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Abstract
Stationarity of hedge ratios can be viewed as a first step for portfolio hedging since 
it represents that the sensitivity of spot and Future returns follow a process whose 
main characteristics do not depend on time. However, we provide evidence that the 
hedge ratios of the main European stock indices are better described as a combina-
tion of two different mean-reverting stationary processes, which depend on the state 
of the market. Also, when analysing the dynamics of hedge ratios at intraday level, 
results display a similar picture suggesting that intraday dynamics of the hedge 
between spot and Future are driven mainly by market participants with similar per-
spectives of the investment horizon.
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1  Introduction

Stationarity of hedge ratios indicates a stable relationship between spot and Future 
prices. Since hedgers seek for reducing the risk of their investments, reliable dynam-
ics of hedge ratios are expected. If not, Future mark may lose its usefulness to hedg-
ers since the risk diversification can be hard to achieve. The property of stationar-
ity motivates investors to use diversification strategies and can be utilised by policy 
makers to stabilize financial mark.

A hedge is a spread between a spot asset and a Future position that reduces risk.1 
Thus, the hedge ratio is defined as the number of Future contracts bought or sold 
divided by the number of spot contracts whose risk is being hedged. A considerable 
amount of research has focused on modelling the distribution of spot and Future 
prices and applies the results to estimate the optimal hedge ratio using various type 
of models (see Chen et al. 2003; Floros and Vougas 2004; Salvador and Arago 2014; 
Wang et al. 2014; Dai et al. 2017). Although most of the previous studies on opti-
mal hedge ratios are successful in capturing the time-varying covariance-variances, 
almost all of them focus only on the estimate of the hedge ratios. The main purpose 
of this paper is to further examine and understand the stationarity of hedge ratios 
over time, as the literature provides limited information about it.2

Stationarity of hedge ratios indicates a stable relationship between spot and 
Future prices. Since hedgers seek for reducing the risk of their investments, reliable 
dynamics of hedge ratios are expected. If not, Future mark may lose its usefulness 
to hedgers since the risk diversification can be hard to achieve. The property of sta-
tionarity motivates investors to use diversification strategies and can be utilised by 
policy makers to stabilize financial mark.

The analysis of stationarity of hedge ratios can be viewed as a first step for port-
folio hedging in any asset or market. Hedge ratios represent the sensitivity of spot 
prices to changes in Future prices, and measure how changes in the Future market 
affect spot mark. If this sensitivity is stationary, we are confident that the predictions 
we make lie into reasonable bounds. As a stationary process, the mean value of this 
sensitivity is constant and the variance is finite, so deviations of the predicted sensi-
tivity to the observed sensitivity will be due to short-term corrections. On the other 
hand, if the sensitivity of spot and Future returns is not stationary it will represent a 
burden to the successful implementation of a hedging strategy since accurate predic-
tions of this sensitivity will be hard to achieve.

The potential deviations from stationarity for the sensitivity between spot and 
Future returns can be due to two main reasons. First, during crisis periods it is 

1  In this paper we follow the traditional view of hedging, i.e. risk minimization. There are other alterna-
tive HRs, e.g. authors use other objectives such as (i) HR based on rates of returns situations where spot 
rate is fixed, (ii) HR for the case when trader wishes to maximize the ratio of the expected return on the 
hedged portfolio to its variance, and (iii) when there is marking to market and stochastic interest rates. 
These alternatives HRs involve both risk and return, but they are generally more complicated than the 
traditional minimisation of risk, and hence they are not considered in most empirical studies.
2  There is to date no definite conclusion concerning the stationarity of dynamic HRs, that may be used to 
improve hedging performance.
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possible that the dynamics of the relationship between spot and Future mark follow 
different dynamics. This would lead to periods where the expected values for the 
sensitivities differ, casting doubts on the predictability of the hedge ratios. Second, 
the investment horizon considered might not capture completely the stationary char-
acteristics of the relationship between spot and Future returns. This can be the case 
when we look at this relationship at a very high frequency. If deviations from the 
expected hedge ratio take too long to revert (due to the presence of short-term trad-
ers), focusing the analysis at high frequency observations over short horizons may 
blur the stationary characteristics of this sensitivity between spot and Future mark.

Early studies, such as Ederington (1979) and Anderson and Danthine (1981), 
assume a constant optimal hedge ratio which can be obtained as the slope coefficient 
of an OLS regression. When the optimal hedge ratios depend on the conditional dis-
tributions of spot and Future price movements, then the hedge ratios vary over time 
as this distribution changes. Subsequent studies show the variability of hedge ratios 
over time, and support the hypothesis that optimal hedge ratios are time-varying and 
non-stationary (see Baillie and Myers 1991). These studies report that hedge ratios 
contain a unit root and therefore behave much like a random walk.

