
Vol.:(0123456789)

Operational Research (2022) 22:3183–3201
https://doi.org/10.1007/s12351-021-00664-z

1 3

REVIEW

Optimizing a linear function over an efficient set

Hadjer Belkhiri1 · Mohamed El‑Amine Chergui1 · Fatma Zohra Ouaïl1

Received: 1 August 2020 / Revised: 17 June 2021 / Accepted: 14 July 2021 /
Published online: 5 August 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
In this work, we deal with a global optimization problem (P) for which we look for
the most preferred extreme point (vertex) of the convex polyhedron according to
a new linear criterion, among all efficient vertices of a multi-objective linear pro-
gramming problem. This problem has been studied for decades and a lot has been
done since the 70’s. Our purpose is to propose a new and effective methodology for
solving (P) using a branch and bound based technique, in which, at each node of
the search tree, new customized bounds are established to delete uninteresting areas
from the decision space. In addition, an efficiency test is performed considering
the last simplex tableau corresponding to the current visited vertex. A comparative
study shows that the proposed method outperforms the most recent and performing
method dedicated to solve (P).

Keywords Multi-objective optimization · Efficient solution · Global optimization ·
Branch and bound · Efficiency test

1 Introduction

The concept of optimal solution in linear programming with single objective func-
tion is no longer valid in multi-objective linear programming (MOLP). Indeed, sev-
eral objective functions, often conflicting, must be optimized simultaneously and
as a consequence; the improvement of one of the functions generates the deteriora-
tion of at least one another. Hence, the term optimal solution is replaced by efficient
solution in the decision space, or non-dominated solution in the criteria space of the
program to be solved.

However, in multi-objective optimization, the set SE of efficient solutions is
generally of considerable size and the choice of a solution that suits the decision

 * Hadjer Belkhiri
 hbelkhiri@usthb.dz

1 RECITS Laboratory, Faculty of Mathematics, USTHB, Bab Ezzouar, PO 32, 16111 Algiers,
Algeria

http://orcid.org/0000-0002-6362-9979
http://crossmark.crossref.org/dialog/?doi=10.1007/s12351-021-00664-z&domain=pdf

3184 H. Belkhiri et al.

1 3

maker’s preferences according to a new criterion, becomes a difficult task. Indeed,
it is well known that this problem (henceforth denoted (P)) is a difficult global opti-
mization problem (see for instance Benson (1991), Fülöp and Muu (2000), Thoai
(2000), Yamamoto (2002)) since the set SE of efficient solutions of (P) is nonconvex.
Notice that, in this case, the efficient set SE has two interesting properties. First, SE
is connected and second, it contains extreme points of the polyhedron. An exten-
sive literature review allowed us to notice that several studies have been carried out
during the end of the last century. In fact, one of the pioneers in this field is Philip
(1972) who studied this problem and suggested for solving it an algorithm that
moves from an efficient vertex to an efficient adjacent one yielding an increase in the
objective function and a cutting plane technique is used to overcome the difficulty of
non-convexity of the efficient set. A lot of papers followed his work using somehow
the same technique; we cite for example those proposed by Isermann (1974), Bolin-
tineanu (1993), Ecker and Song (1994) and Fülöp and Muu (2000). In a different
way, Benson (1993) proposed a nonadjacent extreme point search algorithm which
dispenses with the enumeration.

Not long ago, a new study to obtain all efficient extreme points of MOLP with
only three objectives has been published Piercy and Steuer (2019). This approach
operates in the decision space and especially useful when working with such
MOLPs possessing large numbers of efficient extreme points. Whereas, in this case,
working in the criteria space can be very beneficial in terms of execution time.

Recently, Liu et al. (2018) proposed two procedures to solve (P) in the criteria
space, which the authors called Primal and Dual Algorithms. In fact, problems of
interest are divided in two special cases of (P) where in the first case, they consider
SE as the efficient set of MOLP problem (multi-objective linear program) and in the
second case, they consider a CMOP problem (convex multi-objective program).
Based on a revised version of Benson’s outer approximation algorithm, they first
propose a new primal algorithm for MOLP problem by incorporating a bounding
procedure in the primal algorithm described in Hamel et al. (2013). Then, this pri-
mal algorithm is extended to solve problem (P) in the criteria space.

In the dual algorithm, they introduce dual algorithms to solve cases one and two
in dual objective space. The dual algorithms are derived from dual variants of Ben-
son’s algorithm Hamel et al. (2013), Löhne et al. (2014). Comparison is done with
several state of the art algorithms from the literature on a set of randomly generated
instances to demonstrate that they are considerably faster than the competitors.

In Boland et al. (2017) the authors described a new algorithm for optimizing a
linear function over the set of efficient solutions of a multi-objective integer linear
program (MOILP). To generate the non-dominated solutions, the authors developed
a novel criteria space decomposition scheme resulting from a limited number of
search sub-spaces created as well as that of disjunctive constraints required to define
the single-objective integer program that searches for a non-dominated solution. A
computational study shows that the proposed algorithm clearly outperforms Jorge’s
algorithm Jorge (2009) that defined a sequence of progressively more constrained
single-objective integer problems to eliminate not only all the previously generated

3185

1 3

Optimizing a linear function over an efficient set

efficient solutions, but also any other feasible solutions whose criterion vectors are
dominated.

