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Abstract
This paper develops scenario-based stochastic optimization model to choose optimal 
policies for the integrated deployment of local urban relief teams in the early after-
math of sudden-onset mass casualty incidents. The deployment of local relief teams 
in an urban area with several affected sites, allocation of casualties to casualty treat-
ment centres, and assignment of medical teams to casualty treatment centres and tri-
age groups are simultaneously determined. Seven strategies under “streaming” and 
“pooling” groups of treatment strategies are linked to the activity of relief teams. 
Based on realistic data, our model is analysed for 1750 random samples of the disas-
ter field and 35 instances of a hypothetical earthquake. The results show the integra-
tion of SAR and on-field treatment operations can increase the number of survivors. 
The robust model results in a less number of survivors because it tries to maintain 
the optimal solution under given scenarios close to its expected value.
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1 Introduction

Statistics show that frequency and magnitude of natural and man-made disasters/
mass casualty incidents (MCIs), are increasing all over the world over time (Gupta 
et al. 2016). The vulnerability of societies to disastrous events, particularly in terms 
of fatalities and injuries, is increasing as a result of urbanization and population 
growth. The situation may worsen in the case of sudden-onset disasters that happen 
with short notice or without warning. This fact is evident in the number of casualties 
and fatalities in recent severe earthquakes in Japan (Tōhoku, 2011), Nepal (Gorkha, 
2015), Chile (Illapel, 2015), Iran (Sarpol-e Zahab, 2017), and Indonesia (2018) 
(Doocy et al. 2013). The same trend is observed for man-made disasters, particularly 
urban terrorism, in London (2005), Boston (2013), and Syria (2018). These tragic 
events urge the necessity for better decision making on the coordination and alloca-
tion of relief resources during the response phase of MCIs (D’Andrea et al. 2013), 
comprising operations such as evacuation, debris clearing, resource dispatching, and 
casualty management (Çelik et al. 2015). As an attempt to improve the situation, this 
research focuses on casualty management. More specifically, it studies the problem 
of deploying the limited number of urban search and rescue (USAR1) and medical 
teams (known as relief teams) in the first hours after the occurrence of a sudden-
onset MCI to increase the expected number of survivors (ENS). The relief teams, 
introduced below, play important roles in casualty management right after MCIs.

USAR teams USAR teams, supported by national agencies like Red Cross, Red 
Crescent, and governmental emergency management, consist of specially-trained 
personnel, supplied with heavy and light rescue equipment (Alexander 2002; Chen 
and Miller-Hooks 2012). Teir responsibility is to find casualties, extricate the 
trapped ones, and transfer them to the nearby casualty treatment stations (CTSs). 
The first day, particularly the first hours after a disaster, plays a vital role in search 
and rescue (SAR) operations. For example, in the 1980 earthquake in southern Italy, 
94% of people were rescued during the first 24  h (McGuigan et  al. 2002); in the 
1976 earthquake in Tangshan (China), 81% of the affected people were rescued in 
the first day (Olson and Olson 1987).

Medical teams A medical team, dispatched from hospitals/medical centres, con-
sists of health professionals (physician, nurse, paramedic, etc.) who provide emer-
gency care services like on-field triage and treatment for serious casualties in the 
scene of disaster. Affected people in a disaster field are usually divided into four tri-
age groups: red (immediate), yellow (observation), green (wait, walking wounded) 
and black (expectant, deceased). Casualties in red triage group require immediate 
life-saving procedures whereas yellow-group ones need surgical or medical inter-
vention within the next 2–4 h (Smith and Wallis 2012).

When an urban area is struck by a sudden-onset MCI of high magnitude like 
earthquake, many people, trapped in affected sites of municipal districts, will be 
in need of extrication and emergency care services. Yet, in such situations, local 

1 It was previously used by other scholars such as Chen and Miller-Hooks (2012).
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authorities usually do not have sufficient number of relief teams to fulfil the shocked 
post-disaster demands. Therefore, secondary relief teams from national and some-
times international organizations are called. But, it usually takes a relatively long 
time for them to arrive at the affected sites. Therefore, the efficient management of 
the limited local relief teams in the first post-disaster hours is a very challenging 
task (Rodriguez-Espindola et al. 2018).

Coordination is a challenge in the response phase of disasters (Bahadori et  al. 
2015). In the 2003 earthquake in Bam, Iran, lack of coordination among responder 
units in SAR operations resulted in a large number of deaths (Ramezankhani and 
Najafiyazdi 2008). Rodriguez-Espindola et  al. (2018) emphasized the necessity of 
coordination among prepositioning, allocation and distribution of relief resources. 
They stated that Operations Research (OR) and optimization methods could provide 
a support to increase coordination in response operations.

SAR and on-field treatment are two sequential inter-related activities of casualty 
management. Therefore, the deployment of both USAR and medical teams should 
simultaneously be addressed for increasing the number of rescued casualties. More-
over, because of the inherent dynamics in post-disaster conditions, choosing the best 
policy to deploy relief teams is not straightforward and must frequently be altered 
based on the last updated data. Hence, our purpose is to recommend the best poli-
cies for deploying local relief teams right after a sudden-onset MCI when the time is 
scarce. Here, policy means a set of allocation decisions on relief teams and casual-
ties corresponding to a given treatment strategy. Moreover, our objective is to opti-
mize the number of survivors which is considered to be the most important aim in 
casualty management operations (Wilson et al. 2013; Farahani et al. 2020).

The paper is organized as follows. In Sect.  2, the relevant body of literature is 
reviewed. Section  3 describes the research problem. In Sect.  4, we formulate the 
stochastic optimization models and robust models. Section 5 explains the details of 
secondary data for our statistical analysis. In Sect. 6, we present a numerical analy-
sis and some managerial implications, based on i) the 50 randomly generated test 
problems and ii) primary and secondary real-life data for a hypothetical earthquake 
in Tehran, capital of Iran, as a large populated city. The primary data was mainly 
gathered by conducting phone interviews with the experts in local authorities. The 
results of robust models are presented in Sect. 6.5. Discussion of the findings is pro-
vided in Sect.  6.6. Section  7 is devoted to concluding remarks and directions for 
future research.

2  Literature review

While there is an extensive literature on disaster operations management (Altay and 
Green 2006; Caunhye et al. 2012; Galindo and Batta 2013; Abidi et al. 2014; Anaya-
Arenas et al. 2014; Leiras et al. 2014; Hoyos et al. 2015; Özdamar and Ertem 2015; 
Alem et al. 2016; and Gupta et al. 2016 are some review papers in this area), casu-
alty management, particularly, in the first hours after disasters, has received little 
attention. In a comprehensive review paper, Farahani et al. (2020) categorized the 
research in the field of casualty management as resource dispatching/ search and 
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rescue, on-site triage, on-site medical assistance, transportation to hospital, and tri-
age and treatment in hospital categories. They analysed all papers in a micro level 
and reported insights and future directions. Casualty management is comprised of 
three operations: (I) SAR; (II) on-field treatment; and (III) in-hospital treatment. 
In-hospital treatment falls outside the scope of this paper. In this section, a review 
of the literature on SAR and on-field treatment is presented in terms of the related 
research streams as follows. The papers which integrated these two operations are 
reviewed as the coordination/ integration.

SAR Chen and Miller-Hooks (2012) proposed a stochastic model to allocate 
USAR teams to affected sites in the first hours after disasters for maximizing the 
expected number of rescued casualties. Wex et al. (2013) formulated the same prob-
lem; but, their objective was to minimize the completion time of SAR operations.

Zhang et  al. (2017) proposed a multi-stage non-linear model for the allocation 
of rescue teams to affected sites in secondary disasters. Their objectives were to 
minimize the maximum arrival times and to maximize the allocations’ satisfaction. 
Bravo et al. (2018) proposed a Markov decision model, using unmanned aerial vehi-
cles to find casualties. Rauchecker and Schryen (2019) proposed a model for allocat-
ing the limited number of multi-capability rescue units to several disasters. They 
minimized the weighted sum of the rescue completion times for all units. Ahmadi 
et al. (2020) introduce a two-stage allocation-routing model for SAR operations after 
disaster. The model maximizes the demand coverage in first stage and minimizes the 
completion time in second stage.

