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Abstract
In this work, we deal with a global optimization problem (P) for which we look for 
the most preferred extreme point (vertex) of the convex polyhedron according to 
a new linear criterion, among all efficient vertices of a multi-objective linear pro-
gramming problem. This problem has been studied for decades and a lot has been 
done since the 70’s. Our purpose is to propose a new and effective methodology for 
solving (P) using a branch and bound based technique, in which, at each node of 
the search tree, new customized bounds are established to delete uninteresting areas 
from the decision space. In addition, an efficiency test is performed considering 
the last simplex tableau corresponding to the current visited vertex. A comparative 
study shows that the proposed method outperforms the most recent and performing 
method dedicated to solve (P).

Keywords  Multi-objective optimization · Efficient solution · Global optimization · 
Branch and bound · Efficiency test

1  Introduction

The concept of optimal solution in linear programming with single objective func-
tion is no longer valid in multi-objective linear programming (MOLP). Indeed, sev-
eral objective functions, often conflicting, must be optimized simultaneously and 
as a consequence; the improvement of one of the functions generates the deteriora-
tion of at least one another. Hence, the term optimal solution is replaced by efficient 
solution in the decision space, or non-dominated solution in the criteria space of the 
program to be solved.

However, in multi-objective optimization, the set SE of efficient solutions is 
generally of considerable size and the choice of a solution that suits the decision 
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maker’s preferences according to a new criterion, becomes a difficult task. Indeed, 
it is well known that this problem (henceforth denoted (P)) is a difficult global opti-
mization problem (see for instance Benson (1991), Fülöp and Muu (2000), Thoai 
(2000), Yamamoto (2002)) since the set SE of efficient solutions of (P) is nonconvex. 
Notice that, in this case, the efficient set SE has two interesting properties. First, SE 
is connected and second, it contains extreme points of the polyhedron. An exten-
sive literature review allowed us to notice that several studies have been carried out 
during the end of the last century. In fact, one of the pioneers in this field is Philip 
(1972) who studied this problem and suggested for solving it an algorithm that 
moves from an efficient vertex to an efficient adjacent one yielding an increase in the 
objective function and a cutting plane technique is used to overcome the difficulty of 
non-convexity of the efficient set. A lot of papers followed his work using somehow 
the same technique; we cite for example those proposed by Isermann (1974), Bolin-
tineanu (1993), Ecker and Song (1994) and Fülöp and Muu (2000). In a different 
way, Benson (1993) proposed a nonadjacent extreme point search algorithm which 
dispenses with the enumeration.

Not long ago, a new study to obtain all efficient extreme points of MOLP with 
only three objectives has been published Piercy and Steuer (2019). This approach 
operates in the decision space and especially useful when working with such 
MOLPs possessing large numbers of efficient extreme points. Whereas, in this case, 
working in the criteria space can be very beneficial in terms of execution time.

Recently, Liu et al.  (2018) proposed two procedures to solve (P) in the criteria 
space, which the authors called Primal and Dual Algorithms. In fact, problems of 
interest are divided in two special cases of (P) where in the first case, they consider 
SE as the efficient set of MOLP problem (multi-objective linear program) and in the 
second case, they consider a CMOP problem (convex multi-objective program). 
Based on a revised version of Benson’s outer approximation algorithm, they first 
propose a new primal algorithm for MOLP problem by incorporating a bounding 
procedure in the primal algorithm described in Hamel et al. (2013). Then, this pri-
mal algorithm is extended to solve problem (P) in the criteria space.

In the dual algorithm, they introduce dual algorithms to solve cases one and two 
in dual objective space. The dual algorithms are derived from dual variants of Ben-
son’s algorithm Hamel et al. (2013), Löhne et al. (2014). Comparison is done with 
several state of the art algorithms from the literature on a set of randomly generated 
instances to demonstrate that they are considerably faster than the competitors.

In Boland et al. (2017) the authors described a new algorithm for optimizing a 
linear function over the set of efficient solutions of a multi-objective integer linear 
program (MOILP). To generate the non-dominated solutions, the authors developed 
a novel criteria space decomposition scheme resulting from a limited number of 
search sub-spaces created as well as that of disjunctive constraints required to define 
the single-objective integer program that searches for a non-dominated solution. A 
computational study shows that the proposed algorithm clearly outperforms Jorge’s 
algorithm Jorge (2009) that defined a sequence of progressively more constrained 
single-objective integer problems to eliminate not only all the previously generated 
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efficient solutions, but also any other feasible solutions whose criterion vectors are 
dominated.

In the present study, we propose a branch and bound based method to solve the 
global optimization problem (P), named BCO-method. In a structured search tree, a 
node is created to determine an extreme point in the polytope of the MOLP problem, 
and a branch defines adjacent edges of the polytope along which we move from an 
extreme point to a neighbour one to improve at least one criterion. Several evalua-
tion process rules to fathom a node are developed; the corresponding extreme point 
is efficient or has already been visited, no criterion of the MOLP problem can be 
improved or the value of the function f to be optimized is less than the best value of 
f previously encountered (for maximization problem). This has the effect to prune 
uninteresting branches, which allows us to find the optimal solution for (P) with-
out having to check the entire set of efficient solutions that correspond to efficient 
extreme points of the MOLP problem. Moreover, results in the simplex tableau are 
used to launch the current node efficiency test run. In the following section (Sect. 2), 
we give mathematical formulations and necessary notations for a good understand-
ing of the algorithm developed. Also, we provide some preliminaries on multi-
objective optimization. In Sect. 3, the principle of the proposed BCO-method is set 
forth and the different steps of the algorithm are processed. In Sect. 4, theoretical 
results and proofs on which the algorithm is based are established. Furthermore, in 
Sect.  5, an illustrative example is performed to exhibit the resolution mechanism. 
In Sect. 6, a comparative study is carried out and shows that the BCO-method per-
forms better than the Primal method recently described in reference Liu and Ehrgott 
(2018). Finally, some concluding remarks and prospects are given in Sect. 7.

