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Abstract
Every real-life optimization problem with uncertainty and hesitation can not be with 
a single objective, and consequently, a class of multiobjective linear optimization 
problems (MOLOP) appears in the literature. Further, the experts assign values of 
uncertain parameters, and the expert’s opinions about the parameters are conflicting 
in nature. There are concerning methods based on fuzzy sets, or their other versions 
are available in the literature that only covers partial uncertainty and hesitation, but 
the hesitant intuitionistic fuzzy sets provides a collective understanding of the real-
life MOLOP under uncertainty and hesitation, and it also reflects better practical 
aspects of decision-making of MOLOP. In this context, the paper defines the hesi-
tant fuzzy membership function and nonmembership function to tackle the uncer-
tainty and hesitation of the parameters. Here, a new solution called hesitant intui-
tionistic fuzzy Pareto optimal solution is defined, and some theorems are stated and 
proved. For the decision-making of MOLOP, we develop an iterative method, and an 
illustrative example shows the superiority of the proposed method. And lastly, the 
calculated results are compared with some popular methods.
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1  Introduction

Linear programming techniques (LPTs) based on fuzzy sets or other versions have 
much importance and popularity while solving real-life optimization problems. 
Many LPTs are available for the solution of real-life optimization problems. Practi-
cally, optimization problems such as transportation problems, assignment problems, 
supply chain management, engineering problems, etc. can not be with a single goal. 
Thus, an optimization problem having multiple conflicting objectives under con-
straints is called a MOLOP. In MOLOP, it is not always possible to get a single 
solution that fulfills each objective efficiently. However, a compromise solution is 
possible that fulfills each goal at the same time. Therefore the concept of compro-
mise solution is important and leads in search of the global optimality requirements. 
In literature, a tremendous amount of research is available in the context of MOLOP. 
Here, a better approach based on newly invented HIFS deals properly than exist-
ing ones. The main contributions of the present paper that may make it popular are 
given below:

•	 The hesitant intuitionistic fuzzy is one of the recent extensions of fuzzy sets 
and explained by current adverse circumstances: the physical distancing during 
COVID-19.

•	 The paper introduces a new hesitant intuitionistic fuzzy set-theoretic operation 
that minimizes the computational complexity of real-life optimization problems.

•	 A set of possible interval-valued membership and non membership degrees are 
defined to tackle the uncertainty and hesitation of MOLOP rather than single 
fixed degrees.

•	 The hesitant intuitionistic Pareto optimal solution is introduced in this paper.
•	 I develop a new computational algorithm to deal with MOLOP with uncertainty 

and hesitation.
•	 The profit obtained from the proposed method is more than some existing meth-

ods.
•	 Obtained decisions are more realistic and unbiased due to several experts’ opin-

ions.
•	 The proposed optimization technique is a generalization of both fuzzy and intui-

tionistic fuzzy optimization techniques.
•	 The proposed algorithm searches for a better optimal solution with best member-

ship and worst nonmembership degrees.
•	 The HIFS would be a perfect tool to deal with any real life problem in the context 

of uncertainty and hesitation.

The rest of the paper is organized as follows: Sect. 2 reviews the literature on algo-
rithms for multiobjective optimization problems and explained the associated short-
comings. Section  3 recalls some concept of HIFS and illustrated HIFS. For the 
practical point of view, a computational algorithm is developed in Sect.  4, and it 
is an extension of both fuzzy and intuitionistic fuzzy optimization techniques. In 
Sect. 5, stepwise procedures are described, and for the validity and performance of 
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the proposed algorithm, an illustrative example is presented in Sect. 6. The obtained 
results are discussed in Sect.  7. Conclusions and future scope are presented in 
Sects. 8 and 9 respectively.

2 � Literature review

Many multiobjective optimization problems appear to modeling and making deci-
sion of engineering and management sectors, where objectives are conflicting in 
nature. It was Charnes and Cooper (1977) who presented the concept of goal pro-
gramming (GP). Furthermore, Evans and Steuer (1973) proposed a necessary and 
sufficient condition for a point to be an efficient solution of a multiobjective linear 
programming problem. For this, they stated some lemma and theorems that help to 
find an efficient solution to a multiobjective linear programming problem. Further, 
for the solution of multiobjective linear programming, a revised simplex algorithm is 
developed. Zionts and Wallenius (1976) proposed a practical man-machine interac-
tive programming for the solution of optimization problems under some restrictions 
containing multiple objective functions. Here, feasible space is a convex set over 
which the concave objective functions are to be maximized. It also interesting to 
note that the classical method of optimization assumes, all the parameters and goals 
of an optimization problem are precisely known and fixed. But, in many real-life 
optimization problems, there are uncertainty and hesitation about input data. Par-
ticularly, in MOLOP, the goal values for the different objectives cannot be defined 
precisely. Fuzzy set Zadeh (1965) is one of the best available decision-making tool 
that finds the solution of the such uncertain problem.