On-field treatment Rescued casualties with serious injuries are transferred to 
nearby CTSs to prioritize and receive stable emergency services (Frykberg 2005). 
Sacco et al. (2005, 2007), Mills et al. (2013), Dean and Nair (2014), Mills (2015), 
and Kamali et al. (2017) developed optimization models for prioritization and triage 
of casualties for treatment and transportation to hospitals. Sacco et al. (2005) devel-
oped an on-field treatment model in which a historical-based survival probability 
function was introduced considering deterioration in patients’ condition over time. 
Mills et al. (2013) and Mills (2015) also developed some intuitive heuristics for pri-
oritizing the transportation of casualties to hospitals considering transportation time, 
available vehicles, and triage group distribution. Both Sacco et al. (2005) and Mills 
et al. (2013) considered the same treatment times for all casualty groups. Dean and 
Nair (2014) proposed a model for dispatching victims to hospitals and compared it 
with the other heuristics used in practice. Kamali et  al. (2017) optimized service 
order for casualties with multiple servers and several casualty types.

Li and Glazebrook (2010) investigated casualties’ misclassification. They consid-
ered a scheduling system with one server and multiple jobs, having uncertain ser-
vice time and lifetime. Jacobson et al. (2013), considering resource limitations, cat-
egorized casualties based on service time and fix survival probability distributions. 
Salman and Gul (2014) proposed a deterministic multi-period model to optimize the 
location and casualty transportation decisions aiming at minimizing the weighted 
sum of total travel and waiting times of casualties and the total costs of locating new 
facilities. Triage was ignored in this paper. Jin et  al. (2015) developed a resource 
allocation model to maximize the number of survivors in a network of disaster sites, 
on-site clinics, and hospitals. They considered limitations on medical resources, the 
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number of physicians, and operating rooms as well as capacity constraints in clin-
ics and hospitals. Sun et al. (2017) considered a job scheduling problem with two 
classes of casualties. One medical provider can choose a person randomly for treat-
ment or spend some time for triage before treatment. The goal was to balance the 
time spent on triage and service. Niessner et al. (2017) proposed an optimization-
simulation approach for allocating physicians and medics to patients in Austrian 
advanced medical posts. Minimizing the total rescue time and the total number of 
patients was investigated. Gu et al. (2018) developed a single-period model to deter-
mine the location of medical shelters and to distribute medical supplies with budget 
limitation, and the severity and location of casualties. Caunhye et al. (2018) devel-
oped a three-stage stochastic model to locate medical centres and allocate casualties 
to medical centres and hospitals in which the total transportation time was mini-
mized. Sabouhi et al. (2019) proposed a model to locate shelters, transport casualties 
to hospitals and distribute relief supplies. Liu et al. (2019) proposed a model to opti-
mize the location of CTSs and the distribution of casualties in CTSs with the objec-
tives of maximizing the ENS and minimizing the total operational costs. Alizadeh 
et  al. (2019) formulated a two-stage robust stochastic optimization model for net-
work design decisions and multi-period response operational decisions under uncer-
tainty in the number of various-injured casualties at affected sites and transportation 
capacity. Sample average approximation was used to solve the model. Oksuz and 
Satoglu (2020) proposed two-stage stochastic model to determine the number and 
location of medical centres in the disaster response. The model minimized the total 
setup of medical centres and transportation costs of casualties.

Literature review shows that scholars have applied optimization and job sched-
uling as two major approaches to solve on-field treatment problems. Those who 
applied job scheduling approach (like Li and Glazebrook, 2011; Jacobson et  al. 
2013; Sun et  al. 2017) have assumed that all casualties, considered individually, 
were available at time zero in a specific area. Such models become difficult to solve 
and inapplicable to speed-demanding post-disaster cases. On the other hand, optimi-
zation-based papers have not studied treatment strategies explicitly.

Coordination/integration The performance of USAR teams will determine the 
number of saved casualties and survival probability of them in CTSs. These will, in turn, 
affect the triage process and determine the best treatment strategies. As Table 1 shows, 
few recent papers have studied some types of coordination/integration among casualty 
management operations. Wilson et al. (2013, 2016) proposed a static flexible job sched-
uling problem to allocate casualties to a set of responder units, involved in transportation, 
pre-transportation treatment, rescue and pre-rescue treatment. Rezapour et  al. (2018), 
which is directly related to this research, developed a single-period model for deploy-
ing relief units in multiple affected sites to maximize ENS. They considered extrica-
tion task, on-field triage, and on-field treatment simultaneously, but only addressed the 
streaming strategy with/without overflow. They assumed all casualties were available on 
the field right after the disaster. Although they emphasized coordination among casualty 
management operations, no experimental analysis was reported in this regard. Sun et al. 
(2021a) considered two types of casualties (mild and serious clusters) in a rescue chain 
to determine the location of CTSs and hospitals as well as to transport casualties to them. 
They minimized an Injury Severity Score for all casualties. The model was extended to a 
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bi-objective model by Sun et al. (2021b). They also addressed the distribution of medical 
supplies. These two papers did not consider the allocation of USAR teams and the treat-
ment strategies.

Contribution In Table 1, we compare our research with the relevant body of lit-
erature. The proposed approaches for on-field treatment are classified into two cat-
egories. The first one studies the scheduling and routing of individual teams and 
casualties. Such an approach leads to complex models. Therefore, its application in 
MCIs is mainly limited to a single temporary location. The second category applies 
optimization to make decisions for groups of teams, casualties, relief items, and 
temporary locations. In brief, our contribution to the field is as follows:

Stochastic optimization models are proposed to integrate SAR and on-field treat-
ment operations. Table 1 indicates that only Wilson et al. (2013, 2016) and Rezapour 
et  al. (2018) addressed the operations simultaneously. Wilson et  al. (2013, 2016) 
focused on individuals, whereas our problem is inherently for casualty groups. Note 
that Rezapour et al. (2018) did not address the allocation of extricated casualties to 
CTSs as a key decision linking SAR and on-field treatment operations. This variable 
also implicitly determines near which affected sites the CTSs should be located.

(1) Policy making is embedded in model formulations by proposing various combi-
nations of treatment strategies and linking them to the allocation of relief teams. 
In fact, the operations of relief teams are optimized in line with any treatment 
strategy. According to Table 1, only Rezapour et al. (2018) addressed this issue. 
They considered “streaming” strategies with/without overflows, while we pro-
pose different “pooling” strategies and compare them with streaming strategies.

(2) Practical implications are reached by analysing different test problems and a case 
study. In dynamic speed-demanding post-disaster conditions, required accurate 
data is updated gradually; but, due to the severe time limitation, the models 
may not be solved with any update of data. Therefore, relief teams need to be 
equipped with the effective if–then rules beforehand. We generate insights on the 
performance of treatment strategies and the related allocation policy considering 
variations in triage group distribution and strategy choice in preparedness phase 
which can be implemented in response phase.

3  Problem definition

By developing stochastic optimization models to provide insights under some plau-
sible scenarios, we figure out the best policy to allocate (1) local USAR teams to 
affected sites, (2) extricated casualties to CTSs, (3) Local medical teams to CTSs 

Pre-rescue Search and Rescue On-Field Treatment Comprehensive treatment 

End of Response

Disaster

Scope of our research

Fig. 1  Casualty processing after a disaster strike
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and (4) local medical teams to serious casualty groups in CTSs. We focus on several 
treatment strategies; the triage group and prioritization of casualties are assumed to 
be known. Our research scope is illustrated by a dotted rectangle in Fig. 1. These 
sequence of tasks referred to as casualty processing by some scholars (e.g., Wilson 
et al. 2013). Casualties are extricated by USAR teams and sent to nearby CTSs for 
on-field treatment by medical teams. The ultimate objective is to maximize ENS. 
Dispatching sufficient number of USAR and medical teams in the first hours after 
a sudden-onset MCI is impossible. Thus, the optimal deployment of limited local 
relief teams in the immediate aftermath of disasters is critical.

Various strategies may be applied to allocate medical teams for treating casualty 
groups. Two widely-used extreme strategies at emergency departments of hospitals 
are “Streaming Strategy (SS)” and “Pooling Strategy (PS)” (Saghafian et al. 2012). 
In SS, medical teams are divided into two classes: one serves the red group, referred 
to as red class medical team, and the other serves the yellow group, referred to as 
yellow class medical team. In PS, medical teams serve both red and yellow groups 
according to the dictated priorities. Situations in the disaster field differ mainly from 
those in emergency departments (Venkat et  al. 2015). Proposed strategies are as 
follows:

I. Four strategies are considered under SS:
SS-Regular: Medical teams are classified into two classes; i.e., red and yel-
low. Each casualty group is treated by its own dedicated medical team.
SS with red class overflow (SSR): Only red class medical teams overflow to 
treat yellow group when they are idle. It means red class medical teams may 
treat the yellow group, with priority given to red group.
SS with yellow class overflow (SSY): Only yellow class medical teams over-
flow to treat red group when they are idle. It means yellow class medical teams 
may treat red group, with priority given to yellow group.
SS with both classes overflow (SSB): Both red and yellow class medical 
teams are allowed to overflow in their idleness.
II. Three strategies are considered under PS:
PS with priority given to red triage casualties (PSR): Medical teams keep 
servicing the red group as long as there is any casualty in the red group. They 
only serve the yellow group when the red group is empty.
PS with priority given to yellow triage casualties (PSY): Medical teams 
keep servicing the yellow group as long as there is any casualty in the yellow 
group. They only serve the red group when the yellow group is empty.
PS with dynamic priority (PSD): PSR and PSY lead to a low service level 
for one of the triage groups. PSD improves the drawback by changing dynami-
cally the priority of casualty groups over time according to the number of cas-
ualties.