Grammatikos and Saunders (1983) were the first to examine the stability of hedge 
ratios. They concluded that hedge ratio stability (stationarity) in currencies could 
not be rejected. Furthermore, Malliaris and Urrutia (1991) examined the random 
walk hypothesis and concluded that hedge ratios of selected indices and currencies 
follow a random walk. However, Ferguson and Leistikow (1998) report that Future 
hedge ratios are stationary using a simple OLS regression approach. They argue that 
hedge ratios in previous studies appear to follow a random walk due to small sample 
size of data and hedge ratio calculation overlap. Lien et  al. (2002) reject the null 
hypothesis that the optimal GARCH hedge ratios have a unit root. Further, Brooks 
et al. (2002) show that optimal hedge ratio series obtained through the estimation of 
the asymmetric MGARCH model appears stationary. They argue that optimal hedge 
ratio may be linked to the arrival of news to the market and the relevant Future 
price and covariance news impact surfaces. Recently, Lai and Sheu (2010) propose 
a new class of multivariate volatility models encompassing realized volatility (RV) 
estimates to obtain risk-minimizing hedge ratios. Their results show that hedging 
improvement is substantial when switching from daily to intraday frequencies. They 
also report that the ADF test on the RV-based hedge ratios (intraday) rejects a unit 
root, except for their results based on (daily) OLS and ECT-GARCH-CCC models 
for the post-crisis period of 2008.

Leistikow et al. (2019) present a Bias Adjustment Multiplier (BAM) calculated 
from a prior period’s data as (the prior period’s traditional Future hedge ratio)/(the 
prior period’s new ex ante hedge ratio based on the underlying spot asset’s carry cost 
rate). They test if BAM is stationary, and find empirical support for the hypothesis. 
Further, Leistikow and Chen (2019) test whether the traditional Future hedge ratio 
(hT) and the carry cost rate Future hedge ratio (hc) vary as predicted both within and 
across spot asset carry cost rate (c) regimes. They report that the BAM is not statisti-
cally significant different from low and high c periods.

The contribution of our article is to examine whether time-varying hedge ratios, 
calculated from a set of European stock indices (German DAX30, British FTSE100, 
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French CAC40 and Spanish IBEX35), are stationary over time. The novelty of the 
paper lays on the analysis of the hedge ratio stationarity from a state-dependent per-
spective. A hedger expects that her strategy allows her to reduce risk all the time, 
but especially during periods of financial distress. During periods of market instabil-
ity, positions in the spot market are likely to lose value and hedgers rely on Future 
mark position to minimise losses. Thus, analysing hedge ratio stationarity in both 
states (low and high volatility) is a crucial topic which shows evidence on the use-
fulness of Future mark as hedging mark.

The studies we mentioned previously about HR stationarity do not make this dis-
tinction among states, and this can lead to misleading conclusions about the station-
arity of hedge ratios series across volatility regimes. There are several papers from 
other areas of economics or financial economics that report mixed evidence on the 
stationarity hypothesis, depending on the volatility regime. See, for example, Hol-
mes (2010) for the long-run purchasing power, Kanas and Genius (2005) for the US/
UK real exchange rate, and Camacho (2011) for the US real GDP. Recently, Cotter 
and Salvador (2015) analyze the relationship between expected return and risk in the 
US market, and find that market volatility follows non-stationary dynamics during 
period of high instability. However, since the volatility process will eventually come 
back to the tranquil state, the whole process remains stationary.

Given the evidence reported in previous papers when analysing the stationarity 
properties of economic/financial time-series from a state-dependent perspective, we 
support that it is necessary to re-examine the stationarity properties of Future hedge 
ratios. The non-stationary volatility in spot mark during these high-volatility states 
may have a negative effect on the stationarity of the hedge ratios and on the hedging 
effectiveness of hedging ratios. Therefore, we test for state-dependent stationarity to 
verify the usefulness of Future mark as hedging mark in both states (especially dur-
ing periods of financial instability).

The results in this paper provide empirical evidence that time-varying hedge 
ratios are stationary over time. Thus, we confirm the stable relationship between 
Future and spot returns across time. If we take a closer look at the evolution of spot 
and Future dynamics, and analyse stationarity across states, we find that hedge ratios 
are described better as a combination of two different mean-reverting stationary 
processes, which depend on the state of the market. Our state-dependent analysis 
confirms the existence of Future mark as hedging mark. In both states, the hedge 
ratios follow stable and predictable processes, which can be used to manage inves-
tors’ risk. However, although correlations follow a stable stationary process in both 
states, during periods of financial turmoil the correlations between spot and Future 
are different from the ones during calm periods.

This last result can provide an explanation to the controversy caused by the evi-
dence of greater hedging effectiveness using static hedge ratios than using simple 
dynamics ones, and as why there have been several recent papers which both the-
oretically (Lien 2012) and empirically (Alizadeh et  al. 2008; Salvador and Arago 
2014) showed a greater effectiveness of regime-switching models. The intuition is 
that omitting the regime-switching specification leads to inefficient hedges com-
pared not only to the ones considering state-dependence, but also to the static ones.
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Finally, we also analyse the dynamics of optimal hedge ratios at intraday level 
(we extend the study by Lai and Sheu 2010). Since executing an intraday hedging 
strategy would be very expensive, we focus on providing new insights about the 
dynamics of the spot and Future mark at ultra-high frequency.

