
Vol.:(0123456789)

Operational Research (2022) 22:2173–2208
https://doi.org/10.1007/s12351-021-00655-0

1 3

ORIGINAL PAPER

Multiperiod optimal emergency material allocation 
considering road network damage and risk under uncertain 
conditions

Yanyan Wang1  · Baiqing Sun2

Received: 14 July 2020 / Revised: 24 April 2021 / Accepted: 8 June 2021 /  
Published online: 12 June 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Material rescue is a key component of recovery and reconstruction in disaster-
affected areas. Scientific and reasonable emergency material allocation (EMA) can 
improve rescue effects, reduce allocation risks, and minimize the losses due to a 
disaster. Previous EMA studies have mainly centered on complete or deterministic 
disaster information, while the impact of uncertain factors affecting material allo-
cation, such as fuzzy random information and road network damage, are generally 
neglected. Thus, existing material allocation schemes are not fully practically appli-
cable. This paper proposes a multiperiod optimization model for EMA under uncer-
tain conditions with the goals of the shortest time, lowest cost, and lowest risk. A 
risk measurement method is incorporated into the multiperiod EMA scheme. Deter-
ministic transformation methods of stochastic and fuzzy constrained programming, 
as well as an improved genetic algorithm (IGA), are applied to solve the proposed 
model. A computational case based on the LuDian earthquake in China is used to 
verify the practicability of the proposed model. The results show that the proposed 
risk measurement method can effectively measure multiperiod transportation risk 
and path repair risk in the material allocation context. Road conditions also appear 
to markedly impact the multiperiod allocation of emergency materials. We illustrate 
the relationship among risk, time, and cost plus a dimension of flexibility in vari-
ous optimized multiperiod EMA scenarios. A comparative analysis of intelligent 
algorithms shows that the proposed IGA is the most effective approach to manage 
large-scale EMA optimization problems as it has higher solving efficiency, better 
convergence, and stronger stability.
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1 Introduction

Large-scale disasters, natural (e.g., earthquakes, floods) and man-made (e.g., ter-
rorist attacks) alike, have caused vast quantities of property damage, injuries, 
and fatalities in recent years (Ahmadi et al. 2020; Barbarosoǧlu and Arda 2004; 
Chang et al. 2007; Green et al. 2019; Hu et al. 2016; Huang et al. 2015; Najafi 
et al. 2013; Qin et al. 2017; Zhao and Liu 2016). Post-disaster emergency man-
agement is, to this effect, a vastly challenging issue (MacKenzie and Zobel 2016; 
Muir et  al. 2020; Sarma et  al. 2019b; Wu et  al. 2017). Post-disaster emergency 
rescue mainly serves to minimize the casualties, socio-economic losses, and risks 
associated with a disaster (Rebeeh et  al. 2019; Zhang et  al. 2018). In this pro-
cess, material rescue is the key to meeting victims’ basic survival needs and to 
assist the recovery of the disaster-affected area (Ma et  al. 2019). Scientific and 
reasonable emergency material allocation (EMA) plans can ensure the effective 
operation and rational use of materials, which limits casualties, reduces the risks 
of distribution, and improves the overall effectiveness of the rescue (Chen et al. 
2020; Guo et al. 2019).

The inherent unpredictability of disasters renders certain information, such as 
supply, demand, time, and cost, unable to be accurately obtained or updated in a 
timely manner (Galindo and Batta 2013; Hu et  al. 2016). Large-scale disasters 
tend to damage road networks (Statheropoulos et  al. 2015), thereby increasing 
the risk of material allocation, directly affecting the efficiency and effectiveness 
of EMA activities, and bringing certain implementation difficulties to the mul-
tiperiod EMA process. Decision-making within such a complex environment is 
characterized by high time-sensitivity, uncertainty, and unpredictability (Ahmadi 
et al. 2020). Decision support for disaster-relief managers plays a crucial role in 
effective emergency rescue operations (Amailef and Lu 2013). Traditional meth-
ods for solving the EMA problem cannot produce an optimal or even a near-opti-
mal solution in the sufficient time. Intelligent methods (e.g., genetic algorithm), 
however, can produce high-quality solutions or even optimal solutions within a 
limited time period (Kyriklidis et al. 2014).

This paper proposes a multiperiod EMA optimization model designed to effec-
tively resolve decision-related problems (e.g., uncertainties, regarding demand, 
allocation time, and cost of emergency materials, risks in the allocation process, 
highly urgent timetables). The deterministic transformation methods of stochastic 
constrained programming and fuzzy constrained programming are analyzed and 
an improved genetic algorithm (IGA) is utilized to solve the model. The proposed 
method can help decision-makers to identify the best possible EMA solution in an 
actual disaster scenario. It serves to provide a high-quality EMA scheme alongside 
the scientific and effective multiperiod allocation of emergency relief materials.

The main contributions of this work can be summarized as follows.

• A multiperiod EMA model under uncertainty is proposed which simultane-
ously considers time, cost, and risk as well as trade-offs between these three 
decision criteria.
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• A risk measurement method is designed to measure the path transportation risk 
and road network repair risk in the multiperiod EMA process, and the impacts of 
road conditions on the multiperiod EMA are analyzed.

• An IGA method is developed to solve the model so that decision-makers can 
handily select the best possible EMA strategy.

The remainder of this article is organized as follows. Section 2 reviews the litera-
ture relevant to this study. Section 3 presents the notation and model formulation. 
Section 4 presents the solution algorithm. The LuDian earthquake was taken as a 
case study to illustrate the applicability and potential advantages of the proposed 
model as discussed in Sect. 5. Section 6 gives concluding remarks and points out 
potential future research directions.

2  Literature review

Many previous researchers have investigated material allocation problems in the 
emergency logistics context, particularly as natural and man-made disasters have 
increased in frequency and severity in recent years (Caunhye et al. 2012; Farahani 
et  al. 2020; Özdamar and Ertem 2015). As a key link in the emergency response 
process, EMA is a crucial component of rescue operations (Kemball-Cook and Ste-
phenson 1984; Chen et al. 2020).

Our work centers on three main research topics: (1) decision criteria/objectives in 
humanitarian EMA operations, (2) EMA optimization models under uncertain deci-
sion-making conditions, and (3) solutions to material allocation issues in complex 
and uncertain contexts.

The decision criteria/objectives in this context involve the allocation of humani-
tarian materials, which differ from conventional materials in that their primary pur-
pose is to reduce casualties and property losses (Hu et al. 2016; Huang et al. 2015; 
Galindo and Batta 2013; Sheu 2007). Certain decision criteria/objectives reflecting 
the efficiency and effectiveness of emergency relief that are usually given prior-
ity, include shortest delivery time (Altay 2013; Berkoune et  al. 2012; Luan et  al. 
2020; Yan and Shih 2009), lowest total allocation cost (Barbarosoğlu et  al. 2002; 
Lu and Sun 2020; Özdamar et al. 2004; Wang and Sun 2018; Zahedi et al. 2020), 
lowest total loss (Wang et  al. 2019; Zhang et  al. 2017), most reliable path (Miao 
et  al. 2007; Yuan and Wang 2009), or a combination of shortest time and lowest 
cost (Sheu and Pan 2014; Tzeng et al. 2007; Xu et al. 2020). Altay (2013) proposed 
a capability-based multi-resource and multi-location EMA model for emergency 
response operations with the goal of minimizing the total delivery time, i.e., the 
combined deployment time and response time. Additionally, Wang and Sun (2018) 
developed an EMA model for natural disaster rescue operations which considers the 
lowest total allocation cost as an objective; they validated their model on a simula-
tion of the Ya’an earthquake that occurred in China in 2014. Wang et  al. (2019) 
presented a multiperiod model for material allocation to multiple affected locations 
that minimizes the total loss caused by material shortages. Miao et al. (2007) con-
structed mathematical reliable path search model and target path-solving algorithm 
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to support transportation networks under the constraints of setting and pseudo-pol-
ynomial time. Sheu and Pan (2014) designed a seamless centralized EMA network 
for large-scale natural disasters emergency logistics operations which targets the 
minimal operational costs and travel time.