The survival probability of casualties in CTSs depends on their waiting times, 
which in turn depend not only on the implemented treatment strategy, but also on 
the workload. The workload of a given CTS depends on (1) the treatment rates of 
allocated medical teams and (2) the casualty inflow rate determined by the USAR 
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team allocation. This confirms the need for coordination between SAR and on-field 
treatment (see Fig. 2).

In the first post-disaster hours, the flow of volunteers and relief teams from other 
regions as well as changes in the existing local relief teams, as the main sources 
of supply side uncertainty, are not significant. However, the uncertainty in some 
demand side parameters including the number of affected people, the ratio of injured 
people in triage groups, the availability of transportation links, and the flow of casu-
alties between nodes are taken into account by defining plausible scenarios with cor-
responding probabilities. The plausible scenarios will be made by the severity level 
and the time of occurring disasters. Three levels of severity (low, medium and high) 
and two time intervals (day and night) generate six scenarios whose probabilities are 
known.

4  Problem formulation

In this section, seven mathematical models are formulated to show the problem 
under different casualty treatment strategies. In Sect.  4.1 and 4.2, the formulation 
of SS-related and PS-related strategies are presented. In 4.3, the robust formulation 
is developed for SSB and PSD as two representatives of both types of treatment 
strategies.

SAR and on-field treatment operations are undertaken after a sudden-onset MCI 
during a finite planning horizon. We discretize the planning horizon by short time 
periods in which a reasonable number of casualties can be searched, rescued and 
treated in the field. T  is set of time periods indexed by t , t ∈ T  . Set S shows all the 
plausible scenarios and s is index of scenarios, s ∈ S.

Allocation of medical teams to casualty 
groups (treatment strategy)

Implementing more accurate treatment strategy 
based on the experiences

Simultaneously

Disaster strike

Damage assessment

Demand Estimation
• The number of casualties
• The ratio of red and yellow casualties

Supply Estimation
• The number of available USAR teams
• The number of available medical teams

Allocation of USAR and medical teams to 
CTSs

Estimate the ratio of casualties 

Fig. 2  The proposed decision framework
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• There are some nodes, N, to represent affected sites (and CTSs as a subset of 
them) struck by the sudden-onset disaster. Allocation decisions in different peri-
ods are made by movements among different nodes through the transportation 
links. Rescued casualties are transferred from affected sites to CTSs with the 
rate proportional to the corresponding number of allocated USAR teams. In each 
CTS, arrived casualties are treated with the rate proportional to the correspond-
ing number of allocated medical teams.

• Extricated casualties at the affected site m arrived at a CTS located at the node 
n ≠ m (if there is any CTS at this node) in time period t = ds

m,n
+ 1 where ds

m,n
 

is the number of time periods (travel time) it takes to transport casualties from 
m to n under scenario s. Then, it takes ds

m,n
 time periods to return to node m and 

move new casualties to node n . Therefore, new casualties will arrive at node n in 
time period t = 3.ds

m,n
+ 1 . This means the casualty flow is only possible between 

m and n in time periods t = ds
m,n

+ 1 , 3.ds
m,n

+ 1 , 5.ds
m,n

+ 1 , etc. Hence, binary 
parameters are defined as follows:

Where �s
m,n,t

 is a binary parameter which used for the allocation of relief teams to 
affected sites and CTSs.

If variable xs
m,n,t

 represents the casualty flow from m to n under scenario s, then 
we need the following expression ( M is a big value) which means the extricated 
casualties are passed only through the accessible routes and periods.

4.1  Formulation of SS treatment strategies

As a result of deploying SS treatment strategies, yellow casualties with shorter ser-
vice times will not be awaiting red casualties with long service times because they 
are served by a separate class of medical teams. Consequently, ENS in yellow triage 
group is improved. Usually, the number of yellow casualties is significantly higher 
than the red ones; therefore, SS treatment strategies may increase ENS. We develop 
four mathematical models corresponding to the considered SS treatment strategies.

Model SS-Regular Medical teams allocated to the red group do not deal with 
those allocated to the yellow group and vice versa. For example, assume that 20% of 
casualties, needing emergency services, belong to the red group; hence, 20% of the 
allocated medical teams are dedicated to the red group and 80% to the yellow one.

Sets and indices
N Set of affected sites and CTSs indexed by m and n respectively
T Set of time periods indexed by t
I Set of USAR teams which can be allocated to each node indexed by i
J Set of medical teams which can be allocated to each node indexed by j

�s
m,n,t

= 1 if t = (2r + 1).ds
m,n

+ 1(r = 0, 1, 2, … and n ≠ m); and 0 otherwise.

xs
m,n,t

≤ M.�s
m,n,t
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S Set of scenarios indexed by s
Parameters
TCs

m
Total number of casualties in red and yellow groups at node m ∈ N under scenario s

dsm,n Time (in time periods) from node m to node n ( n,m ∈ N ) under scenario s
�s
m,n,t

A binary parameter which is equal to 1 under scenario s if route from node m and n 
accessible and time period t  equals to (2j + 1).dsm,n + 1(j = 0, 1, 2,… andn,m ∈ N)

�s Ratio of red-group casualties to all casualties under scenario s
v Average capacity of a given USAR team
mr Average capacity of a given medical team for treating red-group casualties
my Average capacity of a given medical team for treating yellow-group casualties
prr

t
Survival probability of red-group casualties if treated at t  (i.e., t  time periods after 

injury)
pr

y

t
Survival probability of yellow-group casualties if treated at t  (i.e., t  time periods after 

injury)
CU Total number of local USAR teams available in the first hours
CM Total number of local medical teams available in the first hours
Ps Probability of scenario s
M A sufficiently large number
Variables

WUi
m

A binary variable which is equal to 1 if i USAR teams is allocated to node m

WMj
n

A binary variable which is equal to 1 if j medical teams is allocated for node n
xs
m,n,t

Casualty flow between m and n in time period t  under scenario s
x
r,s
m,n,t Red-group casualty flow between m and n in time period t  under scenario s
x
y,s

m,n,t
Yellow-group casualty flow between m and n in time period t  under scenario s

y
r,s
n,t Number of non-treated red-group casualties at node n in time period t  under scenario s
y
y,s

n,t
Number of non-treated yellow-group casualties at node n in time period t  under 

scenario s
z
r−r,s
n,t Number of red-group casualties at node n in time period t  , treated by red class medical 

teams under scenario s
z
y−y,s

n,t
Number of yellow-group casualties at node n in time period t  , treated by yellow class 

medical teams under scenario s

Below, we develop a mathematical model to determine the best deployment policy 
and to manage casualty flow through the relief network when the treatment strategy in 
CTSs is SS-Regular.

(1)Max ZSS−Regular =
∑
s

Ps
⋅

{∑
t

∑
n

(
zr−r,s
n,t

⋅ prr
t
+ z

y−y,s

n,t ⋅ pr
y

t

)}

(2)
S.T .∑
t

∑
n

xs
m,n,t

≤ TCs
m
(∀m ∈ N;∀s ∈ S)

(3)
∑
n

xs
m,n,t

≤ v.
∑
i

WUi
m
.i(∀m ∈ N;∀t ∈ T;∀s ∈ S)
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The objective function (1), calculate ENS in red and yellow groups under all sce-
narios. Based on (2), the total outflow from each affected site, cannot be more than 
its casualty number. Constraints (3) ensure that the outflow from each affected site 
does not violate the capacity of allocated USAR teams. Constraints (4) ensure that 
only one option of allocating USAR teams can be selected for each node. Constraints 
(5) consider the transportation time of casualties among nodes. Constraints (6) and 

(4)
∑
i

WUi
m
= 1(∀m ∈ N)

(5)xs
m,n,t

≤ M.�s
m,n,t

(∀n,m ∈ N;∀t ∈ T;∀s ∈ S)

(6)xr,s
m,n,t

= �s.xs
m,n,t

(∀n,m ∈ N;∀t ∈ T;∀s ∈ S)

(7)x
y,s

m,n,t = (1 − �s).xs
m,n,t

(∀n,m ∈ N;∀t ∈ T;∀s ∈ S)

(8)
∑
m

xr,s
m,n,t

+ y
r,s

n,t−1
= zr−r,s

n,t
+ yr,s

n,t
(∀n ∈ N;∀t ∈ T;∀s ∈ S)

(9)
∑
m

x
y,s

m,n,t + y
y,s

n,t−1
= z

y−y,s

n,t + y
y,s

n,t(∀n ∈ N;∀t ∈ T;∀s ∈ S)

(10)zr−r,s
n,t

≤ mr.�s.

