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Abstract
Daily SKU demand forecasting is a challenging task as it usually involves predict-
ing irregular series that are characterized by intermittency and erraticness. This is 
particularly true when forecasting at low cross-sectional levels, such as at a store 
or warehouse level, or dealing with slow-moving items. Yet, accurate forecasts are 
necessary for supporting inventory holding and replenishment decisions. This task 
is typically addressed by utilizing well-established statistical methods, such as the 
Croston’s method and its variants. More recently, Machine Learning (ML) methods 
have been proposed as an alternative to statistical ones, but their superiority remains 
under question. This paper sheds some light in that direction by comparing the fore-
casting performance of various ML methods, trained both in a series-by-series and 
a cross-learning fashion, to that of statistical methods using a large set of real daily 
SKU demand data. Our results indicate that some ML methods do provide better 
forecasts, both in terms of accuracy and bias. Cross-learning across multiple SKUs 
has also proven to be beneficial for some of the ML methods.

Keywords Forecasting accuracy · SKU demand · Neural networks · Regression 
trees · Cross-learning

1 Introduction

Daily SKU demand data is typically characterized by irregular demand sizes (errat-
icness) and variable demand arrivals (intermittency), with many observations hav-
ing zero values. This is especially true when forecasting at low cross-sectional 
levels, such as at a store or warehouse level, or dealing with slow-moving items. 
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Thus, effectively forecasting intermittent, lumpy, erratic, and smooth demand series 
(Syntetos and Boylan 2005) becomes a challenging task, requiring different methods 
to those used for extrapolating continuous, regular data (Spithourakis et  al. 2011; 
Petropoulos et al. 2013).

However, daily demand forecasting is very common in many industrial and retail 
settings (Johnston et  al. 2003; Willemain et  al. 2004; Syntetos and Boylan 2005). 
Moreover, in many companies, such forecasting must take place for thousands of 
items and numerous locations (Seaman 2018). Given that inventory management 
and stock control builds on demand forecasting, with small gains in accuracy lead-
ing to considerable inventory reductions (Syntetos et al. 2010) and slight inaccura-
cies to higher stock holdings and lower service levels than the ones desired (Ghob-
bar and Friend 2003; Pooya et  al. 2019), accurate and computationally affordable 
demand forecasting becomes critical.

Daily demand forecasting is usually performed by utilizing well-established, 
statistical forecasting methods, such as the Simple Exponential Smoothing (SES) 
method (Brown 1959; Gardner 1985), the Croston’s method (Croston 1972), and its 
variants (Syntetos and Boylan 2005; Teunter et al. 2011; Babai et al. 2019). Given 
the success and the relatively low computational cost of these methods, researchers 
and practitioners have been working on advancing them further (Boylan and Syn-
tetos 2009; Hasni et al. 2019). However, during the last few years, Machine Learn-
ing (ML) methods, and particularly Neural Networks (NNs), have been proposed as 
an alternative to the statistical ones (Makridakis et al. 2020a). The main advantage 
of these methods is that they utilize non-linear algorithms capable of learning by 
trial and error and improving their performance over time by observing the histori-
cal data, thus making no or few assumptions about the underlying data generation 
process (Hornik et al. 1989; Barker 2020).

Nevertheless, in the area of demand forecasting, only a limited number of stud-
ies have examined the use of ML methods for forecasting SKU demand time series 
(Carmo and Rodrigues 2004; Nasiri Pour 2008; Gutierrez et al. 2008; Mukhopad-
hyay et al. 2012; Kourentzes 2013; Lolli et al. 2017; Nikolopoulos et al. 2016; Bout-
selis and McNaught 2019), with the majority of them considering only NN methods, 
a special case of ML. In addition, although most of these studies suggest methodo-
logical advances and accuracy improvements, limited objective evidence is available 
regarding their relative performance as standard forecasting tools. This is mainly 
due to the lack of sensible, statistical benchmarks and the utilization of small test 
samples. At the same time, the results of Kaggle’s recent forecasting competitions, 
involving the prediction of daily/weekly sales at product, store, and department 
level, highlight the potential of ML methods in real-life business forecasting tasks 
(Bojer and Meldgaard 2020). Thus, comparing the forecasting performance of vari-
ous ML methods to that of statistical methods becomes vital.

In such a context, Makridakis et  al. (2018) recently questioned the superiority 
of pure ML methods for the case of continuous, regular time series. In their study, 
the authors evaluated the accuracy of ten popular ML methods and eight statistical 
ones, concluding that the latter perform better. This conclusion was later supported 
by the results of the M4 competition (Makridakis et  al. 2020b) which, however, 
also revealed some novel methods that exploit ML algorithms to provide accurate 
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forecasts. What these methods had in common, was that they used information from 
multiple series to predict individual ones, that way allowing a “cross-learning” mod-
eling approach (Smyl 2020; Montero-Manso et al. 2020).

Taking the above into account, the purpose of this study is to evaluate the per-
formance of popular ML methods for daily SKU demand forecasting and compare 
their accuracy and bias with that of standard, statistical methods. This would allow 
the extraction of valuable insights regarding the appropriateness of using ML meth-
ods in this special area of forecasting. Since this work is inspired by the study of 
Makridakis et al. (2018), we consider most of the ML methods used in their study, 
but add some additional state-of-the-art algorithms, like the ones utilized in relevant 
forecasting competitions hosted by Kaggle (Bojer and Meldgaard 2020). We choose 
the statistical benchmarks so that both simple and advanced approaches available in 
the literature are covered. Our assessment is made using a large dataset that involves 
daily demand series of 3300 SKUs, sold by a major retail company in Greece.

After evaluating the performance of the examined ML methods, trained in a 
series-by-series fashion, we proceed by considering a cross-learning modeling 
approach, as done by the most successful submissions of the M4 competition. The 
motivation behind this experimentation is that if ML methods are capable of effec-
tively learning from diverse and mostly unrelated data like the one of M4, greater 
improvements could be achieved when exploiting homogeneous datasets of related 
SKUs (Makridakis et  al. 2020b). Thus, the ML models built earlier, which are 
trained in a series-by-series fashion and learn from the demand of a single SKU 
each time, are compared to the corresponding cross-learning ones, learning from 
the whole dataset concurrently. That way, valuable conclusions can be made about 
the benefits of considering cross-learning in the area of daily demand forecasting, as 
well as the types of ML methods that exploit its potential.