In the present study, we propose a branch and bound based method to solve the
global optimization problem (P), named BCO-method. In a structured search tree, a
node is created to determine an extreme point in the polytope of the MOLP problem,
and a branch defines adjacent edges of the polytope along which we move from an
extreme point to a neighbour one to improve at least one criterion. Several evalua-
tion process rules to fathom a node are developed; the corresponding extreme point
is efficient or has already been visited, no criterion of the MOLP problem can be
improved or the value of the function f to be optimized is less than the best value of
f previously encountered (for maximization problem). This has the effect to prune
uninteresting branches, which allows us to find the optimal solution for (P) with-
out having to check the entire set of efficient solutions that correspond to efficient
extreme points of the MOLP problem. Moreover, results in the simplex tableau are
used to launch the current node efficiency test run. In the following section (Sect. 2),
we give mathematical formulations and necessary notations for a good understand-
ing of the algorithm developed. Also, we provide some preliminaries on multi-
objective optimization. In Sect. 3, the principle of the proposed BCO-method is set
forth and the different steps of the algorithm are processed. In Sect. 4, theoretical
results and proofs on which the algorithm is based are established. Furthermore, in
Sect. 5, an illustrative example is performed to exhibit the resolution mechanism.
In Sect. 6, a comparative study is carried out and shows that the BCO-method per-
forms better than the Primal method recently described in reference Liu and Ehrgott
(2018). Finally, some concluding remarks and prospects are given in Sect. 7.

2 Mathematical formulation

Let S = {x ∈ ℜn|Ax ≤ b, x ≥ 0} be a nonempty compact polyhedron in ℜn , where
A is an (m × n)−real matrix, b an (m × 1)-real vector and let ci be an (1 × n)− real
vectors for i = 1, … , r; r ≥ 2 . Let C be the (r × n)−matrix whose rows are the vec-
tors ci, i = 1, … , r.

We consider the following muli-objective linear program (MOLP):

A solution x ∈ S is known as efficient for MOLP problem, if there does not exist
another solution y ∈ S such that Cy ≥ Cx and Cy ≠ Cx . The image of an efficient
solution in the criteria space is called a non-dominated solution or Pareto opti-
mal solution. Let SE ⊂ S be the set of all efficient vertices of MOLP problem. The
number of solutions in SE being generally very large, deciding to find all of them
becomes a very heavy task and requires an exponential computing time. In addition,
the choice of the best solution can be very difficult according to the decision maker’s
preference with a long efficient solutions list. Therefore, it ought to be more com-
putationally practical to generate the preferred efficient solution that maximizes a

(1)
{

Max Zi(x) = cix i = 1,⋯ , r

x ∈ S

3186 H. Belkhiri et al.

1 3

decision maker’s utility, corresponding to the following mathematical programming
problem to solve in this work:

where f ∶ ℜn
→ ℜ is a continuous linear function over S and f (x) =

∑n

j=1
fjxj .

f is not necessarily a combination of the MOLP problem’s criteria and can be any
linear function. The resolution of the program (P) is based on the relaxed linear pro-
gram (PR) defined by:

Applying the simplex method, let x∗
l
 be a basic feasible solution of (PR) obtained at

a step l, l ≥ 0 , of the solving procedure dedicated to the program (P). Let’s note:

1. Bl and Nl : the sets of indices of basic variables and non-basic variables respec-
tively of x∗

l
,

2. ĉi
j
 and f̂j : the reduced costs associated with MOLP problem’s criteria (1), as well

as those associated to f in program (2) after the pivoting process,
3. Hl : the set of indices that indicate possible improving directions for the criteria

ci, i = 1,… , r , to search efficient extreme points in a structured search tree.

where: H1

l
=
{
j ∈ Nl|∃i ∈ {1,… , r}; ĉi

j
> 0

}
, H2

l
=
{
j ∈ Nl|ĉij = 0, ∀i ∈ {1,… , r}

}
,

 H3

l
=
{
j ∈ Nl|f̂j ≤ 0

}
 and H4

l
=
{
j ∈ Nl|f̂j < 0

}
.

4. (T)l : the following linear program :

to test the efficiency of x∗
l
 like described in Ecker and Kouada (1975). We shall

derive below from the program (T)l a simple procedure, called the BCO-effi-
ciency test, so that we can test whether a basic feasible solution is efficient or
not.

 In the following, we present the principle of the method.

(2)(P)

{
Max f (x)

x ∈ SE

(3)(PR)

{
Max f (x)

x ∈ S

(4)Hl =
(
H1

l
∩ H3

l

)
∪
(
H2

l
∩ H4

l

)

(5)(T)l

⎧
⎪⎪⎨⎪⎪⎩

Max w =
∑r

j=1
ej

Cx − e = Cx∗
l

Ax ≤ b

x ≥ 0, ej ≥ 0, j = 1… , r

e = (ej)j=1,…,r

3187

1 3

Optimizing a linear function over an efficient set

3 Method description

The main subject of our work is to propose an exact method for solving the global
optimization program (P). To do this, we focus on the optimization of the func-
tion f over the feasible set corresponding to the vertices of S, the relaxed domain
of SE , by solving the linear program (PR) using simplex method, without having to
revisit those already visited. Indeed, the simplex table is increased by the r rows of
the matrix of criteria C, Zi(x) = cix for i = 1,… , r , to be reevaluated and updated
simultaneously with the function f.

Thereby, to solve program (P), our algorithm is developed to rank the basic fea-
sible solutions of the (PR) program. The algorithm is structured in a search tree in
which at each node l, l ≥ 0 , a basic feasible solution x∗

l
 of program (PR) is gener-

ated. If this k− th best (k ≥ 0) basic feasible solution of (PR) is the first one to satisfy
the efficiency test along the branch ending at node l, then, the corresponding node
is fathomed and the best value encountered f ∗ of f is updated as well as the optimal
solution x∗ which is replaced by x∗

l
.

Else, the set Hl is determined to create as many child nodes as there are elements
in Hl and each of them will corresponds to another vertex of the domain S, obtained
from x∗

l
 by pivoting with respect to a corresponding direction j ∈ Hl . This process is

repeated until all the created nodes are fathomed.
A slave program is launched to test the efficiency of each visited feasible basic

solution.
A node l of the search tree is fathomed if one of the three conditions is satisfied:

1. The corresponding feasible basic solution x∗
l
 is efficient or already visited,

2. The set Hl is empty,
3. f

(
x∗
l

)
< f ∗ , where f ∗ is the best value of f previously encountered.