2 � Mathematical formulation

Let S = {x ∈ ℜn|Ax ≤ b, x ≥ 0} be a nonempty compact polyhedron in ℜn , where 
A is an (m × n)−real matrix, b an (m × 1)-real vector and let ci be an (1 × n)− real 
vectors for i = 1, … , r; r ≥ 2 . Let C be the (r × n)−matrix whose rows are the vec-
tors ci, i = 1, … , r.

We consider the following muli-objective linear program (MOLP):

A solution x ∈ S is known as efficient for MOLP problem, if there does not exist 
another solution y ∈ S such that Cy ≥ Cx and Cy ≠ Cx . The image of an efficient 
solution in the criteria space is called a non-dominated solution or Pareto opti-
mal solution. Let SE ⊂ S be the set of all efficient vertices of MOLP problem. The 
number of solutions in SE being generally very large, deciding to find all of them 
becomes a very heavy task and requires an exponential computing time. In addition, 
the choice of the best solution can be very difficult according to the decision maker’s 
preference with a long efficient solutions list. Therefore, it ought to be more com-
putationally practical to generate the preferred efficient solution that maximizes a 

(1)
{

Max Zi(x) = cix i = 1,⋯ , r

x ∈ S
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decision maker’s utility, corresponding to the following mathematical programming 
problem to solve in this work:

where f ∶ ℜn
→ ℜ is a continuous linear function over S and f (x) =

∑n

j=1
fjxj .

f is not necessarily a combination of the MOLP problem’s criteria and can be any 
linear function. The resolution of the program (P) is based on the relaxed linear pro-
gram (PR) defined by:

Applying the simplex method, let x∗
l
 be a basic feasible solution of (PR) obtained at 

a step l, l ≥ 0 , of the solving procedure dedicated to the program (P). Let’s note: 

1.	 Bl and Nl : the sets of indices of basic variables and non-basic variables respec-
tively of x∗

l
,

2.	 ĉi
j
 and f̂j : the reduced costs associated with MOLP problem’s criteria (1), as well 

as those associated to f in program (2) after the pivoting process,
3.	 Hl : the set of indices that indicate possible improving directions for the criteria 

ci, i = 1,… , r , to search efficient extreme points in a structured search tree. 

where: H1

l
=
{
j ∈ Nl|∃i ∈ {1,… , r}; ĉi

j
> 0

}
, H2

l
=
{
j ∈ Nl|ĉij = 0, ∀i ∈ {1,… , r}

}
,

	   H3

l
=
{
j ∈ Nl|f̂j ≤ 0

}
 and H4

l
=
{
j ∈ Nl|f̂j < 0

}
.

4.	 (T)l : the following linear program : 

to test the efficiency of x∗
l
 like described in Ecker and Kouada (1975). We shall 

derive below from the program (T)l a simple procedure, called the BCO-effi-
ciency test, so that we can test whether a basic feasible solution is efficient or 
not.

	   In the following, we present the principle of the method.

(2)(P)

{
Max f (x)

x ∈ SE

(3)(PR)

{
Max f (x)

x ∈ S

(4)Hl =
(
H1

l
∩ H3

l

)
∪
(
H2

l
∩ H4

l

)

(5)(T)l

⎧
⎪⎪⎨⎪⎪⎩

Max w =
∑r

j=1
ej

Cx − e = Cx∗
l

Ax ≤ b

x ≥ 0, ej ≥ 0, j = 1… , r

e = (ej)j=1,…,r
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3 � Method description

The main subject of our work is to propose an exact method for solving the global 
optimization program (P). To do this, we focus on the optimization of the func-
tion f over the feasible set corresponding to the vertices of S, the relaxed domain 
of SE , by solving the linear program (PR) using simplex method, without having to 
revisit those already visited. Indeed, the simplex table is increased by the r rows of 
the matrix of criteria C, Zi(x) = cix for i = 1,… , r , to be reevaluated and updated 
simultaneously with the function f.

Thereby, to solve program (P), our algorithm is developed to rank the basic fea-
sible solutions of the (PR) program. The algorithm is structured in a search tree in 
which at each node l, l ≥ 0 , a basic feasible solution x∗

l
 of program (PR) is gener-

ated. If this k− th best ( k ≥ 0 ) basic feasible solution of (PR) is the first one to satisfy 
the efficiency test along the branch ending at node l, then, the corresponding node 
is fathomed and the best value encountered f ∗ of f is updated as well as the optimal 
solution x∗ which is replaced by x∗

l
.

Else, the set Hl is determined to create as many child nodes as there are elements 
in Hl and each of them will corresponds to another vertex of the domain S, obtained 
from x∗

l
 by pivoting with respect to a corresponding direction j ∈ Hl . This process is 

repeated until all the created nodes are fathomed.
A slave program is launched to test the efficiency of each visited feasible basic 

solution.
A node l of the search tree is fathomed if one of the three conditions is satisfied: 

1.	 The corresponding feasible basic solution x∗
l
 is efficient or already visited,

2.	 The set Hl is empty,
3.	 f

(
x∗
l

)
< f ∗ , where f ∗ is the best value of f previously encountered.