Our results display a similar picture in the dynamics of spot-Future returns at 
this intraday frequency. The evidence suggests that intraday movements in the hedge 
between spot asset and Future position are driven mainly by market participants, 
with similar perspectives of investment horizon. Even if there are different types of 
traders at this frequency, they do not have a significant impact on the hedge between 
spot and Future positions.

The rest of the paper is organised as follows. Section  2 provides a description 
of the database. Section  3 develops the model used to obtain the dynamic hedge 
ratios. Section  4 analyses time-series stationarity of estimated hedge ratios using 
both a standard perspective and the regime-switching framework. In Sect. 5, we take 
a closer look at stationarity properties of hedge ratios using intraday data and Sect. 6 
concludes.

2 � Data description

The dataset contains daily data (spot and Future closing prices) from the main stock 
indices and their corresponding Future contracts in Germany (DAX30), France 
(CAC40), United Kingdom (FTSE100) and Spain (IBEX35). The time horizon 
includes observations from May 20003 to November 2013. Within this sample 
period we have two different contexts, i.e. before (under several years of stability 
and sustained growth) and after the global financial crisis and the Eurozone debt 
problems started in 2008.

The stock mark analysed are the most traded European financial mark and all of 
them are traded on an electronic trading system. The time-series for the indices, and 
their near-time delivery (nearby) Future contract,4 are provided by Datastream®.

Table  1 presents the statistical properties of the price and returns series. The 
returns of spot and Future prices follow all stylized facts of financial time series 
such as leptokurtosis, volatility clustering, and leverage effects (see Bollerslev et al. 
1994). We estimate time-varying hedge ratios using GARCH models, which are 
very popular in the literature to capture the stylized facts of financial time series 
(see, for example, Degiannakis and Floros 2010; Floros and Salvador 2016). In the 
next section, we develop the empirical models to obtain dynamic hedge ratios and 
we describe their patterns.

3  Since May 2000 data is available for all the examined indices.
4  Carchano and Pardo (2008) show that rolling over the Future series has no significant impact on the 
resultant series. Therefore, the least complex method can be used for the construction of the series to 
reach the same conclusions.
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3 � Estimating time‑varying hedge ratios

3.1 � Methodology

In more traditional hedge-ratio estimation methodology, the covariance matrix of 
spot and Future prices (and therefore the hedge ratio) is assumed constant through 
time. However, according to Lee (1999), given the time-varying nature of the 
covariance in financial mark, the OLS assumption is inappropriate when estimating 
optimal hedge ratios. There has been a large body of research that has applied the 
GARCH framework to infer time-varying hedge ratios (Cecchetti et al. 1988; Kroner 
and Sultan 1993; Park and Switzer 1995). In the GARCH model,5 the conditional 
variance of a time-series depends on the squared residuals of the process (Boller-
slev 1986). It also captures the tendency for volatility clustering in financial data, 
and utilises the information in one market own history (univariate GARCH) or uses 
information from more than one mark history (multivariate GARCH). According to 
Conrad et al. (1991), multivariate GARCH models provide more precise estimates 
of the parameters because they utilise information in the entire variance–covariance 
matrix of the errors and allow the variance and covariance to depend on the infor-
mation set in a vector of the ARMA manner (Engle and Kroner 1995).Although 
GARCH models are useful for estimating time-varying optimal hedge ratios, a time-
varying covariance matrix of spot and Future prices is not sufficient to establish that 
the optimal hedge ratio is time-varying.6

In this study we use a bivariate model with GARCH errors, the Diag-BEKK (p, 
q) model, to estimate the dynamic variance–covariance matrix of spot and Future 
log-returns. The Diag-BEKK (p,q) framework of log-spot (s) and log-Future (f) is 
estimated in the form

where Ψt−1 is the information at time t − 1 and the variance–covariance matrix spec-
ification, �t , is the BEKK model of Baba et al. (1990). The matrices �i and �j are 
restricted to be diagonal. The Diag-BEKK(q, q̃ ) model is guaranteed to be positive 

(1)
�t =

(

(1 − L) log
(

st
)

(1 − L) log
(

ft
)

)

=

(

a0
b0

)

+

(

�s,t
�f ,t

)

�t ≡

(

�s,t
�f ,t

)

|Ψt−1 ∼ N
(

0,�t

)

�t =

(

𝜎2
s,t

𝜎sf ,t
𝜎sf ,t 𝜎2

f ,t

)

= C
�
C�

�
+

q̃
∑

i=1

(

�i�t−i�
�
t−i�

�
i

)

+

q
∑

j=1

(

�j�t−j�
�
j

)

6  Constancy of HR refers to the ratio of the covariance (between the spot and Future price) to the vari-
ance of the Future price that has to be constant (see Moschini and Myers 2002).

5  The advantage of the GARCH specification is that it is a model that allows for leptokurtosis in the dis-
tributions of price changes.
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definite and requires the estimation of fewer parameters compared to other multi-
variate models; i.e. Diag-VECH, BEKK.