The algorithm is summarized in the following steps:

3.1 Algorithm of the proposed method

Inputs : A, b, C and f.
Outputs: x∗ : optimal solution of (P) and f ∗ = f (x∗).
Step 0: (Initial step)
l ∶= 0 ; (search tree root); f ∗ = −∞ ; VN ∶= � ; (set of generated vertices of S).
0.1. Solve (PR) at node 0. If it is not feasible, then terminate, (P) is unfeasible.
0.2. Otherwise, let x∗

0
 be an obtained optimal solution for (PR), VN ∶=

{
x∗
0

}
.

0.2.1 If the solution x∗
0
 is efficient, x∗ ∶= x∗

0
 and f ∗ ∶= f (x∗

0
) . Terminate.

0.2.2. Else:
- Determine the sets N0 and H0.
- For each j ∈ H0 , a node l, l = 1,… , ||H0

|| , will be created in the search tree.
- Go to Step 1.
Step 1: (General step)
As long as there are nodes in the search tree not fathomed, do:

3188 H. Belkhiri et al.

1 3

1.1. Choose a node l from the search tree regarding depth first strategy. Suppose
that the non-basic variable of index j, j ∈ Hk , is considered at this node, where node
k denotes the parent of the node l, l ≥ k.

1.2. Consider the simplex tableau at node k and pivot according to the non-basic
variable of index j ∈ Hk.

1.3. Let x∗
l
 be the obtained basic feasible solution of program (PR):

1.3.1. If x∗
l
∈ VN , the node l is fathomed.

1.3.2. Else, VN ∶= VN ∪
{
x∗
l

}
 .

1.3.2.1. If f ∗ ≥ f (x∗
l
) , then the node l is fathomed. Go to Step 1.

1.3.2.2. Otherwise, applied the efficiency test for the solution x∗
l
 :

1.3.2.2.1. If it is efficient, then x∗ ∶= x∗
l
 and f ∗ ∶= f (x∗) . The node l is fathomed,

go to Step 1.
1.3.2.2.2. Else, determine the sets Nl and Hl.
1.4. For each j ∈ Hl , a node p, p = q + 1,… , q + |Hl| , will be created in the

search tree, where q is the number of nodes already created in the search tree.
1.5. Go to Step 1.
In what follows, we highlight the main theoretical results which ensure the con-

vergence of our algorithm.

4 Theoretical results

In this section, the justifications of the steps described in the above algorithm are
established. Let x∗

l
 be the basic feasible solution of program (PR) obtained at node l

of the search tree.

Theorem 1 Let x, x ≠ x∗
l
 , an efficient feasible basic solution of which x∗

l
 is the parent

in the search tree. Then x is obtained according to a pivot column j ∈ H1

l
∪ H2

l
.

Proof Suppose for any coordinate xj of x, j ∈ Nl , we have : j ∉ H1

l
∪ H2

l
 . Then

j ∉ H1

l
 and j ∉ H2

l
 hence, for all j in Nl , ĉij ≤ 0 , ∀i ∈ {1,… , r} with at least one strict

inequality. Then we have: ∀i ∈ {1,… , r} , Zi(x) = Zi(x∗
l
) +

∑
j∈Nl

ĉi
j
xj ⇒ ,

∀i ∈ {1,… , r} , Zi(x) < Zi(x∗
l
) because

∑
j∈Nl

ĉi
j
xj < 0.

Thus, the vector Z(x) is dominated by the vector Z(x∗
l
) : which means that x is not

efficient. ◻

Remark 1 As Hl =
(
H1

l
∩ H3

l

)
∪
(
H2

l
∩ H4

l

)
 , then Hl ⊆ (H1

l
∪ H2

l
) . According to the-

orem 1, only the moves in the directions j ∈ Hl can ensure to find efficient solutions
of the MOLP problem.

Theorem 2 Let x, x ≠ x∗
l
 , an optimal solution for program (P) of which x∗

l
 is the

parent solution in the search tree. Then, x is obtained according to a pivot column
j ∈ Hl.

3189

1 3

Optimizing a linear function over an efficient set

Proof Suppose that for any coordinate xj of x, j ∈ Nl , j ∉ Hl . Then j ∉
(
H1

l
∩ H3

l

)

and j ∉
(
H2

l
∩ H4

l

)
.

So we have the following cases:
1st case:

As j ∉ (H3

l
∪ H4

l
) , then f̂j > 0 and therefore, the solution x is not optimal.

2nd case:

We obtain a contradiction in this case, because j ∉ H3

l
 therefore f̂j < 0 and j ∈ H4

l

thus f̂j > 0.
3rd case:

This corresponds to f̂j = 0 and ĉi
j
= 0 for all i ∈ {1,… , r} . Therefore the solution x

is alternative to the solution x∗
l
 relative to the function f and at the same time to the

criteria Zi i = 1,… , r . Thus it has the same status as x∗
l
 which is not efficient, other-

wise we would have probed the node l.
4th case:

 Since j ∉ (H1

l
∪ H2

l
) , then the solution x is not efficient according to theorem 1.

Thus, theorem 2 is proved by contraposition. ◻

Proposition 1 The vertices of set S generated at the nodes of a branch of the search
tree, are all different.