The algorithm is summarized in the following steps:

3.1 � Algorithm of the proposed method

Inputs : A, b, C and f.
Outputs: x∗ : optimal solution of (P) and f ∗ = f (x∗).
Step 0: (Initial step)
l ∶= 0 ; (search tree root); f ∗ = −∞ ; VN ∶= � ; (set of generated vertices of S).
0.1. Solve (PR) at node 0. If it is not feasible, then terminate, (P) is unfeasible.
0.2. Otherwise, let x∗

0
 be an obtained optimal solution for (PR), VN ∶=

{
x∗
0

}
.

0.2.1 If the solution x∗
0
 is efficient, x∗ ∶= x∗

0
 and f ∗ ∶= f (x∗

0
) . Terminate.

0.2.2. Else:
- Determine the sets N0 and H0.
- For each j ∈ H0 , a node l, l = 1,… , ||H0

|| , will be created in the search tree.
- Go to Step 1.
Step 1: (General step)
As long as there are nodes in the search tree not fathomed, do:



3188	 H. Belkhiri et al.

1 3

1.1. Choose a node l from the search tree regarding depth first strategy. Suppose 
that the non-basic variable of index j, j ∈ Hk , is considered at this node, where node 
k denotes the parent of the node l, l ≥ k.

1.2. Consider the simplex tableau at node k and pivot according to the non-basic 
variable of index j ∈ Hk.

1.3. Let x∗
l
 be the obtained basic feasible solution of program (PR):

1.3.1. If x∗
l
∈ VN , the node l is fathomed.

1.3.2. Else, VN ∶= VN ∪
{
x∗
l

}
 .

1.3.2.1. If f ∗ ≥ f (x∗
l
) , then the node l is fathomed. Go to Step 1.

1.3.2.2. Otherwise, applied the efficiency test for the solution x∗
l
 :

1.3.2.2.1. If it is efficient, then x∗ ∶= x∗
l
 and f ∗ ∶= f (x∗) . The node l is fathomed, 

go to Step 1.
1.3.2.2.2. Else, determine the sets Nl and Hl.
1.4. For each j ∈ Hl , a node p, p = q + 1,… , q + |Hl| , will be created in the 

search tree, where q is the number of nodes already created in the search tree.
1.5. Go to Step 1.
In what follows, we highlight the main theoretical results which ensure the con-

vergence of our algorithm.

4 � Theoretical results

In this section, the justifications of the steps described in the above algorithm are 
established. Let x∗

l
 be the basic feasible solution of program (PR) obtained at node l 

of the search tree.

Theorem 1  Let x, x ≠ x∗
l
 , an efficient feasible basic solution of which x∗

l
 is the parent 

in the search tree. Then x is obtained according to a pivot column j ∈ H1

l
∪ H2

l
.

Proof  Suppose for any coordinate xj of x, j ∈ Nl , we have : j ∉ H1

l
∪ H2

l
 . Then 

j ∉ H1

l
 and j ∉ H2

l
 hence, for all j in Nl , ĉij ≤ 0 , ∀i ∈ {1,… , r} with at least one strict 

inequality. Then we have: ∀i ∈ {1,… , r} , Zi(x) = Zi(x∗
l
) +

∑
j∈Nl

ĉi
j
xj ⇒ , 

∀i ∈ {1,… , r} , Zi(x) < Zi(x∗
l
) because 

∑
j∈Nl

ĉi
j
xj < 0.

Thus, the vector Z(x) is dominated by the vector Z(x∗
l
) : which means that x is not 

efficient. 	�  ◻

Remark 1  As Hl =
(
H1

l
∩ H3

l

)
∪
(
H2

l
∩ H4

l

)
 , then Hl ⊆ (H1

l
∪ H2

l
) . According to the-

orem 1, only the moves in the directions j ∈ Hl can ensure to find efficient solutions 
of the MOLP problem.

Theorem  2  Let x, x ≠ x∗
l
 , an optimal solution for program (P) of which x∗

l
 is the 

parent solution in the search tree. Then, x is obtained according to a pivot column 
j ∈ Hl.
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Proof  Suppose that for any coordinate xj of x, j ∈ Nl , j ∉ Hl . Then j ∉
(
H1

l
∩ H3

l

)
 

and j ∉
(
H2

l
∩ H4

l

)
.

So we have the following cases:
1st case:

As j ∉ (H3

l
∪ H4

l
) , then f̂j > 0 and therefore, the solution x is not optimal.

2nd case:

We obtain a contradiction in this case, because j ∉ H3

l
 therefore f̂j < 0 and j ∈ H4

l
 

thus f̂j > 0.
3rd case:

This corresponds to f̂j = 0 and ĉi
j
= 0 for all i ∈ {1,… , r} . Therefore the solution x 

is alternative to the solution x∗
l
 relative to the function f and at the same time to the 

criteria Zi i = 1,… , r . Thus it has the same status as x∗
l
 which is not efficient, other-

wise we would have probed the node l.
4th case:

 Since j ∉ (H1

l
∪ H2

l
) , then the solution x is not efficient according to theorem  1. 

Thus, theorem 2 is proved by contraposition. 	�  ◻

Proposition 1  The vertices of set S generated at the nodes of a branch of the search 
tree, are all different.