Another important research topic related to our work is EMA optimization mod-
els developed under uncertain decision-making conditions. Previous researchers 
have focused on two uncertain emergency conditions: demand (Beraldi et al. 2004; 
Beraldi and Bruni 2009; Cheng et  al. 2016; Liu et  al. 2013; Mete and Zabinsky 
2010; Sun et al. 2013; Wang and Sun 2020) and road network conditions (Chen and 
Ji 2010; Li et al. 2019; Liu et al. 2014; Nolz et al. 2010; Zhang et al. 2019b). Liu 
et al. (2013) developed a stochastic mixed integer program model for EMA under 
uncertain demand with the objectives of minimizing the total costs and maximiz-
ing the expected completion rate; their model was shown to provide valuable deci-
sion support for post-disaster material allocation. Cheng et al. (2016) established an 
emergency vehicle-routing optimization model considering the stochastic demand 
for minimizing transportation costs and reducing the losses caused by insufficient or 
excessive supply in the critical period of a rescue. Wang and Sun (2020) considered 
the incomplete information acquisition caused by the sudden nature of a disaster. 
They introduced the interval number to describe the fuzzy uncertainty of emergency 
material demands, then constructed a multi-type material, multiperiod, and multi-
objective model for optimal EMA; they also designed a two-dimensional Euclidean 
distance objective weighting fuzzy algorithm to solve the model, and validated it 
based on a case study of the Yushu earthquake. Liu et al. (2014) proposed a robust 
bi-level programming model for emergency material positioning and allocation 
model based on the uncertainty of road networks that includes a collaborative allo-
cation strategy for emergency materials combining vertical distribution and horizon-
tal transfer characteristics. Li et al. (2019) presented a post-disaster relief material 
allocation model based on the road network reliability targeting the shortest path 
time, smallest material shortage, and highest path reliability.

Many previous researchers have also investigated material allocation issues in 
complex and uncertain contexts. Uncertainty is the most significant characteristic 
of the emergency rescue environment (Hu et al. 2016). Approaches to managing this 
uncertainty mainly include stochastic programming (Mete and Zabinsky 2010; Gar-
rido et al. 2015), fuzzy programming (Sarma et al. 2019a), and robust optimization 
(Mulvey et  al. 1995). Among them, stochastic programming and fuzzy program-
ming are the most commonly used (Rawls and Turnquist 2010; Rennemo et al. 2014; 
Zhang et al. 2019a). Traditional methods for resolving material allocation problems, 
such as complete enumeration (Younis and Saad 1996), branch and bound (Weeney 
and Murphy 1981), integer programming (Elwany et  al. 1998), and dynamic pro-
gramming (Chan et al. 1996), are often used to find exact solutions. However, they 
are only suitable for small and simple resource allocation problems (Hegazy 1999; 
Li et al. 2019); their use in large or complex resource allocation problems tends to 
be computationally infeasible and may result in combinatorial explosions (Geng 
et al. 2011; Kyriklidis et al. 2014).

Heuristic intelligent methods are preferred for large and complex resource 
allocation optimization problems (Kyriklidis et  al. 2014). Although their 
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effectiveness depends on the problem, their success rate is higher than traditional 
methods (Hegazy 1999; Leu and Hung 2002) as intelligent search strategies can 
be used to quickly generate high-quality or optimal solutions (Chan et al. 2005; 
Leu and Yang 1999). In recent years, heuristic intelligent methods such as genetic 
algorithm (GA), ant colony algorithm (ACO), simulated annealing algorithm 
(SAA), and particle swarm optimization (PSO) have been successfully applied 
to solve resource allocation problems (Leu and Yang 1999; Chen et  al. 2007). 
The GA functions based on the qualities of natural organisms, where the optimal 
solution is searched by simulating the natural evolution process (Li 2010). The 
ACO is a probabilistic algorithm used to find an optimal path, inspired by the 
behavior of ants making pathways as they search for food (Geng et  al. 2015). 
The SAA is derived from the principle of solid annealing. Kirkpatrick introduced 
annealing into the field of combinatorial optimization as a stochastic optimization 
algorithm based on the Monte-Carlo iterative solution strategy. Its working con-
cept is the similarity between the annealing process of solid matter in physics and 
general combinatorial optimization problems (Steinbrunn et al.1997). The PSO is 
a random search algorithm based on group cooperation that simulates the forag-
ing behavior of birds (Wang and Sun 2018). These intelligent methods have been 
proven effective in solving material allocation problems (Chen et al. 2019; Huang 
et al. 2010; Wang et al. 2020). However, they are also known to have problems 
such as premature convergence and poor exploitation (Kyriklidis et  al. 2014). 
Basic GAs can easily fall into local optimality and precocity. Researchers have 
attempted to improve the GA by, for example, embedding the steepest descent 
operator in the GA (Zhao 1997) and optimizing the non-equal probability selec-
tion method of the cross position (Zhu et  al. 2004). However, these approaches 
make the algorithm more burdensome to process as they increase its complexity 
without fundamentally improving it.

The scholars cited above have indeed provided a sound theoretical basis for our 
work. However, there are still gaps in the EMA literature. There is a lack of EMA 
research that has simultaneously considered multiperiod time, cost, and risk in 
the decision-making criteria. Previous EMA problems in uncertain situations usu-
ally incorporate only the uncertainty of demand or road networks, while ignoring 
other factors related to emergency rescue operations. There has been no scientific 
measurement the risk related to road maintenance and transportation obstacles cre-
ated by material allocation across a damaged road network. Existing algorithms still 
show room for improvement in terms of computational efficiency and accuracy as 
well. Thus, we attempted in this study to develop a multiperiod EMA optimiza-
tion model that simultaneously captures time, cost, and risk under uncertainty. We 
explored methods of managing uncertainty in an emergency context and composed 
an improved solution method for the complex EMA problem to provide decision 
support for obtaining high-quality or optimal EMA schemes. Our multiperiod EMA 
optimization model simultaneously captures time, cost, and risk under uncertainty, 
and measures the risk faced by material allocation via multiperiod risk measurement 
method. This model allows decision-makers to consider trade-offs between time, 
cost, and risk in a manner that achieves the multiperiod scientific and optimal allo-
cation of emergency relief materials.
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3  Notation and model formulation

3.1  Notation

The settings described here are related to real-world conditions. The sudden and 
extremely destructive nature of disasters make it impossible to obtain fully accurate 
information in the process of emergency rescue operations. Material demand and 
supply, as well as transportation time and risk (particularly as affected by damage to 
the road network) are highly uncertain. Uncertain information may be input to EMA 
models as fuzzy interval numbers that are subject to certain distribution rules. Previ-
ous researchers have done this successfully. For example, Chen et al. (2014) used 
triangular fuzzy numbers to represent material demand, transportation time, and 
cost; Guo et al. (2010) used interval numbers to represent material demand, storage 
construction costs, and operating costs. In this study, we borrowed from these ideas 
and set parameters in accordance with our own research questions.

We imposed a normal distribution due to the large amount and significant fluctua-
tions in material demand ( ̃de

jh
 ) in the emergency response scenario. Compared with 

demand, material supply ( ̃ae
ih

 ) information is easier to obtain, but the information 
obtained in emergency situations may be relatively inaccurate or arrive at a signifi-
cant delay, so the supply was set as a triangular fuzzy number. The destruction 
wreaked by primary disasters plus the impact of secondary disasters render the 
repair time ( ̃te

ij
 ) and repair cost ( ̃crepe

ij
 ) of damaged roads, as well as the fixed costs 

( ̃cfixe
ij
 ) and variable costs ( ̃cvare

ijh
 ) of material transportation, unable to be accurately 

determined. A disturbance coefficient can be set, however, to express their uncer-
tainty and dynamic variability.

The sets, parameters and variables used in the model formulation are as follows.

S = { i| i = 1, 2,… ,m}  Set of all rescue sites (supply points).
D = { j| j = 1, 2,… , n}  Set of all affected locations (demand points).
H = {h| h = 1, 2,… , g}  Set of types of emergency materials.
E = {e| e = 1, 2,… , l}  Set of time periods of EMA.
d̃
e

jh
  New demand at affected location j for material h during 

time period e . The demand d̃e
jh

 obeys a normal distribu-
tion with mean Ed

e
jh
 and variance Var2

d
e
jh

 , 

d̃
e

jh
∼ N

(
Ed

e
jh
,Var2

d
e
jh

)
.

d′
e

jh
  Shortages of material h at affected location j during time 

period e.
d
e
jh

  Actual demand for material h at affected location j dur-
ing period e

ãe
ih

  New supply of material h at rescue sites i during time 
period e represented by triangular fuzzy numbers, that is, 
ãe
ih
=
([
ae
ih

]L
,
[
ae
ih

]O
,
[
ae
ih

]R) ; 
[
ae
ih

]L , [ae
ih

]O and 
[
ae
ih

]R rep-
resent the lowest, the most likely, and the highest pre-
dicted supply, respectively.
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a′
e

ih
  Inventory of material h at i before the beginning of time 

period e.
ae
ih

  Actual supply (available amount) of h at i during time 
period e.

te
ih

  Loading time of unit material h at rescue site i during 
time period e.

te
jh

  Unloading time of the unit material h at j during time 
period e.