Proof Remind that Hl =
(
H1

l
∩ H3

l

)
∪
(
H2

l
∩ H4

l

)
 with H3

l
=
{
j ∈ Nl f̂j ≤ 0

}
 and

H4

l
=
{
j ∈ Nl f̂j < 0

}
 . Thus, along a branch of the search tree, when one pivots

according to the simplex method from x∗
l
 towards another vertex x according to a

(6)
{

j ∈ H1

l
and j ∉ H3

l

j ∈ H2

l
and j ∉ H4

l

or

{
j ∈ H1

l
and j ∉ H3

l

j ∉ H2

l
and j ∉ H4

l

or

{
j ∉ H1

l
and j ∉ H3

l

j ∈ H2

l
and j ∉ H4

l

(7)
{

j ∈ H1

l
and j ∉ H3

l

j ∉ H2

l
and j ∈ H4

l

(8)

⎧⎪⎨⎪⎩

j ∉ H1

l
and j ∈ H3

l

j ∈ H2

l
and j ∉ H4

l

(9)

⎧⎪⎨⎪⎩

j ∉ H1

l
and j ∈ H3

l

j ∉ H2

l
and j ∈ H4

l

or

⎧
⎪⎨⎪⎩

j ∉ H1

l
and j ∈ H3

l

j ∉ H2

l
and j ∉ H4

l

or

⎧⎪⎨⎪⎩

j ∉ H1

l
and j ∉ H3

l

j ∉ H2

l
and j ∈ H4

l

or

⎧⎪⎨⎪⎩

j ∉ H1

l
and j ∉ H3

l

j ∉ H2

l
and j ∉ H4

l

3190 H. Belkhiri et al.

1 3

pivot column j ∈ Hl , i.e. j ∈ H3

l
 or j ∈ H4

l
 , the function f does not increase. In addi-

tion, the instruction 1.3.1. of the general step of the algorithm prohibits processing
of a vertex already visited. ◻

Lemma 1 If at a node l of the search tree, we have f ∗ ≥ f (x∗
l
) then, there is no solu-

tion x ∈ S , when we move in the directions of Hl , such that f (x) > f ∗.

Proof From x∗
l
 , if we move in the directions of Hl , the function f decreases. Thus,

f (x) ≤ f (x∗
l
) for any solution x obtained by moving in the directions of Hl . ◻

Theorem 3 The program (T)l defined by Eq. 5 is equivalent to the following
program:

Proof Recall that program (T)l is :

where 1r×r = (1, 1,… , 1) . Its standard form is then written as follows:

Using the current basis Bl at the basic feasible solution x∗
l
,C = [CBl

,CNl
] , we can

write:

where the Eqs. (10), (11) and (12) are obtained as follows:
(10) = B−1

l
.(7) ; (11) = CBl

.B−1
l
(7) − (8) since CBl

.B−1

l
.bm×1 = Cx∗

l
 and

(12) = 11×r.[CBl
.B−1

l
.(7) − (8)] + (9).

The corresponding linear program is the follows:

(10)(R)l

⎧
⎪⎨⎪⎩

Max w = 11×r

�
CBl

B−1
l
A − C

�
.x + 11×r

�
CBl

B−1
l

�
.y

B−1
l
A.x + B−1

l
.y = B−1

l
b

(CBl
B−1
l
A − C).x + CBl

B−1
l
.y + Ir×r.e = 0r×1

x ≥ 0, y ≥ 0, e ≥ 0

(Tl)

⎧
⎪⎪⎨⎪⎪⎩

Max w =
∑r

j=1
ej

Cx − e = Cx∗
l

Ax ≤ b

x ≥ 0, ej ≥ 0, j = 1… , r

e = (ej)j=1,…,r

⎧⎪⎨⎪⎩

Am×n.xn×1 + Im×m.ym×1 + 0m×r.er×1 = bm×1 …… ..(7)

Cr×n.xn×1 + 0r×m.ym×1 − Ir×r.er×1 = Cx∗
l
……… .(8)

01×n.xn×1 + 01×m.ym×1 − 11×r.er×1 − w = 0 ………(9)

⎧⎪⎨⎪⎩

B−1
l
A.x + B−1

l
.y + 0m×r.e = B−1

l
b…………………………(10)

(CBl
B−1
l
A − C).x + CBl

B−1
l
.y + Ir×r.e = 0r×1 ………………(11)

11×r

�
CBl

B−1
l
A − C

�
.x + 11×r

�
CBl

B−1
l

�
.y + 01×r.e − w = 0… ..(12)

3191

1 3

Optimizing a linear function over an efficient set

Hence, the obtained program provide a feasible simplex tableau for program (T)l
with the basic feasible solution (x, e) =

(
x∗
l
, 0

)
 when y = 0 . ◻

In what follows, we propose another particular version of the efficiency-test
which exploits the data of the simplex tableau in x∗

l
 . First of all, solving program

(O)0 is a check for efficiency of an optimal solution x∗
0
 for the program (PR). To

prove the efficiency of the solution x∗
0
 at step 0.2.1 of the algorithm, we prove the

following theorem:

Theorem 4 The program (R)l defined above and the following program (O)l have the
same admissible regions:

where Z(x) =
(
Zi(x)

)
i= ̄1,r

Proof As described in the principle of the proposed method, the criteria matrix C
evolves in the same way according to the pivoting process in the simplex tableau
when solving the program (PR). Therefore, the initial program to solve is as follows:

Its standard form is given by:

At any node l of the search tree, by considering the basis Bl associated with the basic
feasible solution x∗

l
 , we obtain the following linear system :

(R)l

⎧
⎪⎨⎪⎩

Max w = 11×r

�
CBl

B−1
l
A − C

�
.x + 11×r

�
CBl

B−1
l

�
.y

B−1
l
A.x + B−1

l
.y = B−1

l
b

CBl
B−1
l
A.x + CBl

B−1
l
.y + Ir×r.e = Cx

x ≥ 0, y ≥ 0, e ≥ 0

(O)l

⎧⎪⎨⎪⎩

Max g(x) = −11×mB
−1
l
b +

�
−f 1×n + 11×mB

−1
l
A
�
.x + 11×mB

−1
l
.y

B−1
l
A.x + B−1

l
.y = B−1

l
b

(CBl
B−1
l
A − C).x + CBl

B−1
l
.y + Z(x) = CBl

B−1
l
b

x ≥ 0, y ≥ 0,

⎧⎪⎨⎪⎩

Max f (x) = f1×nx + 01×my

Am×nx + Im×my = bm×1
Cr×nx + 0r×my − Z(x) = 0r×1
x ≥ 0, y ≥ 0

⎧⎪⎨⎪⎩

Am×n.x + Im×m.y = bm×1 … .……(13)