The contribution of our study is summarized below:

• We evaluate the performance of ML methods for the case of daily SKU demand 
forecasting, using a set of sensible statistical benchmarks, both simple and 
advanced ones.

• In our assessment, we consider a variety of ML methods and not only NNs, as 
done in the majority of the studies found in the literature.

• We explore the potential of cross-learning in daily SKU demand forecasting 
by constructing ML models that learn from the whole dataset concurrently and 
identifying those that perform better than their series-by-series equivalents.

• The improvements reported, both in terms of accuracy and bias, are tested for 
statistical significance. Moreover, they are summarized for different types of 
demand time series, indicating the most suitable options for each case. Finally, 
the trade-off between forecasting performance and computational cost is investi-
gated.

The rest of the paper is organized as follows. Section 2 provides a brief literature 
review on the ML methods used in demand forecasting and introduces the concept 
of cross-learning. Section 3 presents the methods utilized in the study, both statisti-
cal and ML ones. In Sect. 4, we present the dataset used for evaluating the methods 
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considered and provide the experimental design of the study. The results are pre-
sented and discussed in Sect. 5. Lastly, Sect. 6 concludes the study, presents its limi-
tations, and explores avenues for future research.

2  Brief literature review

As noted in the introduction, ML methods have been recently proposed as an alter-
native to statistical ones for forecasting demand data that may be characterized by 
intermittency and erraticness. In such settings, more often than not, ML methods 
are trained in a series-by-series fashion, i.e., a different model is trained per series 
using its original data as input. For example, this approach has been considered by 
Carmo and Rodrigues (2004) who compared the performance of Radial Basis Func-
tion NNs (RBF) with statistical methods using a sample of 10 irregularly spaced 
time series, reporting encouraging results. The main advantage of this strategy is 
that it allows a completely non-linear, assumption-free estimation of forecasts, let-
ting the data speak for themselves. However, in order for this kind of modelling to 
be effective in practice and capture the dynamics and inter-connections of demand 
volume and inter-demand intervals, large samples are required. This is because ML 
methods, in contrast to statistical ones, do not assume an underlying data generation 
process, making them data hungry. Thus, this approach may be proven inappropriate 
for demand series that consist of few observations, involve complex patterns, and 
include lots of zero values (Kourentzes 2013).

In order to deal with this problem, Gutierrez et  al. (2008), and later Mukho-
padhyay et al. (2012), proposed a simplified feature-based Multi-Layer Perceptron 
(MLP) model, which uses only the demand at the immediately preceding period(s) 
and the number of periods separating the last two non-zero demand transactions at 
the end of the immediately preceding period as inputs. Kourentzes (2013) discussed 
the limitations of this approach and introduced an interesting alternative which is 
based on Croston’s decomposition approach, but predicts the components of the 
demand size and inter-demand intervals simultaneously, thus allowing for more 
flexibility. This approach displayed poor forecasting performance in terms of accu-
racy and bias, but led to higher service levels than Croston’s method and its vari-
ants. Nasiri Pour (2008) introduced two other alternatives for implementing NNs in 
demand forecasting, a feature-based one, and a hybrid. The first approach follows 
the suggestions of Gutierrez et al. (2008), but expands the features used as input in 
order to maximize the information considered by the NNs. The second approach 
mixes a NN that forecasts occurrences of non-zero demands with a recursive method 
which estimates the quantity of non-zero demands. Both methods reported improve-
ments in terms of accuracy over the considered statistical benchmark. More recently, 
Lolli et  al. (2017) considered NNs trained either by back-propagation or extreme 
learning machines and compared their performance with that of benchmark neu-
ral networks and standard forecasting methods, concluding that back-propagation 
improves forecasting accuracy, although with increased computational cost. Boutse-
lis and McNaught (2019) used Bayesian Neural Networks (BNN) to forecast spares 
demand from equipment failures in a changing service logistics context, indicating 
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their superiority over expert adjusted and logistic regression forecasts, while Nikolo-
poulos et al. (2016) proposed applying nearest neighbor approaches for supply chain 
data and investigated the conditions under which these perform adequately.

By reviewing the literature we observe that, although ML has attracted the atten-
tion of a wide range of practitioners and researchers (Makridakis et al. 2018, 2020a), 
limited research has been conducted in the field of demand forecasting, focusing 
mostly on NN methods and approaches for forecasting demand in the presence of 
promotions (Ali et al. 2009; Abolghasemi et al. 2020), while ignoring other alterna-
tives that could possibly improve forecasting performance, such as Regression Trees 
(RTs), Support Vector Regression (SVR), and Gaussian processes (GP) (Bojer and 
Meldgaard 2020). This is exactly where one of the contributions of the present study 
lies, exploring additional ML methods that have been proven successful in other 
forecasting applications in the past.

Another important observation is that the majority of the methods utilized in 
the literature are trained in a series-by-series fashion. As noted, this implementa-
tion displays many limitations related to small data samples, slow convergence, and 
increased computational cost. On the other hand, recent advances in forecasting have 
shown that models that allow cross-learning, i.e., learning across many series simul-
taneously, can enhance forecasting performance, without significantly increasing the 
computational cost (Smyl 2020). For instance, the top two performing methods of 
the M4 competition (Makridakis et al. 2020b) introduced information from multiple 
series (aggregated by data frequency) in order to decide on the most effective way of 
forecasting or selecting the weights for combining the various methods considered. 
Similarly, the majority of the top performing methods in Kaggle’s forecasting com-
petitions, exploited cross-learning by employing advanced ML algorithms, like RTs 
(Bojer and Meldgaard 2020).

In the context of demand forecasting, Salinas et  al. (2020) demonstrated the 
potential of cross-learning for the case of probabilistic forecasts using autoregressive 
recurrent networks, Chapados (2014) identified a hierarchical Bayesian formulation 
that enables exchange of information across groups of related time series, Seeger 
et al. (2016) proposed a combination of generalized linear models and time series 
smoothing which is based on a non-Gaussian maximum likelihood estimation, while 
Chen and Boylan (2008) and Mohammadipour et al. (2012) introduced approaches 
for grouping the seasonal indices of various products, thus effectively capturing 
their seasonal patterns. Stimulated by the successful elements of these methods, we 
investigate the effect of cross-learning modeling in daily demand forecasting, aiming 
at capturing various dynamics of the examined dataset which are difficult to identify 
at a series level, but easier to extract at a global level by using properly designed ML 
methods. This is another contribution of the present study.