To deal MOLOP with imprecision, the fuzzy programming technique (FPT) 
based on fuzzy sets (FS) has been introduced by Zimmermann (1983). In FPT, 
uncertainty is resolved by defining linear membership function on the basis of aspi-
ration and tolerance levels. Then, a compromise solution is obtained by using maxi-
min approach. But some of the cases, tolerances cannot be defined precisely. To deal 
this difficulty, goal programming technique (GPT) in fuzzy scenario has been inves-
tigated by Narasimhan (1980). Furthermore, the GPT has been extensively intended 
by Hannan (1981), Tiwari et al. (1987), Pal et al. (2003), and the work is to dem-
onstrate how fuzzy,or imprecise goals of the decision-maker may be incorporated 
into a standard goal programming formulation. The new problem can then be solved 
by using the properties of piecewise linear and continuous functions and by goal 
programming deviational variables. For this, a methodology for the solution of the 
fuzzy goal programming problem is presented. The main objective of this paper is 
to find an efficient solution to the multiobjective programming problem with fuzzy 
goals. Further, FPT has been widely studied and various modifications and gener-
alizations have presented. One of them is the concept of interval-valued fuzzy pro-
gramming technique (IV FPT), has been extended by Hongmei and Nianwei (2010), 
furthermore, Shih et al. (2008) presented a method to find optimal solution of mul-
tiobjective programming in interval-valued fuzzy environment where multiobjective 
programming converted into an interval-valued fuzzy programming using interval-
valued fuzzy membership functions for each crisp inequalities.
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In the situation where the degree of acceptance is defined simultaneously with 
the degree of rejection and when both these degrees are not complementary to each 
other then FS does not deal properly. It was Atanassov (1986) who invented intui-
tionistic fuzzy sets (IFS). An intuitionistic fuzzy set is a simple generalization of 
Zadeh’s fuzzy sets. In IFS, an element has membership and nonmembership degrees 
in [0, 1]. Many research works such as Mahajan and Gupta (2019), Kumar (2018, 
2020), Malhotra and Bharati (2016) are carried out using IFS. Angelov (1997) devel-
oped a computational technique based on the intersection of intuitionistic fuzzy sets 
for the solution of an optimization problem which is a very popular technique and 
it is an extended version of fuzzy optimization technique. Here an illustration of the 
transportation problem is presented. In this paper, a new concept of the optimiza-
tion problem with uncertainty and hesitation is proposed. It is an extension of fuzzy 
optimization in which the degrees of rejection of objective(s) and constraints are 
considered together with the degrees of satisfaction. This approach is an application 
of the intuitionistic fuzzy (IF) set concept to optimization problems. An approach 
to solving such problems is proposed and illustrated with a simple numerical exam-
ple. It converts the introduced intuitionistic fuzzy optimization (IFO) problem into 
the crisp (non-fuzzy) one. The advantage of the IFO problems is twofold: they give 
the richest apparatus for the formulation of optimization problems and, on the other 
hand, the solution of IFO problems can satisfy the objective(s) with a bigger degree 
than the analogous fuzzy optimization problem and the crisp one. Further, it is 
observed that the hesitation factor of real-life problems can be not tackled by using 
fuzzy sets. IFS is further extended to an interval-valued intuitionistic fuzzy set by 
Atanassov and Gargov (1989), where the membership degree and nonmembership 
degree of an element in an IVIFS are, respectively, represented by intervals in [0, 1] 
rather than fixed real numbers between 0 and 1. Both interval-valued intuitionistic 
and hesitant fuzzy sets have successful applications in decision-making. Recently, 
Bharati and Singh (2019); Bharati (2021); Bharati and Singh (2018) studied inter-
val-valued intuitionistic fuzzy sets and their various properties. From the practical 
point of view, a computational algorithm is developed and it is an extension of both 
fuzzy and intuitionistic fuzzy optimization techniques.

Torra and Narukawa (2009); Torra (2010) introduced the concept of hesitant 
fuzzy sets which is an extension of ordinary fuzzy sets and it can be considered as a 
useful tool allowing more possible degrees of an element to a set. The degree of an 
element in hesitant fuzzy sets is a subinterval of [0, 1]. Recently, several researchers 
have studied hesitant fuzzy sets and applied them to various fields (Bharati 2018a, 
b). Further based upon the same logic Zhang (2013) introduced the concept of inter-
val-valued intuitionistic fuzzy sets. Linear programming is a very famous tool to 
make the best decision on real-life optimization problems. But every real-life prob-
lem cannot be restricted to a single objective. Hence the appearance of multiobjec-
tive in literature is a natural phenomenon. Recently, Bharati (2021, 2022) presented 
new approaches to deal MOLOP in a better way.
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3 � The hesitant intuitionistic fuzzy sets

The uncertainty and hesitation occur in every real-life problem and therefore it is 
very necessary to explain it. Researchers have little attention on hesitant intuitionis-
tic fuzzy sets, and therefore, in this section, we present an illustration of the hesitant 
intuitionistic fuzzy sets based on physical distancing during the COVID-19 pan-
demic. For this, suppose that X represents a set of 100 peoples of a village and if we 
ask about a number of people who follow Physical Distancing during COVID-19 
pandemic. The natural answer is that we get our 30, 40,… , etc. And the number of 
people who do not follow Physical Distancing is 5, 10,… , , etc. In the same manner, 
let X = {x1, x2,… , xN} be the set of N people in a village. And let the number of 
people who follow Physical Distancing during the COVID-19 pandemic can be dif-
ferent because of different experts.

According to first expert E1 be mE1

(x) and number of people who do not follow be 
nE

1

(x).

According to second expert E2 be mE2

(x) and number of people who do not fol-
low be nE2

(x).

According to third expert E3 be mE3

(x) and number of people who do not follow 
be nE3

(x). similarly,
According to kth expert Ek be mEk

(x) and number of people who do not follow be 
nE

k(x).

Then mE1

(x) + nE
1

(x) ≤ N

⇒
mE1 (x)+nE

1
(x)

N
≤ 1, since N > 0, hence following inequalities make sense

⇒
mE1 (x)

N
+

nE
1
(x)

N
≤ 1

similarly,
mE2 (x)

N
+

nE
2
(x)

N
≤ 1

mE3 (x)

N
+

nE
3
(x)

N
≤ 1

⋮

⋮

mEk (x)

N
+

nE
k
(x)

N
≤ 1

Therefore

{⟨x, (mE1 (x)

N
,
nE

1
(x)

N
)⟩;⟨x, (mE2 (x)

N
,
nE

2
(x)

N
)⟩;⋯ ⟨x, (mEk (x)

N
,
nE

k
(x)

N
)⟩} is a hesitant intuition-

istic fuzzy set. Now, we shall represent the formal definition of hesitant intuitionistic 
fuzzy sets.

Definition 1  (Hesitant fuzzy sets) Torra and Narukawa (2009) and Torra (2010) 
invented a new tool which is the hesitant fuzzy sets (HFSs) and which permit the 
membership degree of an object to a set of several possible values. The HFS can be 
expressed hesitant fuzzy sets in the following way:
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Let X be a fixed set, then a hesitant fuzzy sets is represented as A = {(x, hA(x))|x ∈ X} 
where hA(x) is denoting the possible membership degrees of the element x ∈ X to the 
set A. hA is called hesitant element. Further, Xia and Xu (2011, 2011) used it in their 
research works.

Definition 2  (Hesitant intuitionistic fuzzy sets) When a decision-maker makes 
a decision, he may hesitate to choose the exact membership and nonmembership 
degrees in [0, 1]. For such a circumstance where there are many membership and 
nonmembership degrees of one element to a set, the HIFS, which is a kind of gen-
eralized FS where the membership and nonmembership degrees of an element to 
a certain set can be illustrated several different values between 0 and 1. The HIFS 
is perfect at dealing with situations where people have disagreements or hesitancy 
when deciding something. Let X be a fixed set, then a hesitant intuitionistic fuzzy 
sets is represented as A = {(x, hA(x))|x ∈ X} where hA(x) is a set of some intuition-
istic fuzzy sets in X, denoting the possible membership degree intervals and non-
membership degree intervals of the element x ∈ X to the set A. hA is called hesitant 
intuitionistic fuzzy element.