t̃e
ij
  Repair time per unit mileage of damaged road from i to j 

during time period e expressed by uncertain parameters 
with disturbance coefficient, t̃e

ij
=

[
ṫe
ij
, ṫe

ij
+𝜁 ⋅ ṫe

ij

]
 ; ṫe

ij
 rep-

resents the repair time per unit mileage of damaged road, 
or the minimum nominal repair time in a non-disaster 
situation, 𝜁 ⋅ ṫe

ijh
 represents the maximum disturbance 

value of the repair time per unit path, and the disturbance 
coefficient 𝜁 ⋅ ṫe

ijh
 can be determined according to the 

actual road damage coefficient. In this paper, t̃e
ij
∼
(
ṫe
ij
, 𝜁

)
 

is used to simplify the expression; the minimum nominal 
repair time of per unit mileage damaged road is ṫe

ij
 and the 

maximum disturbance coefficient is � under uncertainty.
tpune

jh
  Time penalty parameter for the shortage of unit material 

h at affected location j at the end of time period e.
c̃fixe

ij
  Fixed cost of transportation from rescue site i to affected 

location j during time period e , 
c̃fixe

ij
=

[
ċfixe

ij
, ċfixe

ij
+ 𝜁 ⋅ ċfixe

ij

]
 , which is recorded as 

c̃fixe
ij
∼
(
ċfixe

ij
, 𝜁

)
.

c̃vare
ijh

  Variable cost per unit of allocating material h from i to j 
during time period e , 
c̃vare

ijh
=
[
ċvare

ijh
, ċvare

ijh
+ 𝜁 ⋅ ċvare

ijh

]
 , recorded as 

c̃vare
ijh

∼
(
ċvare

ijh
, 𝜁

)
.

cpure
h
  Unit purchase cost of material h during time period e.

c̃repe
ij
  Cost of repairing damaged road unit mileage from i to j 

during e in case of disaster, 
c̃repe

ij
=
[
ċrepe

ij
, ċrepe

ij
+𝜁 ⋅ ċrepe

ij

]
 , recorded as 

c̃repe
ij
∼
(
ċrepe

ij
, 𝜁

)
.

cloade
ih

  Unit cost of loading material h at i during time period e.
cunloade

jh
  Unit cost of uploading material h at j during time period 

e.
cpune

jh
  Penalty cost of shortage unit material h at j at the end of 

period e.
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spa
ih

  Space required to store each unit of material h at rescue 
point i.

Capi  Capacity of emergency rescue point i.
Rtrae

ijh
  Total path transportation risk of allocating h from i to j 

during e.
P̃tra

e

ijh
  Possibility of transportation risk occurring when material 

h is allocated from i to j during time period e . 
P̃tra

e

ijh
=

[
Ptrae

ijh

−
,Ptrae

ijh

+
]
 , where P̃trae

ijh

− and P̃trae
ijh

+ 
are the lowest and highest probability, respectively.

Vtrae
ijh

  Possibility of large losses caused by transportation risk 
in the process of allocating material h from i to j during 
time period e.

Ltrae
ijh

  Expected degree of damage (loss) due to transportation 
risk when material h is allocated from i to j during time 
period e . Ltrae

ijh
= ltrae

ijh
× xe

ijh
 , ltrae

ijh
 is the loss due to 

transportation risk when the unit material is allocated 
from i to j during time period e.

Rrepe
ijh

  Total path repair risk of allocating material h from i to j 
during e.

P̃rep
e

ijh
  Probability of repair risk occurring during repair of dam-

aged road section from i to j during time period e . 
P̃rep

e

ijh
=

[
Prepe

ijh

−
,Prepe

ijh

+
]
,P̃repe

ijh

− and P̃repe
ijh

+ are, 
respectively, the minimum and maximum probability.

Vrepe
ijh

  Possibility of causing large losses when road repair risk 
occurs during the allocation of material h from i to j dur-
ing time period e.

Lrepe
ijh

  Expected degree of damage (loss) caused by road repair 
risk when the material h is allocated from i to j during 
time period e . Lrepe

ijh
= lrepe

ijh
× xe

ijh
 , lrepe

ijh
 is the loss 

caused by the road repair risk when the unit material h is 
allocated from i to j during time period e.

Oij
  Total mileage (total distance) from rescue site i to 

affected location j.
v
ij
  Speed of vehicle moving from i to j in non-disaster 

situations.
�e
ij
  Penalty coefficient of road mileage from i to j in the case 

of disaster, �e
ij
≥ 1 ; a larger �e

ij
 value indicates more 

severe road damage. When the road is damaged, assum-
ing that the driving speed is constant, but the time 
required to traverse the same distance is longer than in a 
non-disaster case, the transportation time in the case of 
road damage can be expressed as t′e

ij
= Oij

⋅�e
ij

/
v
ij
.
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�
e
ij
  Road damage coefficient from i to j during time period e 

in the case of disaster, �eij ∈ [0, 1] ; a larger �eij value indi-
cates that the road is more severely damaged by the 
disaster.

Pr {⋅}  Probability that constraint conditions in {⋅} hold.
�  Confidence level that makes constraints hold.
M  Sufficiently large arbitrary constant.
xe
ijh

  Amount of material h allocated to j from i during time 
period e.

ye
ij
  Binary variable indicating whether materials are allo-

cated to j from i during time period e . If so, the value is 
1; otherwise, it is 0.

3.2  Risk measurement method for multiperiod EMA

In this study, we utilized the basic formula of risk measurement combined with the 
multiperiod EMA optimization problem to construct a multiperiod EMA risk meas-
urement method. According to the dictionary of the US Department of Homeland 
Security (2008), risk can be expressed as:

where “Threat (T)” usually refers to the possibility of an outside entity attempting an 
attack; “Vulnerability (V)” can be interpreted as the possibility that the attack suc-
ceeds and “Consequence (C)” usually represents the expected damage caused by a 
successful attack, including the direct impact and secondary impact.

Combined with the specific situation faced in the multiperiod EMA after a large-
scale disaster, we rewrote the above risk formula as follows:

where P represents the possibility of risk occurrence in the EMA process, which 
can be determined comprehensively by objective environmental factors (e.g., road 
damage coefficient, route complexity, weather conditions, possibility of secondary 
disasters) and subjective human factors (e.g., difficulty of road repair, repair time). 
V  indicates the possibility of large losses in the presence of said risk, which is deter-
mined by the geographical location, population density, buildings, traffic flow, and 
value and importance of transportation materials. L refers to the direct and indirect 
consequences of risks, including economic losses and casualties. Here, economic 
loss is used to measure the consequences of the risk, which specifically includes the 
direct economic loss caused to transport vehicles, emergency materials, and rescue 
personnel and the indirect economic loss caused to surrounding buildings and per-
sonnel when the risk occurs.

There are two main sets of necessary information to use Formula (2) to measure 
the risk. The first involves pre-disaster information, which can save time in subse-
quent risk measurement; for example, the geographical location, population density, 

(1)Risk = Threat(T) × Vulenrability(V) × Consequense(C)

(2)Risk
�

= Probability(P) × Vulenrability(V) × Loss(L)
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number of buildings, traffic flow, and value of materials transported. The second 
set must be determined according to the actual disaster situation (e.g., road damage 
coefficient, difficulty of road repair, repair time, and weather conditions), or alter-
nately, be predicted by a combination of historical cases and the current situation 
(e.g., the possibility of secondary disasters, direct economic losses, and indirect eco-
nomic losses). These information can be quickly obtained when historical case sup-
port is strong and technical conditions are sufficiently advanced. Considering the 
diversity and dynamics of disaster scenarios, we propose determining some infor-
mation (e.g., the possibility of risk occurrence during material transportation and 
road repair) within a certain range rather than as specific values, thus making the 
risk measurement method more consistent with actual disaster emergency response 
scenarios.

We established a measurement method for the overall path risk present in multi-
period EMA in terms of transportation risk and repair risk:

where Ptrae
ijh
×Vtrae

ijh
×Ltrae

ijh
 and Prepe

ijh
×Vrepe

ijh
×Lrepe

ijh
 represent the transpor-

tation risk ( Rtrae
ijh

 ) and road repair risk ( Rrepe
ijh

 ) of the multiperiod EMA, respec-
tively. The meaning of these parameters is explained in Sect. 3.1 (“Notation”).