3  Methods utilized

In order to properly compare the performance of ML methods to statistical ones, 
we consider the most popular forecasting methods of each kind, as well as some of 
their variants that, according to the literature, can lead to better forecasts. For each 
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method, we first describe its elements and then explain how its parameters are deter-
mined. Note that most of the methods examined can be trained in an abundance of 
ways, resulting to different forecasts. Given that it is practically impossible to imple-
ment every single one of them, we proceed by adopting the most common ones, that 
way providing an indication of how the methods utilized could generally perform 
in practice. In this regard, we discuss where applicable other possible alternatives 
and reference relevant modifications proposed in past studies to encourage future 
research.

We should note that the classification of the forecasting methods into statistical 
and ML is not trivial (Januschowski et al. 2020). Thus, we proceed by adopting the 
same criterion considered in the study of Makridakis et al. (2018) and the M4 com-
petition, later expressed in a more formal way by Barker (2020). In brief, we con-
sider as statistical any method that prescribes the data generating process, while as 
ML any method that allows for data relationships to be learned. For example, the 
forecasting methods that build on exponential smoothing and moving averages are 
considered as being statistical, while the forecasting methods that build on non-lin-
ear regression algorithms, such as NNs and RTs, are considered as being ML.

3.1  Statistical methods

In total, we consider eleven (11) statistical methods: a naive method, a random walk 
model adjusted for seasonality, three conventional time series methods, the Cros-
ton’s method and three of its variants/modifications, as well as two temporal aggre-
gation forecasting methods.

• Naive The forecasts at time t, ŷt , are equal to the last known observation of the 
time series, y, as follows: 

 Although very simplistic in nature, Naive has been reported to produce unbiased 
results, making it a reasonable benchmark (Kourentzes 2013).

• Seasonal Naive (sNaive)  The forecasts at time t are equal to the last known 
observation of the same period, t − m , as follows: 

 where m is the frequency of the series (e.g., 12 for monthly data). Thus, in 
contrast to the Naive method, sNaive can capture possible seasonal variations. 
Although demand time series do not usually display strong seasonality at low 
cross-sectional and temporal levels, it is still worth investigating this possibility. 
Note that even if the examined dataset is found to consist of non-seasonal series, 
the opposite can be true for other datasets, especially when the demand is aggre-
gated at high temporal levels (e.g. monthly and quarterly data).

• Simple Exponential Smoothing (SES)  The simplest exponential smoothing 
model, aimed at predicting series without a trend (Gardner 1985). Since SES 
is applied to the original data directly, potentially involving periods of zero 

(1)ŷt = yt−1.

(2)ŷt = yt−m,
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demand, its performance is expected to deteriorate for series displaying intermit-
tent demand. Yet, it is commonly used in practice (Gardner 2006; Rostami-Tabar 
et al. 2013). Forecasts are calculated using weighted averages that decrease expo-
nentially across time, specified through the smoothing parameter a as follows: 

 Typically, in an intermittent demand context, low smoothing constant values are 
recommended in the literature (Syntetos and Boylan 2005; Teunter and Duncan 
2009), with a ranging from 0.1 to 0.3. We selected the optimal value from this 
range by minimizing the in-sample mean squared error (MSE) of the model and 
initialized it using the first observation of the series. Note that other initializa-
tions (e.g., the mean of the series) and ranges for the smoothing parameter (e.g., 
0 to 1) were also considered based on suggestions of past studies investigating 
the optimization and selection of demand forecasting models (Eaves and King-
sman 2004; Boylan et  al. 2008; Teunter et  al. 2010; Petropoulos et  al. 2013; 
Kourentzes 2014). However, the differences reported in terms of forecasting 
accuracy and bias in the examined dataset were negligible and, therefore, we did 
not consider them any further for reasons of brevity.

  Note also that since the examined dataset involves a lot of products that are not 
intermittent, or have low intermittency, in addition to SES we considered ETS 
(Hyndman et  al. 2002), a standard method for automatically forecasting con-
tinuous, regular data using exponential smoothing models. However, our results 
suggested that ETS had a similar performance with SES, while also being more 
computationally expensive. Therefore, ETS was not consider any further. This 
can be possibly attributed to the particular characteristics of the examined series, 
which do not display significant seasonality and trend.

• Moving Averages (MA) Moving averages are also used often in practice to fore-
cast demand (Syntetos and Boylan 2005). Forecasts are computed by averaging 
the last k observations of the series as follows: 

 In this study, the order of the MA ranges between 2 and 5 and is specified by 
minimizing the in-sample MSE of the method. In addition, we consider the 
approach proposed by Svetunkov and Petropoulos (2018), to be named MA-opt, 
for automatically selecting the optimal order of MA using information criteria.

• Croston’s method (CRO) Croston (1972), and later Rao (1973), proposed fore-
casting demand time series by separating them into two components and extrap-
olating them individually: the non-zero demand size, zt , and the inter-demand 
intervals, pt . The forecasts are given as follows 

(3)ŷt = ayt + (1 − a)ŷt−1.

(4)
ŷt =

k∑

i=1

yt−i

k

(5)ŷt =
ẑt

p̂t
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 and are updated only when demand occurs. Both zt and pt are forecasted by 
SES, originally using a smoothing parameter of 0.1 and an initial value equal to 
the first observation of each series. Croston’s method is regarded as the standard 
method for forecasting intermittent demand, specifying what the mean demand 
will be for every future period.

• Syntetos–Boylan Approximation (SBA) Syntetos and Boylan (2005) showed that 
Croston’s method is biased. The bias of the method depends on the value of the 
parameter a used for smoothing the inter-demand intervals. In this regard, they 
proposed a variant of the Croston’s method that utilizes a debiasing factor as fol-
lows: 

 As done for the Croston’s method, a is set equal to 0.1 and the first observations 
of zt and pt are used for initialization.