(∑
j

WMj
n
.j

)
(∀n ∈ N;∀t ∈ T;∀s ∈ S)

(11)z
y−y,s

n,t ≤ my.(1 − �s).

(∑
j

WMj
n
.j

)
(∀n ∈ N;∀t ∈ T;∀s ∈ S)

(12)
∑
j

WMj
n
= 1(∀n ∈ N)

(13)
∑
n

∑
j

WMj
n
.j ≤ CM

(14)
∑
m

∑
i

WUi
m
.i ≤ CU

(15)zr−r,s
n,t

, z
y−y,s

n,t , xs
m,n,t

, xr,s
m,n,t

, x
y,s

m,n,t, y
r,s
n,t
, y

y,s

n,t ≥ 0 (∀m, n ∈ N;∀t ∈ T;∀s ∈ S)

(16)WUi
m
,WMj

n
∈ {0, 1}(∀m, n ∈ N;∀i ∈ I;∀j ∈ J)
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(7) determine the percentage of extricated casualties in red and yellow triage groups 
(0 ≤ �s ≤ 1) . Constraints (8) and (9) ensure the inflow and outflow balance on red- and 
yellow-group casualties, respectively, in CTSs. In each CTS, the sum of untreated casu-
alties from the previous time period and the newly arrived extricated casualties should 
be equal to the sum of treated casualties in the current time period and the untreated 
casualties left for the next time period. In constraints (10) and (11), the capacity of red 
and yellow class medical teams, respectively, allocated to a given CTS should not be 
violated by the number of treated casualties. Constraints (12) are for the selection of 
only one option of allocating medical teams for each node. Constraints (13) and (14) 
impose that the allocation is limited to the available number of local teams. Constraints 
(15) are for non-negative variables and constraints (16) show binary variables.

Model SSR: Only idle red class medical teams have permission to treat the yellow 
group. Below, model SS-Regular is customized for SSR. We define a new variable as 
follows.

z
r−y,s

n,t  Yellow-group casualties treated by red class teams at node n in time period t 
under scenario s.

The objective function (1) should be modified as follows:

The first term in (17) is the expected number of casualties treated by the correspond-
ing class of medical teams while the second one gives the expected number of yel-
low-group casualties treated by idle red class medical teams. �1 and �2 are the weights 
assigned to prioritized and non-prioritized casualties, respectively. With �1 much 
greater than �2 (i.e., 𝜃1 ≫ 𝜃2 ), we can ensure that red class medical teams serve the red 
group prior to the yellow-group. In SSR strategy, some of yellow-group casualties are 
treated by yellow class of medical teams while some others are treated by red class of 
medical teams; hence, constraints (9) and (10) should be modified as follows:

Model SSY: Only idle yellow class medical teams are allowed to treat the red group. 
Below, model SS-Regular is customized for SSY. We define a new variable as follows.

z
y−r,s

n,t  Red-group casualties treated by yellow class teams at node n in time period t 
under scenario s.

The objective function (1) should be modified as follows:

(17)Max ZSSR =
∑
s

Ps
⋅

{
�1 ⋅

(∑
t

∑
n

(
zr−r,s
n,t

⋅ prr
t
+ z

y−y,s

n,t ⋅ pr
y

t

))
+ �2 ⋅

(∑
t

∑
n

z
r−y,s

n,t .pr
y

t

)}

(18)
∑
m

x
y,s

m,n,t + y
y,s

n,t−1
= z

y−y,s

n,t + z
r−y,s

n,t + y
y,s

n,t(∀n ∈ N;∀t ∈ T;∀s ∈ S)

(19)zr−r,s
n,t

+
mr

my
.z
r−y,s

n,t ≤ mr.�s.

(∑
j

WMj
n
.j

)
(∀n ∈ N;∀t ∈ T;∀s ∈ S)

(20)Max ZSSY =
∑
s

Ps
⋅

{
�1 ⋅

(∑
t∈T

∑
n

(
zr−r,s
n,t

⋅ prr
t
+ z

y−y,s

n,t ⋅ pr
y

t

))
+ �2 ⋅

(∑
t

∑
n

z
y−r,s

n,t ⋅ prr
t

)}
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The first term in (20) is the same as that in (17) while the second one gives the 
expected number of red-group casualties, treated by idle yellow class teams. Con-
straints (8) and (11) should be modified as follows:

Model SSB: Red and yellow class medical teams that are idle are allowed to treat 
one another. Below, model SS-Regular is customized for SSB. We need all types of 
variable in the previous models to represent treated casualties. The objective func-
tion (1) should be modified as follows:

The first term in (23) is the same as those in (17) and (20) while the second one 
is the total expected number of casualties, treated by another idle class of medical 
teams. Furthermore, constraints (8)-(11) should be replaced with (21), (18), (19), 
and (22), respectively.

4.2  Formulation of PS treatment strategies

As a result of deploying PS treatment strategies, medical teams serve both triage 
groups simultaneously. Consequently, compared to SS, effectiveness is enhanced. 
Below, the mathematical model for the Regular-PS strategy is presented.

Variables

z
r1,s

n,t
Prioritized red-group casualties treated at node n in time 

period t  under scenario s

z
y1,s

n,t
Prioritized yellow-group casualties treated at node n in time 

period t  under scenario s

z
r2,s
n,t

Non-prioritized red-group casualties treated by idle teams at 
node n in time period t  under scenario s

z
y2,s

n,t
Non-prioritized yellow-group casualties treated by idle teams 

at node n in time period t  under scenario s
New Parameter

�s
t
=

{
1; if the treatment priority at t is given to red group under scenario s

0; If the treatment priority at t is given to yellow group under scenario s

}

Below, the mathematical model for the Regular-PS strategy is presented.

(21)
∑
m

xr,s
m,n,t

+ y
r,s

n,t−1
= zr−r,s

n,t
+ z

y−r,s

n,t + yr
n,t
(∀n ∈ N;∀t ∈ T;∀s ∈ S)

(22)

z
y−y,s

n,t +
my

mr
⋅ z

y−r,s

n,t ≤ my
⋅ (1 − �s) ⋅

(∑
j

WMj
n
⋅ j

)
(∀n ∈ N;∀t ∈ T;∀s ∈ S)

(23)

Max ZSSB =
∑
s∈S

Ps
⋅

{
�1 ⋅

(∑
t

∑
n

(
zr−r,s
n,t

⋅ prr
t
+ z

y−y,s

n,t ⋅ pr
y

t

))
+�2 ⋅

(∑
t

∑
n

(z
y−r,s

n,t ⋅ prr
t
+ z

r−y,s

n,t ⋅ pr
y

t )

)}
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According to the weights assigned to prioritized and non-prioritized casualties 
( 𝜃1 ≫ 𝜃2 ), objective function (24) maximizes ENS. Based on constraints (25)-(28), 
treatment variables of casualties obtain positive values when priority is given to the 
corresponding triage groups, using parameter �s

t
 . Constraints (29) and (30) are simi-

lar to (8) and (9) in model SS-Regular. Constraint (31) ensures that the capacity 
of medical teams allocated to a given CTS should not be violated by the number 
of treated casualties. Constraint (32) is for non-negative variables. Constraints (2)-
(7), (12)-(14) and (16) in model SS-Regular are considered in the model PS-Regular 
directly.

Model PSR Medical teams serve the yellow group only when the red group is 
empty. PSR gives priority to the red group whose fatality probability (probability of 
moving to the black group) increases more rapidly than the yellow one. Therefore, 
we need to set �s

t
= 1 ( ∀t ∈ T  ) in model Regular-PS to customize it for PSR.

Model PSY Medical teams serve the red group only when the yellow group is 
empty. PSY gives priority to the yellow group because they naturally have higher 
survival probabilities and shorter emergency care times. Therefore, we need to set 
�s
t
= 0 ( ∀t ∈ T  ) in model Regular-PS to customize it for PSY.