Proof  Remind that Hl =
(
H1

l
∩ H3

l

)
∪
(
H2

l
∩ H4

l

)
 with H3

l
=
{
j ∈ Nl f̂j ≤ 0

}
 and 

H4

l
=
{
j ∈ Nl f̂j < 0

}
 . Thus, along a branch of the search tree, when one pivots 

according to the simplex method from x∗
l
 towards another vertex x according to a 

(6)
{

j ∈ H1

l
and j ∉ H3

l

j ∈ H2

l
and j ∉ H4

l

or

{
j ∈ H1

l
and j ∉ H3

l

j ∉ H2

l
and j ∉ H4

l

or

{
j ∉ H1

l
and j ∉ H3

l

j ∈ H2

l
and j ∉ H4

l

(7)
{

j ∈ H1

l
and j ∉ H3

l

j ∉ H2

l
and j ∈ H4

l

(8)

⎧⎪⎨⎪⎩

j ∉ H1

l
and j ∈ H3

l

j ∈ H2

l
and j ∉ H4

l

(9)

⎧⎪⎨⎪⎩

j ∉ H1

l
and j ∈ H3

l

j ∉ H2

l
and j ∈ H4

l

or

⎧
⎪⎨⎪⎩

j ∉ H1

l
and j ∈ H3

l

j ∉ H2

l
and j ∉ H4

l

or

⎧⎪⎨⎪⎩

j ∉ H1

l
and j ∉ H3

l

j ∉ H2

l
and j ∈ H4

l

or

⎧⎪⎨⎪⎩

j ∉ H1

l
and j ∉ H3

l

j ∉ H2

l
and j ∉ H4

l
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pivot column j ∈ Hl , i.e. j ∈ H3

l
 or j ∈ H4

l
 , the function f does not increase. In addi-

tion, the instruction 1.3.1. of the general step of the algorithm prohibits processing 
of a vertex already visited. 	�  ◻

Lemma 1  If at a node l of the search tree, we have f ∗ ≥ f (x∗
l
) then, there is no solu-

tion x ∈ S , when we move in the directions of Hl , such that f (x) > f ∗.

Proof  From x∗
l
 , if we move in the directions of Hl , the function f decreases. Thus, 

f (x) ≤ f (x∗
l
) for any solution x obtained by moving in the directions of Hl . 	�  ◻

Theorem  3  The program (T)l defined by Eq.  5 is equivalent to the following 
program:

Proof  Recall that program (T)l is :

where 1r×r = (1, 1,… , 1) . Its standard form is then written as follows:

Using the current basis Bl at the basic feasible solution x∗
l
,C = [CBl

,CNl
] , we can 

write:

where the Eqs. (10), (11) and (12) are obtained as follows:
(10) = B−1

l
.(7) ; (11) = CBl

.B−1
l
(7) − (8) since CBl

.B−1

l
.bm×1 = Cx∗

l
 and 

(12) = 11×r.[CBl
.B−1

l
.(7) − (8)] + (9).

The corresponding linear program is the follows:

(10)(R)l

⎧
⎪⎨⎪⎩

Max w = 11×r

�
CBl

B−1
l
A − C

�
.x + 11×r

�
CBl

B−1
l

�
.y

B−1
l
A.x + B−1

l
.y = B−1

l
b

(CBl
B−1
l
A − C).x + CBl

B−1
l
.y + Ir×r.e = 0r×1

x ≥ 0, y ≥ 0, e ≥ 0

(Tl)

⎧
⎪⎪⎨⎪⎪⎩

Max w =
∑r

j=1
ej

Cx − e = Cx∗
l

Ax ≤ b

x ≥ 0, ej ≥ 0, j = 1… , r

e = (ej)j=1,…,r

⎧⎪⎨⎪⎩

Am×n.xn×1 + Im×m.ym×1 + 0m×r.er×1 = bm×1 …… ..(7)

Cr×n.xn×1 + 0r×m.ym×1 − Ir×r.er×1 = Cx∗
l
……… .(8)

01×n.xn×1 + 01×m.ym×1 − 11×r.er×1 − w = 0 ………(9)

⎧⎪⎨⎪⎩

B−1
l
A.x + B−1

l
.y + 0m×r.e = B−1

l
b…………………………(10)

(CBl
B−1
l
A − C).x + CBl

B−1
l
.y + Ir×r.e = 0r×1 ………………(11)

11×r

�
CBl

B−1
l
A − C

�
.x + 11×r

�
CBl

B−1
l

�
.y + 01×r.e − w = 0… ..(12)
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Hence, the obtained program provide a feasible simplex tableau for program (T)l 
with the basic feasible solution (x, e) =

(
x∗
l
, 0

)
 when y = 0 . 	�  ◻

In what follows, we propose another particular version of the efficiency-test 
which exploits the data of the simplex tableau in x∗

l
 . First of all, solving program 

(O)0 is a check for efficiency of an optimal solution x∗
0
 for the program (PR). To 

prove the efficiency of the solution x∗
0
 at step 0.2.1 of the algorithm, we prove the 

following theorem:

Theorem 4  The program (R)l defined above and the following program (O)l have the 
same admissible regions:

where Z(x) =
(
Zi(x)

)
i= ̄1,r

Proof  As described in the principle of the proposed method, the criteria matrix C 
evolves in the same way according to the pivoting process in the simplex tableau 
when solving the program (PR). Therefore, the initial program to solve is as follows:

Its standard form is given by:

At any node l of the search tree, by considering the basis Bl associated with the basic 
feasible solution x∗

l
 , we obtain the following linear system :