• Shale–Boylan–Johnston Approximation (SBJA)  Shale et  al. (2006) proposed 
another modification to Croston’s method for generating unbiased forecasts when 
the arrival of orders follows a Poisson process, yielding the correction factor 
when employing either MA or SES. In the first case, the debiasing factor is equal 
to (k − 1)∕k , while in the second 1 − a∕(2 − a) . Our experiments showed that the 
differences between SBJA and SBA were negligible for the case of SES and, 
therefore, we decided to report just the ones of the MA for reasons of brevity.

• Teunter–Syntetos–Babai method (TSB) Teunter et al. (2011) reported that Cros-
ton’s method is inappropriate for dealing with obsolescence issues, mainly due 
to its updating which occurs only in non-zero demand periods. In this respect, 
they proposed a modification to Croston’s method that replaces the inter-demand 
intervals component with the demand probability, dt , being 1 if demand occurs at 
time t and 0 otherwise. Similarly to Croston’s method, dt is forecasted using SES. 
The forecasts are given as follows 

• Aggregate–Disaggregate Intermittent Demand Approach (ADIDA)  Nikolopou-
los et  al. (2011) proposed the utilization of temporal aggregation for reducing 
the presence of zero observations, that way mitigating the undesirable effect of 
the variance observed in the intervals. In this respect, ADIDA uses equally sized 
time buckets to perform non-overlapping temporal aggregation and predict the 
demand over a pre-specified lead time. Various methods can be used for deter-
mining the time bucket and extrapolating the aggregated series. In this study we 
set the time bucket equal to the mean inter-demand interval (Petropoulos and 
Kourentzes 2015) and use SES to obtain the forecasts.

• Intermittent Multiple Aggregation Prediction Algorithm (iMAPA) This method, pro-
posed by Petropoulos and Kourentzes (2015), is another way for implementing tem-
poral aggregation in demand forecasting. However, in contrast to ADIDA, consider-
ing a single aggregation level, iMAPA considers multiple ones, aiming at capturing 
different dynamics of the data (Kourentzes et al. 2014b). Thus, iMAPA proceeds by 

(6)ŷt =
(
1 −

a

2

) ẑt

p̂t
.

(7)ŷt = d̂tẑt
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averaging the derived point forecasts at each temporal level, generated in this study 
by SES. The maximum aggregation level is set equal to the maximum inter-demand 
interval. Note that the default implementation of iMAPA involves selecting between 
the Croston’s method, SBA, and SES, depending on the intermittency and the errat-
icness of the examined series. We decided not to consider this implementation in 
order for the results of SES, ADIDA (temporal aggregation), and iMAPA (multiple 
temporal aggregation) to be directly comparable. However, such an approach could 
improve forecasting performance.

3.2  Machine Learning methods

In total, we consider seven ML methods: two different implementations of NNs, 
namely a Multi-Layer Perceptron (MLP) and a Bayesian Neural Network (BNN), two 
different implementations of Regression Trees (RTs), namely a Random Forest (RF) 
and a Gradient Boosting Tree (GBT), k-Nearest Neighbour Regression (kNNR), Sup-
port Vector Regression (SVR), and Gaussian Processes (GPs).

All methods were trained using the standard approach of constant size, rolling input 
and output windows (Smyl 2020). That way, the same set of observations used for fit-
ting the statistical models is also utilized for training the ML ones. Since the examined 
dataset involves daily demand data, spanning from Monday to Saturday, the size of the 
input window, xi , is set equal to ni × 6 , with ni being selected between 1, 2, 3, and 4, in 
order for the input vector to cover ni full seasonal periods but avoid unnecessary com-
plexity that larger vectors would have introduced to the training process. The size of the 
output window, xo , is set equal to one for three reasons: First, to keep the methods as 
simple as possible and reduce computational time (Mukhopadhyay et al. 2012), second, 
to allow computations even for short time series that are common in demand forecast-
ing settings (Lolli et al. 2017), and third, to ensure that the forecasts produced by both 
ML and statistical methods are directly comparable. In this regard, as done with all 
statistical methods and proposed for the case of NNs (Kourentzes 2013), the produced 
one-step-ahead forecasts are used for predicting all h-step-ahead periods, where h is the 
forecasting horizon. The “optimal” values of the hyper-parameters of the examined ML 
methods are determined by performing a grid search on a validation set and using the 
Root Mean Squared Scaled Error (RMSSE) (Makridakis et al. 2020c) as an optimiza-
tion criterion (for more details see Sect. 4.2).

Due to the nonlinear activation functions used by the ML algorithms, the data are 
scaled before training between 0 and 1 to avoid computational problems, meet algo-
rithm requirement, and facilitate faster learning (Zhang et al. 1998). The linear transfor-
mation, y′ , is as follows:

where ymin and ymax denote the minimum and maximum value of the training sam-
ple, respectively. The reverse transformation can be used to re-scale the forecasts 
and obtain the final predictions of each method.

(8)y�
t
=

yt − ymin

ymax − ymin
,
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• Multi-Layer Perceptron (MLP) We constructed a single hidden layer NN using 
the RSNNS R statistical package (Bergmeir and Benítez 2012). The NN con-
sisted of xi input nodes and nh × xi hidden nodes (size), with nh being selected 
between 1, 2 and 3, following the practical guidelines of Lippmann (1987) aimed 
at decreasing the computational time needed for constructing the model (Zhang 
et  al. 1998). We considered the standard backpropagation, Scaled Conjugate 
Gradient (SCG), and weight decay backpropagation (Møller 1993) for estimating 
the weights of the network (learnFunc), which were initialized randomly. The 
learning rate was automatically selected between 0.1 and 1, while the maximum 
iterations (maxit) were selected between 100, 250, 500, and 1000. The activa-
tion function of the hidden layer (hiddenActFunc) was the logistic one, while 
the activation function of the output layer (linOut) was either the logistic or 
the linear one. In total, 5 MLPs were trained and the median operator was used 
to average the individual forecasts in order to mitigate possible variations due to 
poor weight initializations (Kourentzes et al. 2014a).