This multivariate specification allows us obtain time-varying hedge ratios through 
the conditional covariance matrix

where the dynamic hedge ratios are computed as the quotient between the condi-
tional spot-Future covariance and the Future variance.

Recent studies on HR estimation include Lai and Lien (2017) and Lai et  al. 
(2017). Lai and Lien (2017) examine the usefulness of high-frequency data for esti-
mating hedge ratios for different hedging horizons, while Lai et al. (2017) propose 
a multivariate Markov regime-switching high-frequency-based volatility model for 
modeling the covariance structure of S&P 500 spot and Future returns, and estimat-
ing the associated hedge ratios. Qu et  al. (2019) investigate the dynamic hedging 
performance of the high frequency data based realized minimum-variance hedge 
ratio approach using data from China’s CSI 300 market. Lien et al. (2020) argue that 
when looking into high- and low-volatility states, quantile hedge ratios show dif-
ferent results compared with conventional models. For recent studies on the Future 
Minimum Variance Hedge Ratios, see Chen et  al. (2019), Cui and Feng (2020), 
Wang et al. (2019), and Chiou-Wei et al. (2020).

3.2 � Empirical results

The estimation of the model is conducted using conditional quasi maximum likeli-
hood estimation.7 Diagnostic tests and information criteria were employed to deter-
mine the lag orders, the validation of the assumptions concerning symmetry and 
diagonality. The results from the Diag-BEKK(1,1) model (Eq. 1) are presented in 
Table 2. The coefficients are all statistically significant and imply volatility cluster-
ing. Both spot and Future log-returns exhibit strong persistence in volatility, but it is 
the Future market that shows the strongest persistence.

Figure  1 shows the estimated variances over time for the DAX30, FTSE100, 
CAC40 and IBEX35 spot and Future indices. We observe several peaks in the vol-
atility measures common to all mark; e.g. around 2003, in latest 2008 coinciding 
with global financial crisis, and one covering end 2011–beginning 2012 with the 
worst part of the Eurozone debt problems which reflected in the stock mark. Also for 
Spain, there is a peak during the beginning of 2013 showing further problems with 
the stability of that market.

Figure 2 shows the plot of time-varying hedge ratios obtained from Eq. 2. The 
DAX hedge ratios are quite volatile during the first part of the sample, but they seem 

(2)HRt =
�sf ,t

�2
f ,t

7  The conditional log-likelihood function for a single observation can be written as 
Lt(�) = −(n∕2) log(2�)−(1∕2) log(|Ht(�)|) − (1∕2)�t(�)

�H−1
t
(�)�t(�) , where � represents a vector of 

parameters and n is the sample size (for more details see Xekalaki and Degiannakis 2010).
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Table 2   Parameters estimations of the Diag-BEKK (1, 1) model

The Table shows the estimated parameters for the model in Eq.  1 for the log-returns on the spot and 
Future mark for the DAX30, FTSE100, CAC40 and IBEX35 indices. Standard errors are computed using 
Bollerslev and Wooldridge (1992) specification correcting for heteroskedasticity (***, ** and * repre-
sents statistical significance at 1, 5 and 10% levels of significance, respectively)

DAX30 FTSE100 CAC40 IBEX35

a0 0.0632*** 0.0384** 0.0416*** 0.0468***

(0.0185) (0.0153) (0.0125) (0.0188)

b0 0.0648*** 0.0374** 0.0394*** 0.0455***

(0.0181) (0.0153) (0.0127) (0.0192)
c11 0.1974*** 0.0936** 0.2182*** 0.1507***

(0.0254) (0.0376) (0.0367) (0.0108)

c12 0.1938*** 0.0895*** 0.2428*** 0.1676***

(0.0271) (0.0307) (0.0450) (0.0123)

c22 0.0368*** 0.0231*** 0.0307*** 0.0236***

(0.0086) (0.0056) (0.0141) (0.0027)

a11 0.3319*** 0.2294*** 0.2827*** 0.2425***

(0.0320) (0.0377) (0.0201) (0.0061)

a22 0.3520*** 0.2237*** 0.2969*** 0.2544***

(0.0427) (0.0292) (0.0228) (0.0070)

b11 0.9382*** 0.9694*** 0.9438*** 0.9632***

(0.0095) (0.0123) (0.0096) (0.0014)

b22 0.9322*** 0.9708*** 0.9353*** 0.9587***

(0.0130) (0.0094) (0.0126) (0.0019)

Fig. 1   Conditional variances. This Figure plots the conditional spot ( �2

s,t
 ) (black line) and Future ( �2

f ,t
 ) 

variances (green line) for the log-returns of the DAX30, FTSE100, CAC40 and IBEX35 indices (sample 
period May 2000–November 2013)
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to stabilise after 2005. Despite the evident peaks in volatilities in all countries, the 
hedge ratios follow a smooth pattern along the sample period where they seem to 
return always to a predetermined value. As from visual description of the hedge 
ratios, we cannot infer about their stationarity. Next section provides a formal study 
of the hedge ratio stationarity and the implications for optimal hedging.