Definition 3  (Hesitant intuitionistic fuzzy sets theoretic operations) Let H1, and H2 
be two hesitant intuitionistic fuzzy sets and h1 ∈ H1, h2 ∈ H2 . Then, some popular 
operations among HIFS are:

•	 Hc = {hc ∶ h ∈ H}

•	 H1 ∪ H2 = {max(h1, h2) ∶ h1 ∈ H1, h2 ∈ H2}, where h1 ∪ h2 = {max(�h1
,�h2

),min(�h1
, �h2

)}

•	 H1 ∩ H2 = {min(h1, h2) ∶ h1 ∈ H1, h2 ∈ H2}, where h1 ∩ h2 = {min(�h1
,�h2

),max(�h1
, �h2

)}

4 � Development of the algorithm

Definition 4  (Multiobjective linear optimization problem) Practically, it had 
observed that a linear programming problem can not be restricted to a single objec-
tive, and consequently, a multiobjective linear optimization problem had explored. 
Symbolically, a multiobjective linear optimization problem with n decision variables 
and m constraints represented as:

The set Ω = {x ∶ gi(x) ≤ 0, xj ≥ 0; i = 1, 2,… , m; j = 1, 2,… , n} is called a basic 
feasible space of the problem (1).

(1)

Maximize Z = {f1, f2,… , fK}

Such that gi(x) ≤ 0

xj ≥ 0, j = 1, 2,… , n

where x = {x1, x2,… , xn}
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Definition 5  (Pareto-optimal solution) An optimal solution that is obtained from 
a single objective may or may not satisfy all the conflicting objectives simultane-
ously. But it is impossible to obtain a solutions that simultaneously optimizes all of 
the objective and satisfies all the restrictions, called the Pareto-optimal solutions. 
Mathematically, a basic feasible solution x0 ∈ Ω is called a Pareto-optimal solution 
of the problem (1) if and only if there is no x ∈ Ω such that fk(x) ≥ fk(x0) ∀k and 
fk0 (x) > fk0 (x0) for at least one k0.

Definition 6  (Hesitant intuitionistic fuzzy Pareto-optimal solution) For the hesitant 
intuitionistic fuzzy optimization, the Pareto-optimal solutions can be defined in the 
following manners:

A solution X0 is called a Pareto optimal solution for (1) if there does not exist another 
X such that fk(x) ≥ fk(X0) with �Ek

k
(fk(X)) ≥ �Ek

k
(fk(X0)) and �Ek

k
(fk(X)) ≤ �E

k

k
(fk(X0)) 

and fK0
(x) > fK0

(X0) with 𝜇EK0

K0
(fK0

(X)) > 𝜇EK0

K0
(fK0

(X0)) and 𝜈EK0

K0

(f
K0
(X)) < 𝜈E

K0

K0

(f
K0
(X0)) 

for at least one K0 ∈ {1, 2,… ,K}.

Definition 7  (Hesitant intuitionistic fuzzy programming) Assuming that the deci-
sion maker uses unclear aspiration levels such as, objective function should be 
greater than or equal to some value ⪅ go

k
, k = 1, 2,… ,K . Therefore, the problem (1) 

can be restated as:

where go
k
 is goal for kth objective and ⪅ is uncertain type of ≤ , and has been repre-

sented by various version of fuzzy set, further, it is presented in Fig. 3.

Definition 8  Zimmermann (1983) fuzzy optimization technique for the uncertain 
multiobjective linear optimization problem (1). Here, each expression is represented 
by FS known as fuzzy goal, whose membership �k(fk(x)), �k ∶ ℝ → [0, 1], provides 
the satisfaction degree �k to which the kth fuzzy inequality is fulfilled. Further, to 
construct the membership function �k(fk(x)), the decision maker has provide the tol-
erance margins gk + tk that he willing to accept. The final version of fuzzy optimiza-
tion technique is represented below as:

(2)

Find X = {x1, x2,… , xn}

Such that fk ⪅ go
k
, k = 1, 2,… ,K

gj(x) ≤ 0

xj ≥ 0, j = 1, 2,… , n

where x = {x1, x2,… , xn}

(3)

Maximize �

subject to � ≤ �k(x), k = 1, 2,… ,K

0 ≤ � ≤ 1

x ∈ X.
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Definition 9  Angelov (1997) fuzzy optimization technique for the uncertain multi-
objective linear optimization problem (1) is stated below:

4.1 � Construction of hesitant fuzzy membership functions

A decision-maker can not achieve a goal fully due to undeniable uncertainty and 
hesitation, and single membership degree does not deal properly. For such a circum-
stance, there are several membership degrees of one element to a set are selected. 
Now, let upper and lower bounds for the hesitant fuzzy membership functions be 
�k(fk(x)), k = 1, 2,… ,K. Then hesitant fuzzy membership functions for each objec-
tives are presented below and can be visualized in Fig. 1.

(4)

Maximize (� − �)

subject to � ≤ �k(x), k = 1, 2,… ,K

� ≥ �k(x), k = 1, 2,… ,K

� + � ≤ 1

� ≥ �, � ≥ 0

x ∈ X.

(5)�E1

k
(fk(x)) =

⎧
⎪⎨⎪⎩

0, if fk(x) ≤ L
�

k

�1
fk(x)−L

�

k

U
�

k
−L

�

k

, if L
�

k
≤ fk(x) ≤ U

�

k

1, if fk(x) ≥ L
�

k

Fig. 1   Hesitant membership of objectives
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where 0 ≤ �1, �2,… , �n ≤ 1.

4.2 � Construction of hesitant fuzzy nonmembership functions

A decision-maker can not achieve a goal fully due to undeniable uncertainty and 
hesitation, and further he may hesitate to choose the exact nonmembership degree 
in [0, 1]. For such a circumstance, there are several nonmembership degrees of one 
element to a set are constructed. Now, let upper and lower bounds for the hesitant 
fuzzy nonmembership functions are �k(fk(x)), k = 1, 2,… ,K. Then hesitant fuzzy 
nonmembership functions for each objective are presented below and can be visual-
ized in Fig. 2.