Cr×n.x + 0r×m.y − Z(x) = 0r×1 …(14)

f1×n.x + 01×m.y − f (x) = 0…… .(15)

3192 H. Belkhiri et al.

1 3

where the Eqs. (16), (17) and (18) are obtained as follows:
(16) = B−1

l
.(13) ; (17) = CBl

.(16) − (14) and (18) = 11×m(16) − (15).
Thus, we obtain the standard form of the following linear program:

Note that the programs (P)l and (O)l have the same feasible solutions set and
g(x) = −f (x) . Thus, we aim to find an optimal solution of the function g = −f over
the corresponding feasible solution set. Furthermore, at node l, Z

(
x∗
l

)
= CBl

B−1
l
b

and to test the efficiency of x∗
l
 , we have to search a solution x in the domain S, such

that Z(x) ≥ CBl
B−1
l
b . Hence, the solution x satisfies the inequality Z(x)−CBl

B−1
l
b ≥ 0

and consequently, CBl
B−1
l
Ax + CBl

B−1
l
y ≤ Cx is obtained from the Eq. (17).

Thus, we conclude that the feasible solutions set of the program (O)l is the same
as that of the program (R)l defined in Theorem 3. ◻

Theorem 5 x∗
0
 is efficient if and only if x∗

0
 is the unique optimal solution for program

(O)0.

Proof ⇐| Recall that the admissible domain of (O)l is not other than
D(x∗

l
) = {x ∈ S|Cx ≥ Cx∗

l
} being the optimal solution of the program (PR) (step 0.1

of the algorithm), it maximizes the function f over the domain S, and therefore over
the domain D(x∗

0
) . On the other hand, x∗

0
 being the unique optimal solution of the

program (O)0 , it maximizes (−f (x)) over D(x∗
0
) . So, x∗

0
 minimizes f(x) over D(x∗

0
) .

Thus, both the maximum and the minimum of the function f over the domain D(x∗
0
)

are achieved at x∗
0
 , it is therefore the unique feasible solution in the domain D(x∗

0
) so

that Cx = Cx∗
0
 . For this purpose, the optimal objective value of the program (T)0 is 0

and therefore, x∗
0
 is efficient.

⇒| Proof by contradiction. Suppose that x∗
0
 is not an optimal solution of (O)0 ,

then there exists a solution y in D(x∗
0
) , y different from x∗

0
 , such that −f (x∗

0
) < −f (y) .

Hence, there exists a criterion i in {1,⋯ , r} , such that ciy − cix∗
0
= ei , with

ei = f (x∗
0
) − f (y) , ei > 0 since f (x∗

0
) > f (y) . Then, (y, e) is a feasible solu-

tion for program (T)0 , e = (ej) , j = 1,⋯ , r , with at least one criterion i such that
ei = f (x∗

0
) − f (y) and

∑r

j=1
ej > 0 . Hence, solution x∗

0
 is not efficient.

Suppose again that x∗
0
 is an optimal solution of (O)0 , but not unique. Then there

exists a solution y in D(x∗
0
) , y different from x∗

0
 , such that f (x∗

0
) = f (y) . Hence, x∗

0
 is

not the unique optimal solution for program (PR) and y is a basic feasible solution
in S. This is a situation where the function f is proportional to both a criterion and a
constraint of the admissible region S. There is then a criterion i such that ciy = cix∗

0
 ,

⎧
⎪⎨⎪⎩

B−1
l
A.x + B−1

l
.y = B−1

l
b………………………………… .(16)

(CBl
B−1
l
A − C).x + CBl

B−1
l
.y + Z(x) = CBl

B−1
l
b……………(17)�

11×mB
−1
l
A−f 1×n

�
.x + 11×mB

−1
l
.y + f (x) = 11×mB

−1
l
b…… . . (18)

(P)l

⎧
⎪⎨⎪⎩

Max f (x) = 11×mB
−1
l
b +

�
f1×n − 11×mB

−1
l
A
�
.x − 11×mB

−1
l
.y

B−1
l
A.x + B−1

l
.y = B−1

l
b

(CBl
B−1
l
A − C).x + CBl

B−1
l
.y + Z(x) = CBl

B−1
l
b

x ≥ 0, y ≥ 0,

3193

1 3

Optimizing a linear function over an efficient set

and a criterion j, j ≠ i , such that cjy > cjx∗
0
 . By setting ej = cjy − cjx∗

0
 , ej > 0 and ∑r

k=1
ek > 0 , which proves that x∗

0
 is not efficient. ◻

We note (−O)l the program (O)l with objective function f to maximize instead of
g. Hence, programs (−O)l and (O)l have the same admissible region D(x∗

l
) . Moreo-

ver, to ensure the validity of the BCO-efficiency test, program (−O)l must also be
solved taking into account that x∗

l
 , l ≥ 1 , is not the optimal solution of the program

(PR).

Corollary 1 x∗
l
 , l ≥ 1 is efficient if and only if x∗

l
 is the unique optimal solution for

both programs (O)l and (−O)l .

Proof If x∗
l
 is not the same optimal solution for the two programs (O)l and (−O)l , or

x∗
l
 is not the unique optimal solution for one of the two programs, then the domain

D(x∗
l
) admits a feasible solution y other than x∗

l
 . Hence, solution x∗

l
 is not efficient

(see Proof of Theorem 5). Conversely, if x∗
l
 is the unique optimal solution for each of

the two programs, this means that the domain D(x∗
l
) is reduced to the only solution

x∗
l
 , which means that x∗

l
 is efficient. ◻

Remark 2 In fact, as soon as one of the two programs (O)l or (−O)l encounters a
solution u different from x∗l , the computation stops indicating that x∗l is not effi-
cient. Moreover, if x∗l is not efficient, no solution obtained from (O)l or (−O)l can be
used because it is not necessarily a basic feasible solution of the admissible region S.