(R)l

⎧
⎪⎨⎪⎩

Max w = 11×r

�
CBl

B−1
l
A − C

�
.x + 11×r

�
CBl

B−1
l

�
.y

B−1
l
A.x + B−1

l
.y = B−1

l
b

CBl
B−1
l
A.x + CBl

B−1
l
.y + Ir×r.e = Cx

x ≥ 0, y ≥ 0, e ≥ 0

(O)l

⎧⎪⎨⎪⎩

Max g(x) = −11×mB
−1
l
b +

�
−f 1×n + 11×mB

−1
l
A
�
.x + 11×mB

−1
l
.y

B−1
l
A.x + B−1

l
.y = B−1

l
b

(CBl
B−1
l
A − C).x + CBl

B−1
l
.y + Z(x) = CBl

B−1
l
b

x ≥ 0, y ≥ 0,

⎧⎪⎨⎪⎩

Max f (x) = f1×nx + 01×my

Am×nx + Im×my = bm×1
Cr×nx + 0r×my − Z(x) = 0r×1
x ≥ 0, y ≥ 0

⎧⎪⎨⎪⎩

Am×n.x + Im×m.y = bm×1 … .……(13)

Cr×n.x + 0r×m.y − Z(x) = 0r×1 …(14)

f1×n.x + 01×m.y − f (x) = 0…… .(15)
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where the Eqs. (16), (17) and (18) are obtained as follows:
(16) = B−1

l
.(13) ; (17) = CBl

.(16) − (14) and (18) = 11×m(16) − (15).
Thus, we obtain the standard form of the following linear program:

Note that the programs (P)l and (O)l have the same feasible solutions set and 
g(x) = −f (x) . Thus, we aim to find an optimal solution of the function g = −f  over 
the corresponding feasible solution set. Furthermore, at node l, Z

(
x∗
l

)
= CBl

B−1
l
b 

and to test the efficiency of x∗
l
 , we have to search a solution x in the domain S, such 

that Z(x) ≥ CBl
B−1
l
b . Hence, the solution x satisfies the inequality Z(x)−CBl

B−1
l
b ≥ 0 

and consequently, CBl
B−1
l
Ax + CBl

B−1
l
y ≤ Cx is obtained from the Eq. (17).

Thus, we conclude that the feasible solutions set of the program (O)l is the same 
as that of the program (R)l defined in Theorem 3. 	�  ◻

Theorem 5  x∗
0
 is efficient if and only if x∗

0
 is the unique optimal solution for program 

(O)0.

Proof  ⇐| Recall that the admissible domain of (O)l is not other than 
D(x∗

l
) = {x ∈ S|Cx ≥ Cx∗

l
} being the optimal solution of the program (PR) (step 0.1 

of the algorithm), it maximizes the function f over the domain S, and therefore over 
the domain D(x∗

0
) . On the other hand, x∗

0
 being the unique optimal solution of the 

program (O)0 , it maximizes (−f (x)) over D(x∗
0
) . So, x∗

0
 minimizes f(x) over D(x∗

0
) . 

Thus, both the maximum and the minimum of the function f over the domain D(x∗
0
) 

are achieved at x∗
0
 , it is therefore the unique feasible solution in the domain D(x∗

0
) so 

that Cx = Cx∗
0
 . For this purpose, the optimal objective value of the program (T)0 is 0 

and therefore, x∗
0
 is efficient.

⇒| Proof by contradiction. Suppose that x∗
0
 is not an optimal solution of (O)0 , 

then there exists a solution y in D(x∗
0
) , y different from x∗

0
 , such that −f (x∗

0
) < −f (y) . 

Hence, there exists a criterion i in {1,⋯ , r} , such that ciy − cix∗
0
= ei , with 

ei = f (x∗
0
) − f (y) , ei > 0 since f (x∗

0
) > f (y) . Then, (y,  e) is a feasible solu-

tion for program (T)0 , e = (ej) , j = 1,⋯ , r , with at least one criterion i such that 
ei = f (x∗

0
) − f (y) and 

∑r

j=1
ej > 0 . Hence, solution x∗

0
 is not efficient.

Suppose again that x∗
0
 is an optimal solution of (O)0 , but not unique. Then there 

exists a solution y in D(x∗
0
) , y different from x∗

0
 , such that f (x∗

0
) = f (y) . Hence, x∗

0
 is 

not the unique optimal solution for program (PR) and y is a basic feasible solution 
in S. This is a situation where the function f is proportional to both a criterion and a 
constraint of the admissible region S. There is then a criterion i such that ciy = cix∗

0
 , 

⎧
⎪⎨⎪⎩

B−1
l
A.x + B−1

l
.y = B−1

l
b………………………………… .(16)

(CBl
B−1
l
A − C).x + CBl

B−1
l
.y + Z(x) = CBl

B−1
l
b……………(17)�

11×mB
−1
l
A−f 1×n

�
.x + 11×mB

−1
l
.y + f (x) = 11×mB

−1
l
b…… . . (18)

(P)l

⎧
⎪⎨⎪⎩

Max f (x) = 11×mB
−1
l
b +

�
f1×n − 11×mB

−1
l
A
�
.x − 11×mB

−1
l
.y

B−1
l
A.x + B−1

l
.y = B−1

l
b

(CBl
B−1
l
A − C).x + CBl

B−1
l
.y + Z(x) = CBl

B−1
l
b

x ≥ 0, y ≥ 0,
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and a criterion j, j ≠ i , such that cjy > cjx∗
0
 . By setting ej = cjy − cjx∗

0
 , ej > 0 and ∑r

k=1
ek > 0 , which proves that x∗

0
 is not efficient. 	�  ◻

We note (−O)l the program (O)l with objective function f to maximize instead of 
g. Hence, programs (−O)l and (O)l have the same admissible region D(x∗

l
) . Moreo-

ver, to ensure the validity of the BCO-efficiency test, program (−O)l must also be 
solved taking into account that x∗

l
 , l ≥ 1 , is not the optimal solution of the program 

(PR).