(6)
�E

2

k
(f
k
(x)) =

⎧
⎪⎨⎪⎩

0, if f
k
(x) ≤ L

�

k

�2
f
k
(x)−L

�

k

U
�

k
−L

�

k

, if L
�

k
≤ f

k
(x) ≤ U

�

k

1, if f
k
(x) ≥ L

�

k

…

…

(7)�E
n

k
(f
k
(x)) =

⎧
⎪⎨⎪⎩

0, if f
k
(x) ≤ L

�

k

�
n

f
k
(x)−L

�

k

U
�

k
−L

�

k

, if L
�

k
≤ f

k
(x) ≤ U

�

k

1, if f
k
(x) ≥ L

�

k

Fig. 2   Hesitant nonmembership of objectives



3530	 S. K. Bharati 

1 3

where, 0 ≤ �1, �2,… , �n ≤ 1.

Step 9 In this step, we present uncertain and imprecise objectives of MOLP by 
using the following linear hesitant membership functions �E1

k
(fk(x)):

where, 0 ≤ �1, �2,… , �n ≤ 1.

Let hD(x) be the hesitant intuitionistic fuzzy decision, then
h
D
(x) = ⟨�E

1

1
(f
k
(x)), �E

2

1
(f
k
(x)), �E

3

1
(f
k
(x))⟩⋂⟨�E

1

2
(f
k
(x)), �E

2

2
(f
k
(x)), �E

3

2
(f
k
(x))⟩,⋂⟨�E

1

3
(f
k
(x)), �E

2

3
(f
k
(x)), �E

3

3
(f
k
(x))⟩, where

(8)�E
1

k
(fk(x)) =

⎧
⎪⎨⎪⎩

0, if fk(x) ≥ � × U
�

k

�1
fk(x)−L

�

k

�×U
�

k
−L

�

k

, if L
�

k
≤ fk(x) ≤ U

�

k

1, if fk(x) ≤ L
�

k

(9)�E
2

k
(f
k
(x)) =

⎧
⎪⎨⎪⎩

0, if f
k
(x) ≥ � × U

�

k

�2
f
k
(x)−L

�

k

�×U
�

k
−L

�

k

, if L
�

k
≤ f

k
(x) ≤ � × U

�

k

1, if f
k
(x) ≤ L

�

k

(10)�E
n

k
(fk(x)) =

⎧
⎪⎨⎪⎩

0, if fk(x) ≥ U
�

k

�n
fk(x)−L

�

k

�×U
�

k
−L

�

k

, if L
�

k
≤ fk(x) ≤ � × U

�

k

1, if fk(x) ≤ L
�

k

(11)�E1

k
(fk(x)) =

⎧
⎪⎨⎪⎩

0, if fk(x) ≤ L
�

k

�1
fk(x)−L

�

k

U
�

k
−L

�

k

, if L
�

k
≤ fk(x) ≤ U

�

k

1, if fk(x) ≥ L
�

k

(12)�E
2

k
(f
k
(x)) =

⎧
⎪⎨⎪⎩

0, if f
k
(x) ≤ L

�

k

�2
f
k
(x)−L

�

k

U
�

k
−L

�

k

, if L
�

k
≤ f

k
(x) ≤ U

�

k

1, if f
k
(x) ≥ L

�

k

(13)�En

k
(fk(x)) =

⎧
⎪⎨⎪⎩

0, if fk(x) ≤ L
�

k

�n
fk(x)−L

�

k

U
�

k
−L

�

k

, if L
�

k
≤ fk(x) ≤ U

�

k

1, if fk(x) ≥ L
�

k
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.
Let us introduce new variables that representing min and max values:

h
D
(x) =⟨min{�E

1

1
(f
k
(x)), �E

1

2
(f
k
(x))}, min{�E

1

1
(f
k
(x)), �E

2

2
(f
k
(x))},

min{�E
1

1
(f
k
(x)),�E

2

3
(f
k
(x))}, min{�E

1

1
(f
k
(x)),

�E
3

1
(f
k
(x))},min{�E

1

1
(f
k
(x)), �E

2

3
(f
k
(x))}, min{�E

1

1
(f
k
(x)),

�E
3

3
(f
k
(x))},min{�E

2

1
(f
k
(x)),�E

1

2
(f
k
(x))}, min{�E

2

1
(f
k
(x)),

�E
2

2
(f
k
(x))},min{�E

2

1
(f
k
(x)), �E

3

2
(f
k
(x))}, min{�E

2

1
(f
k
(x)),

�E
1

3
(f
k
(x))},min{�E

2

1
(f
k
(x)), �E

2

3
(f
k
(x))}, min{�E

2

1
(f
k
(x)),

�E
3

3
(f
k
(x))},min{�E

3

1
(f
k
(x)), �E

1

2
(f
k
(x))}, min{�E

3

1
(f
k
(x)),

�E
3

2
(f
k
(x))},min{�E

3

1
(f
k
(x)),�E

3

2
(f
k
(x))}, min{�E

3

1
(f
k
(x)),

�E
1

3
(f
k
(x))},min{�E

3

1
(f
k
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Here, we ignore repeated hesitant membership and nonmembership functions to get 
feasible solutions and complexity of the equivalent linear programming problems.

Step 10 Now the hesitant intuitionistic fuzzy an optimization technique for mul-
tiple objective linear optimizations (1) with linear membership and nonmembership 
functions Fig. 3 are:
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(14)

Maximize �1 + �2 +⋯ + �n

Minimize �1 + �2 +⋯ + �n

Such that �
E1

k
(x) ≥ �1, for all k

�
E2

k
(x) ≥ �2, for all k

…

…

�
En

k
(x) ≥ �n, for all k

0 ≤ �1, �2,… , �n ≤ 1,

�
E1

k
(x) ≤ �1, for all k

�
E2

k
(x) ≤ �2, for all k

⋯

⋯

�
En

k
(x) ≤ �n, for all k

0 ≤ �1, �2,… , �n ≤ 1

�1 ≥ �1

�2 ≥ �2

⋯

⋯

�n ≥ �n

�i ≥ 0, i = 1, 2,… n

gj(x) ≤ 0, j = 1, 2,… , q

x ≥ 0.

µ µ µ

µ
µ

Fig. 3   Hesitant intuitionistic fuzzy representation of objectives
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(15)

Maximize
(
�1 + �2 +⋯ + �n

)
−
(
�1 + �2 +⋯ + �n

)

Such that �
E1

k
(x) ≥ �1, for all k

�
E2

k
(x) ≥ �2, for all k

…
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�
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k
(x) ≤ �1, for all k

�
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k
(x) ≤ �2, for all k

⋯

⋯

�
En

k
(x) ≤ �n, for all k

0 ≤ �1, �2,… , �n ≤ 1

�1 ≥ �1

�2 ≥ �2

⋯

⋯

�n ≥ �n

�i ≥ 0, i = 1, 2,… n

gj(x) ≤ 0, j = 1, 2,… , q

x ≥ 0.