• Bayesian Neural Network (BNN) BNN is similar to the MLP but optimizes the 
weights according to the Bayesian concept assuming some a priori distributions 
of errors. The NN was constructed based on the suggestions provided by Mac-
Kay (1992) and Dan Foresee and Hagan (1997) and was implemented using the 
brnn R statistical package (Rodriguez and Gianola 2018). The Nguyen and Wid-
row algorithm (Nguyen and Widrow 1990) was used to assign initial weights and 
the Gauss–Newton algorithm to perform the optimization, with the � value used 
for controlling the optimization process being selected between 0.001, 0.01, and 
0.1. The size of the hidden layers (neurons) and the number of the training 
epochs (epochs) were the same with those considered for MLP. Accordingly, 
an ensemble (median) of 5 BNNs was constructed for producing the final fore-
casts.

• Random Forest (RF)  RF is a combination of RTs, each one depending on the 
values of a random vector sampled independently and with the same distribu-
tion (Breiman 2001). The accuracy of the method depends on the size of the 
forest, as well as the strength and correlation of the individual trees. Given that 
RF averages the predictions of multiple RTs, it is more robust to noise and less 
likely to over-fit on the training data. We implemented RF using the randomFor-
est R statistical package (Liaw and Wiener 2002). The number of non-pruned 
trees (ntree) was selected between 100, 250, 500, and 1000. The minimum 
size of terminal nodes (nodesize) was selected between 5, 10, 100, and 500. 
The number of variables randomly sampled as candidates at each split (mtry) 
was selected between xi∕2 , xi∕3 , xi∕5 , and xi∕10 . Bootstrap sampling was done 
with replacement.

• Gradient Boosting Trees (GBT) GBT has principles similar to those of RF, but 
instead of generating multiple independent trees, it builds one tree at a time, 
each new tree correcting the errors made by the previously trained one (Freund 
and Schapire 1997). Since GBT considers more complex data dynamics than 
RT, it is expected to provide more accurate forecasts (Friedman 2002). How-
ever, in contrast to RF, GBT is still susceptible to over-fitting, especially when 
the data is noisy. We implemented GBT using the gbm R statistical package 
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(Greenwell et al. 2019). To allow for slow learning and better generalization, 
we selected the learning rate (shrinkage) between 0.001, 0.01, and 0.1, and 
the maximum tree depth between 1, 2, 4, 8, and 16. The total number of trees 
considered (n.trees) was selected between 100, 250, 500, and 1000. The 
distribution used to fit the model (distribution) was either the Gaussian 
or the Laplace one.

• K-Nearest Neighbor Regression (KNNR) KNNR is a similarity-based method, 
generating forecasts according to the Euclidean distance computed between 
the points used for training and testing. Given xi points as inputs, the method 
picks the closest k points of the training sample to them and then sets the 
prediction equal to the average of their corresponding target values. We imple-
mented the method using the caret R statistical package (Kuhn 2018). k was 
selected between 3 and 99 with a step of 3.

• Support Vector Regression (SVR) SVR generates forecasts by identifying the 
hyperplane that maximizes the margin between two classes and minimizes the 
total error under tolerance (Schölkopf and Smola 2001). In order to reduce 
complexity and accelerate computations, we considered �-regression which 
constructs few support vectors with respect to the total number of samples in 
the dataset. We implemented the method using the e1071 R statistical package 
(Meyer et  al. 2019). The kernel used for training and predicting (kernel) 
was selected between the linear, polynomial, radial basis, and sigmoid ones. 
The tolerance of termination criterion (tolerance) was selected between 
0.001, 0.01, and 0.1, while the � value (nu) ranged between 0.3 and 0.7.

• Gaussian Processes (GP)  GP associates the dependent variable with multi-
ple normally distributed random variables so that their combination replicates 
the target as much as possible (Rasmussen and Williams 2006). The combina-
tion is based on the similarity of the points and is performed using a kernel 
function. The method was implemented using the kernlab R statistical pack-
age (Karatzoglou et al. 2004). We considered various kernel functions (ker-
nel) for training and predicting (radial basis, polynomial, linear, hyperbolic 
tangent, Laplacian, Bessel, and ANOVA radial basis), with their parameters 
being automatically selected. The initial noise variance (var) was selected 
between 0.001, 0.01, and 0.1.

In addition to the ML methods described above, trained in a series-by-series fash-
ion, we also examine their cross-learning counter-parts, as discussed in Sect. 2, 
implemented as follows:

• Each time series is individually scaled from 0 to 1 according to the transfor-
mation of Eq. 8.

• For each series we create the corresponding constant size input and output 
windows. Then, for each series we randomly select 3 instances and use them 
to build the training sample of the model. We do not consider every possible 
rolling window as done for the models trained in a series-by-series fashion 
since, by doing so, the time required for training would have increased sub-
stantially.
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• The examined ML method is trained using as input the windows created ear-
lier for the complete dataset. The settings and hyper-parameters are selected as 
described in Sect. 3.2.

• For each series we generate h-step-ahead forecasts by providing the ML method 
trained previously with its last xi observations (respective input window).

• The forecasts are re-scaled using the inverse transformation formula.

Since the literature in demand forecasting suggests the utilization of time series fea-
tures as regressor variables in ML forecasting methods (Gutierrez et al. 2008; Nasiri 
Pour 2008), a suggestion verified recently through the results of the M4 competition 
for the case of continuous, conventional series (Montero-Manso et al. 2020), we also 
consider including two features as input to our cross-learning models in addition 
to the xi historical observations described earlier. These features are the coefficient 
of variation of non-zero demands (CV2) and the average number of time periods 
between two successive non-zero demands (ADI), as proposed by Syntetos and Boy-
lan (2005). The assumption made by this approach is that the series that display 
similarities, either in terms of intermittency or erraticness, will require a similar 
processing from the forecasting model used (Petropoulos et al. 2014; Spiliotis et al. 
2020). Thus, the incorporation of these variables could enhance cross-learning and 
facilitate pattern recognition for series that display different characteristics. Note 
that CV2 has been examined by Abolghasemi et al. (2020), concluding that different 
models are appropriate for series displaying different coefficients of variation. The 
length of the series was also considered as a potentially useful feature (Petropoulos 
et al. 2014). However, since the inclusion of time series length led to slightly worse 
results, we decided to exclude it from the analysis. The fact that the examined data-
set involves series of mostly the same lengths may justify this last finding.

