading belongs to an ellipsoidal uncertainty set, asset returns and liabilities 
belong to box uncertainty sets, and the covariance matrix of disturbances has upper 
and lower bounds on its elements. It has been shown that this problem can be refor-
mulated into a SOCP.

Gülpinar and Pachamanova (2013) used time-varying investment opportunities 
to propose a robust ALM. This method assumes that a future rate of return of an 
asset depends on its rate of return in a former period. They augmented the multi-
period PSP formulation of Dantzig and Infanger (1993) by adding liabilities and a 
funding ratio constraints. The transformation of Ben-Tal et al. (2000) was also used 
to simplify the formulation, by which the cumulative rates of return of assets are 
the uncertain parameters that belong to an ellipsoidal uncertainty set. Asset returns 
and interest rates are assumed to follow a vector-autoregressive (VAR) process that 
captures the time-varying aspect of investment. Unlike the symmetric uncertainty 
sets assumption in other robust ALM problems, Gülpınar et al. (2016) developed a 
robust ALM problem using asymmetric uncertainty set, which captures the struc-
ture of uncertainty more accurately. Recently, Gajek and Krajewska (2021) proposed 
a robust ALM formulation where the interest rate is uncertain and the distribution 
function of the uncertain parameters belongs to a nonempty ambiguity set. This for-
mulation bounds from above VaR of the change in the portfolio value due to interest 
rate model violation.

5.5  Robust control formulation

Robust control methods are designed to function properly provided that the uncer-
tain parameters or disturbances are contained within some bounded/compact sets. 
Flor and Larsen (2014) developed a robust control formulation for an investment 
PSP. They assumed that an investor has access to stocks, bonds, and cash while 
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interest rates are uncertain. In this formulation, a robust control, time-continuous 
formulation for the uncertainty of interest rate is developed. Results showed that the 
proposed model is more sensitive to the ambiguity about stocks than bonds. This 
problem is time-continuous, thus is formulated using differential equations.

Glasserman and Xu (2013) developed a robust control formulation for a multi-
period PSP based on a factor model that is used to calculate the return of assets 
at the next period. They assumed that the factors are mean reverting and evolving 
and that their value at any time is a function of their previous time value and its 
residual. Two regression models were used. In the first model, a factor model cal-
culates the return of assets at the next period. The second factor model calculates 
factor values at the next period. Sources of uncertainty in this PSP are the residuals 
of the two factor-models. Based on this formulation, the goal is to maximize the 
net present value of risk-adjusted excess gains by considering restricted transaction 
costs. Moreover, models are developed in two cases; finite-horizon investment, and 
infinite-horizon investment. A robust formulation based on the Bellman equation, 
leading to a dynamic programming model, is used. Results showed that the robust 
control formulation of Glasserman and Xu (2013) is more robust than deterministic 
formulations against perturbations of uncertain parameters.

Bo and Capponi (2017) applied a robust control approach for the credit portfolio, 
where the impact of credit risk model misspecification on the optimal investment 
strategies is measured. They proposed a formulation for a dynamic credit portfo-
lio that accounts for robust decision rules against misspecifications of a model for 
the actual default intensity. Default intensity is defined as the probability of default 
for a certain time period conditional on no earlier default. In this formulation, an 
investor can invest in the money market and bonds by a pricing model of bonds that 
considers credit intensity. This portfolio formulation tries to maximize wealth while 
default intensity is uncertain.

6  Other financial problems

In this section, special PSP formulations are reviewed, including Log-robust portfo-
lio selection, robust index tracking, hedging formulation, risk-adjusted Sharpe ratio, 
scenario-based formulation, and robust data envelopment analysis (DEA) for PSPs.