3535

1 3

Hesitant intuitionistic fuzzy algorithm for multiobjective…

(16)

Maximize
(
�1 − �1

)
+
(
�2 − �2

)
+⋯ +

(
�n − �n

)

Such that �
E1

k
(x) ≥ �1, for all k

�
E2

k
(x) ≥ �2, for all k

…

…

�
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(x) ≥ �n, for all k
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�
E1

k
(x) ≤ �1, for all k

�
E2

k
(x) ≤ �2, for all k

⋯

⋯
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0 ≤ �1, �2,… , �n ≤ 1

�1 ≥ �1

�2 ≥ �2

⋯

⋯

�n ≥ �n

�i ≥ 0, i = 1, 2,… n

gj(x) ≤ 0, j = 1, 2,… , q

x ≥ 0.
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Theorem  A unique optimal solution (x∗, �∗, �∗) of the problem (17) is also a 
Pareto-optimal solution for the problem (1), where �∗ = (�∗

1
, �∗

2
,… , �∗

n
) and 

�∗ = (�∗
1
, �∗

2
,… , �∗

n
).

Proof  Let (x∗, �∗, �∗) be an optimal solution of the problem (17). Then 
(𝛿∗ − 𝛾∗) > (𝛿 − 𝛾) for any (x, �, �) feasible to the problem (17).

On the contrary, suppose that (x∗, �∗, �∗) is not an optimal solution of the prob-
lem (1). Then there exists another feasible solution x∗∗ of the problem (1), such that 
fk(x

∗) ≤ fk(x
∗∗) for all k = 1, 2,… ,K and fk(x∗) < fk(x

∗∗) for at least one k.
Therefore, I have fk(x

∗)−L
�

k

U
�

k
−L

�

k

≤
fk(x

∗∗)−L
�

k

U
�

k
−L

�

k

 for all k = 1, 2,… ,K and fk(x
∗)−L

𝜇

k

U
𝜇

k
−L

𝜇

k

<
fk(x

∗∗)−L
𝜇

k

U
𝜇

k
−L

𝜇

k

 
for at least k ∈ {1, 2,… ,K}.

Hence, Maxk 
fk(x

∗)−L
�

k

U
�

k
−L

�

k

 ≤ Maxk 
fk(x

∗∗)−L
�

k

U
�

k
−L

�

k

 and Maxk 
fk(x

∗)−L
�

k

U
�

k
−L

�

k

 < Maxk 
fk(x

∗∗)−L
�

k

U
�

k
−L

�

k

 for at 
least one k ∈ {1, 2,… ,K}.

Similarly, Mink 
fk(x

∗)−L
�

k

�×U
�

k
−L

�

k

 ≥ Mink 
fk(x

∗∗)−L
�

k

�×U
�

k
−L

�

k

 and Mink 
fk(x

∗)−L
�

k

�×U
�

k
−L

�

k

 > Mink 
fk(x

∗∗)−L
�

k

�×U
�

k
−L

�

k

 for at 
least one k ∈ {1, 2,… ,K}.

(17)

Maximize
(
�1 − �1

)
+
(
�2 − �2

)
+⋯ +

(
�n − �n

)

Such that �
E1

k
(x) ≥ �1, for all k

�
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k
(x) ≥ �2, for all k

…

…

�
En

k
(x) ≥ �n, for all k

0 ≤ �1, �2,… , �n ≤ 1,

�
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k
(x) ≤ �1, for all k

�
E2

k
(x) ≤ �2, for all k

⋯

⋯

�
En

k
(x) ≤ �n, for all k

0 ≤ �1, �2,… , �n ≤ 1,

�1 ≥ �1

�2 ≥ �2

⋯

⋯

�n ≥ �n

�i ≥ 0, i = 1, 2,… n

gj(x) ≤ 0, j = 1, 2,… , q

x ≥ 0.
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Now, suppose that Maxk 
fk(x

∗)−L
�

k

U
�

k
−L

�

k

= �∗ and Maxk 
fk(x

∗)−L
�

k

U
�

k
−L

�

k

= �∗∗, fk(x
∗)−L

�

k

�×U
�

k
−L

�

k

= �∗ and 

Maxk 
fk(x

∗)−L
�

k

�×U
�

k
−L

�

k

= �∗∗.

Then 𝛿∗ ≤ (<)𝛿∗∗. and 𝛾∗ ≥ (>)𝛾∗∗.

and this implies (𝛿∗ − 𝛾∗) < (𝛿∗∗ − 𝛾∗∗).

Thus, I have reached at a contradiction with the fact that (x∗, �∗, �∗) be an optimal 
solution of the problem (17). Therefore our supposition is wrong and (x∗, �∗, �∗) be 
an optimal solution of the problem (1). This completes the proof. 	�  ◻

5 � The hesitant intuitionistic fuzzy algorithm

Step 1 Select a single objective function from a set of K objectives of the problem 
and solve it as a single objective subject to the given constraints. Find basic feasible 
solutions and the value of objective functions.

Step 2 Compute values of the remaining (k − 1) objectives at basic feasible solu-
tions that are obtained from step 1.

Step 3 Repeat the step 1 and step 2 for remaining (k − 1) objective functions.
Step 4 Tabulate values of objective functions obtained from step 1, step 2, and 

step 3 to form a Table 1 and these are known as positive ideal solutions.
Step 5 From step 5, find the lower and upper bounds for each objective function, 

where f ∗
k
 and f ,

k
 are the maximum, minimum values of fk respectively.

Step 6 Here, we denote and define upper and lower bounds by U�

k
= max(Zk(Xr)) 

and L�
k
= min(Zk(Xr)), 1 ≤ r ≤ p respectively for each uncertain and imprecise 

objective functions of multiple objective linear optimization problems.
Step 7 Set upper and lower bounds for each objective for hesitant degree of 

acceptance and hesitant degree of rejection corresponding to the set of solutions 
obtained in step 4.

For hesitant membership functions: Upper and lower bound for hesitant member-
ship functions

U
�

k
= Max(fk(Xr)) and L�

k
= Min(fk(Xr)), 1 ≤ r ≤ K, k = 1, 2,… ,K.

For hesitant nonmembership function: Upper and lower bound for hesitant mem-
bership functions

U�
k
= � × U

�

k
 and L�

k
= L

�

k
, � ∈ [1, 3], k = 1, 2,… ,K, where � is a hesitant 

parameters.