4  Empirical evaluation

4.1  Dataset

The eighteen (18) methods described in Sect.  3 are evaluated on 3300 real time 
series of various consumption goods sold by a major retailer in the region of Attica, 
Greece, including cheese and dairy products, meat, fruit, sweets, pasta and rice, 
meals and snacks, frozen goods, wine, coffee, beverages and non-alcoholic drinks, 
self-care items, cleaning equipment, and other. Each series represents the daily 
demand of an SKU, spanning from Monday to Saturday. The dataset covers a full 
calendar year of demand (2017), but the length of the series varies from 175 to 311 
days, depending on the time each product was introduced to the market. The vast 
majority of the series included more than 280 observations.

Following the suggestions of Syntetos and Boylan (2005), for each series we first 
compute the CV2 (squared coefficient of variation of the demand when it occurs) and 
ADI (average inter-demand interval) values, and then use the thresholds proposed 
by Syntetos et al. (2005) to categorize them (0.5 and 4/3, respectively). CV2 repre-
sents demand size erraticness, while ADI intermittency, thus allowing an intuitive 
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categorization of the data. Figure 1 presents the 3300 series in a CV2-ADI scatter-
plot. In total, the dataset includes 240 intermittent, 470 lumpy, 1326 erratic, and 
1264 smooth series. Note that a considerable amount of series implies limited inter-
mittency (about 78%), mainly due to the high geographical level where the demand 
is reported and the nature of the dataset which involves many fast-moving, essen-
tial consumption goods. On the other hand, many series of extreme erraticness exist 
(about 54%), making their extrapolation a challenging task. Figure 2 provides four 
representative examples of the time series in the dataset, one for each category.

At this point we should note that the particular characteristics of the examined 
dataset may significantly affect the conclusions drawn in the present study. As noted, 
most of the series are non-seasonal, display low intermittency, and cover a single 
calendar year. As a result, methods that are capable of capturing seasonality (at 
weekly and/or yearly level) and dealing with intermittency, may not display their 
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Fig. 1  Demand classification of series based on their intermittency (ADI) and erraticness ( CV2 ). The 
graph on the top presents the 3300 series of the dataset in a ADI-CV2 scatter-plot, while the graph at the 
bottom the population of the four discrete categories. In total, the dataset includes 240 intermittent, 470 
lumpy, 1326 erratic, and 1264 smooth series
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complete potential. In addition, given that the dataset does not include explanatory 
variables (e.g., product prices, promotions, and weather conditions) and informa-
tion about the hierarchy of the products, cross-learning methods will omit useful 
information that could be used to facilitate learning and enhance their forecasting 
performance.

4.2  Experimental design

Typically, daily SKU demand data, like the one examined in the present case-study, 
do not display strong seasonal patterns. However, seasonal effects, changing the 
level of the demand, may become evident across the year, e.g. for different months, 
seasons or quarters. In order to properly evaluate the performance of the methods 
utilized, we proceed by assessing their accuracy and bias in four different periods 
across the year. To do so, we consider a forecasting horizon of four weeks (24-step-
ahead forecasts) and generate our first forecasts in the middle of September to 
predict the demand for the following 24 working days. Then, we reveal the actual 
demand of the forecasted period and repeat this experiment to forecast the following 
four weeks and so on till the end of the calendar year. This is equivalent to a rolling-
origin evaluation of a window of 24 (Tashman 2000). The forecasting horizon was 
determined based on the lead time adopted by the company, being also similar to 
the one considered recently in the M5 forecasting competition whose aim is to accu-
rately predict the daily units sales of 3049 products sold by Walmart in ten of its US 
stores (Makridakis et al. 2020c).

Note that the values of the hyper-parameters of the examined ML methods 
were determined by performing a grid search on a validation set which consisted 
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smooth, and an erratic demand time series is presented
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of the last 24 observations of the first training sample of the experiment. The val-
ues of the hyper-parameters were specified as described in Sect. 3.2.

Measuring forecasting performance for multiple demand time series that may 
involve zeroes is not trivial (Davydenko and Fildes 2013). Although standard 
error measures, like the Mean Absolute Error (MAE), can effectively measure 
forecasting accuracy for each series separately, they fail to summarize results 
across multiple series given that they are scale dependent. Percentage errors, like 
the Mean Absolute Percentage Error (MAPE), deal with this problem in an intui-
tive way, but are inappropriate for intermittent demand data due to the zero values 
present. Finally, relative errors, like the Geometric Mean Relative Absolute Error 
(GMRAE), although intuitive, depend on the computation of a benchmark model 
(Fildes 1992). Given the nature of the series, involving only integer demand val-
ues, it is possible for the benchmark to achieve zero error, making the estimation 
of a geometric mean impossible.

Taking the above into consideration, we proceed by assessing the performance 
of the methods utilized both in terms of accuracy and bias, using the Root Mean 
Squared Scaled Error (RMSSE) and the Absolute Mean Scaled Error (AMSE), 
respectively, as follows:

Both measures are variants of the Mean Absolute Scaled Error (MASE), proposed 
by Hyndman and Koehler (2006), which is widely accepted in the forecasting lit-
erature (Franses 2016). RMSSE is a scaled version of the root mean squared error, 
while AMSE of the mean error, with their scaling being the forecast error of the 
Naive method. Lower RMSSE and AMSE values are better. Makridakis et  al. 
(2020c) also use RMSSE to evaluate the point forecasts of the submitting entries for 
the M5 forecasting competition.

Note that squared error is preferred over absolute error for measuring forecast-
ing accuracy, as the former measure is minimised by the mean demand value, 
while the latter by the median (Schwertman et  al. 1990). This is critical as the 
examined series involve a lot of zero values, meaning that minimizing the error 
by the median would possibly lead to undershooting the demand (Kolassa 2016). 
Moreover, optimizing MSE leads to less biased forecasts.