3.3  Model formulation

3.3.1  Objective function

The objective function (4) serves to minimize the total time taken to allocate all 
materials to all affected locations, including the time necessary for regular transpor-
tation, damaged road repair, loading at rescue sites, unloading at affected locations, 

(3)Risk =

m∑
i=1

n∑
j=1

g∑
h=1

l∑
e=1

(
Ptrae

ijh
×Vtrae

ijh
×Ltrae

ijh
+Prepe

ijh
×Vrepe

ijh
×Lrepe

ijh

)

(4)

min T =

m∑
i=1

n∑
j=1

l∑
e=1

[(
Oij

⋅𝜇e
ij

/
vij + t̃e

ij
⋅ 𝛿

e
ij
⋅Oij

)
⋅ ye

ij

]
+

m∑
i=1

n∑
j=1

g∑
h=1

l∑
e=1

(
te
ih
+ te

jh

)
⋅ xe

ijh

+

n∑
j=1

g∑
h=1

l∑
e=1

tpune
jh
⋅ d�

e

jh

(5)

minC =

n∑
j=1

l∑
e=1

{
m∑
i=1

g∑
h=1

(
c̃vare

ijh
+ cpure

h
+ cloade

ih
+ cunloade

jh

)
⋅ xe

ijh

+

m∑
i=1

(
c̃fixe

ij
+ c̃repe

ij
⋅ 𝛿

e
ij
⋅O

ij

)
⋅ ye

ij
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and the temporal cost of any delays. The objective function (5) denotes minimizing 
the total cost of allocating all materials to all affected locations during all time peri-
ods, including the fixed transportation costs, variable allocation costs, procurement 
costs, road repair costs, loading costs, unloading costs, and penalty costs for material 
shortages. The objective function (6) serves to minimize the total path risk of EMA 
during all time periods, including path transportation risk and path repair risk.

3.3.2  Constraints

(7)Pr
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The demand constraint (7) of EMA ensures that the probability that the 
amount of material allocated to an affected location in a given period does not 
exceed the actual demand at this affected location at the confidence level. That 
is, we do not allow prepositioning of emergency materials before the demand 
arises. The supply constraint (8) of EMA ensures that the sum of the inventory 
in the previous period and the latest available quantity in the current period is 
equal to the sum of the amount of materials allocated to the affected location in 
the current period and the remaining inventory after allocation at the end of this 
period. That is, any surplus can be allocated in subsequent periods. Constraint 
(9) demonstrates ensures that as much need is satisfied as possible; the total 
amount of available materials at all rescue sites during all periods is equal to 
or greater than the total amount of materials allocated to all affected locations. 
That is, the total reserve of emergency materials is greater than the total alloca-
tion. Additionally, the inventory capacity constraint (10) ensures that the total 
inventory of emergency materials at each rescue site cannot exceed its maximum 
storage capacity at the end of each time period. Constraint (11) defines the logi-
cal relationship between the decision variables, indicating whether to allocate 
materials and repair damage roads. Constraints (12) and (13) give express the 
total path transportation risk and total path repair risk from the rescue site to 
the affected location in a given period. Constraint (14) gives the expression of 
material shortage or unsatisfied material demand in each time period. Constraint 
(15) gives the expression of the actual material demand at the affected location 
in each time period, that is, the actual demand equal to the sum of the latest esti-
mated demand of this period and the shortage at the end of the previous period. 
Finally, constraint (16) is the expression of the actual amount of material avail-
able at rescue site in each time period, which is equal to the sum of the inventory 
before this current period and the latest estimated supply at the current period. 
Constraint (17) requires that the variables be binary (either 0 or 1). Constraints 
(18) and (19) are nonnegative to ensure that the decision variables of both the 
allocated amount and the shortage are nonnegative.

4  Solution method

The proposed model-solution method can be divided into two steps: first, the 
uncertain parameters (including random numbers and fuzzy numbers) contained 
in the model are converted into deterministic real numbers, and second, the 
model is solved via IGA.

(18)xe
ijh

≥ 0 ∀i ∈ S, j ∈ D, h ∈ H, e ∈ E

(19)d�
e

jh
≥ 0 ∀j ∈ D, h ∈ H, e ∈ E



2185

1 3

Multiperiod optimal emergency material allocation considering…

4.1  Deterministic transformation of uncertain parameters

4.1.1  Deterministic transformation of stochastic constraint programming

Charnes and Cooper (1959) first proposed the chance constrained programming 
(CCP) problem, which is generally applicable to cases with random variables in 
the constraints of the model. The decision must be made before the realization of 
the random variables. Its basic form is as follows:

where x is the decision variable, � is the random variable, f̄  is the objective func-
tion value (that is, the minimum value of f (x,�) when the minimum confidence 
level is guaranteed to be � ), f (x,�) is the objective function of the decision variable 
x , i.e., the uncertainty variable, g� (x,�) is the random constraint function, Pr {⋅} 
is the probability of the constraint being satisfied in {⋅} , and � and � represent the 
confidence levels that can make the objective function and the constraint condition, 
respectively.

For Pr
{
g
� (x,�) ≤ 0

}
≥ �, 0 ≤ � ≤ 1, � = 1, 2,… , n, we operated the CCP 

deterministic transformation in two cases for our purposes (Liu et al. 2003).

Lemma 1. If the function g(x,�) = h(x) − �, then for any given confidence level 
�(0 ≤ � ≤ 1), there must be a number �� = Φ−1 (1 − �) such that Pr{�� ≤ �} = � , 
and Pr{g(x,�) ≤ 0} ≥ � if and only if h(x) ≤ ��, that is, Pr{h(x) ≤ �} ≥ �, where 
Φ−1 is an inverse function of Φ.

Lemma 2. Assume that the random distribution vector is � = (k1, k2,… , kn, b) 
and the form of the random constraint function g(x,�) is g(x,�) = k1 x1 + k2 x2 
+⋯ + kn xn −b . If k� and b follow a normal distribution and are independent of each 
other, then for any given confidence level �(0 ≤ � ≤ 1), and Pr{g(x,�) ≤ 0} ≥ � if 
and only if:

where Φ−1 is the inverse of the standard normal distribution function Φ , E[k�] is the 
expectation, and Var[k�] is the variance.

According to the above definition and lemmas, the constraint (7) of the pro-
posed model can be ultimately transformed into:
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4.1.2  Deterministic transformation of fuzzy constraint programming

4.1.2.1 Deterministic transformation of  uncertainty parameters with  disturbance 
coefficient in objective function According to Bertsimas and Sim (2004), we assume 
that Ã , is the fuzzy uncertain parameter value of the research object, B is its nominal 
(or minimum) value, and � is a disturbance parameter that fluctuates around the nom-
inal value. The maximum possible disturbance value that deviates from the minimum 
value C = B × � . We introduce the optimization constraint level here, � , which can be 
set according to the actual situation of the disaster, disaster-affected area, and rescue, 
� ∈ [0,1] . Let 𝜂 ≥

Ã−B

C
=

Ã−B

B×𝜁
 , then Ã ≤ 𝜂 × B × 𝜁 + B = B × (𝜂 × 𝜁 + 1).

The objective function (4) can be transformed as follows:

Other uncertain parameters c̃fixe
ij
 , c̃vare

ijh
 and c̃repe

ij
 with disturbance coefficients 

can be deterministically transformed in a similar manner.

4.1.2.2 Deterministic transformation of interval number in objective function Defi-
nition 1: For any solution x ∈ X of a general interval linear programming model, 
define � = poss(

∑n

i=1 Ci xi) as the confidence level of X to the objective function ∑n

i=1 Ci xi ; define � = poss(
∑n

i=1 Wij xi ≤ Bj) as the optimization level of X to the con-
straint condition 

∑n

i=1 Wij xi ≤ Bj , then the solutions X�

�
 of the general interval linear 

programming model with the optimization levels � and � can be respectively obtained 
(Guo et al. 2010).
According to the above transformation for the interval number, under a given con-
straint optimization level � , the objective function (6) can be transformed as follows:

4.1.2.3 Deterministic transformation of  triangular fuzzy number in  constraints As 
per the relationship between left and right membership functions (Zhang et al. 2004), 
under the optimization level � ∈ [0,1] , the constraints (8) and (10) can be transformed 
into the following deterministic form:
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4.2  Improved genetic algorithm

4.2.1  Basis for method selection

Our multi-objective and multiperiod EMA optimization model involves multiple 
variables and factors and belongs to the NP-hard problem category. Irregular global 
or local search spaces as well as multi-peak of objective functions may arise in solv-
ing this model (Chan et al. 2005; Chen et al. 2019). Therefore, we sought an intel-
ligent algorithm with strong global search capability and high robustness.

The GAs is a typical intelligent search method which has diverse coding tech-
niques, good versatility, strong search directionality, and fast convergence speed; it 
has been successfully applied in studies on path optimization, facility location, vehi-
cle scheduling, transportation management and traveling salesman problems (Novoa 
and Storer 2009). However, it also has poor convergence stability and easy precocity 
(Kyriklidis et al. 2014). To improve its global optimization ability, it is necessary to 
increase the randomness of the algorithm and strike the proper balance in the direc-
tion of the search (Liu et  al. 2018). We introduced the niche technology into the 
algorithm-solving step to make the IGA meet our solution requirements.