Table 1   Positive ideal solution Maximum f1 f2 f3 . fk X

Maximum f1 f
∗
1

. X1

Maximum f2 f
∗
2

. X2

Maximum f3 f
∗
3

. X3

. . . .
Maximum f

k
. f

∗
k

X
k

Minimum f
′
1

f
′
2

f
′
3

. f
′
k



3538	 S. K. Bharati 

1 3

Step 8 In this step, we present uncertain and imprecise objectives of MOLP by 
using the following linear hesitant membership functions �E1

k
(fk(x)).

Step 9 In this step, we present uncertain and imprecise objectives of MOLP by 
using the following linear hesitant non membership functions �E1

k
(fk(x)).

Step 10 In this step, we apply a hesitant intuitionistic fuzzy optimization tech-
nique to get the solution to the multiobjective optimization problem.

Hesitant membership and nonmembership functions for each uncertain objective are 
defined below in the next section.

Step 11 The above linear programming problem (14) can be easily solved by the 
above simplex method.

6 � Application of proposed algorithm

6.1 � Production planning problem

In MOLOP, a small violation in given constraints or conditions may lead to 
a more efficient solution to the problem. Such situations appear frequently in 

(18)

Maximize
(
�1 − �1

)
+
(
�2 − �2

)
+⋯ +

(
�n − �n

)

Such that �
E1

k
(x) ≥ �1, for all k

�
E2

k
(x) ≥ �2, for all k

…

…

�
En

k
(x) ≥ �n, for all k

0 ≤ �1, �2,… , �n ≤ 1,

�
E1

k
(x) ≤ �1, for all k

�
E2

k
(x) ≤ �2, for all k

⋯

⋯

�
En

k
(x) ≤ �n, for all k

0 ≤ �1, �2,… , �n ≤ 1,

�1 ≥ �1

�2 ≥ �2

⋯

⋯

�n ≥ �n

�i ≥ 0, i = 1, 2,… n

gj(x) ≤ 0, j = 1, 2,… , q

x ≥ 0.
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real-life modeling, as a matter of fact in optimization problems; many times 
it is not practical to fix accurate parameters as many of these are obtained 
through approximation or some kind of human observation. For example in a 
production optimization problem, not all the products need to be of good qual-
ity and are completely sellable at a fixed price. There is a possibility that some 
of the products may be defective and are not sellable at the fixed price. Fur-
ther, prices of raw material, as well as the market price of the finished prod-
uct, may vary depending on its surplus/deficiency in the market due to some 
uncontrollable situations. Thus it is evident that prices and/or productions are 
not purely deterministic but in general, these are imprecise or non-determinis-
tic and thus such problems of optimization are to be dealt with help of some 
non-classical methods. Consider a park of six machine types whose capaci-
ties are to be devoted to the production of three products. A current capacity 
portfolio is available, measured in machine hours per weak for each machine 
capacity unit priced according to machine type. The necessary data in Table 2 
is summarized below:

Let x1, x2, x3 denote three products, then the complete the mathematical formula-
tion of the above-mentioned problem as a multiobjective linear optimization prob-
lem is given as:

A stepwise numerical verification of the proposed iterative method is presented 
below:

(19)

Maximize f1(x) = 50x1 + 100x2 + 17.5x3 (Profit)

Maximize f2(x) = 92x1 + 75x2 + 50x3 (Quality)

Maximize f3(x) = 25x1 + 100x2 + 75x3(Worker satisfaction)

Subject to the constraints

12x1 + 17x2 ≤ 1400

3x1 + 9x2 + 8x3 ≤ 1000

10x1 + 13x2 + 15x3 ≤ 1750

6x1 + 16x3 ≤ 1325

x1, x2, x3 ≥ 0.

Table 2   Physical parameter values

Machine type Machine hours Unit price Products

x1 x2 x3

Milling 1400 0.75 12 17 0
Lather 1000 0.60 3 9 8
Grinder 1750 0.35 10 13 15
Jig Saw 1325 0.50 6 0 16
Drill press 900 1.15 0 12 7
Band Saw 1075 0.65 9.5 9.5 4
Total capacity cost 4658.75
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Step 1 In this step, we solve MOLOP as a single linear programming problem:

Solving single objective linear programming problem (20), we get the following 
optimum solutions:

x1 = 44.93, x2 = 50.63, x3 = 41.77, (f1)1 = 8041.14.

Step 2 With these decision variables, computed values of other remaining objec-
tive functions are: (f2)1 = 10020.33, (f3)1 = 9319.25.

Step 3 Step 1 and Step 2 are repeated for other objective functions f2, f3.
Step 4 The Positive Ideal Solution obtained are placed in Table 3.
Step 5 I find the upper and lower bounds and these are given below:
Step 6 In this step, we calculate lower and upper bounds for each objective 

functions:
L
�

1
= 5452.63,U

�

1
= 8041.14

L
�

2
= 10020.33,U

�

2
= 10950.59

L
�

3
= 9355.90,U

�

3
= 5903.00

Step 7 Use following linear membership function �E1

k
(fk(x)), k = 1, 2,… , 9 for 

each objective functions:

(20)

Maximize f1(x) = 50x1 + 100x2 + 17.5x3

Subject to the constraints

12x1 + 17x2 ≤ 1400

3x1 + 9x2 + 8x3 ≤ 100

10x1 + 13x2 + 15x3 ≤ 1750

6x1 + 16x3 ≤ 1325

12x2 + 7x3 ≤ 900

9.5x1 + 9.5x2 + 4x3 ≤ 1075

x1, x2, x3 ≥ 0.