6.1  Log‑robust portfolio selection

Hull (2003) defined the Log-return as the equivalent, continuously-compounded rate 
of return of asset returns over a period of time. Log-return is calculated by taking 
the natural log of the ending stock price divided by the beginning value. It is based 
on a Levy process that represents the movements of a stock price whose successive 
displacements are random, independent, and statistically identical over different 
time intervals of the same length. Assume that Log-return of stock j at time S can be 
described as LnPrj(S)

Prj(0)
= (�j −

�2
j

2
)S + �j

√
Szj , where S is the length of the time hori-
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zon, Prj(0) is the initial price of stock j , Prj(S) is the stock price at time S , �j is the 
drift of the Levy process for stock j , and �j is the standard deviation of the Levy 
process for stock j . Kawas and Thiele (2011a) proposed a Log-robust PSP where the 
scaled deviation belongs to a budget uncertainty set in two cases: correlated and 
uncorrelated assets. Let the uncertainty be represented as 

∑n

j=1
�z̃j� ≤ Γ, �z̃j� ≤ 1, ∀j . 

Then, the robust problem can be formulated as maxx̃ minz̃

∑n

j=1
x̃jPrj(0)exp[(𝜇j −

𝜎2

j

2
)S

+𝜎j

√
Sxz̃j], s.t.

∑n

j=1
�z̃j� ≤ Γ, �z̃j� ≤ 1 ∀j,

∑n

j=1
x̃jPrj(0) = B

0
, x̃j ≥ 0 ∀j , where B0 

is available budget. Kawas and Thiele (2011a) transformed this formulation into an 
LP. They also considered a PSP with correlated assets, where 
Ln

Prj(S)

Prj(0)
= (�j −

�2
j

2
)T +

√
SZj , where Z has normal distribution with mean 0 and 

covariance matrix Q . They defined Y = Q
−1

2 Z , where Y ∼ N(0, I) . Kawas and Thiele 
(2011a) proposed a tracktable robust counterpart in the case correlated assets. 
Kawas and Thiele (2011b) extended the Log-robust PSP by allowing short selling, 
whereas Pae and Sabbaghi (2014) added a transaction cost constraint to make the 
formulation more realistic. Instead of using predefined uncertainty sets, Kawas and 
Thiele (2017) proposed a data-driven Log-robust PSPs for two cases, correlated and 
uncorrelated assets. In both cases, they optimized the worst-case PSP over the worst 
of finitely many polyhedral uncertainties sets using different estimation methods. 
Consequently, both the uncertainty of parameters and the ambiguity of uncertainty 
sets are considered. However, the robust formulations are based on the worst-case 
perspective and the solutions are still over-conservative. In contrast, Lim et  al. 
(2012) proposed a relative robust log-return PSP which is less conservative than the 
worst-case Log-robust PSP, yet harder to solve.

Gülpinar et al. (2014) studied the robust PSP under supply disruption in the petro-
leum markets based on Log-return. They proposed a framework for portfolio man-
agement with a combination of commodities and stocks when the supply of com-
modities is uncertain. A geometric mean-reverting jump process is considered for 
prices to model the jumps (i.e., large discrete movements). Both symmetric (ellip-
soidal, and D-norm uncertainty sets) and asymmetric uncertainty sets for uncertain 
parameters are used. Results show that the D-norm uncertainty set leads to more 
extreme portfolio allocations with less diversification than the ellipsoidal and asym-
metric uncertainty sets. Moreover, the asymmetric uncertainty set with a high price 
of robustness results in a high level of diversification.

6.2  Index‑tracking portfolio selection

Index tracking is a passive investment strategy where a portfolio is formed to follow an 
index benchmark. Hence, a logical index-tracking portfolio includes all stocks under 
an index based on their value weights. However, the need for frequent re-balancing 
transactions to closely track the index might lead to high transaction costs. Therefore, 
decision-makers might try to find the best possible combination of assets that follows a 
benchmark index with the lowest possible transaction cost, while also accounting for 
parameter uncertainty. Costa and Paiva (2002) developed two robust index-tracking 
PSPs where the return vector and the covariance matrix of risky assets are uncertain 
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and belong to polytope uncertainty sets. Practically, the variance of tracking error (i.e., 
the difference in actual performance between a portfolio and its corresponding bench-
mark) is used to capture the volatility of tracking error, leading to a quadratic program-
ming (QP) formulation. In this formulation, the return of a given portfolio x is calcu-
lated as x�r + (1 − x�)rf  , whereas the return of the benchmark portfolio (index), 
denoted by xB , is calculated as x�

B
r + (1 − x�

B
)rf  . With that, the tracking error is calcu-

lated as tr(x) = (x − xB)
�r + (xB − x)�rf  , and the expected value and the variance of 

tracking error are 𝜌𝜑(x) = (x − xB)
�r + (xB − x)�rf = (x − xB)

�(r̂ − rf ) , and 
�2
Q
(x) = (x − xB)

�Q(x − xB) , respectively. Hence, the problem is formulated as 
minx∈X �2

Q
(x) s.t. ��(x) ≥ E , where E is the minimum acceptable target for the 

expected value of tracking error. Costa and Paiva (2002) assumed that r , rf  , and Q are 
not exactly known. Thus, they defined a set of all possible matrices 

Φ ∈ Con[Φ1,… ,Φn] where Φ =

(
Q r

0 rf

)
 and showed that the robust index tracking 

formulation can be transformed to a tractable formulation by using a linear matrix ine-
quality. However, estimating the covariance matrix is computationally expensive in 
large problems. Hence, instead of the variance of tracking error, Chen and Kwon 
(2012) proposed a robust similarity measure that measures pairwise similarities 
between the assets and the targeted index, with a budget uncertainty set. Moreover, a 
cardinality constraint is used to limit the number of assets in the optimal portfolio, 
leading to a MIP.

The aforementioned robust index-tracking PSPs ignore the distribution function 
of asset returns. Alternatively, one can use partial information about the distribu-
tion of asset returns based on historical data. Ling et al. (2014) developed a distri-
butionally robust downside risk measure formulation for index-tracking PSPs with 
a moment-based ambiguity set in two cases: (1) the first two moments (mean and 
covariance) are known and fixed, (2) the first two moments belong to ellipsoidal and 
polyhedral uncertainty sets, respectively. Results demonstrate that the distribution-
ally robust index-tracking PSP provides less conservative solutions than classical 
robust index-tracking PSPs.

6.3  Robust hedging

Hedging means an investment position intended to offset potential losses or gains 
that may be incurred by a companion investment. Options are important financial 
tools used for Hedging risk. An option is the opportunity, but not the obligation, for 
buying or selling underlying assets. Lutgens et al. (2006) used options to propose 
a RO formulation for hedging risk in two cases: a single stock and an option, and 
multiple assets and options. In the former case, they optimized the expected return 
while assuming that asset returns belongs to a discrete (scenario-based) uncertainty 
set. This formulation led to a max–min problem with a nonlinear inner optimization 
problem. In the second case, they assumed that the return vector belongs to an N
-dimensional ellipsoidal uncertainty set, which results in a SOCP.

Gülpınar and Çanakoḡlu (2017) used weather derivatives in a PSP in which 
CVaR is the risk measure. Weather derivatives are traded as financial instruments 
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between two parties. The seller agrees to bear the risk for a premium and makes a 
profit if nothing happens. However, if the weather turns out to be bad, then the buyer 
claims the agreed amount. The price of this specific derivative is a function of the 
weather. Gülpınar and Çanakoḡlu (2017) suggested a spatial temperature modeling 
where the correlation between the locations of weather derivatives under considera-
tion are explicitly taken into account. Both symmetric (ellipsoidal) and asymmet-
ric uncertainty sets are used to develop robust counterparts. Experimental results 
showed that a robust model with weather derivatives has better performance in the 
worst-case analysis.