4 � Analysing the (non) stationarity of the hedge ratios

The purpose of the paper is to distinguish hedge ratios series that appear to have 
a unit root from those that appear to be stationary over time. For this purpose, we 
employ two well-known unit root tests,8 i.e. the Augmented Dickey Fuller (ADF) 
and Phillips and Perron (PP) tests, which test the hypotheses:

Ho: there is a unit root
Ha: there is stationarity

4.1 � Unit root theory

The ADF test assumes that series yt follows an AR(p) process

Fig. 2   Hedge ratios. This Figure plots the estimated HRs according to Eq. 2 for the spot and Future stock 
indices in Germany, United Kingdom, France and Spain. Shaded areas correspond to periods of high 
volatility based on the filtered probabilities of Eq. 4

8  Genuine stationarity tests include the KPSS test, which is a reversed test for a time-series (i.e. Ho: sta-
tionarity, Ha: unit root). The results of the KPSS test are qualitatively similar to the ADF and PP results, 
and they are not reported. They are available from the authors upon request.
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where Δyt defines the first difference of hedge ratios, and ut ∼ N
(

0, �2
u

)

 , with 
H0 ∶ a = 0 and H1 ∶ a < 0.

Phillips and Perron (1998) propose a nonparametric method to control for serial 
correlation when testing for a unit root (this test is popular in the analysis of finan-
cial time series). The PP test estimates the equation, Δyt = ayt−1 + x

�

t
� + ut , and 

modifies the t-ratio of the a coefficient; hence, the serial correlation does not affect 
the asymptotic distribution of the test statistic.9

4.2 � Regime‑switching ADF test

Regime switching models are an important methodology to model nonlinear dynam-
ics and widely applied to economic data including business cycles, bull and bear 
mark, interest rates and inflation. There are two common features of these models. 
First, past states can recur over time. Second, the number of states is finite and small 
(it is usually two and at most four). In contrast to the regime switching models, 
structural break models can capture dynamic instability by assuming an infinite or a 
much larger number of states at the cost of extra restrictions. If there is a change in 
the data dynamics, it will be captured by a new state. The restriction in these models 
is that the parameters in a new state are different from those in the previous ones. 
This condition is imposed for estimation tractability. However, it prevents the data 
divided by breakpoints from sharing the same model parameters, and could incur 
some loss in estimation precision.

Did hedge ratios have distinct dynamics or revert to a historical state with the 
same dynamics during the sample period analysed? Existing econometric models 
have difficulty answering such questions. In our paper we took the first assumption 
where past states can recur over time (in terms of bull and bear mark) instead of 
being considered new states. For more information about the regime switching mod-
els, see Samitas and Armenatzoglou (2014) and Billio et al. (2018).

Recent literature has questioned the asymptotic power and statistical properties 
of traditional ADF tests; e.g. Chortareas et al. (2002) and Sollis et al. (2002). In this 
paper, we are interested in the stationarity properties of hedge ratios conditioned 
to volatility levels (regimes) in the mark (low and high volatility regimes), i.e. if 
the hedge ratios are (non)stationary within high and low volatility periods indepen-
dently of which is its stationarity in the long-run (assuming a single regime in the 
long-run). This allows us to identify if there is any state of the market where hedg-
ing with Future contracts is not useful.

We can test this hypothesis by applying the methodology developed in Kanas 
and Genius (2005) and Camacho (2011), extending Hall et al. (1999). These authors 
extend the ADF regression by allowing both the autoregressive parameters and the 

(3)Δyt = ayt−1 + x�
t
� + �1Δyt−1 +⋯ + �pΔyt−p + ut

9  The test corrects for any serial correlation and heteroskedasticity in the errors ut of the test regression.
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volatility of the hedge ratios to change over time, following a first-order Markov pro-
cess. Hence, the regime-switching ADF, or RS-ADF, specification test for the (non-)
stationarity of hedge ratios, under different states of volatility, is.

where a0,st , ..., ak,st , bst are regime-switching parameters, st is the unobservable 
regime, and ut are normal innovations with state-dependent variances.10

4.3 � Empirical results

Table 3 shows the results from the ADF and PP tests applied to the estimated hedge 
ratios under three cases: (i) a simple AR(p) process (Panel A), (ii) an AR(p) with 
intercept only (Panel B) and (iii) an AR(p) with intercept and linear trend. The tests 
presented in Panel B and C show that the hedge ratios are stationary. This does not 
hold, however, when we do not employ an intercept, or an intercept and linear trend 
(Panel A). This shows the importance of employing deterministic components when 
testing for unit roots in hedge ratios. Our results are in line with previous papers, 
Ferguson and Leistikow (1998) and Lien et al. (2002), who found that time-varying 
hedge ratios are stationary over time.

The implication of this result is that optimal hedges on stock indices tend to fluc-
tuate around a mean-reverting value. This stable relationship, between correlations 
of spot and Future mark, can be exploited by hedgers to reduce risk of their invest-
ments. This result of stationarity in the hedge ratios can be viewed as good news, 
since it implies a reliable relationship between the spot and Future prices and a con-
firmation that Future mark are useful for hedgers.