4.1 The BCO‑efficiency test algorithm

1. Let l = 0 and x∗
0
 the optimal solution for program (PR), solve the (O)0 program.

- If x∗
0
 is the optimal solution, then x∗

0
 is efficient (Theorem 5).

- Else
- If x∗

0
 is not optimal for program (PR), then x∗

0
 is not efficient,

- Else (x∗
0
 is not unique), then x∗

0
 is not efficient.

2. For l ≥ 1 , let x∗
l
 be the obtained basic feasible solution for program (PR), solve the

(O)l program,
2.1. If x∗

l
 is not an optimal solution, then x∗

l
 is not efficient,

2.2. If x∗
l
 is not the unique optimal solution, then x∗

l
 is not efficient,

2.3. If x∗
l
 is the unique optimal solution, then solve the (−O)l program,

2.3.1. If x∗
l
 is not an optimal solution, then x∗

l
 is not efficient,

2.3.2. If x∗
l
 is not the unique optimal solution, then x∗

l
 is not efficient,

2.3.3. If x∗
l
 is the unique optimal solution, then x∗

l
 is efficient (Corollary 1).

Theorem 6 The algorithm terminates in a finite number of iterations and returns an
optimal solution of the program (P).

3194 H. Belkhiri et al.

1 3

Proof The set S of feasible solutions being compact, it contains a finite number of
vertices. According to proposition 1 , the algorithm ends in a finite number of itera-
tions. The convergence of the algorithm towards an optimal solution of the program
(P) is ensured by lemma 1, corollary 1 and theorems 1, 2 and 5. ◻

5 Illustrative example

Let us consider the following problem of optimizing a linear function over an effi-
cient set defined as:

where SE is the efficient vertex set of the following MOLP problem:

The relaxed linear program (PR) of (P) is then written as follows:

(P)

{
Max f (x) = −x1 + 2x3
x ∈ SE

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Max Z1(x) = x1 − x3
Max Z2(x) = x2 + x3
s.t ∶ 2x1 + x2 ≤ 16

8x1 + 5x2 ≤ 66

2x1 + 3x2 ≤ 27

x2 ≤ 7

x3 ≤ 2

xi ≥ 0 ;i = 1, 2, 3

(PR)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Max f (x) = −x1 + 2x3
s.t ∶ 2x1 + x2 ≤ 16

8x1 + 5x2 ≤ 66

2x1 + 3x2 ≤ 27

x2 ≤ 7

x3 ≤ 2

xi ≥ 0 ;i = 1, 2, 3

Table 1 Initial step
x1 x2 x8 b

x4 2 1 0 16
x5 8 5 0 66
x6 2 3 0 27
x7 0 1 0 7
x3 0 0 1 2
−f −1 0 −2 −4
−Z1 1 0 1 2
−Z2 0 0 −1 −2

3195

1 3

Optimizing a linear function over an efficient set

Initial step: l = 0 ; f ∗ = −∞ ; After solving the program (PR), the optimal solution
thus obtained is x∗

0
= (0, 0, 2) as shown in the following simplex tableau:

From Table 1 VN ∶= {x∗
0
} and the BCO-efficiency test is applied to x∗

0
 (see

Tables 2 and 3). To do this, f(x) is replaced by g(x) = −f (x) in the last tableau, the
criteria Z1 and Z2 are added as constraints and the obtained tableau will be optimized:

The obtained optimal solution is u = (8, 0, 0) , u ≠ x∗
0
 , then x∗

0
 is not efficient.

f ∗ = −8 . The sets N0 = {1, 2, 9} and H0 = {1, 2, 9} correspond to x∗
0
.

Table 2 Efficiency test 1
x1 x2 x3 b

x4 2 1 0 16
x5 8 5 0 66
x6 2 3 0 27
x7 0 1 0 7
x8 −1/2 0 1 2
y1 −1 0 1 0
y2 0 0 −1 0
−g 1 0 −2 0

Table 3 Efficiency test 2
x4 x2 x3 b

x1 1/2 1 0 8
x5 −4 5 0 2
x6 −1 3 0 11
x7 0 1 0 7
x8 1 0 1 6
y1 1/2 0 1 8
y2 0 0 −1 0
−g −1/2 0 −2 −8

Table 4 Solution x∗
1
 of (PR)

x2 x4 x8 b

x1 1/2 1/2 0 8
x5 1 −4 0 2
x6 2 −1 0 11
x7 1 0 0 7
x3 0 0 1 2
−f 1/2 1/2 −2 4
−Z1 −1/2 −1/2 1 −6
−Z2 1 0 −1 −2

3196 H. Belkhiri et al.

1 3

Step 1
The separation starts with the creation of the node 1 corresponding to the first

direction of H0 , j = 1 . By pivoting in this direction, we find the optimal solution
x∗
1
= (8, 0, 2) given by this tableau (Table 4):
VN ∶= VN ∪ {x∗

1
} . The BCO-efficiency test shows that the solution x∗

1
 is not effi-

cient. N1 = {2, 4, 9} and H1 = {9} . Using deep first strategy, we create node 2, cor-
responding to the single direction of H1 , j = 9 . By pivoting in this direction, the
solution x∗

2
= (8, 0, 0) given in Table 5 is obtained:

VN = VN ∪ x∗
2
 . x∗

2
 is efficient by applying the BCO-efficiency test. Therefore

x∗ ∶= x∗
2
 and f ∗ = −8 . This current node is fathomed. From node 1, we create node

Table 5 Solution x∗
2
 of (PR)

x2 x3 x4 b

x1 1/2 0 1/2 8
x5 1 0 −4 2
x6 2 0 −1 11
x7 1 0 0 7
x8 0 1 0 2
−f 1/2 2 1/2 8
−Z1 −1/2 −1 −1/2 −8
−Z2 1 −1 0 0