Corollary 1  x∗
l
 , l ≥ 1 is efficient if and only if x∗

l
 is the unique optimal solution for 

both programs (O)l and (−O)l .

Proof  If x∗
l
 is not the same optimal solution for the two programs (O)l and (−O)l , or 

x∗
l
 is not the unique optimal solution for one of the two programs, then the domain 

D(x∗
l
) admits a feasible solution y other than x∗

l
 . Hence, solution x∗

l
 is not efficient 

(see Proof of Theorem 5). Conversely, if x∗
l
 is the unique optimal solution for each of 

the two programs, this means that the domain D(x∗
l
) is reduced to the only solution 

x∗
l
 , which means that x∗

l
 is efficient. 	� ◻

Remark 2  In fact, as soon as one of the two programs (O)l or (−O)l encounters a 
solution u different from x∗l , the computation stops indicating that x∗l is not effi-
cient. Moreover, if x∗l is not efficient, no solution obtained from (O)l or (−O)l can be 
used because it is not necessarily a basic feasible solution of the admissible region S.

4.1 � The BCO‑efficiency test algorithm

1. Let l = 0 and x∗
0
 the optimal solution for program (PR), solve the (O)0 program.

- If x∗
0
 is the optimal solution, then x∗

0
 is efficient (Theorem 5).

- Else
- If x∗

0
 is not optimal for program (PR), then x∗

0
 is not efficient,

- Else ( x∗
0
 is not unique), then x∗

0
 is not efficient.

2. For l ≥ 1 , let x∗
l
 be the obtained basic feasible solution for program (PR), solve the 

(O)l program,
2.1. If x∗

l
 is not an optimal solution, then x∗

l
 is not efficient,

2.2. If x∗
l
 is not the unique optimal solution, then x∗

l
 is not efficient,

2.3. If x∗
l
 is the unique optimal solution, then solve the (−O)l program,

2.3.1. If x∗
l
 is not an optimal solution, then x∗

l
 is not efficient,

2.3.2. If x∗
l
 is not the unique optimal solution, then x∗

l
 is not efficient,

2.3.3. If x∗
l
 is the unique optimal solution, then x∗

l
 is efficient (Corollary 1).

Theorem 6  The algorithm terminates in a finite number of iterations and returns an 
optimal solution of the program (P).
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Proof  The set S of feasible solutions being compact, it contains a finite number of 
vertices. According to proposition 1 , the algorithm ends in a finite number of itera-
tions. The convergence of the algorithm towards an optimal solution of the program 
(P) is ensured by lemma 1, corollary 1 and theorems 1, 2 and 5. 	�  ◻

5 � Illustrative example

Let us consider the following problem of optimizing a linear function over an effi-
cient set defined as:

where SE is the efficient vertex set of the following MOLP problem:

The relaxed linear program (PR) of (P) is then written as follows:

(P)

{
Max f (x) = −x1 + 2x3
x ∈ SE

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Max Z1(x) = x1 − x3
Max Z2(x) = x2 + x3
s.t ∶ 2x1 + x2 ≤ 16

8x1 + 5x2 ≤ 66

2x1 + 3x2 ≤ 27

x2 ≤ 7

x3 ≤ 2

xi ≥ 0 ;i = 1, 2, 3

(PR)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Max f (x) = −x1 + 2x3
s.t ∶ 2x1 + x2 ≤ 16

8x1 + 5x2 ≤ 66

2x1 + 3x2 ≤ 27

x2 ≤ 7

x3 ≤ 2

xi ≥ 0 ;i = 1, 2, 3

Table 1   Initial step
x1 x2 x8 b

x4 2 1 0 16
x5 8 5 0 66
x6 2 3 0 27
x7 0 1 0 7
x3 0 0 1 2
−f −1 0 −2 −4
−Z1 1 0 1 2
−Z2 0 0 −1 −2
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Initial step: l = 0 ; f ∗ = −∞ ; After solving the program (PR), the optimal solution 
thus obtained is x∗

0
= (0, 0, 2) as shown in the following simplex tableau:

From Table  1 VN ∶= {x∗
0
} and the BCO-efficiency test is applied to x∗

0
 (see 

Tables 2 and 3). To do this, f(x) is replaced by g(x) = −f (x) in the last tableau, the 
criteria Z1 and Z2 are added as constraints and the obtained tableau will be optimized:

The obtained optimal solution is u = (8, 0, 0) , u ≠ x∗
0
 , then x∗

0
 is not efficient. 

f ∗ = −8 . The sets N0 = {1, 2, 9} and H0 = {1, 2, 9} correspond to x∗
0
.