6.4  Robust Sharpe and omega ratio

The Sharpe ratio (SR) is defined as a ratio of the expected excess return over the 
risk-free rate to the standard deviation of the excess return. However, parameters 
of the Sharpe ratio are subject to uncertainty. In practice, an estimate of the Sharpe 
ratio is used in optimization problems. To mitigate the estimations error, Deng 
et al. (2013) proposed a robust risk-adjusted Sharpe ratio and a robust VaR-adjusted 
Sharpe ratio (VaRSR), defined as the lowest Sharpe ratio consistent with the data in 
the observation period for a given confidence level. Based on the normality assump-
tion of asset returns, Zymler et al. (2011) argued that an uncertainty set for a Sharpe 
ratio can take the form of an ellipse with exogenous parameters. They then showed 
that in one dimension, the uncertainty set is an interval where the inner-optimization 
solution in the robust formulation of a Sharpe ratio is exactly equal to a risk-adjusted 
Sharpe ratio. Results showed that VaRSR is more robust than SR when the return 
distribution is non-normal.

Maximizing Sharpe ratio is an important performance measures in PSPs. How-
ever, PSPs are prone to estimation errors and optimization amplifies estimation 
errors, resulting in portfolios with poor out-of-sample performance. One way to deal 
with this drawback is combination portfolios. Here, the portfolio is a linear combi-
nation of two or more prespecified portfolios. A proper combination can improve 
Sharpe ratio of the portfolio. Chakrabarti (2021) proposed a combination of robust 
minimum-variance and maximum Sharpe ratio based on a robust regret-minimiz-
ing portfolio. They used box uncertainty sets for the asset returns and the covari-
ance matrix. Finally, each portfolio is scored based on its worst-case regret and the 
optimal portfolio is the one with the smallest worst-case regret. Results showed that 
this portfolio is relatively close to the optimal combination portfolio for the actual 
parameter values.

Omega, an important ratio in finance proposed by Keating and Shadwick (2002), is 
the ratio of risk to return, assuming there is a predetermined threshold that partitions 
the returns into losses and gains. This ratio is an alternative to the Sharpe ratio and 
is based on information the Sharpe ratio discards. In practice, Sharpe ratio considers 
only the first two moments of the return distribution while Omega ratio considers all 
moments. Kapsos et al. (2014b) showed that the Omega ratio can be represented into 
an LP. Kapsos et  al. (2014a) introduced the worst-case Omega ratio (WCOR) when 
distribution functions of asset returns are partially known and belong to three different 
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ambiguity sets. First, the underlying distribution is a mixture distribution with known 
continuous mixture components but unknown mixture weights. The second ambiguity 
set encompasses all possible distributions supported on a discrete set of scenarios. The 
third one uses box and ellipsoidal uncertainty sets for the probabilities of scenarios. 
Even though the Omega ratio considers both losses and gains, Sharma et  al. (2017) 
argued that this approach is too sensitive to threshold used. Moreover, there is not any 
systematic way to specify this threshold. The formulation in Ghahtarani et al. (2019) 
uses the fundamental value of an asset as a threshold of the Omega ratio, which pro-
tects the portfolio against bubble conditions in the market. Sharma et al. (2017) rede-
fined the Omega ratio by using a loss function instead of the return. Hence, it mini-
mizes losses greater than a threshold and maximizes losses less than the same threshold 
when CVaR is used as the threshold. Furthermore, they developed a distributionally 
robust Omega-CVaR optimization formulation in which the probability of each sce-
nario of the loss function is uncertain and belongs to three uncertainty sets: a mixed 
uncertainty set, a box uncertainty set, and an ellipsoidal uncertainty set. The first two 
uncertainty sets lead to LPs, whereas the last one results in a SOCP. Yu et al. (2019) 
compared results of the worst-case Omega ratio to those of the worst-case CVaR and 
relative CVaR formulations while adding transaction costs constraint and allowing 
short selling. Results show that the worst-case Omega portfolio yields lower loss values 
and higher market values compared to CVaR-based models under various confidence 
levels. Georgantas et al. (2021) also compared the robust Omega ratio PSP proposed 
by Kapsos et  al. (2014a) to the robust mean-variance PSP with box and ellipsoidal 
uncertainty sets and the robust CVaR PSP proposed by Zhu and Fukushima (2009). 
Results showed that robust PSPs are less diversified than their nominal counterparts. 
However, improvements were observed in the portfolio performance. Another compari-
son in this context has been done by Sehgal and Mehra (2021). They compared PSPs 
based on robust Omega ratio, semi-mean absolute deviation ratio, and weighted stable 
tail adjusted return ratio (STARR) with their non-robust counterparts. In these formu-
lations, a budgeted uncertainty set is used for asset returns. Results showed that the 
robust formulations outperform the nominal problems with respect to standard devia-
tion, value at risk (VaR), conditional value at risk (CVaR), Sharpe ratio, and stable tail 
adjusted return ratio (STARR).