4.2.2  Solution steps and procedures

The flow of the IGA we designed to solve the multiperiod EMA problems is shown 
in Fig. 1.

4.2.2.1 Step 1 Determine chromosome coding method Commonly used coding 
methods include binary coding, symbol coding, real number coding, natural number 
coding, and matrix coding. Each coding method has its own advantages and dis-
advantages. We used a hybrid coding method for genetic coding in this study. The 
rescue sites, disaster affected locations, emergency materials, and emergency periods 
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Fig. 1  Basic flow of genetic algorithm
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were coded by symbolic method; the demand quantity of emergency materials was 
coded by natural number method.

① The code of rescue sites is denoted by S1, S2,… , Sm , the code of disaster 
affected locations is denoted by D1, D2,… , Dn , the code of emergency mate-
rials is denoted by H1, H2,… , Hg , and the emergency periods are denoted 
by E1, E2,… , El . The demand quantity of emergency materials is coded by 
assuming that there are six disaster-affected locations that need rescue materi-
als. The demand quantity of each affected location is 3, 4, 2, 5, 1, and 2 units 
of materials. The corresponding genetic code is 342512.
② The rescue site completes a material allocation task as a basic gene. For 
example, 

(
S1, D3, H4, E5

)
 is the allocation of material H4 from the rescue site 

S1 to the disaster affected location D3 during the period E5.
③ The gene segments of all rescue sites are paralleled in sequence from small 
to large according to the number of rescue sites, thus forming an individual.

4.2.2.2 Step 2 Generate initial population A certain number of chromosomes is 
randomly generated. This process is repeated accompanied by screening to form 
the initial population. Rescue site Si is randomly selected as the starting point of 
material allocation, then the affected location Dj is randomly selected as well as 
rescue material Hg and emergency period El before combining them into a gene. 
The steps are repeated to obtain the gene segments of EMA in all emergency peri-
ods, and to determine the population size according to the specific complexity of 
the research problem at hand.

4.2.2.3 Step 3 Construct fitness evaluation function The fitness function can be 
regarded as a basic scale for judging the performance of a single chromosome or 
individual in a population. A larger fitness value is usually considered to have a 
better effect. First, the chromosomes are rearranged in order from good to bad, 
that is, from small to large. If the current chromosome is V1, V2, … , Vpop_size , the 
parameter � ∈ (0, 1) is introduced in the process of genetic evolution. An order-
based fitness evaluation function can then be obtained:

where k = 1 marks the best chromosome and k = pop_size is the worst.

4.2.2.4 Step 4 Selection Our approach here is to retain the best individual and 
improve the roulette to conduct the selection operation of “survival of the fit-
test”. First, individuals with higher fitness are pre-selected from the offspring indi-
viduals. Then, they are directly copied to the next generation by the strategy of 
reservation so that they can become the candidate parents for the next genetic 
operation. Second, the parents actually participating in the cross operation are 
selected according to the improved roulette method; whether they can enter the 

(30)eval
(
Vk

)
= � (1 − �)k−1, k = 1, 2, … , pop_size
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next generation depends on the calculated fitness value. The steps to this process 
are as follows.

① The cumulative probability for each chromosome Vk is calculated.

② A random number � is randomly generated in the interval 
(
0, ppop_size

]
.

③ If pk−1 < 𝜎 < p
k , then the chromosome k ( 1 < k < pop_size ) is selected.

④ pop_size for steps ② and ③ is repeated to obtain pop_size chromosomes.

4.2.2.5 Step 5 Crossover To increase the diversity of individuals and improve the global 
optimization ability of the GA, inspired by Ye et al. (2009), we alternated two differ-
ent crossover algorithms in the process of offspring generation: a multipoint crossover 
operator and an improved arithmetic crossover operator.

We first randomly selected two parent chromosomes for the crossover operation with 
a certain probability, then randomly set multiple crossover points at the same position 
of the two parent chromosomes producing two offspring chromosomes by exchanging 
multiple gene fragments between the crossover points. We then randomly selected two 
parent chromosomes Vq

A
 and Vq

B
 for crossover operations in the q generation population 

and generated four new offspring individuals via linear combination of the two parent 
chromosomes:

where � is the control parameter between (0, 0.5).

4.2.2.6 Step 6 Mutation We introduced the mutation operator into the GA to increase 
the diversity of population and to create local search ability. More new individuals are 
generated when a larger mutation probability is selected, which increases the global 
optimization ability but shows down the search. When the mutation probability is too 
small, the convergence speed is accelerated but it is easy to fall into the local optimal 
solution. We selected the mutation probability with dynamic adaptive adjustment capa-
bility as follows:
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where gmax and gavg are the maximum fitness and average fitness of the population; 
�1 and �2 fall into the interval (0,1) (Wang and Cao 2002).

4.2.2.7 Step 7 Niche technology (niche elimination) We used niche technology to 
allow our algorithm to overcome any premature convergence. We selected the off-
spring individuals produced in the mutation operation and defined the correlation 
function between any two offspring VA and VB as:

where uAB is the Euclidean distance between VA and VB , gA and gB are the fitness of 
VA and VB , and U is a preset distance parameter. When the distance between two 
individuals is less than the preset value, a penalty function is added to the individual 
with the smaller fitness value. This not only increases the diversity of the popula-
tion, but also eliminates the inferior individuals quickly enough to increase the con-
vergence speed of the algorithm.

4.2.2.8 Step 8 Elitism strategy We compared the individual fitness values of the par-
ent and offspring generated in Step 7. If the optimal value of the population was 
inferior to the parent, the worst individual in the offspring was replaces with the best 
individual in the parent population ensure the optimal offspring population value 
was not worse than that of the previous generation, thus improving the convergence 
efficiency of the algorithm.

4.2.2.9 Step 9 Termination condition of algorithm The termination rules of an algo-
rithm should be set according to the actual situation at hand in the process of solving 
the specific model. In general, an algorithm can be terminated when the fitness value 
of the current solution does not show any significant improvement or the number of 
iterations for solving the evolution reaches a certain multiple of the current popula-
tion size.

5  Computational case

5.1  LuDian earthquake

A magnitude 6.5 earthquake suddenly occurred at 16:40 p.m. China Standard Time 
on August 3, 2014, in Ludian County, Zhaotong City, Yunnan Province, China 
(27.1° N, 103.3° E). The maximum intensity was IX with 1,335 aftershocks. As 
of 15:00 on August 8, a total of 617 individuals had lost their lives, 3,143 were 
injured, 112 were still missing, and 227,700 were forced to evacuate. The total area 
of this earthquake showing an intensity of 6 or above reached 10,350  km2, affect-
ing 1,088,400 people, across 10 state districts including Yunnan Province, Sichuan 
Province, and Guizhou Province. The earthquake occurred in a mountainous area 

(34)f (VA , VB) =

{
0, uAB ≥ U

min (gA , g
B)∕2, uAB < U
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where most landforms are alpine valleys. The earthquake caused communication 
and traffic interruptions that prevented the emergency rescue center from accurately 
obtaining material demand information of the disaster-affected locations. Damaged 
roads were difficult to repair due to barrier lakes, narrow operation surfaces, and 
massive road rolling stones in the Ludian area. The earthquake also caused serious 
secondary disasters in the subsequent rainy season such as debris flow and land-
slides, which increased the risk for rescue material transportation and road repair, 
resulting in a lack of food, medicine, and other emergency materials available for 
those in the disaster-affected area.