(24)

Max ZPS =
∑
s

Ps
.

{
�1.

(∑
t∈T

∑
n

(
z
r1,s
n,t .pr

r
t
+ z

y1,s
n,t .pr

y
t

))
+�2.

(∑
t

∑
n

(z
r2,s
n,t .pr

r
t
+ z

y2,s
n,t .pr

y
t )

)}

(25)
S.T .

zr1,s
n,t

≤ M.�s
t
(∀n ∈ N;∀t ∈ T;∀s ∈ S)

(26)z
y2,s

n,t ≤ M.�s
t
(∀n ∈ N;∀t ∈ T;∀s ∈ S)

(27)z
y1,s

n,t ≤ M.
(
1 − �t

)
(∀n ∈ N;∀t ∈ T;∀s ∈ S)

(28)zr2,s
n,t

≤ M.
(
1 − �t

)
(∀n ∈ N;∀t ∈ T;∀s ∈ S)

(29)
∑
m

xr,s
m,n,t

+ y
r,s

n,t−1
= zr1,s

n,t
+ zr2,s

n,t
+ yr,s

n,t
(∀n ∈ N;∀t ∈ T;∀s ∈ S)

(30)
∑
m

x
y,s

m,n,t + y
y,s

n,t−1
= z

y1,s

n,t + z
y2,s

n,t + y
y,s

n,t(∀n ∈ N;∀t ∈ T;∀s ∈ S)

(31)

zr1,s
n,t

+ zr2,s
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+
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.

(
z
y1,s

n,t + z
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n,t

)
≤ mr.

(∑
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WMj
n
.j

)
(∀n ∈ N;∀t ∈ T;∀s ∈ S)

(32)
zr1,s
n,t

, z
y1,s

n,t , z
r2,s
n,t

, z
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n,t , x
s
m,n,t

, xr,s
m,n,t

, x
y,s

m,n,t, y
r,s
n,t
, y

y,s

n,t ≥ 0(∀m, n ∈ N;∀t ∈ T;∀s ∈ S)
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Model PSD We dynamically change group priorities in proportion to their cor-
responding casualty numbers. For example, if 20% of serious casualties belong to 
the red group (i.e., �s = 0.2 ) under a given scenario, then priority is given to the 
red group in the first time period of each five time periods till the end of planning 
horizon. To customize Regular-PS for PSD, we need to set �s

t
= 1 in the �s% of time 

periods and �s
t
= 0 in the remaining (1 − �s)%.

Notably, all the proposed models are mixed integer programming (MIP). The 
number of binary variables is equal to (|I| + |J|).|N| which can be tackled in reason-
able computation times by commercial optimization software packages. The number 
of constraints is equal to (3|N|2 + 8|N|).|T|.|S| + |N|.(|S| + 2) + 2 . We use GAMS 
win 64 24.1.2 optimization package to solve the models.

4.3  Robust model

Uncertainty is inevitable for optimization models in the disaster management. 
Among approaches to handle uncertainty of input parameters, only robust optimi-
zation guarantees the optimization of satisfaction levels and the reliability of out-
put results. Robust optimization considers the risk attribution of decision-makers 
and reduces the risk of dispersion of the objective function value. When there are 
discrete uncertain parameters such as the number of casualties, the scenarios are 
defined by different possible values with corresponding probabilities. Because 
we formulate uncertainties via the discrete scenarios, the method in Mulvey et al. 
(1995) is chosen. They defined two main concepts in robust optimization: model 
robustness and solution robustness. Model robustness makes the solution almost fea-
sible for any occurrence of a scenario. Solution robustness guarantees the optimal 
solution remains close to the optimum for any occurrence of a scenario. We consider 
the robust model for following reasons:

• To address a high level of uncertainty involved in the response phase of disaster 
management

• To consider the risk attribute of decision makers
• To consider the risk of dispersion of the objective function value
• To overcome the shortage in historical data.

In this method, the traditional expected objective function is replaced by the one 
that explicitly addresses the objective function variability. The variability term is 
simply added to the main objective function via a weighting parameter represent-
ing the risk tolerance of the decision. In fact, this parameter captures the decision 
makers’ preference. The variables are categorized into design and control groups. 
Design variables are decided before the realization of stochastic parameters and con-
trol variables are subject to the adjustment when a specific occurrence of uncertain 
parameters is realized. Mulvey et al. (1995) considered the following model:

(33)MincTx + dTy
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Let x and y denote the vectors of design variables and control variables, respectively. 
A and b are the matrix of parameters in constraint (34) and B,C and e the uncertain 
coefficient matrix in constraint (35). The first term in the objective function defines the 
solution robustness and the second term defines the model robustness if there is a finite 
set of scenarios S = {1, 2, .., s} and ps denotes the probability of scenario s ( 

∑
s∈S ps

=1). Also, the control variable y, which is subject to the adjustment when one scenario 
is realized, can be denoted as ys for scenario s. The model may be infeasible for some 
scenarios due to the uncertainty in some parameters. Therefore, the infeasibility of the 
model under scenario s is denoted as �s . A robust model is formulated as follows:

Bs,Cs and es are the uncertain coefficient matrix in constraint (35). The first term in 
the objective function defines the solution robustness and the second term defines the 
model robustness weighted by � . Let �s = f

(
x, ys

)
 denotes the objective function for sce-

nario s. The solution robustness is

Yu and Li (2000) discussed the required computational effort due to a quadratic 
term and proposed an absolute deviation instead of the quadratic term, which is shown 
as follows:

For the linearization, two nonnegative variables namely Q+
s
 and Q−

s
 are introduced:

(34)
S.T.

Ax = b

(35)Bx + Cy = e

(36)x, y ≥ 0

(37)Min�
(
x, y1, y2,… , ys

)
+ ��

(
�1, �1,… , �s

)

(38)
S.T.

Ax = b

(39)
Bsx + Csys + �s = es (∀s ∈ S)

x, ys, �s ≥ 0 (∀s ∈ S)

(40)�(⋅) =
∑
s∈S

ps�s + �
∑
s∈S

ps

(
�s −

∑
s∈S

ps�s

)2

(41)�(⋅) =
∑
s∈S

ps�s + �
∑
s∈S

ps

|||||
�s −

∑
s∈S

ps�s

|||||

(42)�(⋅) =
∑
s∈S

ps�s + �
∑
s∈S

ps
(
Q+

s
+ Q−

s

)
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We aim to investigate the robust optimization approach for SSB and PSD 
models. Therefore, the objective function is changed and a new constraint is 
added based on Mulvey et al. (1995) and linearization approach proposed by Yu 
and Li (2000). The objective function of robust model for SSB, replaced with 
(23), is as follows:

Therefore, the robust model for SSB strategy is including (44), (45), (2)–(7), 
(12)–(16), (18), (19), (21) and (22). The objective function of robust model for 
PSD, replaced with (24), is as follows:

The robust model for PSD strategy is including (46), (47), (2)-(7), (12)-(14), 
(16) and (25)-(32).

5  Experimental setting

We explain details of experimental data, including secondary sources. We also 
use some secondary data, previously gathered by Rezapour et al. (2018). They 
are used as the basis for constructing numerical experiments in Sect. 6.

(43)�s −
∑
s∈S

ps�s = Q+
s
− Q−

s

(44)

Max ZRobust−SSB =
∑
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5.1  SAR (v) and on‑field treatment ( mr , my ) rates, and time periods

The average performance rate of USAR teams ( v ) and the average treatment rates 
of medical teams for red and yellow groups ( mr and my , respectively) are esti-
mated. As proposed by Wilson et al. (2013), time period is assumed to be 15 min. 
The length of planning horizon is considered to be 12 h. In other words, there are 
48 time periods.

We use the RPM index (Respiration, Perfusion, and Mental status), proposed 
by Sacco et al. (2005) to score victims. RPM is calculated based on the respira-
tory rate, pulse rate, and motor response. Table  2 shows twelve RPM values 
according to the severity of injuries (Sacco et al. 2005) and the processing times 
in CTSs (Jin et al. 2015). Red-coloured columns show the scores and treatment 
times of the red triage group and yellow-coloured columns are those for the yel-
low triage group. Dean and Nair (2014) proposed three distribution patterns for 
the RPM in MCIs: uniform, left-skewed, and right-skewed. For each triage group, 
the expected treatment time of each distribution pattern is determined. Then, the 
average of the three expected treatment times for each triage group is computed 
and considered as its average treatment time. Accordingly, the average treat-
ment time for the red and yellow groups is equal to 3.3 and 2.5 min, respectively. 
Therefore, the corresponding treatment rates in a given time period are 4.5 (i.e. 
mr=4.5 casualties per time period) and 6 (i.e., my =6 casualties per time period), 
respectively.