Sharpe and Omega ratios are based on the absolute volatility of assets. However, 
some investors make decisions based on the volatility of an asset compared to the mar-
ket and not on the absolute volatility itself. Beta is a measure of volatility that indi-
cates whether an asset is more or less volatile compared to the market. Hence, Beta 
can be used as a decision criteria to capture the volatility of an asset compared to the 
market. A asset’s Beta is calculated by dividing the product of the covariance of the 
asset returns and the market returns by the variance of the market returns over a speci-
fied period. However, this measure is subject to uncertainty since all components of the 
Beta formula are uncertain parameters. Ghahtarani and Najafi (2013) proposed a robust 
multi-objective PSP where the objectives are the portfolio rate of return and its sys-
tematic risk (Beta). A budget uncertainty set to model the uncertainty of Beta is used. 
The problem is reformulated as a tractable goal program. Results show that portfolios 
selected based on the robust Beta outperform non-robust Beta portfolios in terms of 
weight stability and return volatility.
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6.5  Robust scenario‑based formulation

Unlike Sect. 5.2 that reviews scenario-based formulations of multi-period PSPs, this 
section focuses on the use of discrete scenarios to represent uncertainty in single-
period PSPs. Kouvelis and Yu (1997) proposed a robust formulation for a discrete 
scenario-based uncertainty set. It optimizes an objective function based on the worst 
possible scenario, which leads to the worst-case conservative results. Roy (2010) 
proposed a new definition for robust scenario-based solutions in which a solution is 
robust if it exhibits good performance in most scenarios without ever exhibiting very 
poor performance in any scenario. Then, they developed bw-robustness, by taking 
into consideration minimum acceptable objective value and a target objective value 
to achieve, or exceed if possible. Gabrel et al. (2018) developed a robust scenario-
based PSP by using both worst-case scenario and bw-robustness to maximize a port-
folio’s return while returns of assets belong to a discrete scenario-based uncertainty 
set. Moreover, they introduced a new robustness criterion called pw-robustness, in 
which instead of maximizing a proportion of scenarios that their values are greater 
than or equal to a threshold, the decision-maker specifies a fixed proportion of sce-
narios, and maximizes the value of the soft bound. The pw-robustness formulation 
is a MIP. To circumvent the computational time issue, Gabrel et al. (2018) proposed 
two heuristic methods that can be used to obtain quick solutions for problems of 
large sizes.

Some investors might invest based on their preferences of assets, where ranking 
information of assets are uncertain. Nguyen and Lo (2012) proposed a robust rank-
ing mean-variance, which is similar to the classical mean-variance. However, the 
ranking of assets is used instead of the return of assets. Formulations were devel-
oped in two cases: the maximum ranking with and without risk (variance). The 
ranking of assets belongs to a discrete uncertainty set, which leads to a MIP solved 
by a constraint generation method.