Table 6 Solution x∗
3
 of (PR)

x1 x7 x8 b

x4 2 −1 0 9
x5 8 −5 0 31
x6 2 −3 0 6
x2 0 1 0 7
x3 0 0 1 2
−f −1 0 −2 −4
−Z1 1 0 1 2
−Z2 0 −1 −1 −9

Table 7 Solution x∗
4
 of (PR)

x6 x7 x8 b

x4 −1 2 0 3
x5 −4 7 0 7
x1 1/2 −3/2 0 3
x2 0 1 0 7
x3 0 0 1 2
−f 1/2 −3/2 −2 −1
−Z1 −1/2 3/2 1 −1
−Z2 0 −3/2 −1 −9

3197

1 3

Optimizing a linear function over an efficient set

3 corresponding to the second direction of H0 ; j = 2 . By pivoting in this direction,
the solution x∗

3
= (0, 7, 2) is obtained in Table 6:

VN = VN ∪ {x∗
3
} . x∗

3
 is not efficient by applying the BCO-efficiency test.

N3 = {1, 8, 9} and H3 = {1, 8, 9} , then we create a new node 4 corresponding to the
direction of H3 ; j = 1 and we execute a pivoting in this direction to obtain the solu-
tion x∗

4
= (3, 7, 2) in Table 7:

VN = VN ∪ {x∗
4
} . By applying the BCO-efficiency test, we prove that solution x∗

4

is efficient. Hence, x∗ ∶= x∗
4
 and f ∗ = 1 . Node 4 is fathomed. We create a new node

5 corresponding to the second direction of H3 ; j = 8 , and we obtain the solution
x∗
5
= (0, 0, 2) , in Table 8:
Since this solution is already visited, then VN ∶= VN and this node is fathomed.

Node 6 corresponding to the third direction of H3 ; j = 9 is created and the new solu-
tion x ∗

6
= (0, 7, 0) is generated in Table 9:

VN = VN ∪ {x∗
6
} . This node in fathomed since f

(
x∗
6

)
< f ∗ . Node 7 correspond-

ing to the final direction of H0 ; j = 9 is then created and the solution x∗
7
= (0, 0, 0) is

obtained in Table 10:
VN = VN ∪ {x∗

7
} but f

(
x∗
7

)
< f ∗ . This node is fathomed.

The algorithm terminates since all created nodes are fathomed and the optimal
solution for (P) is x∗ = (3, 7, 2) and f ∗ = 1.

To summarize the proposed method throughout this example, we present a search
tree representing states of the nodes during the process in Fig. 1.

Table 8 Solution x∗
5
 of (PR)

x1 x7 x8 b

x4 2 1 0 16
x5 8 5 0 66
x1 2 3 0 27
x2 0 1 0 7
x3 0 0 1 2
−f −1 0 −2 −4
−Z1 1 0 1 2
−Z2 0 0 −1 −2

Table 9 Solution x∗
6
 of (PR)

x1 x3 x7 b

x4 2 0 −1 9
x5 8 0 −5 31
x6 2 0 −3 6
x2 0 0 1 7
x8 0 1 0 2
−f −1 2 0 0
−Z1 1 −1 0 0
−Z2 0 −1 −1 −7

3198 H. Belkhiri et al.

1 3

6 Computational results and comparative study

The experimental results obtained during the implementation of our algorithm are
summarized in this section. We carried out the numerical implementation using
MATLAB R2015 software, on an Intel R CoreTM i7-5500U, 2.40Ghz and 8GB Ram
processor computer. All the procedures of the BCO-method are programmed and
none of the optimization packages are used. The algorithm is compared with the
Primal method described in reference Liu and Ehrgott (2018) on instances being
on the site: https:// doi. org/ 10. 17635/ lanca ster/ resea rchda ta/ 224. For each instance,
r is the number of criteria, n is the number of variables and m is the number of
constraints. Three instances are given for the same triplet (r, n, m), all used data are
real numbers given with 10−16 accuracy and distributed over intervals [a, b] , with

Table 10 Solution x∗
7
 of (PR)

x1 x2 x3 b

x4 2 1 0 16
x5 8 5 0 66
x6 2 3 0 27
x7 0 1 0 7
x8 0 0 1 2
−f −1 0 −2 0
−Z1 1 0 −1 0
−Z2 0 1 1 0

Fig. 1 Search tree

https://doi.org/10.17635/lancaster/researchdata/224

3199

1 3

Optimizing a linear function over an efficient set

minimum value a < 0 and maximum value b > 0 . The constraints matrix values A
belongs to the interval [−1, 0] , those of the right-hand side vector b vary according
to the size of the instance, the larger it is and the more b increases. For example
for instance (4, 100, 100), b belongs to [−27,−20] . The criteria coefficients vary
in [−1, 1] . The results of the experimental compilation are given in the following
Table 1. We reported the percentage of negative coefficients on average, the inter-
vals of coefficients for the linear function f represented by the max and min values
and the mean of CPU time for each method.

Obviously, the computation time increases rapidly as the size of the instances
increase. The largest size of the instances tested is 6 objectives, 500 variables and
500 constraints. Even though the authors of the Primal method described in Liu and
Ehrgott (2018) praised it because described in the criteria space, it is supposed to
support big instances better than in decision space, we observe that the CPU time
increases strongly depending on the number of criteria. In this case, the number of
criteria has a negative impact on the CPU time since it makes a huge jump of less
than one second for less than 5 criteria, at one hour and more for the instances with

Table 11 Results

r n = m Proportion of
f < 0 (%)

Interval CPU (seconds)

The BCO-method Primal method

2 5 60.00 [−1, 1] 0.0560 0.0067
10 40.00 [−0.9, 1.5] 0.0022 0.0117
50 52.00 [−1, 1] 0.8098 0.0083
100 48.00 [−1.3, 1.3] 8.6192 0.0309
500 52.00 [−1.6, 1.6] 0.1530 0.0455