We selected disaster-stricken areas with intensity of 6 or above as emergency 
material demand points, including Ludian County (LD), Qiaojia County (QJ), Huize 
County (HZ) and Jinyang County (JY). Kunming (KM) and Chengdu (CD) were 
selected as rescue sites for EMA. Nutritional biscuits ( h1 ) and disinfectant ( h2 ) were 
selected as the required emergency materials. The relevant data for computational 
case were chosen using a combination of real and hypothetical data, since some dis-
aster data is not published or could not be obtained through official reports. The 
demand for materials at each affected location and the supply of materials at each 
rescue site in each period were estimated based on the number of victims at the dis-
aster site and the magnitude of the disaster (Tables 1 and 2). The available capacity 
at each rescue point and the unit purchase cost are shown in Table 3. Table 4 shows 

Table 1  Demand for each type 
of material at each affected 
location in each time period

The unit of all types of emergency materials in this paper is ten 
thousand boxes. Each box of biscuits is 20 bags, which can serve 10 
people for a meal, each box of disinfectant contains 10 bottles and 
each bottle is 500 ml

Affected 
locations

Emergency 
materials

Periods

1 2 3

LD h1 N (40, 9) N (45, 10) N (50, 14)
h2 N (60, 8) N (65, 12) N (75, 10)

QJ h1 N (34, 10) N (38, 8) N (46, 15)
h2 N (52, 6) N (55, 10) N (66, 15)

HZ h1 N (28, 16) N (30, 9) N (35, 9)
h2 N (43, 9) N (47, 8) N (53, 8)

JY h1 N (20, 5) N (25, 6) N (32, 6)
h2 N (32, 5) N (37, 9) N (42, 9)

Table 2  Supply of each type of 
materials at each rescue site in 
each time period

Rescue sites Emer-
gency 
materials

Periods

1 2 3

KM h1 [35 40 45] [50 60 70] [120 140 160]
h2 [60 65 70] [90 95 100] [160 170 180]

CD h1 [30 35 40] [50 55 60] [100 110 120]
h2 [40 50 60] [70 80 90] [140 150 160]
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relevant attribute parameters including the loading and unloading time, loading and 
unloading costs, and storage space of various emergency materials. The nominal 
fixed and variable transportation costs from rescue sites to the affected locations are 
shown in Table 5. The average running speed of vehicles in non-disaster situations 
is 100 km/h. The shortest mileage from each rescue site to each affected location 
obtained on a Baidu map is shown in Table 6. The time and cost penalty param-
eters for material shortage at each affected location at the end of each time period 

Table 3  Available capacity 
at each rescue point and unit 
material purchase cost

Rescue sites Available capacity 
( m3)

Unit purchase 
cost (ten thousand 
Yuan/ten thousand 
boxes)

h1 h2

KM 60,000 45 30
CD 80,000 40 25

Table 4  Related attribute parameters of emergency materials

The data in Table 4 are the required loading and unloading time, loading and unloading costs, and stor-
age space for per ten thousand boxes of emergency materials

Materials Loading 
time (h)

Uploading 
time (h)

Loading costs (ten 
thousand Yuan)

Uploading costs (ten 
thousand Yuan)

Storage 
space 
( m3)

h1 0.5 0.4 0.7 0.6 170
h2 0.8 0.6 0.9 0.8 230

Table 5  Nominal fixed and unit variable transportation costs, and disturbance coefficient from rescue 
sites to affected locations (ten thousand Yuan)

Rescue sites Transportation costs Affected locations

LD QJ HZ JY

KM Fixed (2, 0.6) (2.2, 0.5) (1, 0.4) (5.5, 0.2)
Variable (0.6, 0.4) (0.65, 0.3) (0.5, 0.2) (1.1, 0.1)

CD Fixed (3, 0.5) (3.5, 0.4) (4, 0.2) (4.5, 0.1)
Variable (0.8, 0.4) (0.85, 0.3) (0.9, 0.2) (1, 0.1)

Table 6  Shortest distance from 
rescue sites to affected locations 
(km)

Rescue sites Affected locations

LD QJ HZ JY

KM 338 346 225 715
CD 541 601 641 654
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are shown in Table 7. In the case of disaster, the nominal repair time and nominal 
repair cost per unit mileage of damaged road the rescue site to the affected location 
in each time period are shown in Table 8. The road mileage penalty coefficient and 
road damage coefficient in each period are shown in Table 9. The possibility of the 
occurrence of material transportation and road repair risks was estimated according 
to the intensity of the disaster at the site as well as the terrain, landform, and number 
of aftershocks. The probability intervals of transportation risks and road repair risks 

Table 7  Penalty parameters for 
unit material shortfall at the end 
of each time period

Affected loca-
tions

Time penalty parameter 
(hour)

Cost penalty param-
eter (ten thousand 
Yuan)

h1 h2 h1 h2

LD 0.6 0.5 0.4 0.3
QJ 0.55 0.45 0.35 0.25
HZ 0.5 0.4 0.3 0.2
JY 0.4 0.3 0.2 0.1

Table 8  Repair time, cost and 
disturbance coefficient from 
rescue sites (R) to affected 
locations (A)

R-A Periods

1 2 3

KM-LD (0.5, 0.5; 1.5, 0.5) (0.4, 0.3; 1, 0.4) (0.3, 0.2; 0.8, 0.2)
KM-QJ (0.5, 0.5; 1.5, 0.4) (0.4, 0.3; 1, 0.3) (0.3, 0.2; 0.8, 0.2)
KM-HZ (0.5, 0.4; 1.5, 0.4) (0.4, 0.2; 1, 0.3) (0.3, 0.1; 0.8, 0.2)
KM-JY (0.5, 0.3; 1.5, 0.3) (0.4, 0.2; 1, 0.2) (0.3, 0.1; 0.8, 0.2)
CD-LD (0.5, 0.5; 1.5, 0.5) (0.4, 0.3; 1, 0.3) (0.3, 0.2; 0.8, 0.2)
CD-QJ (0.5, 0.5; 1.5, 0.4) (0.4, 0.3; 1, 0.3) (0.3, 0.2; 0.8, 0.2)
CD-HZ (0.5, 0.4; 1.5, 0.3) (0.4, 0.2; 1, 0.2) (0.3, 0.1; 0.8, 0.1)
CD-JY (0.5, 0.3; 1.5, 0.3) (0.4, 0.2; 1, 0.2) (0.3, 0.1; 0.8, 0.1)

Table 9  Road mileage penalty 
coefficients and road damage 
coefficients from rescue sites to 
affected locations in each time 
period

R-A Periods

1 2 3

KM-LD 1.6, 0.7 1.4, 0.5 1.1, 0.2
KM-QJ 1.5, 0.6 1.3, 0.4 1.1, 0.2
KM-HZ 1.3, 0.5 1.2, 0.3 1, 0.1
KM-JY 1.2, 0.4 1.2, 0.2 1, 0
CD-LD 1.5, 0.6 1.3, 0.4 1.1, 0.2
CD-QJ 1.4, 0.5 1.2, 0.4 1.1, 0.1
CD-HZ 1.2, 0.4 1.1, 0.3 1, 0
CD-JY 1.2, 0.4 1.1, 0.2 1, 0
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Table 10  Possibility of transportation risk in each time period

KM-LD KM-QJ KM-HZ KM-JY CD-LD CD-QJ CD-HZ CD-JY

1 [0.5, 0.6] [0.4, 0.5] [0.4, 0.5] [0.3, 0.4] [0.4, 0.5] [0.4, 0.45] [0.35, 0.4] [0.3, 0.4]
2 [0.4, 0.5] [0.3, 0.4] [0.3, 0.4] [0.2, 0.3] [0.3, 0.4] [0.3, 0.4] [0.25, 0.3] [0.2, 0.3]
3 [0.2, 0.3] [0.1, 0.2] [0.05, 0.1] [0, 0.05] [0.1, 0.2] [0.05, 0.1] [0, 0.05] [0, 0.05]

Table 11  Possibility of road repair risk in each time period

KM-LD KM-QJ KM-HZ KM-JY CD-LD CD-QJ CD-HZ CD-JY

1 [0.4, 0.5] [0.3, 0.4] [0.3, 0.4] [0.2, 0.3] [0.3, 0.4] [0.3, 0.35] [0.2, 0.3] [0.2, 0.25]
2 [0.3, 0.4] [0.25, 0.3] [0.2, 0.25] [0.15, 0.2] [0.25, 0.3] [0.2, 0.25] [0.2, 0.25] [0.15, 0.2]
3 [0.1, 0.2] [0.1,0.15] [0, 0.05] [0, 0.05] [0, 0.1] [0, 0.05] [0, 0.05] [0, 0.05]

Table 12  Possibility of large 
loss caused by transportation 
risk and its corresponding 
economic loss

The format of the data in the table is ( a;b, c ), where a is the possibil-
ity of large losses occurring, b and c are the economic losses caused 
by the transportation risk when allocating the materials h1 and h2 
respectively. The unit of economic loss is ten thousand Yuan.