There is very little real data on the performance of USAR teams. During the 
2004 Indian Ocean earthquake, 44 USAR teams were sent to Banda Aceh in Indo-
nesia and in five days, 150,000 lives were saved (Amateur Seismic Centre 2004). 
Hence, the average performance rate of USAR teams is denoted as 7.1 casualties 
per period.

5.2  Survival probability of red ( prr
t
 ) and yellow ( pry

t
 ) casualties

To predict the survival probability of casualties, we model the extrication of cas-
ualties according to their triage group as a discrete time Markov chain of casu-
alty health states (Wilson et al. 2013). The state space S = {Green, Red, Yellow, 
Black} illustrates four triage groups before treatment. Having the initial triage 
group, we calculate the survival probabilities at time period t  . The Markov chain 
and transition probabilities are shown in Fig. 3 (Wilson et al. 2013):

For the Markov chain in Fig. 3, the corresponding transition matrix, A , can be 
drawn as follows:

Table 2  RPM scores of casualties and corresponding on-field treatment times

RPM score 1 2 3 4 5 6 7 8 9 10 11 12
On-field treatment time (min) 3 2 2 3 4 3 4 4 3 3 2 3
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Using the transition matrix At , we can estimate the survival probability of red and 
yellow casualties, i.e., prr

t
 and pryt  , respectively. The probabilities are calculated as 

prr
t
= 1 − At[3, 4] and pryt = 1 − At[2, 4].

6  Numerical analysis

In this section, the investigation of model performance is considered through differ-
ent experimental analyses. In Sect. 6.1, we describe how to generate 50 random test 
problems to provide useful post-disaster insights to be implemented by relief teams 
right after a sudden-onset MCI. In Sect. 6.2, we run optimization models based on 
realistic data, related to a hypothetical earthquake in Tehran, the capital of Iran, as 
a large populated city. Next, in Sect. 6.3, we give generalized insights for the imple-
mentation of treatment strategies. Moreover, the results of integrating SAR and on-
field treatment operations are presented in Sect. 6.4. The results of robust models for 
SSB and PSD strategies are illustrated in 6.5. Finally, a discussion of the necessity 
and importance of our findings is provided in Sect. 6.6.

6.1  Analysis of random instances

To make useful observations and insights regarding the deployment of relief teams 
in sudden-onset MCIs, and to see whether they are dependent on different data reali-
zations or not, we analyse the optimization models for 50 test problems. Because 
the number of nodes in the relief network is the major determinant of our prob-
lem size (the planning horizon is fixed), we classify our problem sizes based on it. 
We consider three levels of disaster severity, namely low (lower than 6 Richter), 
medium (between 6 and 7 Richter) and high (more than 7 Richter) and two times of 
occurring the disaster, day and night. Uncertain parameters are generated randomly 
in the specific intervals. Table 3 shows the uncertain parameters and their generation 
ranges for different test problems. Moreover, dsm,n is generated based on the uniform 
random numbers in different intervals. Then, �sm,n,t are caclulated based on dsm,n . 
Table 4 shows the scenario-independent parameters.

A =

⎡
⎢⎢⎢⎣

0.983 0.017 0 0

0 0.97 0.03 0

0 0 0.93 0.07

0 0 0 1

⎤
⎥⎥⎥⎦

0.930.970.983

0.070.030.017Green Yellow Red Black

1

Fig. 3  Markov chain representing health state transition probabilities of trapped casualties



4541

1 3

Integrated deployment of local urban relief teams in the first…

Ta
bl

e 
3 

 P
la

us
ib

le
 sc

en
ar

io
s a

nd
 sc

en
ar

io
-d

ep
en

de
nt

 p
ar

am
et

er
s

*  Th
e 

es
tim

at
io

n 
of

 �
s

Sc
en

ar
io

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3
Sc

en
ar

io
 4

Sc
en

ar
io

 5
Sc

en
ar

io
 6

(s
ev

er
ity

, t
im

e)
(lo

w
, d

ay
)

(lo
w

, n
ig

ht
)

(m
ed

iu
m

, d
ay

)
(m

ed
iu

m
, n

ig
ht

)
(h

ig
h,

 d
ay

)
(h

ig
h,

 n
ig

ht
)

Pr
ob

ab
ili

ty
(0

.6
)(

0.
5)

 =
 0.

3
(0

.6
)(

0.
5)

 =
 0.

3
(0

.3
)(

0.
5)

 =
 0.

15
(0

.3
)(

0.
5)

 =
 0.

15
(0

.1
)(

0.
5)

 =
 0.

05
(0

.1
)(

0.
5)

 =
 0.

05
�̂
s  *

[0
,0

.2
]

[0
.1

,0
.3

]
[0

.2
,0

.4
]

[0
.3

,0
.5

]
[0

.4
,0

.6
]

[0
.5

,0
.7

]
T
C
s m

[1
00

0,
20

00
]

[2
00

0,
50

00
]

[5
00

0,
10

00
0]

[1
00

00
,3

00
00

]
[2

00
00

,5
00

00
]

[5
00

00
,1

00
00

0]



4542 A. Baghaian et al.

1 3

The sensitivity analysis of the models will give us reliable insights. In post-disas-
ter chaotic circumstances, the following factors are very difficult to be estimated or 
controlled:

• Incomplete implementation of the best treatment strategy We cannot ensure 
that the advised treatment strategy will completely be implemented by medical 
teams. It is always likely that they deviate from the advised strategy.

• Error in estimation of �s (�̂s) The estimated ratio of casualties in the red triage 
group may not be accurate; it may vary from the estimated value.

We consider five error intervals for �s, including �s = ̂𝛾s − 0.2 , �s = ̂𝛾s − 0.1 , 
�s = ̂𝛾s , �s = ̂𝛾s + 0.1 and �s = ̂𝛾s + 0.2 . Therefore, the total number of random 
instances based on the 50 test problems is 1750, i.e., 50 test problems, 7 treatment 
strategies and 5 values of �s . In SS models, medical teams are divided among tri-
age groups by replacing �s with �̂�s in constraints (10), (11), (19), and (22). How-
ever, the extricated casualties are divided among triage groups by embedding �s in 
constraints (6) and (7). The priority of triage groups in PSD changes according to 
�̂s over time. The extricated casualties are divided among triage groups by insert-
ing �̂s in constraints (37) and (38). We use the ratio of ENS to the total number of 
seriously-injured population as the objective (namely RENS) to be able to compare 
the results of different test problems. The results of numerical analysis for different 
problem sizes are given in Figs. 4, 5, 6, 7. Although running times depend mainly 
on the number of nodes and the treatment strategies, they are solved in 1, 10, 30 
and about 60 min for 5, 10, 15 and 20 nodes, respectively. In order to examine the 
performance of different treatment strategies for 5 nodes, we present the results in 
Figs. 4a, b. The results for other test problems of 10, 15, and 20 node sizes, as illus-
trated in Figs. 5, 6, 7.   

6.1.1  Performance of SS strategies

As can be seen in Fig. 4a, SS treatment strategies are not significantly different in 
terms of RENS where �s matches its estimation. However, when �s deviates from 

Table 4  Details of generating random values

Input 
Param-
eters

Value, Range Description

N {5, 10, 15, 20} We generate 5 test problems of 5 nodes, 10 test problems of 10 nodes, and so 
on

v {6,7.5,10} Random generation based on three average rescue times (i.e., 1.5, 2, 2.5 min)
mr {3.75,4.3,5} Random generation based on three average treatment times (i.e., 3, 3.5, 4 min)
my {5,6,7} Random generation based on three average treatment times (i.e., 2, 2.5, 3 min)
CU {3,4,…,12} Random generation based on the number of nodes
CM {3,4,…,10} Random generation based on the number of nodes
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its estimation, RENS decreases in SS-Regular strategy in positive deviations of �s ; 
i.e., for 𝛾s > �𝛾s . SSY shows almost the same behaviour though its performance is 
much better than SS-Regular in positive deviations of �s . This happens because the 
number of red-group casualties increases in positive deviations and SSY allows the 
idle yellow class teams to treat this group. As Fig. 4(a) depicts, the performance of 
SSR is higher than that of both SS-Regular and SSY in negative deviations of �s ; 
i.e., for 𝛾s < �𝛾s . This is because the number of yellow-group casualties increases in 

Fig. 4  RENS versus deviations around �̂s (5 nodes)

Fig. 5  RENS versus deviations around �̂s (10 nodes)

Fig. 6  RENS versus deviations around �̂s (15 nodes)
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negative deviations and SSR allows the idle red class teams to treat this group. How-
ever, the performance of SS-Regular and SSR is similar in positive deviations of �s . 
In positive deviations, SSY performs better than SSR because of the existence of a 
large number of red-group casualties. The performance of SSB, as the combination 
of SSR and SSY, coincides with SSR in negative deviations and SSY in positive 
deviations. It performs better than SSY and SSR in negative and positive deviations, 
respectively. The results are summarized in the following observations.