Besides this first analysis, we also examine the stationarity of hedge ratios by 
looking at low and high volatile periods. The advantage of our approach is that we 
do not need to assume which periods correspond to low/high volatility states. The 
estimation procedure makes this classification (regime-switching methodology).

Table 4 shows the estimates of the RS-ADF model presented in Eq. 4. Two vola-
tility regimes have been employed. We observe that all constant drift coefficients are 
statistically significant, and the same is true for the autoregressive ones. The most 
relevant coefficient in Table 4 is bst which indicates existence of a unit root in the 
state-dependent process. Our results are noteworthy and need further discussion.

First, in both states, the coefficientsbst are negative and significant, which implies 
stationarity of the process in both states/regimes. For all countries and for the first 
state St = 1 autoregressive coefficients are more negative than those of the sec-
ond state St = 2. Our results of stationarity confirm similar findings of Francq and 

(4)Δyt = a0,st +

p
∑

k=1

ak,stΔyt−k + bst yt−1 + ut, ut ∼ N
(

0, �2
st

)

10  The model is estimated by the maximum likelihood method, using an algorithm where ex-ante and 
filtered probabilities are inferred in first place and then based on them standard maximisation of the like-
lihood function is performed (see Hamilton 1994; Floros and Salvador 2014).
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Zakoian 2001; Timmerman 2000; and Yang 2000. Here we have two different mean-
reverting processes, one when the process is in low-volatility periods, and another 
one when the process is in high-volatility periods.11 Within each state, hedge ratios 
tend to fluctuate around different state-dependant values, instead of just one com-
mon value independent of state. The good news for hedgers is that hedge ratios fol-
low stationary processes in both states, which implies that they can use these mark to 
manage their risk at any time (even under the most needful times of market turmoil).

Figure 3 shows the probability of being in a state of low volatility and comple-
ments Fig. 2 which shows, in shaded areas, the observations that correspond to high 
volatility periods when compared to the estimated hedge ratios.

Table 4   RS-ADF test with drift

The Table shows the estimated parameters for the RS-ADF test presented in Eq. 4. Dependent variables 
in each column represent the estimated HRs using Eq. 2 for the spots and Future returns on the DAX30, 
FTSE100, CAC40 and IBEX35 indices (sample period May 2000–November 2013). Standard errors are 
computed using Bollerslev and Wooldridge (1992) specification correcting for heteroskedasticity (***, 
** and * represents statistical significance at 1, 5 and 10% levels of significance, respectively)

Δyt = a0,st +
p
∑

k=1

ak,stΔyt−k + bst yt−1 + ut , ut ∼ N
�

0, �2

st

�

Hedge ratios

Parameters State Germany UK France Spain

bst St = 1 −0.1548*** −0.1259*** −0.2191*** −0.1364***
(−5.3643) (−4.7192) (−5.3463) (−6.3804)

St = 2 −0.0467*** −0.0158*** −0.0429*** −0.0199***
(−12.8277) (−7.2695) (−6.8347) (−7.2798)

a0,st St = 1 0.1546*** 0.1195*** 0.2226*** 0.1428***
(5.5581) (4.6624) (5.5059) (6.5421)

St = 2 0.0414*** 0.0162*** 0.0408*** 0.0181***
(11.4636) (7.7625) (6.2814) (6.5505)

a1,st St = 1 0.0894* 0.2626** 0.2242* −0.1106
(1.6749) (2.1778) (1.8681) (−1.5960)

St = 2 −0.0078 −0.0090 −0.0114 0.0011
(−0.8433) (−0.7209) (−1.0612) (0.1492)

a2,st St = 1 −0.0437 −0.0598 0.1055** 0.0018
(−0.8081) (−0.8644) (2.0320) (0.0368)

St = 2 0.0040 0.0022 −0.0110 0.0015
(0.5623) (0.2931) (−0.9783) (0.1703)

�2

st
St = 1 0.0018*** 4.28 e−04*** 9.02 e−04** 3.52 

e−04***
(4.6984) (4.0308) (2.4834) (6.6941)

St = 2 0.0003*** 1.27e−05*** 2.42 e−05*** 1.13 
e−05***

(5.0392) (5.4779) (4.4565) (9.1923)

11  Note that state one is the low volatility state, while state two is the high volatility state.
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The hedge-ratios process changes continuously among regimes. Nevertheless, 
the hedge-ratios within each regime are stationary, and the dynamics of the correla-
tion in the different regimes are not the same. Thus, if we are interested in shorter 
horizons hedges, not considering different states can be a cause of a worse hedging 
performance.

These differences among regimes can be observed more clearly in Fig.  4. For 
all mark there are obvious differences in the distributions of the hedge ratios dur-
ing LV states and HV states. During HV states the optimal HRs are consistently 
higher than during LV states. Based on the way the HRs are computed, this suggests 
that the covariance between spots and Future mark is higher during these periods of 
uncertainty.