R-A Periods

1 2 3

KM-LD (0.7; 2, 3) (0.5; 1, 2) (0.3; 0.5, 1)
KM-QJ (0.6; 2.5, 3.5) (0.4; 1.5, 2.5) (0.3; 1, 2)
KM-HZ (0.5; 1.5, 2.5) (0.3; 1, 1.5) (0.2; 0.5, 1)
KM-JY (0.5; 5.5, 6.5) (0.3; 4.5, 5.5) (0.2; 3, 4)
CD-LD (0.6; 4, 5) (0.4; 3, 4) (0.2; 2, 3)
CD-QJ (0.5; 4.5, 5.5) (0.3; 3.5, 4.5) (0.2; 2.5, 3)
CD-HZ (0.5; 5, 6) (0.3; 4, 5) (0.2; 3, 4)
CD-JY (0.4; 5, 6) (0.3; 4, 5) (0.2; 3, 4)

Table 13  Possibility of large 
loss caused by road repair risk 
and its corresponding economic 
loss

The meaning of the data in this table is the same as in Table 12

R-A Periods

1 2 3

KM-LD (0.6; 3, 4) (0.4; 2, 3) (0.2; 1, 2)
KM-QJ (0.5; 2, 3) (0.3; 1, 2) (0.2; 0.5, 1)
KM-HZ (0.4; 2, 3) (0.4; 1, 2) (0.2; 0.5, 1)
KM-JY (0.4; 1, 2) (0.3; 0.5, 1) (0.2; 0.5, 0.5)
CD-LD (0.5; 3, 4) (0.3; 2, 3) (0.2; 1, 2)
CD-QJ (0.4; 2, 3) (0.3; 1, 2) (0.2; 0.5, 1)
CD-HZ (0.4; 2, 3) (0.2; 1, 2) (0.1; 0.5, 1)
CD-JY (0.3; 1, 2) (0.2; 0.5, 1) (0.2; 0.5, 0.5)
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when materials are allocated to the affected location from each rescue site are shown 
in Tables 10 and 11, respectively. The possibility of large losses occurring and the 
corresponding economic loss as shown in Tables 12 and 13.

We solved the computational case in MATLAB R2016a on a computer with an 
Intel(R) Core(TM)1.90 GHz processor with 16.0 GB of RAM. The GA param-
eters were set as follows: population size N = 50 , maximum number of iterations 
G = 500 , parameters � = 0.25 , �1 = 0.7 and �2 = 0.3 , preset value of minimum 
Euclidean distance between niche individuals U = 1 , optimization levels of deter-
ministic transformation of fuzzy constrained programming were � = 0.9 , � = 0.9 , 
and � = 0.8 , and the confidence level of deterministic transformation of stochastic 
constrained programming � = 0.95.

5.2  EMA scheme and analysis

5.2.1  Overall EMA strategy and total time, cost, and risk

The total allocation time, cost, and risk for the entire emergency period according 
to the proposed model are 3339 h, 399,960 thousand yuan and 639, respectively. 
The specific EMA plan is shown in Table 14. The overall EMA network structure 
is shown in Fig. 2.

Table 14 and Fig. 2 show the overall EMA from rescue sites to affected loca-
tions based on a comprehensive consideration of multiple factors including the 
distance between the rescue sites and the disaster-affected locations, the fixed and 
variable costs of transportation, the road damage coefficient and repair time, the 
possibility of transportation risk and road repair risk, and economic losses. KM 
allocated materials to all four affected locations including LD, QJ, HZ, and JY. 
The required emergency materials of LD and JY were mainly supplied from KM. 
This was expected as the earthquake center was in Yunnan Province. KM, the 
capital city of Yunnan Province, has certain advantages in geographical location 
and other respects. CD participated in the allocation of materials to affected loca-
tions LD, QJ, and HZ, mainly as emergency materials were in short supply after 
the disaster and relying on KM alone could not meet the material needs of all the 

Table 14  The overall allocation 
plan, total time, total cost, and 
total risk

Affected 
locations

Rescue sites Allocation Time Costs Risk

h1 h2

LD KM 118.3 184.4 1045 13,436 288
CD 0.4 0

QJ KM 39.6 63.6 936 10,788 159
CD 62.2 93.8

HZ KM 30.1 22.5 650 8098 116
CD 46.5 106.3

JY KM 65.3 97.5 708 7674 76
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affected locations. CD was required to allocate emergency materials to certain 
locations to remedy the shortages.

5.2.2  EMA scheme in each period and corresponding time, cost and risk

The time, cost, and risk associated with the allocation of all types of emergency 
materials in each period are shown in Table 15. The EMA network structure for 

Fig. 2  Network structure diagram of overall EMA plan

Table 15  EMA scheme, allocation time, cost, and risk in each time period

Periods Allocation path and amount Total Time Costs Risk

h1 h2 h1 h2

1 (KM-LD, 35.1) (KM-LD, 55.3) 94 143.5 1685 12,505 405
(KM-JY, 14.4) (KM-QJ, 4)
(CD-QJ, 23.1) (KM-JY, 15.2)
(CD-HZ, 21.4) (CD-QJ, 30.9)

(CD-HZ, 38.1)
2 (KM-LD, 39.4) (KM-LD, 59.3) 126.9 203.5 1064 13,446 204

(KM-JY, 22.9) (KM-JY, 45.2)
(CD-LD, 0.4) (CD-QJ, 62.9)
(CD-QJ, 39.1) (CD-HZ, 36.1)
(CD-HZ, 25.1)

3 (KM-LD, 43.8) (KM-LD, 69.8) 141.5 221.1 590 14,045 30
(KM-QJ, 39.6) (KM-QJ, 59.6)
(KM-HZ, 30.1) (KM-HZ, 22.5)
(KM-JY, 28) (CD-HZ, 32.1)

(KM-JY, 37.1)
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each period is shown in Fig.  3. The trends of allocation time, cost, and risk in 
each time period is shown in Fig. 4.

Table 15, Figs. 3 and 4 together show that the time and risks (transportation and 
repair) of EMA in each period decreased over the observation period, indicating that 
rescue activities improve the subjective and objective environment as well as the 
smoothness of roads over time. The time for emergency materials to be allocated 
to each affected location was constantly shortened in the post-disaster period as the 
risk factors of damaged roads were gradually reduced. The cost of EMA increased 
by a small margin, indicating that reducing the time and risk of material allocation 
does have certain costs; they can likely be attributed to damaged road repair. Those 
costs are reduced over time as well until reaching the same level as EMA under non-
disaster conditions.

Fig. 3  Network structure diagram of EMA in each time period

Fig. 4  Time, cost, and risk of EMA in several periods
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5.2.3  Time, cost, and risk of allocation at each affected location

The specific quantity of emergency materials allocated at each disaster-affected 
location in each period and the corresponding time, cost, and risk are shown in 
Table 16. The shortages of materials at each affected location in each period and the 
corresponding penalty time and penalty cost are shown in Table 17. The time, cost, 
and risk of allocating materials to each affected location in each period are shown in 
Figs. 5, 6 and 7.

As shown in Tables  16 and 17, the rescue sites allocated a certain amount of 
emergency materials to each affected location according to the situation at hand. 

Table 16  Quantity, time, cost, 
and risk of allocation at each 
affected location in each period

Periods Affected 
locations

Quantity ( h1,h2) Time Cost Risk

1 LD (35.1, 55.3) 515 4635 194
QJ (23.1, 34.9) 448 2984 87
HZ (21.4, 38.1) 327 2669 84
JY (14.4, 15.2) 395 2216 40

2 LD (39.8, 59.3) 322 4298 79
QJ (39.1, 62.9) 314 3872 61
HZ (25.1, 36.1) 206 2378 30
JY (22.9, 45.2) 222 2899 34

3 LD (43.8, 69.8) 208 4503 15
QJ (39.6, 59.6) 174 3933 11
HZ (30.1, 54.6) 117 3051 2
JY (28, 37.1) 91 2558 2

Table 17  Shortfalls, penalty 
time, and penalty costs for EMA 
at each affected location

Periods Affected 
locations

Shortfalls Penalty time Penalty 
costs

h1 h2 h1 h2 h1 h2

1 LD 0 0 0 0 0 0
QJ 5.7 13.1 3.1 5.9 2 3.3
HZ 0 0 0 0 0 0
JY 1.9 13.1 0.8 3.9 0.4 1.3

2 LD 0 0 0 0 0 0
QJ 0 0 0 0 0 0
HZ 0 6.2 0 2.5 0 1.2
JY 0 0 0 0 0 0

3 LD 0 0 0 0 0 0
QJ 0 0 0 0 0 0
HZ 0 0 0 0 0 0
JY 0 0 0 0 0 0
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The shortages of materials in the previous period were replenished in the subse-
quent period and the demand of all affected locations for all types of materials was 
fully met at the end of the emergency period. Figures 5, 6, and 7 shows that the time 
required for material allocation and the path risk faced are relatively high early on, 
but the required costs may be relatively low; this can be attributed to the impact of 

Fig. 5  Time for allocating materials to each affected location in each period

Fig. 6  Costs of allocating materials to each affected location in each period

Fig. 7  Path risk of allocating materials to each affected location in each period
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road conditions and secondary disasters in the early stages of disaster. It may take 
a long time to transport materials from rescue sites to disaster-affected locations. 
There are many uncertain factors in the process of traversing road networks. The 
emergency materials are usually limited in the time right after the disaster occurs; 
the rescue sites may give priority to allocating the limited materials to the nearest 
disaster-affected locations, which results in relatively low costs. As the rescue con-
tinuous, the disaster intensity and road conditions are gradually improved; thus the 
time and risk of EMA are gradually reduced. However, the costs of damaged road 
repair may be increased at this time as it is necessary to open the network to farther 
away disaster-affected areas. The proposed allocation scheme appears to compre-
hensively incorporate various factors to achieve multiperiod risk reduction and the 
optimal allocation of emergency materials.