Observation 1 SSB performs better than SS-Regular and SSY, and the same as 
SSR in negative deviations. It performs better than SS-Regular and SSR, and the 
same as SSY in positive deviations.

Observation 2 Since the estimation of �s is a difficult task in the uncertain condi-
tions after the sudden-onset MCIs, continuous negative and positive deviations of 
�s from �̂s are inevitable. Therefore, SSB has the best performance among the SS-
related strategies.

Observation 3 The effect of incomplete implementation of SS strategies in terms 
of RENS is shown by arrows in the range of �s = �̂s±0.1 in Fig.  4(a). As can be 
observed, SS strategies are robust in terms of the inappropriateness for implementa-
tion. The more the actual �s deviates from �̂s , the more the distance becomes among 
SS strategies.

6.1.2  Performance of PS strategies

According to Figs. 4b, the performance of PSR and PSY is independent of �̂s , as 
they usually have the same behaviour for different values of �̂s . Notably, the perfor-
mance of PSY in terms of RENS is much better than that of PSR because yellow-
group casualties inherently have higher survival probabilities and shorter treatment 
times.

Therefore, PSY, giving priority to the yellow group, significantly improves 
RENS. However, it is not ethical to leave red-group casualties for the last only 
because of their lower survival probabilities. The performance of PSD with dynamic 
priority always falls between the two thresholds denoted as PSR and PSY.

Observation 4 The performance of PSD is always between PSY and PSR, as the 
upper and lower thresholds for PS models, respectively. The performance of PSD is 

Fig. 7  RENS versus deviations around �̂s (20 nodes)
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closer to that of PSR for 𝛾s < �𝛾s while it is closer to that of PSY for 𝛾s > �𝛾s . While 
there are less red-group casualties than estimated ones for 𝛾s < �𝛾s , a more number of 
time periods are dedicated to the red group in PSD. Therefore, it behaves like PSR 
for these values. In contrast, there are more red-group casualties than estimated ones 
for 𝛾s > �𝛾s , and a less number of time periods are dedicated to red group. Therefore, 
PSD behaves like PSY for this case.

Observation 5 The effect of incomplete implementation of PS strategies in terms 
of RENS is represented by arrows in range of �s = �̂s±0.1 in Figs. 4(a) and 4(b). The 
upper threshold corresponds to PSY and the lower one to PSR. The thresholds are 
not close even for �s values very close to �̂s . Therefore, PS strategies are very sensi-
tive to variations in the strategy implementation.

6.1.3  Comparing SS and PS strategies

In Fig. 4a, b, the performance of SS and PS strategies with respect to our two criti-
cal factors is compared. It was demonstrated that SSB and PSD have the highest 
performance among the SS and PS strategies, respectively. Therefore, the following 
observations may be made:

Observation 7 The performance of SS strategies is more robust than PS ones 
with respect to variations in the strategy implementation by medical teams.

Observation 8 In terms of RENS, PSD performs moderately better than SSB 
with respect to the error in the estimation of �s . However, the difference between 
them is not too much to be considered significant.

All the proposed observations will be the same for the other test problems of 10, 
15, and 20 node sizes, as illustrated in Figs. 5–7.

6.2  Empirical data for a hypothetical earthquake

Rapid expansion, high population density, and old structure have made Tehran, the 
capital of Iran, potentially as one of the most vulnerable urban areas. As mentioned 
in Sect. 4.3, very little primary data regarding the early response of past MCIs is 
recorded and published in details. Also, historical data for key parameters in the first 
hours of past disasters is not valid for the other disasters with different magnitude, 
location and time occurrence. Therefore, we used multiple-source data gathering 
(mainly primary and secondary data) to make sure our data is realistic. The primary 
data are summarized in Tables 5, 6 and 7.  

Tehran has 22 municipal districts with administrative centres. According to stud-
ies in the year 2000 census, for a 0.35  g2 scenario around 640,000 buildings out 
of 1,100,000 in Tehran would collapse or seriously be damaged; 1,450,000 people 
would be killed and about 4,300,000 would be injured (Nateghi-A, 2001). Usu-
ally, 10 to 20 percent of the casualties need serious emergency care services (Bor-
den Institute 2013). The archival data, based on the research conducted by Japan 

2 “g” or “g-force” in geology means the acceleration due to the earth’s gravity.
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Table 5  The number of population by districts in Tehran

District No. of popula-
tion

District No. of popula-
tion

District No. of popula-
tion

District No. of popu-
lation

1 473,039 7 309,984 13 292,012 19 291,851
2 637,130 8 377,270 14 377,104 20 593,499
3 329,580 9 157,931 15 714,822 21 160,573
4 848,308 10 290,615 16 267,057 22 144,784
5 891,657 11 298,752 17 247,289
6 221,298 12 232,268 18 511,244

Table 6  Number of rescue teams currently available by IFRC societies in Tehran

ID IFRC society No. of 
rescue 
teams

ID IFRC society No. of 
rescue 
teams

1 IFRC Society of the capital city 12 7 IFRC Society of township DAM 3
2 IFRC Society of township SHE 3 8 IFRC Society of township PHI 3
3 IFRC Society of township REI 4 9 IFRC Society of township SHA 4
4 IFRC Society of township VAR 6 10 IFRC Society of township ROK 3
5 IFRC Society of township PIS 3 11 IFRC Society of township ESL 3
6 IFRC Society of township PAA 3 12 IFRC Society of township MAL 3
Total number of rescue teams ( CU) 50

Table 7  Number of available medical teams in Tehran

*Emergency Centre

ID EC* No. of medi-
cal teams

ID EC No. of medi-
cal teams

ID EC No. of 
medical 
teams

1 ENG EC 1 11 TEN EC 1 21 AZA EC 1
2 ANO EC 1 12 JAM EC 1 22 MEH EC 1
3 ATI EC 2 13 KHO EC 1 23 NAB EC 1
4 IRN EC 1 14 ZAA EC 1 24 NIM EC 1
5 TEHI EC 2 15 ZEG EC 1 25 HAS EC 1
6 IRA EC 1 16 BEH EC 1 26 HEK EC 2
7 IRM EC 2 17 TAL EC 1 27 HAF EC 1
8 BEZ EC 1 18 COD EC 1 28 VAH EC 1
9 BOO EC 1 19 VEL EC 1 29 TEHII EC 2
10 TER EC 1 20 MES EC 2 30 SJD EC 1
Total number of medical teams ( CM) 36
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International Cooperation Agency (JICA, 2000), confirms mainly different levels of 
vulnerability in various municipal districts of Tehran. The population of 22 districts 
are reported in Table 5 and the injured population of casualties in red and yellow 
groups in each scenario is generated based upon them.

In Table 6, we summarize the number of rescue teams of IFRC’s (International 
Federation of Red Cross and Red Crescent Societies) agencies, being available either 
inside or geographically close to our case study that can operate rapidly right after 
the disaster strike. We received the initial list and the contact details from archival 
data; but in order to get the number of rescue teams, we conducted a brief phone 
interview with all the IFRC branches. According to the archival data, the emergency 
centres being available either inside the city or geographically close to it and the 
corresponding number of medical teams to provide service in CTSs are summarized 
in Table 7.

The results of running optimization models for 35 instances, i.e., 7 treatment 
strategies and 5 values of �s , related to the hypothetical earthquake in Tehran are 
depicted in Fig. 8. Computation time of the model is equal to 300 min which seems 
to be high for such a problem with a 12-h time horizon. However, this should not be 
considered a limitation because the proposed model is run in the preparedness stage, 
when sufficient time is available, to extract some simple yet effective if–then rules 
for the implementation in response phase. As can be seen, all the eight observations 
made on the 50 random instances in Sect.  6.1 are confirmed when we apply the 
empirical data of the case study. Because the number of relief teams is few in case 
study, the difference among SS-strategies are not specific.