3 5 40.00 [−1.9, 0.6] 0.0006 0.0214
10 60.00 [−1.1, 1.1] 0.0016 0.0204
50 48.00 [−1.2, 1.1] 2.1227 0.0611
100 45.00 [−1.8, 1.5] 10.6008 0.5441
500 48.40 [−2.5, 2.2] 0.0155 0.0466

4 5 46.60 [−0.9, 0.9] 0.0007 0.0874
10 53.30 [−2.1, 1.6] 0.0503 0.3035
50 56.00 [−1.4, 1.5] 0.7697 0.7772
100 46.00 [−2.1, 2.2] 4.1703 1.0124
500 51.40 [−2.1, 1.3] 1380 30.9081

5 5 60.00 [−2.2, 1.5] 0.0010 1.19
10 50.00 [−1.4, 2] 0.0174 3.681
50 52.66 [−1.8, 1.7] 0.0392 >3004.86
100 52.00 [−2, 2] 0.1452 >10800.00

6 5 70.00 [−0.0001, 0.00008] 0.0011 >5400.00
10 30.00 [−0.0001, 0.0001] 0.0027 >3600.00
50 44.00 [−0.00027, 0.0002] 0.0399 >3600.00
100 51.50 [−0.00018, 0.00021] 0.1408 >7200.00
500 50.40 [−0.00026, 0.00025] 3.7644 >3600.00

3200 H. Belkhiri et al.

1 3

five and six criteria. Given that the BCO-method solves the problem directly in the
decision space, it seems to be influenced just by the described instances particular-
ity unlike what we might expect. Regarding the obtained results comparison, we can
see that the CPU time of the Primal method Liu and Ehrgott (2018) exceeds the
CPUBCO-method on only six (06) instances of the instances presented in Table 11.
However, the BCO-method is better on the remaining instances.

We can see from Fig. 2 that the linear trend curve (blue dashed line) of CPU
BCO-method is almost horizontal when we except the instance (4,500,500) which
represents a singular point with negative coefficients proportion equal to 51.33%.
However, the linear trend curve (red dashed line) for the CPU Primal rapidly grows
with the criteria number.

Tacking into account that the Primal method Liu and Ehrgott (2018) is better than
several state of the art algorithms from the literature Benson (2011), Fülöp and Muu
(2000), Thoai (2000), like observed by the authors, we can confirm the competitive
statute to our proposed method.

7 Conclusion

In this study, we have proposed a branch and bound based method to search for
an efficient extreme point which optimizes a linear function over the set of effi-
cient extreme points of a convex polyhedron. The separation principle is based
on the improving directions of the criteria at each feasible extreme point. Moreo-
ver, several tests are identified to fathom nodes whose corresponding domains not

Fig. 2 Graph results

3201

1 3

Optimizing a linear function over an efficient set

contain efficient or optimal extreme points, and thus make it possible to prune entire
branches from the search tree. The adapted BCO-efficiency test at a feasible extreme
point greatly simplified the computation and, therefore, contributed to accelerating
the convergence of the method. The comparative study carried out shows that the
BCO-method is very competitive and that the considered number of criteria does
not constitute a handicap, unlike many methods cited in the literature. On the other
hand, the proposed method can be generalized to other specific functions considered
in the program (P), because of its manoeuvrability.

Declarations

 Conflict of interest The authors declare that they have no conflict of interest.

References

Benson HP (1991) An all-linear programming relaxation algorithm for optimizing over the efficient set. J
Global Opt 1(1):83–104

Benson HP (1993) A bisection-extreme point search algorithm for optimizing over the efficient set in the
linear dependence case. J Global Optim 3(1):95–111

Benson HP (2011) An outcome space algorithm for optimization over the weakly efficient set of a multi-
ple objective nonlinear programming problem. J Global Optim 52(3):553–574

Boland N, Charkhgard H, Savelsbergh M (2017) A new method for optimizing a linear function over the
efficient set of a multiobjective integer program. Eur J Oper Res 260(3):904–919

Bolintineanu S (1993) Minimization of a quasi-concave function over an efficient set. Math Program
61(1–3):89–110

Ecker JG, Kouada IA (1975) Finding efficient points for linear multiple objective programs. Math Pro-
gram 8(1):375–377

Ecker JG, Song JH (1994) Optimizing a linear function over an efficient set. J Optim Theory Appl
83(3):541–563

Fülöp J, Muu LD (2000) Branch-and-bound variant of an outcome-based algorithm for optimizing over
the efficient set of a bicriteria linear programming problem. J Optim Theory Appl 105(1):37–54

Hamel AH, Löhne A, Rudloff B (2013) Benson type algorithms for linear vector optimization and appli-
cations. J Global Optim 59(4):811–836

Isermann H (1974) Technical note–proper efficiency and the linear vector maximum problem. Oper Res
22(1):189–191

Jorge JM (2009) An algorithm for optimizing a linear function over an integer efficient set. Eur J Oper
Res 195(1):98–103

Liu Z, Ehrgott M (2018) Primal and dual algorithms for optimization over the efficient set. Optimization
67(10):1661–1686

Löhne A, Rudloff B, Ulus F (2014) Primal and dual approximation algorithms for convex vector optimi-
zation problems. J Global Optim 60(4):713–736

Philip J (1972) Algorithms for the vector maximization problem. Math Program 2(1):207–229
Piercy CA, Steuer RE (2019) Reducing wall-clock time for the computation of all efficient extreme points

in multiple objective linear programming. Eur J Oper Res 277(2):653–666
Thoai NV (2000) Conical algorithm in global optimization for optimizing over efficient sets. J Global

Optim 18(4):321–336
Yamamoto Y (2002) Optimization over the efficient set: overview. J Global Optim 22:285–317

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Optimizing a linear function over an efficient set
	Abstract
	1 Introduction
	2 Mathematical formulation
	3 Method description
	3.1 Algorithm of the proposed method

	4 Theoretical results
	4.1 The BCO-efficiency test algorithm

	5 Illustrative example
	6 Computational results and comparative study
	7 Conclusion
	References