6.6  Robust data envelopment analysis and portfolio selection

One way for evaluating stocks or assets in the financial markets is data envelopment 
analysis (DEA), in which the efficiency of stocks or assets is evaluated based on a 
set of inputs and outputs (criteria). Based on this method, units (assets or stocks) are 
divided into two parts: efficient, and inefficient. Consequently, DEA calculates the 
efficacy rate of units. Peykani et al. (2016) demonstrated that the efficiency of stocks 
in DEA depends on inputs and outputs, which are uncertain. Consequently, they pro-
posed robust DEA with a budget uncertainty set. Results of robust DEA are more 
robust than a non-robust DEA formulation with respect to the efficiency of stocks. 
However, their formulations can be used only for continuous uncertainty sets. Pey-
kani et al. (2019) developed a robust DEA for a discrete scenario formulation with 
uncertainty, which expands the application of robust DEA to financial problems 
in the real-world. However, these robust DEA formulations provide the efficiency 
ratio without any detail about the amount of money invested in each asset while an 
investor needs to know the proportion of investment of funds invested in each asset. 
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Peykani et al. (2020) proposed a two-phase portfolio selection process. At the first 
stage, the efficiency of candidate stocks is evaluated by robust DEA. In the second 
stage, the optimal portfolio is formed by using robust mean-semi variance-liquidity 
and robust mean-absolute deviation-liquidity models. In both phases, budget uncer-
tainty sets are used for the uncertain parameters. This two-phase formulation pro-
vides two filters (robust DEA, and robust PSP) to find the optimal portfolio.

Table 2 lists all the reviewed articles ( n = 142 ) in a chronological order and clas-
sifies them based on the problem type (PSP), uncertain parameters (UP), the struc-
ture of uncertainty or ambiguity sets used in the robust formulation (U/A set), the 
robust optimization method employed to deal with uncertainty (RO method) and the 
class of the tractably reformulated problem (Model).

Moreover, figures provide some statistics about the reviewed papers.
Figures 4 and 5 show that %26 of published articles used mean-variance and %23 

of published articles proposed robust VaR/CVaR formulations. Moreover, majority 
of robust PSPs leads to SOCP, and LP. The third robust counterpart type is NLP 
with %19. Figures 6 and 7 show that %46 of published articles consider asset return 
as uncertain parameters. Another important classification of articles is based on type 
of uncertainty set. This figure also shows the distribution of uncertainty sets in pub-
lished articles. It demonstrates that about %55 of articles use classical uncertainty 
sets include box, ellipsoidal, budgeted, and polyhedral. Figure 8 illustrates the distri-
bution of RO methods in published articles. This figure shows that mostly classical 
RO and DRO are used in articles.

7  Conclusions and future research directions

Portfolio selection has been a fertile area for applying modern RO techniques as 
evident by the large number of robust PSP articles published in the last two dec-
ades. The inherent uncertainty about future asset returns, the abundance of public 
data available and the risk-averse nature of most investors make RO an appeal-
ing approach in this area. As shown in this review paper, a wide range of robust 
PSP variants was studied, from a “plain vanilla” single-period, mean-variance PSP 
with a simple box uncertainty set (e.g., Tütüncü and Koenig (2004)) to formula-
tions that consider advanced risk measures (e.g., Ghahtarani et  al. 2018; Huang 
et  al. 2010), adaptive uncertainty sets (e.g., Yu 2016), real-life investment strate-
gies (e.g., Pflug et al. 2012; Paç and Pınar 2018) and dynamic portfolio balancing 
(e.g., Ling et al. 2019; Cong and Oosterlee 2017). This variety of modeling assump-
tions and approaches and the overlaps among them make it difficult to develop a 
unifying framework for robust PSPs, yet we adopted a multi-dimensional classifica-
tion scheme that depends on the risk measure to be optimized, the type of uncertain 
parameters, the approach used to capture uncertainty and the the planning horizon 
(i.e., single- vs. multi-period).

Despite the surge of interest about robust PSPs in the research community, this 
area has received little attention from practitioners. A possible reason for such a 
rift between theory and practice is that research in this area was often driven by 
advancements in operations research methods rather than being in response to the 
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Fig. 4  Distribution of articles based on PSP type

Fig. 5  Distribution of articles based on optimization problem types
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real needs of the financial industry. Moreover, the value of using robust approaches 
might not be readily apparent to practitioners who are accustomed to classical PSP 
models. Therefore, experimental studies, like those presented in Kim et al. (2013b), 
Kim et al. (2014b), Kim et al. (2013a), Kim et al. (2018b), Kim et al. (2015), and 
Schöttle and Werner (2009), are crucial for bridging this gap. The fact that tractable 

Fig. 6  Distribution of articles based on uncertain parameters

Fig. 7  Distribution of articles based on uncertainty sets
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reformulations of most robust counterparts are more complex, both conceptually 
and computationally, than their corresponding deterministic formulations might 
make robust reformulations less attractive for practitioners (e.g., Kouvelis and Yu 
1997; Hauser et al. 2013; Simões et al. 2018; Lim et al. 2012; Huang et al. 2010).