(21)

�E
1

1
(50x1 + 100x2 + 17.5x3) =

⎧
⎪⎪⎨⎪⎪⎩

0, if 50x1 + 100x2 + 17.5x3 ≤ 5452.63

0.96
50x1+100x2+17.5x3−5452.63

8041.14−5452.63
,

if 5452.63 ≤ 50x1 + 100x2 + 17.5x3 ≤ 8041.14

1, if 50x1 + 100x2 + 17.5x3 ≥ 5452.63

Table 3   Positive ideal solution
f1 f2 f3 X

Maximum f1 8041 10020.33 9319.25 X1

Maximum f2 5452.63 10950.59 5903.00 X2

Maximum f3 7983.60 10056.99 9355.90 X3
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(22)

�E
2

2
(50x1 + 100x2 + 17.5x3) =

⎧
⎪⎪⎨⎪⎪⎩

0, if 50x1 + 100x2 + 17.5x3 ≤ 5452.63

0.98
50x1+100x2+17.5x3−5452.63

8041.14−5452.63
,

if 5452.63 ≤ 50x1 + 100x2 + 17.5x3 ≤ 8041.14

1, if 50x1 + 100x2 + 17.5x3 ≥ 5452.63

(23)

�E
3

3
(50x1 + 100x2 + 17.5x3) =

⎧
⎪⎪⎨⎪⎪⎩

0, if 50x1 + 100x2 + 17.5x3 ≤ 5452.63

50x1+100x2+17.5x3−5452.63

8041.14−5452.63
,

if 5452.63 ≤ 50x1 + 100x2 + 17.5x3 ≤ 8041.14

1, if 50x1 + 100x2 + 17.5x3 ≥ 5452.63

(24)

�E
1

4
(92x1 + 75x2 + 50x3) =

⎧
⎪⎪⎨⎪⎪⎩

0, if 92x1 + 75x2 + 50x3 ≤ 10020.33

0.96
92x1+75x2+50x3−10020.33

10950.59−10020.33
,

if 10020.33 ≤ 92x1 + 75x2 + 50x3 ≤ 10950.59

1, if 92x1 + 75x2 + 50x3 ≥ 10020.33

(25)

�E
2

5
(92x1 + 75x2 + 50x3) =

⎧
⎪⎪⎨⎪⎪⎩

0, if 92x1 + 75x2 + 50x3 ≤ 10020.33

0.98
92x1+75x2+50x3−10020.33

10950.59−10020.33
,

if 10020.33 ≤ 92x1 + 75x2 + 50x3 ≤ 10950.59

1, if 92x1 + 75x2 + 50x3 ≥ 10020.33

(26)

�E
3

6
(92x1 + 75x2 + 50x3) =

⎧
⎪⎪⎨⎪⎪⎩

0, if 92x1 + 75x2 + 50x3 ≤ 10020.33

92x1+75x2+50x3−10020.33

10950.59−10020.33
,

if 10020.33 ≤ 92x1 + 75x2 + 50x3 ≤ 10950.59

1, if 92x1 + 75x2 + 50x3 ≥ 10020.33

(27)

�E
1

7
(25x1 + 100x2 + 75x3) =

⎧
⎪⎪⎨⎪⎪⎩

0, if 25x1 + 100x2 + 75x3 ≤ 5903.00

0.96
25x1+100x2+75x3−5903.00

9355.90−5903.00
,

if 5903.00 ≤ 25x1 + 100x2 + 75x3 ≤ 9355.90

1, if 25x1 + 100x2 + 75x3 ≥ 5903.00



3542	 S. K. Bharati 

1 3

Use following linear non membership function �E1

k
(fk(x)), k = 1, 2,… , 9 for each 

objective functions:

(28)

�E
2

8
(25x1 + 100x2 + 75x3) =

⎧
⎪⎪⎨⎪⎪⎩

0, if 25x1 + 100x2 + 75x3 ≤ 5903.00

0.98
25x1+100x2+75x3−5903.00

9355.90−5903.00
,

if 5903.00 ≤ 25x1 + 100x2 + 75x3 ≤ 9355.90

1, if 25x1 + 100x2 + 75x3 ≥ 5903.00

(29)

�E
3

9
(25x1 + 100x2 + 75x3) =

⎧
⎪⎪⎨⎪⎪⎩

0, if 25x1 + 100x2 + 75x3 ≤ 5903.00

25x1+100x2+75x3−5903.00

9355.90−5903.00
,

if 5903.00 ≤ 25x1 + 100x2 + 75x3 ≤ 9355.90

1, if 25x1 + 100x2 + 75x3 ≥ 5903.00

(30)

�E
1

1
(50x1 + 100x2 + 17.5x3) =

⎧
⎪⎪⎨⎪⎪⎩

0, if 50x1 + 100x2 + 17.5x3 ≥ � × 8041.14

0.96
�×8041.14−50x1+100x2+17.5x3

�×8041.14−5452.63
,

if 5452.63 ≤ 50x1 + 100x2 + 17.5x3 ≤ � × 8041.14

1, if 50x1 + 100x2 + 17.5x3 ≤ 5452.63

(31)

�E
2

2
(50x1 + 100x2 + 17.5x3) =

⎧
⎪⎪⎨⎪⎪⎩

0, if 50x1 + 100x2 + 17.5x3 ≥ � × 8041.14

0.98
�×8041.14−50x1+100x2+17.5x3

�×8041.14−5452.63
,

if 5452.63 ≤ 50x1 + 100x2 + 17.5x3 ≤ � × 8041.14

1, if 50x1 + 100x2 + 17.5x3 ≤ 5452.63

(32)

�E
3

3
(50x1 + 100x2 + 17.5x3) =

⎧
⎪⎪⎨⎪⎪⎩

0, if 50x1 + 100x2 + 17.5x3 ≥ � × 8041.14

�×8041.14−50x1+100x2+17.5x3

�×8041.14−5452.63
,

if 5452.63 ≤ 50x1 + 100x2 + 17.5x3 ≤ � × 8041.14

1, if 50x1 + 100x2 + 17.5x3 ≤ 5452.63

(33)

�E
1

4
(92x1 + 75x2 + 50x3) =

⎧
⎪⎪⎨⎪⎪⎩

0, if 92x1 + 75x2 + 50x3 ≥ � × 10950.59

0.96
�×10950.59−92x1+75x2+50x3

�×10950.59−10020.33
,

if 10020.33 ≤ 92x1 + 75x2 + 50x3 ≤ � × 10950.59

1, if 92x1 + 75x2 + 50x3 ≤ 10020.33



3543

1 3

Hesitant intuitionistic fuzzy algorithm for multiobjective…

where 1 ≤ � ≤ 3

Step 8 In this step linear programming problem in hesitant intuitionistic fuzzy 
sense is solved. x1 = 46.5607, x2 = 48.0942, x3 = 43.9445,

�1 = 0.910062, �2 = 0.929023, �3 = 0.94798,

�4 = 0.0697091, �5 = 0.282288, �6 = 0.0726135,

�7 = 0.935917, �8 = 0.955417, �9 = 0.974913,

�1 = 0.0121611, �2 = 0.0124145, �3 = 0.0126678,

�4 = 0.069709, �5 = 0.0711613, �6 = 0.0726135,

�7 = 0.000000, �8 = 0.000000, �9 = 0.000000.