The results of the empirical evaluation are summarized by averag-
ing the RMSSE and AMSE values computed per series and assess-
ment period. Thus, each method is evaluated using a sample of 
3300 series × 4 assessment periods × 24 days = 316,800 point forecasts.
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����
�1

h

∑n+h

t=n+1
(yt − ŷt)
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5  Results and discussion

Table 1 presents the performance of the eleven (11) statistical methods considered 
in the case-study, along with that of the seven (7) ML methods, trained in a series-
by-series fashion. The results are summarized for the RMSSE and AMSE measures 
separately to evaluate the different methods both in terms of bias and accuracy. The 
fourth and fifth columns of the table display the ranks of the methods per meas-
ure, while the following two columns their percentage improvement, if any, over 
the Croston’s method. The last column reports the computational time (seconds) 
required for predicting all 3300 series using a server of the following characteristics: 
8 cores, 16 GB RAM, 500 GB, HDD, Windows 10.

Observe that according to Table 1, the top-four performing methods in terms of 
AMSE and RMSSE are ML ones, namely the GPT, RF, SVR, and the KNNR. More-
over, GP is outperformed only by SBA, followed by CRO. On the contrary, the two 
NN methods are outperformed by the statistical ones, although not by all of them. 

Table 1  Average performance of the statistical and ML methods (trained in a series-by-series fashion) 
considered in terms of bias (AMSE) and accuracy (RMSSE) for the complete dataset of 3300 series

The ranks and the percentage improvements of the methods over the Croston’s method are also reported 
per measure. The computational time required in seconds for predicting all 3300 series is also provided

Method Performance Rank % Improvement over 
Croston

Computa-
tional time 
(s)

AMSE RMSSE AMSE RMSSE AMSE RMSSE

Statistical methods
Naive 1.141 1.236 18 17 −  47.7 −  14.5 0.40
sNaive 1.047 1.457 16 18 −  35.5 −  34.9 0.65
SES 0.881 1.127 14 13 −  14.1 −  4.4 67.55
MA 1.065 1.200 17 16 −  37.9 −  11.1 70.35
MA-opt 0.877 1.132 12 14 −  13.5 −  4.8 6995.34
CRO 0.773 1.080 7 7 0.0 0.0 14.30
SBA 0.757 1.069 5 5 2.1 1.0 14.25
SBJA 1.022 1.174 15 15 −  32.3 −  8.7 92.08
TSB 0.867 1.122 11 11 −  12.2 −  3.9 265.08
ADIDA 0.817 1.101 8 9 −  5.7 −  1.9 58.86
iMAPA 0.843 1.111 10 10 −  9.1 −  2.9 133.07
ML methods (series-by-series)
MLP 0.817 1.095 9 8 −  5.8 −  1.4 1026.27
BNN 0.877 1.123 13 12 −  13.6 −  4.0 19328.62
RF 0.660 1.033 2 2 14.6 4.4 489.81
GBT 0.648 1.026 1 1 16.1 5.0 131.63
KNNR 0.684 1.036 4 4 11.5 4.1 21.58
SVR 0.670 1.036 3 3 13.3 4.1 90.86
GP 0.760 1.073 6 6 1.7 0.7 234.17
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This finding indicates that particular ML methods are capable of producing less 
biased and more accurate forecasts than well-established, statistical ones, confirm-
ing the great potential of the former and illustrating a fertile area for future research 
that focuses on various ML methods other than the NN ones typically examined in 
the literature.

Note also that the results are consistent across the two measures used, meaning 
that the more accurate methods tend to be less biased too. On the other hand, the 
improvements reported for the two measures over CRO do differ in terms of mar-
gin. For example, GBT, the best-performing method of Table 1, improves forecast-
ing accuracy by 5%, but reduces the bias by more than 16%. Accordingly, the top-
four performing ML methods are found to improve RMSSE on average by 4.4% and 
AMSE by 14%. Given that bias is usually more important than accuracy in inven-
tory control settings (Kourentzes 2013), the potential benefits of utilizing such ML 
forecasting methods could be substantial.

Our results confirm among others the superiority of the advanced statistical meth-
ods over the standard ones, exactly as reported in the literature. For example, SBA 
performs better than CRO, while MA-opt and SBJA better than MA. In addition, the 
two methods that consider temporal aggregation are among the most accurate and 
unbiased statistical forecasting methods. Finally, it is verified that conventional time 
series methods like SES, MA, Naive, and sNaive are inappropriate for predicting 
irregular demand data.

Table 2 summarizes the performance of the ML methods when trained in cross-
learning fashion instead of a series-by-series one. As described in Sect. 3.2, two dif-
ferent implementations of cross-learning modelling are considered. In the first case, 
D, the historical observations are used for training the model, while in the second, 
F, two features (CV2 and ADI) are used in compliance to the historical observations 
to facilitate learning. For each method and modelling approach, percentage improve-
ments are reported both over the Croston’s method and its corresponding series-by-
series implementation.

Observe that in all cases apart from the NNs, cross-learning leads to less accurate 
and more biased forecasts than the series-by-series modeling approach. However, 
the accuracy of MLP and BNN methods is improved by about 3% and 5%, respec-
tively. Similarly, the bias of the MLP and the BNN methods is improved by about 
7% and 14%, respectively. Observe also that the improvements are greater when fea-
tures are used as regressor variables, making the two NN methods outperform the 
Croston’s method, which was not previously the case.

Our results suggest that extracting information from multiple series to forecast the 
individual ones is a beneficial strategy for NNs, although an inappropriate one for 
other types of ML methods, such as support vector machines and RTs. This can be 
attributed to the particularities of the ML methods used, their learning capacity, and 
complexity. For example, NNs are complicated in nature and require the estimation 
of numerous weights. When data is limited, the values of these weights cannot be 
properly estimated and, therefore, cross-learning becomes beneficial. On the other 
hand, RTs and KNNR are robust to over-fitting and good at dealing with sparse, 
noisy data. Thus, we conclude that although cross-learning displays some potential, 
its benefits are more likely to be leveraged by particular types of ML methods.
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Regarding the trade-off between forecasting performance and computational cost, 
Table 1 suggests that the average computational time of the statistical and ML meth-
ods is about 12 min and 51 min, respectively. Our results indicate that when ML 
methods are trained in a series-by-series fashion, a significant cost must be paid to 
improve forecasting performance, even to a small extent. Taking into consideration 
that fast, sub-optimal forecasts may sometimes be preferable to slow, “optimal” ones 
(Nikolopoulos and Petropoulos 2018), we argue that companies and organizations 
should carefully design their forecasting processes by quantifying monetary sav-
ings as a result of sub-optimal solutions. Nevertheless, according to Table  2, the 
average computational time of the cross-leaning ML methods drops to about 4 min, 
i.e., becomes less than the one of the statistical methods. Given that cross-learning 
methods were found to perform better or similarly well with their series-by-series 
counterparts, we conclude that cross-learning can effectively improve forecasting 
performance, while also reducing computational costs. This finding supports the 
exploitation of cross-learning approaches and highlights their potential, especially 
in the big data era.