5.3  Verification of IGA effectiveness

To verify the effectiveness of the proposed IGA, we ran 20 random operations on 
the algorithm while maintaining the same parameters and conditions. The longest 
computing time (LCT) was 47.23 s, the shortest computing time (SCT) was 32.19 s, 
and the average computing time (ACT) was 36.31 s, which shows that the IGA can 
effectively obtain the proper EMA scheme quickly and accurately. The material allo-
cation path was consistent among the 20 generated schemes. The best and the worst 
total distribution time were 3,339 and 3,361, respectively, with a difference of only 
0.65%; the best and worst total allocation costs were 39,996 and 40,512, respec-
tively, with a difference of 1.27%; and the best and worst total path risk values were 
639 and 645, respectively, making only a 0.93% difference. The calculation result is 
relatively stable, thus, the algorithm has strong stability. The convergence trends of 
the total time function (a), total cost function (b), and total path risk function (c) of 
the EMA is shown in Fig. 8. After 137 iterations, the value of each objective func-
tion began to converge; the IGA thus shows good convergence.

We also compared our IGA against the basic GA, ACO, SAA and PSO to fur-
ther validate its effectiveness. GA is a self-adaptive global optimization search algo-
rithm formed by simulating the genetic and evolution process of living beings in the 

Fig. 8  Convergence trend of total time function (a), total cost function (b), and total path risk function (c)
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natural environment. It relies on the way the evolution in real-life species works and 
apply notions of Darwinian theory of evolution in their search for optimality in a 
solution space (Kyriklidis et al. 2014). It has been successfully applied to problems 
such as function optimization, combinatorial optimization, vehicle scheduling, and 
production scheduling (Li and Demeulemeester 2016). ACO is a population-based 
heuristic random search algorithm proposed by simulating the collective path-find-
ing behavior of ants in nature. It is proposed for solving hard combinatorial optimi-
zation problems and was first used on the traveling salesman problem (TSP). It has 
been successfully applied to other problems such as vehicle routing problem, quad-
ratic assignment problem, and scheduling problem, etc (Bell and McMullen 2004; 
Yi and Kumar 2007). SAA is derived from the principle of solid annealing, based on 
the similarity between the solving process of the optimization problem and the phys-
ical annealing process. The optimized objective function is equivalent to the inter-
nal energy of the metal. The independent variable combination state space of the 
optimization problem is equivalent to the internal energy state space of the metal. 
The solution process is to find a combined state that minimizes the objective func-
tion value. It has been successfully applied to problems such as production schedul-
ing, control engineering, and combinatorial optimization (e.g., TSP and Knapsack 
problems) (Sadigh and Asghar 2018). PSO is a random search algorithm based on 
group cooperation that inspired by the foraging behavior of birds. It regards the 
search space of the optimization problem as the flight space of birds, and abstracts 
each bird as a particle. The solution of the optimization problem is equivalent to the 
food source that birds seek. It has been successfully applied to problems such as 
function optimization, production scheduling, and resource allocation (Zhao et  al. 
2017; Wang and Sun 2018). Detailed theoretical results and applications of these 
algorithms can be found in our referencrs (Goldberg 1989; Dorigo and Blum 2005; 
Steinbrunn et al. 1997; Kennedy and Eberhart 1995; Geng et al. 2015; Zheng 2019).

We ran the five algorithms 100 times independently. The results are shown in 
Table 18. The proposed IGA was superior to the GA, ACO, SAA, and PSO in terms 
of computing time (efficiency), which is crucial in the case of emergency response 
operations. In addition, the optimal convergence times and relative errors of conver-
gence were also significantly better than other intelligent algorithms. We attribute 
this the introduction of niche elimination technology. The offspring individuals not 
only maintain a certain distance and species diversity, but also eliminate individuals 
with low fitness; this improves the evolution speed and global optimization ability of 
the algorithm while preventing premature or unstable convergence.

6  Conclusions and directions for future research

Effective post-disaster rescue operations are critically dependent on an optimal mul-
tiperiod EMA scheme, which should be defined in accordance with real-word dis-
aster relief scenarios. Damaged road networks introduce additional risks and repair 
costs after a disaster. In this study, we developed a risk measurement method for 
multiperiod material allocation and road repair under uncertain conditions. This 
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work may provide support for decision-makers tasked with multiperiod risk meas-
urement and management of large-scale EMA problems.

We formulated EMA as a multi-objective programming problem, then built a 
multiperiod EMA optimization model based on uncertain disaster information. The 
objective function was to minimize the total delivery time, total costs, and total path 
risk across the model. Various EMA process-related information was characterized 
by the random demand, fuzzy supply, fuzzy time, and cost of distribution, as well 
as the fuzzy repair time and cost of damaged roads. We applied deterministic trans-
formation methods of stochastic and fuzzy constrained programming followed by 
an IGA to obtain high-quality EMA schemes in accordance with real-world disaster 
conditions.

Our results may lend several insights into the practice of EMA for multiperiod 
rescue under uncertain conditions. We provide a risk measurement method for mul-
tiperiod EMA that incorporates both transportation risk and road repair risk. We 
also explored the relationship between time, cost, and risk during EMA. Reductions 
in the risk and time of material allocation comes at a certain cost. In some cases, the 
risk can be reduced or eliminated by increasing the allocation cost. We also find that 
road network conditions have an important impact on the multiperiod EMA. Early 
on, poor road conditions make the time required for EMA longer and increase the 
operational risk; as roads are repaired in the middle and late stages of the rescue, the 
time for EMA is gradually reduced as the overall cost increases due to the cost of the 
repairs. Additionally, the multiperiod EMA strategy centers on the total efficiency 
and effectiveness of the entire emergency rescue from the perspective of global 

Table 18  Performance comparison of IGA, GA, ACO, SAA, and PSO

LCT is the maximum computing time, SCT is the minimum computing time, and ACT is the average 
computing time. T represents the objective function of total allocation time, C represents the objective 
function of total allocation cost, and R represents the objective function of total path risk

Indicators IGA GA ACO SAA PSO

Computing time (s) LCT 47.23 56.15 59.67 65.23 62.89
SCT 32.19 30.86 35.52 44.97 39.51
ACT 36.31 39.49 42.36 52.76 51.63

Optimal convergence time T 86 72 70 72 69
C 92 78 80 75 81
R 83 75 73 72 71

Optimal convergence probability (%) T 0.86 0.72 0.70 0.72 0.69
C 0.92 0.78 0.80 0.75 0.81
R 0.83 0.75 0.73 0.72 0.71

Average convergence value T  (103) 3.342 3.416 3.487 3.529 3.531
C  (105) 4.0752 4.1543 4.1796 4.1618 4.1926
R  (102) 6.41 6.49 6.51 6.50 6.52

Relative convergence error rate (%) T 0.09 2.25 4.24 5.38 5.44
C 1.86 3.72 4.31 3.90 4.6
R 0.31 1.54 1.84 1.69 1.99
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optimization. Our strategy prioritizes not only the equity of material allocations 
among multiple affected locations in the case of initial material shortage, but also 
the allocation efficiency as the supply gradually increases over time. The strategy 
also works to minimize the overall risk of the entire emergency period, effectively 
preventing the “short-sightedness” reflected in the traditional one-period EMA strat-
egy. Heuristic intelligent algorithms can be effectively applied to emergency rescue 
decision-making. The proposed IGA has significant advantages in terms of solution 
efficiency, optimization capability, convergence effects, and stability. In practice, it 
could save valuable time for disaster-relief operations and provide decision support 
for obtaining high-quality or optimal material allocation schemes. We sought not 
only to validate the proposed method in conducting this work, but also to emphasize 
the necessity of considering multiperiod material allocation from the perspective of 
uncertain disaster information. We also hope to highlight the importance of applying 
intelligent algorithms to complex resource-allocation optimization problems for the 
purpose of sustainable disaster relief.

In the future, the realism and complexity of the model could be further improved. 
An actual disaster rescue environment is extremely complicated. We considered rel-
evant factors as much as possible in constructing our model, but acknowledge that 
other factors have yet to be taken into account. For example, by considering the 
living habits of the victims in different areas, real-time traffic conditions could be 
incorporated and big data technology could be used to analyze the disaster situation. 
This may allow future researchers to develop a more scientific and effective intel-
ligent algorithm to manage large-scale and complex emergency resource allocation 
problems. The influence of such factors on the multiperiod EMA of large-scale dis-
aster merits further consideration.
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