This result can provide an explanation to very recent evidence, which shows, 
both theoretically and empirically, that hedge ratios obtained from regime switch-
ing models outperform the rest of strategies (both static and dynamic). Lien (2012) 
characterizes conditions under which the regime-switching hedge strategy performs 
better than the OLS hedge strategy and where the GARCH effects prevail. These 
conditions would allow the RS-GARCH hedge strategy to dominate both OLS and 
GARCH hedge strategies.

Recently, Alizadeh et  al. (2008), for commodities, and Salvador and Arago 
(2014), for stock indices, report a greater performance of (multiple-) regime-switch-
ing strategies than those obtained through single-regime models. Our results about 
this state-dependent stationarity of hedge ratios support this previous evidence. 
When analysing the performance of hedging strategies, we usually look at shorter 
horizons and we tend to follow the false dynamics. Neglecting the switching of HRs’ 
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Fig. 3   Filtered probabilities for low volatility states. This Figure plots the probability of being in a low 
volatility state [P(St = 1|Ψt−1)] for the RS-ADF test of Eq.  4. In these plots we use the estimated HRs 
from Eq. 2 using the returns on the spot and Future stock indices in Germany, United Kingdom, France 
and Spain as the main input for the regime-switching stationarity test
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regimes causes a worse hedging effectiveness. Given that both states are station-
ary, optimal hedging can be exploited in any volatility regime. However, we need to 
identify the proper dynamics for each one of the regimes.

In Table 5, we repeat the estimations of the RS-ADF model, and we do not con-
sider a drift in the model. Here we obtain an interesting result. The coefficient bst in 
the low volatility state is negative and significant providing evidence of stationarity 
of hedge ratios during this low volatility state. However, if we look at high volatility 
states it seems that the process followed by optimal hedge ratios is non-stationary. 
This result highlights the importance of modelling the trend of the time series prop-
erly. Similar results apply when using standard unit-root tests. Wrong trend specifi-
cation leads into wrong/incorrect conclusions about the stationarity of hedge ratios. 
We recommend the use of a state dependent drift when testing the stationarity of 
HRs.
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Fig. 4   Hedge ratios for intraday data. This figure plots the distribution of the optimal HRs during differ-
ent states (defined by the RS-stationarity test). The first two plots represent the HRs in Germany and UK 
during high volatility states with the corresponding plots for the high-volatility states below. The plots 
in the bottom part of the figure correspond to the HRs in UK and Spain both for low and high volatility 
states



2298	 S. Degiannakis et al.

1 3

5 � Hedge ratio stationarity for intraday data

Dynamic hedging is usually expensive to implement since it involves transac-
tion costs any time the hedged portfolio is re-balanced. Therefore, hedging is more 
rational at low frequencies. However, if investors conduct the hedging, the hedge 
dynamics will not differ across different sampling frequencies. On the other hand, if 
both investors and short-term traders conduct the hedging (i.e. swap trading between 
Future and spot for speculation), then the hedge dynamics will differ across different 
sampling frequencies. In this section, we try to unmask this hypothesis by looking at 
the stationarity patterns of intraday hedge ratios.

The dataset is comprised by hourly observations of the DAX index and its corre-
sponding Fut contract from 3rd of January, 2000 to 30th of December, 2010 (25,138 
observations).12 As in the previous datasets, we first compute the dynamic hedge 

Table 5   RS-ADF test with no drift

The Table shows the estimated parameters for the RS-ADF test presented in Eq. 4 but omitting the drift 
component. Dependent variables in each column represent the estimated HRs using Eq. 2 for the spots 
and Future returns on the DAX30, FTSE100, CAC40 and IBEX35 indices (sample period May 2000–
November 2013). Standard errors have been corrected for heteroskedasticity (***, ** and * represents 
statistical significance at 1, 5 and 10% levels of significance, respectively)

Δyt = bst yt−1 +
p
∑

k=1

ak,stΔyt−k + ut , ut ∼ N
�

0, �2

st

�

Hedge ratios

Parameters State Germany UK France Spain

bst St = 1 0.0067*** 9.02 e−04*** 0.0076*** 0.0054***
(3.9945) (8.4932) (7.1746) (7.0819)

St = 2 −0.0039*** −0.0027*** −0.0018*** −0.0019***
(−15.2984) (−3.0045) (−5.1232) (−16.3492)

a1,st St = 1 −0.0012 0.2122** 0.0199 −0.2041***
(−0.0206) (2.0078) (0.2262) (−2.8188)

St = 2 −0.0241** −0.0173 −0.0152 −0.0069
(−2.2556) (−1.4901) (−1.3763) (-0.9274)

a2,st St = 1 −0.1185** −0.0934 −0.0555 −0.0612
(−2.3243) (−1.069) (−1.2342) (−1.2678)

St = 2 −0.0172 −0.0097 −0.0192 −0.0063
(–1.2256) (−1.2411) (−1.6027) (−0.6967)

�2

st
St = 1 0.0020*** 4.64 e−04*** 9.33 e−04*** 3.74 e−04***

(4.9637) (3.7786) (2.8121) (6.9448)
St = 2 4.54 e−05*** 1.37e−05*** 2.4117*** 1.16e−05***

(5.7429) (5.1356) (4.8599) (9.3970)

12  The hourly sampling frequency has been selected in order to minimize the effect of microstructure 
noise, see Degiannakis and Floros (2013).
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ratios based on eqs.1 and 2. A plot of the estimated intraday hedge ratios is dis-
played in Fig. 4. The hedge ratios seem to follow a smooth pattern although it is not 
possible to draw any conclusion about its stationarity from this figure. Therefore, we 
run the corresponding stationarity tests to provide new insights (Fig. 5).