Nevertheless, the perception of robust optimization as an overly conservative 
portfolio selection approach is probably the major obstacle to its wide adoption by 
investment professionals. The reader can easily notice that this issue has received 
a lot of attention in the robust PSP research. Approaches proposed in the literature 
to attenuate the conservatism of robust formulations include: using controllable 
uncertainty sets [e.g., ellipsoid (Fabozzi et  al. 2007) or budget (Liu et  al. 2015)], 
data-driven approaches (e.g., Doan et  al. 2015; Bienstock 2007), alternative risk 
measures [e.g., relative log-return (Lim et al. 2012) or (Huang et al. 2010)], distri-
butionally robust optimization (e.g., Ling et al. 2014) and regime-dependent robust 
models (e.g., Liu and Chen 2014; Yu 2016). While these approached can be effec-
tive in controlling conservatism and providing well-balanced solutions, they often 
lead to models that are challenging to handle.

Given that asset returns do not generally behave like independent random vari-
ables, but are instead dependent on common factors and have significant temporal 
correlations, trying to capture the variability of returns directly often leads to large 
uncertainty sets and hence conservative solutions. Instead, robust factor models 
deals with the uncertainty in the independent factors themselves, thus lead less con-
servative formulations. However, as Lu (2006) noted, selecting the suitable factors 
for the model and adjusting their weights are still worthy of further investigation. 

Fig. 8  Distribution of articles based on RO methods
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Another promising direction is to use dynamic uncertainty sets, that incorporate 
time-series models to capture auto-correlations in asset returns. Dynamic sets have 
been shown to result in less pessimistic solutions compared to static ones in other 
applications (Lorca and Sun 2014, 2016).

An important advantage of financial markets is the abundance of historical data 
that can be used to build uncertainty and ambiguity sets for uncertain parameters. 
Although data-driven robust formulations for a few variants of the PSP have been 
proposed in the literature (e.g., Bienstock 2007; Kawas and Thiele 2017; Rujeera-
paiboon et al. 2016; Doan et al. 2015; Lotfi and Zenios 2018; Liu et al. 2019; Kang 
et al. 2019), this is still a promising area for future research given the recently-pro-
posed techniques for constructing and sizing uncertainty sets to achieve desirable 
properties (see e.g., Bertsimas and Brown 2009; Bertsimas et al. 2018). In a related 
matter, and as noted by Kang et al. (2019) in the context of robust CVaR optimiza-
tion, it is still unclear which ambiguity sets should be used for DRO PSPs and how 
they should be sized to provide the best out-of-sample performance. With the pleth-
ora of ambiguity set structures proposed in recent year, investigating new variants of 
the distributionally robust PSPs is a plausible research direction.

Another promising research direction is the application of “soft” robust optimiza-
tion methods to financial problems. A drawback of classical robust optimization is 
that it tries to capture most possible realizations of the parameters within the uncer-
tainty set, which usually results in large sets and conservative solutions. Alterna-
tively, one can construct smaller uncertainty sets that include only a subset of these 
possible realization and allow robust constraints to be violated, yet with penalties. 
Examples of these approaches include Globalized Robust Optimization (Ben-Tal 
et al. 2017), Robustness Optimization (Long et al. 2019) and Almost Robust Opti-
mization (Baron et  al. 2019). Soft robust optimization methods are still scarcely 
applied in the PSP literature (see Recchia and Scutellà 2014), but have the potential 
for providing a trade-off between robustness and the quality of solutions.
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