6.2.1  Incremental increase in the number of relief teams

As the number of available local USAR and medical teams is insufficient, it 
should be increased to improve the response to sudden-onset disasters, particu-
larly the earthquakes. To efficiently increase the number of local USAR and 
medical teams, we conducted another experiment for 440 instances (20 options 
for the number of USAR teams and 22 options for the number of medical teams). 
There are three major regions (I, II, and III) in Fig. 9, and each corresponds to 
the best choice to increase the number of relief teams. We gradually increased 

Fig. 8  RENS versus deviations around �̂s for our case study
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the number of USAR and medical teams and computed the corresponding ENS 
values. The number of USAR and medical teams are changed between 30 and 
60 and between 45 and 100, respectively. For each number of USAR teams, the 
model is solved for all the number of medical teams. For example, the number of 
USAR is set to 35 and the number of medical teams is changed from 45 to 100. 
Compared the objective function values of these combinations of relief teams, 
we found that RENS is incresed for the number of medical teams between 45 
and 90 while after that, it does not changed significantly. Therefore, the com-
bination (35,90) for the number of USAR and medical teams, respectively, is 
a treshhold for region 3. Similarly, the combination (35,51) is a treshhold for 
region 1. Finally, region 2 is known as the area between region 1 and region 3. 
The regions and their corresponding choices are as follows:

• Region I If the current combination of USAR and medical teams falls within 
this region, then adding more medical teams is recommended to increase 
ENS. Adding more USAR teams does not make a significant improvement. 
The boundary of Regions I and II determines the maximum number of rec-
ommended medical teams.

• Region II If the current combination of USAR and medical teams falls 
within this region, then adding both more medical and USAR teams is rec-
ommended to increase ENS. The boundaries of Region II with Regions I 
and III determine, respectively, the maximum number of USAR and medical 
teams to be efficient.

• Region III If the current combination of USAR and medical teams falls 
within this region, then adding more USAR teams is recommended to increase 
ENS. Adding more medical teams does not make any significant change.

Figure  9 illustrates that the optimal choice to improve response to disaster 
depends on the current combination of local relief teams in the field. Such an 
analysis can similarly be presented for any other case.

U
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R
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Medical team

(Region I)

(Region II)

(Region III)

Fig. 9  Different combinations of relief teams for our case study
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6.3  Strategy implementation

According to the numerical results in Sects. 6.1 and 6.2, among streaming strate-
gies, SSB is the best one to maximize ENS. On the other hand, PSY is the best 
among pooling strategies. Though the performance of PSY is higher than that of 
PSD and SSB, it may not be ethically attractive. Our recommended pooling strategy; 
i.e., PSD, makes an appropriate balance between ethics (i.e., giving an equal atten-
tion to all triage groups) and ENS (i.e., providing service for the greatest number of 
people). PSD and SSB yield almost the same ENS values and are the same ethically. 
Hence, we compare their performance in rescuing the greatest number of casualties 
in all the possible scenarios in terms of robustness. The results are given in Fig. 10 
according to the two critical factors: (1) variations in treatment strategy implementa-
tion and (2) error in estimating the ratio of red-group casualties.

6.4  Integration of SAR and on‑field treatment operations

We aim to compare the integrated optimization approach to the case in which 
SAR and on-field treatment decisions are made in distinct models. First, the 
objective function (51), as the maximization of the number of rescued people, 
and constraints (2), (3), (4), (5), and (14) are considered as SAR model. It is 
solved to determine the inflow of casualties to CTSs. Then, the outputs are used 

Fig. 10  Best treatment strategy
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Table 8  Percent improvement 
(%) of integrated models over 
non-integrated case in terms of 
RENS for � = �̂

Problem SSB (%) PSD (%)

5-node 10.21 15.03
10-node 10.15 8.92
15-node 15.80 15.71
20-node 17.93 16.98
Case study 16.74 10.40
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as parameters in SSB and PSD models to determine the allocation of medical 
teams to CTSs and casualty groups. As an example, the results of SSB and PSD 
strategies for our instances and case study are given in Table  8. Consequently, 
the integrated models are suggested for two reasons: 1) they are not complex and 
time-consuming to solve, and 2) little improvements are also significant, as the 
objective function is the expected number of survivors.

6.5  Robust approach

In this subsection, the performance of robust models for SSB and PSD strategies 
is compared. Based on the formulation presented in 4.3 and considering � = 10 , 
the results are illustrated in Fig.  11 for problems with 5 nodes. The robust and 
stochastic models are compared in this figure. As can be seen, the robust model 
has less RENS values because the worst case is considered and the solution of 
each scenario tends to be close to its average. It is useful for risk averse decision 
makers who consider a worst case scenario.

This is true for other problem sizes.

6.6  Discussion

The proposed observations and insights, supported by a comprehensive numerical 
study, are important from the following perspectives:

(51)Max ZSAR =
∑
s

∑
t

∑
m

∑
n

Ps.xs
m,n,t

Fig. 11  RENS versus variations around �̂s (5 nodes)
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(1) They recommend the best policy for the allocation of relief teams over the time 
horizon corresponding to a given treatment strategy, implemented by relief 
teams.

  They are useful to choose the best treatment strategy before a disaster and to 
be implemented right after the disaster. Fig. 10 introduces PSD and SSB as the 
best strategies in terms of robustness in rescuing the greatest number of casual-
ties in different field scenarios.

(2) They help to revise the decision on strategy implementation appropriately based 
on the last updated data on the distribution of casualty types. No treatment strat-
egy is dominant in all conditions.

Our work may be used by a disaster commander in a centralized manner or as a 
way for coordination and inter-relation among several agents/organizations which 
are in service in a decentralized manner.

The most relevant paper to our research is Rezapour et al. (2018) which consid-
ered only streaming strategy with and without overflow. They noted that “emergency 
units should be allocated to affected sites proportional to their casualty populations. 
This strategy is not optimal, but yields a good expected number of survivors that is 
very close to the optimal solution.” They compared ENS in two cases with and with-
out casualty overflow and reported “casualty overflow does not make a significant 
increase in ENS if medical teams are divided fairly (NOT optimally) between red 
and yellow groups of casualties.”. In fair allocation, red and yellow class teams have 

Table 9  Comparing our research 
to Rezapour et al. (2018)

Research Findings

Rezapour et al. (2018) Medical teams should be 
allocated to affected sites 
proportional to their casualty 
populations

Overflow streaming is a more 
robust strategy

Our research SSB is the best strategy among 
SS strategies

PSY is the best among PS 
strategies in terms of ENS. PSD 
performs better when we incor-
porate also ethical aspects

Appropriate implementation of 
SS and PS strategies is recom-
mended

Integrated policies for SAR and 
on-field treatment improve the 
ENS

Numerical analysis is provided on 
how to improve the response by 
increasing the relief capacity

The result of robust model is 
reported and compared to non-
robust model
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the same workload. Our results are not in contradiction with the above recommenda-
tions. Table 9 compares our research with Rezapour et al. (2018) in details.

7  Conclusion

In this research, we have developed seven stochastic MILP models corresponding 
to different on-field relief strategies to figure out the best policies before a disas-
ter and to implement them in the response phase of disaster when we lack time to 
solve optimization problems. The uncertainty in demand-side parameters is taken 
into account through some plausible scenarios while the supply capacity relies basi-
cally on the known local relief teams. The policies are supposed to be implemented 
efficiently for the integrated deployment of USAR and medical teams right after an 
urban mass-casualty incident. The models simultaneously allocated USAR teams to 
the affected sites, medical teams and extricated casualties to the CTSs, and medical 
teams to the casualty groups with the aim of improving the expected number of sur-
vivors. A comprehensive numerical study was established by generating 50 random 
instances to evaluate the performance of the proposed optimization models in 1750 
field scenarios. Then, a hypothetical but realistic earthquake in Tehran, as one of 
the most vulnerable cities in the world, was investigated. Next, the performance of 
our models in terms of two critical parameters was examined: (1) variations in treat-
ment strategy implementation, and (2) error estimation in the estimation of the ratio 
of red-group casualties. Additionally, we reported findings for the best deployment 
of relief teams in the event of earthquake which can be established similarly for the 
other cases. The results confirmed that the integration of SAR and on-field treat-
ment operations can increase the number of survivors. The robust model that tries 
to maintain the optimal solution under given scenarios close to its expected value 
results in less survivors. Based on the above mentioned experiments, some observa-
tions and insights were provided and discussed. Enriching the proposed treatment 
strategies, considering the transportation of casualties to hospitals for comprehen-
sive treatment, and evaluating the impact of treatment operations on the perfor-
mance of USAR teams can be important directions for future research.
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