Table  6 displays the unit-root tests when we consider the regime-switching 
approach and distinguish between high and low volatility regimes. The empirical 

0.7

0.8

0.9

1

1.1

1.2

1.3
Hedge ratios Intraday Germany

Fig. 5   Hedge ratios for intraday data. This figure plots the estimated HRs according to Eq. 2 using the 
intraday (hourly) returns on the spot and Future stock indices in Germany

Table 6   RS-ADF test with drift

This Table shows a variation of the ADF test in terms of the drift 
coefficient considered. It shows the estimated parameters for the RS-
ADF test presented in Eq. 4 (sample period January 2000–Deceme-
ber 2010). Standard errors have been corrected for heteroskedasticity 
(***, ** and * represents statistical significance at 1, 5 and 10% lev-
els of significance, respectively)

Hedge ratios (intraday data)

Parameters Germany

St = 1 St = 2

bst −0.0767*** −0.0112***
(0.0069) (0.0005)

a0,st 0.0780*** 0.0104***
(0.0068) (0.0005)

a1,st 0.0137 0.0027
(0.0241) (0.0046)

a2,st 0.0194 −0.0003
(0.0194) (0.0024)

a3,st 0.0504 0.0009
(0.0379) (0.0016)

�
st

0.0128*** 0.0013***
(0.0001) (1.427e−05)
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results show that we do reject the unit root for both regimes, when a switching inter-
cept is employed.

If we had found evidence in favour of unit root presence, then we should have 
obtained a more complex picture for the distributions of spot and Future returns at 
this intraday frequency. That would have implied that, looking at longer horizons, 
the spot-Future correlations would have seemed to follow a stationary process, 
although when looking at intra-day horizons, the dynamics of the spreads between 
these two mark would have followed unpredictable dynamics. Nevertheless, there 
is no such discrepancy in our findings. There is no evidence that the dynamics of 
hedge ratios vary across different sampling frequencies. There is no evidence that 
the agents driving the spread of these mark at intraday level are mainly short-term 
traders. Even if market participants have different perspectives of their investment 
horizon, this is not evident in regime-switching unit root testing. Our results sug-
gest evidence of investors prevailing at both daily and intra-day frequencies. The 
impact of the short-term traders do not affect significantly the dynamics of the hedge 
between spot and Future at the intra-day frequency.

It is also unclear how transaction costs affect rebalancing the optimal hedge posi-
tion, although it may discourage speculators in general. On the other hand, pro-
fessional speculators may employ day trading or speculation in securities. In line 
with Tse and Williams (2013) we do support that spot-Future mark need to be fully 
examined using high frequency intraday data.

6 � Conclusion

Static and dynamic models of various forms have been employed in the literature to 
calculate hedge ratios. However, there is to date no definite conclusion concerning 
stationarity of the dynamic hedge ratios. We focus on the characteristics of opti-
mal hedge ratios for the DAX30 (Germany), FTSE100 (UK), CAC40 (France), and 
IBEX35 (Spain) indices over the period 2000–2013. We estimate dynamic hedge 
ratios by a bivariate diagonal multivariate GARCH-type model and we examine sta-
tionarity of hedge ratios by employing standard econometric methods of unit root 
tests and a new state-dependent approach following the RS-ADF test.

We find that dynamic hedge ratios are stationary over time when the entire sam-
ple is considered. This result implies a stable relationship in spot-Future correlations 
that can be used by hedgers to reduce the risk in their investments. However, when 
we consider shorter horizons and distinguish between volatility states (i.e. high and 
low volatile periods), we show that the dynamic hedge ratios follow different sta-
tionary processes during periods of calm and periods of financial turmoil. These 
results support evidence in previous studies that report a greater hedging perfor-
mance of dynamic strategies using regime-switching models.

The different processes followed by the hedge ratios for volatile periods are 
associated with changes in the variances and the covariance between spot and Fut 
returns. This has important implications for hedgers. First, financial analysts and 
hedgers must determine the effect of this unexpected change in the risk on their posi-
tion. Second, they should determine the factors causing this shifted stationarity. The 
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good news for investors is that Future mark can be seen as a hedging market at any 
time or state of the market (even for the most necessary periods of market turmoil).

The results for the dynamic hedge ratios at intraday level are also in line with the 
high frequency results. There is no clear evidence that the spreads are distorted by 
short-term market participants. Our conclusion is that the role of speculators in the 
determination of intra-day spot-Future stock dynamics is not as relevant as the one 
taken by hedgers. Further research should consider structural breaks tests in both 
spot and Future returns, and examine if hedging effectiveness change when HRs are 
stationary or not.
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