Table 2   Efficiency test 1
x1 x2 x3 b

x4 2 1 0 16
x5 8 5 0 66
x6 2 3 0 27
x7 0 1 0 7
x8 −1/2 0 1 2
y1 −1 0 1 0
y2 0 0 −1 0
−g 1 0 −2 0

Table 3   Efficiency test 2
x4 x2 x3 b

x1 1/2 1 0 8
x5 −4 5 0 2
x6 −1 3 0 11
x7 0 1 0 7
x8 1 0 1 6
y1 1/2 0 1 8
y2 0 0 −1 0
−g −1/2 0 −2 −8

Table 4   Solution x∗
1
  of (PR)

x2 x4 x8 b

x1 1/2 1/2 0 8
x5 1 −4 0 2
x6 2 −1 0 11
x7 1 0 0 7
x3 0 0 1 2
−f 1/2 1/2 −2 4
−Z1 −1/2 −1/2 1 −6
−Z2 1 0 −1 −2
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Step 1
The separation starts with the creation of the node 1 corresponding to the first 

direction of H0 , j = 1 . By pivoting in this direction, we find the optimal solution 
x∗
1
= (8, 0, 2) given by this tableau (Table 4):
VN ∶= VN ∪ {x∗

1
} . The BCO-efficiency test shows that the solution x∗

1
 is not effi-

cient. N1 = {2, 4, 9} and H1 = {9} . Using deep first strategy, we create node 2, cor-
responding to the single direction of H1 , j = 9 . By pivoting in this direction, the 
solution x∗

2
= (8, 0, 0) given in Table 5 is obtained:

VN = VN ∪ x∗
2
 . x∗

2
 is efficient by applying the BCO-efficiency test. Therefore 

x∗ ∶= x∗
2
 and f ∗ = −8 . This current node is fathomed. From node 1, we create node 

Table 5   Solution x∗
2
  of (PR)

x2 x3 x4 b

x1 1/2 0 1/2 8
x5 1 0 −4 2
x6 2 0 −1 11
x7 1 0 0 7
x8 0 1 0 2
−f 1/2 2 1/2 8
−Z1 −1/2 −1 −1/2 −8
−Z2 1 −1 0 0

Table 6   Solution x∗
3
  of (PR)

x1 x7 x8 b

x4 2 −1 0 9
x5 8 −5 0 31
x6 2 −3 0 6
x2 0 1 0 7
x3 0 0 1 2
−f −1 0 −2 −4
−Z1 1 0 1 2
−Z2 0 −1 −1 −9

Table 7   Solution x∗
4
  of (PR)

x6 x7 x8 b

x4 −1 2 0 3
x5 −4 7 0 7
x1 1/2 −3/2 0 3
x2 0 1 0 7
x3 0 0 1 2
−f 1/2 −3/2 −2 −1
−Z1 −1/2 3/2 1 −1
−Z2 0 −3/2 −1 −9
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3 corresponding to the second direction of H0 ; j = 2 . By pivoting in this direction, 
the solution x∗

3
= (0, 7, 2) is obtained in Table 6:

VN = VN ∪ {x∗
3
} . x∗

3
 is not efficient by applying the BCO-efficiency test. 

N3 = {1, 8, 9} and H3 = {1, 8, 9} , then we create a new node 4 corresponding to the 
direction of H3 ; j = 1 and we execute a pivoting in this direction to obtain the solu-
tion x∗

4
= (3, 7, 2) in Table 7:

VN = VN ∪ {x∗
4
} . By applying the BCO-efficiency test, we prove that solution x∗

4
 

is efficient. Hence, x∗ ∶= x∗
4
 and f ∗ = 1 . Node 4 is fathomed. We create a new node 

5 corresponding to the second direction of H3 ; j = 8 , and we obtain the solution 
x∗
5
= (0, 0, 2) , in Table 8: 
Since this solution is already visited, then VN ∶= VN and this node is fathomed. 

Node 6 corresponding to the third direction of H3 ; j = 9 is created and the new solu-
tion x ∗

6
= (0, 7, 0) is generated in Table 9:

VN = VN ∪ {x∗
6
} . This node in fathomed since f

(
x∗
6

)
< f ∗ . Node 7 correspond-

ing to the final direction of H0 ; j = 9 is then created and the solution x∗
7
= (0, 0, 0) is 

obtained in Table 10:
VN = VN ∪ {x∗

7
} but f

(
x∗
7

)
< f ∗ . This node is fathomed.

The algorithm terminates since all created nodes are fathomed and the optimal 
solution for (P) is x∗ = (3, 7, 2) and f ∗ = 1.

To summarize the proposed method throughout this example, we present a search 
tree representing states of the nodes during the process in Fig. 1.

Table 8   Solution x∗
5
  of (PR)

x1 x7 x8 b

x4 2 1 0 16
x5 8 5 0 66
x1 2 3 0 27
x2 0 1 0 7
x3 0 0 1 2
−f −1 0 −2 −4
−Z1 1 0 1 2
−Z2 0 0 −1 −2

Table 9   Solution x∗
6
  of (PR)

x1 x3 x7 b

x4 2 0 −1 9
x5 8 0 −5 31
x6 2 0 −3 6
x2 0 0 1 7
x8 0 1 0 2
−f −1 2 0 0
−Z1 1 −1 0 0
−Z2 0 −1 −1 −7
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6 � Computational results and comparative study

The experimental results obtained during the implementation of our algorithm are 
summarized in this section. We carried out the numerical implementation using 
MATLAB R2015 software, on an Intel R CoreTM i7-5500U, 2.40Ghz and 8GB Ram 
processor computer. All the procedures of the BCO-method are programmed and 
none of the optimization packages are used. The algorithm is compared with the 
Primal method described in reference Liu and Ehrgott (2018) on instances being 
on the site: https://​doi.​org/​10.​17635/​lanca​ster/​resea​rchda​ta/​224. For each instance, 
r is the number of criteria, n is the number of variables and m is the number of 
constraints. Three instances are given for the same triplet (r, n, m), all used data are 
real numbers given with 10−16 accuracy and distributed over intervals [a, b] , with 