(34)

�E
2

5
(92x1 + 75x2 + 50x3) =

⎧
⎪⎪⎨⎪⎪⎩

0, if 92x1 + 75x2 + 50x3 ≥ � × 10950.59

0.98
�×10950.59−92x1+75x2+50x3

�×10950.59−10020.33
,

if 10020.33 ≤ 92x1 + 75x2 + 50x3 ≤ � × 10950.59

1, if 92x1 + 75x2 + 50x3 ≤ 10020.33

(35)

�E
3

6
(92x1 + 75x2 + 50x3) =

⎧
⎪⎪⎨⎪⎪⎩

0, if 92x1 + 75x2 + 50x3 ≥ � × 10950.59

�×10950.59−92x1+75x2+50x3

�×10950.59−10020.33
,

if 10020.33 ≤ 92x1 + 75x2 + 50x3 ≤ � × 10950.59

1, if 92x1 + 75x2 + 50x3 ≤ 10020.33

(36)

�E
1

7
(25x1 + 100x2 + 75x3) =

⎧
⎪⎪⎨⎪⎪⎩

0, if 25x1 + 100x2 + 75x3 ≥ � × 9355.90

0.96
�×9355.90−25x1+100x2+75x3

�×9355.90−5903.00
,

if 5903.00 ≤ 25x1 + 100x2 + 75x3 ≤ � × 9355.90

1, if 25x1 + 100x2 + 75x3 ≤ 5903.00

(37)

�E
2

8
(25x1 + 100x2 + 75x3) =

⎧
⎪⎪⎨⎪⎪⎩

0, if 25x1 + 100x2 + 75x3 ≥ � × 9355.90

0.98
�×9355.90−25x1+100x2+75x3

�×9355.90−5903.00
,

if 5903.00 ≤ 25x1 + 100x2 + 75x3 ≤ � × 9355.90

1, if 25x1 + 100x2 + 75x3 ≤ 5903.00

(38)

�E
3

9
(25x1 + 100x2 + 75x3) =

⎧
⎪⎪⎨⎪⎪⎩

0, if 25x1 + 100x2 + 75x3 ≥ � × 9355.90

�×9355.90−25x1+100x2+75x3

�×9355.90−5903.00
,

if 5903.00 ≤ 25x1 + 100x2 + 75x3 ≤ 9355.90

1, if 25x1 + 100x2 + 75x3 ≤ 5903.00
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7 � Results discussion

Obtained solutions are placed in Table 4 and corresponding hesitant intuitionistic 
degrees are presented graphically in Fig. 4. In this section, I compare the proposed 
algorithm with previous algorithms, which are based on fuzzy sets and its other ver-
sions. The results are summarized in Table 5. Here, I present the obtained results by 
two ways, firstly with respect to similarity among methods and secondly, the differ-
ence between and existing algorithms. The similarity is presented below:

Proposed algorithm: f 0
2
> f 0

3
> f 0

1
.

FS-algorithm: f 0
2
> f 0

3
> f 0

1
.

IFS-algorithm: f 0
2
> f 0

3
> f 0

1
.

IFS-algorithm: f 0
2
> f 0

3
> f 0

1
.

HFS-algorithm: f 0
2
> f 0

3
> f 0

1
.

For the difference between the proposed algorithm and previous algorithms, I 
calculate total values of objectives. Moreover, fProposed−algorithm > fHFS−algorithm >

Table 4   Optimal Solutions 
based on proposed algorithm x0

1
x0
2

x0
3

f 0
1

f 0
2

f 0
3

46.5607 48.0942 43.9445 7906.48 10087.87 9269.28

Fig. 4   Membership and non membership degrees

Table 5   Optimal values of objectives obtained by various algorithms

S.No. (xj, fk) FS-algorithm IFS-algorithm IVIFS-algorithm HFS-algorithm Proposed algorithm

1. f1 6826.79 7217.97 7769.64 7845.72 7906.48
2. f2 10514.18 10359.73 10141.91 10110.95 10087.87
3. f3 8060.69 8498.59 9116.10 9201.25 9269.28
4. fTotal 25401.66 26076.29 27027.65 27157.92 27263.63
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fIVFS−algorithm > fIFS−algorithm > fFS−algorithm. Further, it is very interesting to note that 
the total value fProposed−algorithm is larger than other existing algorithms, and it makes 
to algorithm stronger algorithm than others. Also, the comparison is presented 
graphically in Fig. 5.

8 � Conclusions

In recent years, dealing with real-life problems under uncertainty and hesitation is one of 
the main topics of researchers. The present paper focuses on a newly invented tool, the 
hesitant intuitionistic fuzzy sets, and their various properties. The paper discusses multi-
objective linear optimization problems under uncertainty and hesitation with their solu-
tions in the hesitant intuitionistic fuzzy scenarios, and for this, a computational algorithm 
is developed. Moreover, the developed algorithm is implemented in an industrial optimi-
zation problem. The proposed algorithm searched the best optimal solution as compared 
to some popular techniques, and the comparison is placed in Table 5 and appeared graphi-
cally in Fig. 5. The proposed algorithm is an extension of both fuzzy and intuitionistic 
fuzzy optimization techniques. The proposed algorithm searches the best optimal solution 
with a maximum degree of acceptance and a minimum degree of rejection, and it is in 
Fig. 4. Therefore, the presented algorithm can be used in several other real-life optimiza-
tion problems too. Some merits and demerits that pointed out in this study are as follows:

•	 The HIFS easily is restated and explained by using physical distancing during 
COVID-19.

•	 A set of possible membership and nonmembership functions are defined to 
tackle the uncertainty and hesitation of MOLOP rather than a single.

Fig. 5   Comparisons
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•	 The proposed approach properly deals with a MOLOP in uncertainty and hesita-
tion scenarios.

•	 The profit obtained from the proposed method is more than the existing methods.
•	 Obtained decisions are more realistic and unbiased due to several expert’s opin-

ions.
•	 The proposed method is a generalization of both fuzzy and intuitionistic fuzzy 

optimization techniques.
•	 It may be time-consuming while solving nonlinear multiobjective optimization 

problems.
•	 It searches for the best optimal solution with a maximum membership and mini-

mum nonmembership degrees.

9 � Future research scope

The present approach is developed based on a newly invented set and hence it can be 
generalized in the following directions as well:

•	 To solve a class of nonlinear optimization problems with uncertainty and hesitation.
•	 To solve various types of multiple objective transportations and assignment 

problems.
•	 It can be used to get a better solution of agricultural, industrial and health man-

agement etc.
•	 It can be extended to deal with multiple objective fractional programming prob-

lems.
•	 Game theory with uncertainty and hesitation can deal as well.
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