Table 10   Solution x∗
7
  of (PR)

x1 x2 x3 b

x4 2 1 0 16
x5 8 5 0 66
x6 2 3 0 27
x7 0 1 0 7
x8 0 0 1 2
−f −1 0 −2 0
−Z1 1 0 −1 0
−Z2 0 1 1 0

Fig. 1   Search tree

https://doi.org/10.17635/lancaster/researchdata/224
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minimum value a < 0 and maximum value b > 0 . The constraints matrix values A 
belongs to the interval [−1, 0] , those of the right-hand side vector b vary according 
to the size of the instance, the larger it is and the more b increases. For example 
for instance (4,  100,  100), b belongs to [−27,−20] . The criteria coefficients vary 
in [−1, 1] . The results of the experimental compilation are given in the following 
Table 1. We reported the percentage of negative coefficients on average, the inter-
vals of coefficients for the linear function f represented by the max and min values 
and the mean of CPU time for each method.

Obviously, the computation time increases rapidly as the size of the instances 
increase. The largest size of the instances tested is 6 objectives, 500 variables and 
500 constraints. Even though the authors of the Primal method described in Liu and 
Ehrgott (2018) praised it because described in the criteria space, it is supposed to 
support big instances better than in decision space, we observe that the CPU time 
increases strongly depending on the number of criteria. In this case, the number of 
criteria has a negative impact on the CPU time since it makes a huge jump of less 
than one second for less than 5 criteria, at one hour and more for the instances with 

Table 11   Results

r n = m Proportion of 
f < 0 ( %)

Interval CPU (seconds)

The BCO-method Primal method

2 5 60.00 [−1, 1] 0.0560 0.0067
10 40.00 [−0.9, 1.5] 0.0022 0.0117
50 52.00 [−1, 1] 0.8098 0.0083
100 48.00 [−1.3, 1.3] 8.6192 0.0309
500 52.00 [−1.6, 1.6] 0.1530 0.0455

3 5 40.00 [−1.9, 0.6] 0.0006 0.0214
10 60.00 [−1.1, 1.1] 0.0016 0.0204
50 48.00 [−1.2, 1.1] 2.1227 0.0611
100 45.00 [−1.8, 1.5] 10.6008 0.5441
500 48.40 [−2.5, 2.2] 0.0155 0.0466

4 5 46.60 [−0.9, 0.9] 0.0007 0.0874
10 53.30 [−2.1, 1.6] 0.0503 0.3035
50 56.00 [−1.4, 1.5] 0.7697 0.7772
100 46.00 [−2.1, 2.2] 4.1703 1.0124
500 51.40 [−2.1, 1.3] 1380 30.9081

5 5 60.00 [−2.2, 1.5] 0.0010 1.19
10 50.00 [−1.4, 2] 0.0174 3.681
50 52.66 [−1.8, 1.7] 0.0392 >3004.86
100 52.00 [−2, 2] 0.1452 >10800.00

6 5 70.00 [−0.0001, 0.00008] 0.0011 >5400.00
10 30.00 [−0.0001, 0.0001] 0.0027 >3600.00
50 44.00 [−0.00027, 0.0002] 0.0399 >3600.00
100 51.50 [−0.00018, 0.00021] 0.1408 >7200.00
500 50.40 [−0.00026, 0.00025] 3.7644 >3600.00
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five and six criteria. Given that the BCO-method solves the problem directly in the 
decision space, it seems to be influenced just by the described instances particular-
ity unlike what we might expect. Regarding the obtained results comparison, we can 
see that the CPU time of the Primal method Liu and Ehrgott (2018) exceeds the 
CPUBCO-method on only six (06) instances of the instances presented in Table 11. 
However, the BCO-method is better on the remaining instances.

We can see from Fig.  2 that the linear trend curve (blue dashed line) of CPU 
BCO-method is almost horizontal when we except the instance (4,500,500) which 
represents a singular point with negative coefficients proportion equal to 51.33%. 
However, the linear trend curve (red dashed line) for the CPU Primal rapidly grows 
with the criteria number.

Tacking into account that the Primal method Liu and Ehrgott (2018) is better than 
several state of the art algorithms from the literature Benson (2011), Fülöp and Muu 
(2000), Thoai (2000), like observed by the authors, we can confirm the competitive 
statute to our proposed method.

7 � Conclusion

In this study, we have proposed a branch and bound based method to search for 
an efficient extreme point which optimizes a linear function over the set of effi-
cient extreme points of a convex polyhedron. The separation principle is based 
on the improving directions of the criteria at each feasible extreme point. Moreo-
ver, several tests are identified to fathom nodes whose corresponding domains not 

Fig. 2   Graph results
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contain efficient or optimal extreme points, and thus make it possible to prune entire 
branches from the search tree. The adapted BCO-efficiency test at a feasible extreme 
point greatly simplified the computation and, therefore, contributed to accelerating 
the convergence of the method. The comparative study carried out shows that the 
BCO-method is very competitive and that the considered number of criteria does 
not constitute a handicap, unlike many methods cited in the literature. On the other 
hand, the proposed method can be generalized to other specific functions considered 
in the program (P), because of its manoeuvrability.
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