At this point we should note that the results reported in Tables  1 and 2 focus 
on the average performance of the examined methods, meaning that different meth-
ods could possibly be appropriate for series of different characteristics. Moreover, 
they do not provide any indication as to whether the achieved improvements by the 

Table 2  Comparison of ML methods trained in a series-by-series (SbS) fashion to those utilizing cross-
learning (CL), either by using historical data alone (D) or additional time series features as regressor 
variables (F)

The comparison is done in terms of bias (AMSE) and accuracy (RMSSE) for the complete dataset of 
3300 series. The percentage improvements of the cross-learning methods over the Croston’s method, as 
well as their series-by-series equivalents, are reported per measure. The computational time required in 
seconds for predicting all 3300 series is also provided

Method Modelling 
approach

Performance % Improvement of 
CL over SbS

% Improvement 
over Croston

Computa-
tional time 
(s)

AMSE RMSSE AMSE RMSSE AMSE RMSSE

MLP D 0.778 1.076 4.8 1.8 −  0.6 0.4 389.89
F 0.760 1.067 7.0 2.5 1.7 1.2 541.98

BNN D 0.775 1.077 11.7 4.1 −  0.3 0.3 478.10
F 0.751 1.066 14.4 5.1 2.8 1.3 1699.40

RF D 0.706 1.048 −  7.1 −  1.5 8.6 2.9 64.30
F 0.681 1.037 −  3.2 −  0.5 11.9 4.0 53.33

GBT D 0.719 1.046 −  10.9 −  1.9 7.0 3.2 34.69
F 0.716 1.052 −  10.5 −  2.5 7.3 2.6 34.91

KNNR D 0.726 1.052 −  6.2 −  1.6 6.0 2.6 27.40
F 0.730 1.055 −  6.7 −  1.8 5.6 2.4 27.77

SVR D 0.765 1.070 −  14.2 −  3.3 1.0 0.9 33.41
F 0.748 1.059 −  11.7 −  2.3 3.1 1.9 32.14

GP D 0.795 1.082 −  4.6 −  0.8 −  2.9 −  0.2 53.71
F 0.798 1.083 −  5.1 −  0.9 −  3.3 −  0.2 53.32



3055

1 3

Comparison of statistical and machine learning methods for…

ML methods are statistically significant. In this respect, we apply the Multiple Com-
parisons with the Best (MCB) test that compares whether the average ranking of a 
forecasting method is significantly different than the others (Koning et al. 2005). If 
the confidence intervals of two methods overlap, their ranked performances are not 
statistically different, and vice versa. We perform such a test both for the AMSE and 
the RMSSE measures, considering the whole dataset or subsets of it based on the 
categorization of the series into intermittent, lumpy, smooth, and erratic. The best 
implementation of each ML method is considered for the analysis.

Figure 3 presents the results of the MCB test for the complete dataset of 3300 
series for each performance measure separately. Observe that RF and GBT perform 
significantly better than the rest of the forecasting methods examined, both in terms 
of AMSE and RMSSE, being the top-ranked ones, exactly as suggested by Table 1. 
RF and GBT are followed by the remaining five ML methods, outperforming all 
the statistical benchmarks considered, apart from SBA which is ranked 7th. Observe 
also that the MCB ranks of the examined forecasting methods are the same across 
the two measures and in alignment with those reported in Tables 1 and 2. In this 
regard, it is confirmed that the results and the conclusions drawn earlier are statisti-
cally significant.

Interesting conclusions can also be made when examining the results of the 
MCB test per time series categories. The results are presented in Figs. 4 and 5 for 
the case of the RMSSE and the AMSE measures, respectively. We observe that 
the intermittency plays a pivotal role in the performance of the forecasting meth-
ods used, with SBA, a statistical method, not being statistically different than the 
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Fig. 3  MCB significance tests for the statistical and the cross-learning ML forecasting methods consid-
ered. The results are presented for the complete dataset of 3300 time series, both in terms of accuracy 
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top-performing ML ones for the case of intermittent and lumpy series. On the 
contrary, when intermittency is limited, ML methods, and particularly the RT-
based ones, are significantly better. Thus, we conclude that although ML methods 
are more appropriate for predicting daily SKU demand, some statistical methods 
may perform similar for intermittent and lumpy series.
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ered. The results are presented for intermittent, lumpy, smooth, and erratic demand series separately. The 
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6  Conclusions

ML has been proven to be an effective solution for improving the performance of 
statistical forecasting methods in continuous, regular time series forecasting. How-
ever, limited research has been conducted in the area of demand forecasting, with 
studies comparing ML approaches with statistical ones being inconclusive with 
regards to the superiority of the one over the other. Furthermore, most of the studies 
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have focused on the utilization of NNs, a special type of ML methods, thus ignor-
ing the potential advantages of other alternatives. Limited test samples and a lack 
of a sensible benchmark further restrain the extraction of reliable and generalized 
conclusions.

This study has shed some light on this area of research by (1) evaluating the per-
formance of ML methods for the case of daily SKU demand forecasting using a 
set of sensible statistical benchmarks, both simple and advanced ones, (2) consider-
ing a variety of ML methods and not just NNs, (3) exploring the potential of cross-
learning that enables modeling across multiple series, and (4) identifying the most 
suitable forecasting methods for different types of series in terms of intermittency 
and erraticness.

Our results show that ML methods can provide significantly less biased and 
more accurate forecasts than well-established, statistical methods, like the Croston’s 
method and its variants. In addition, it is shown that cross-learning can improve 
the forecasting performance of NNs, trained in a series-by-series fashion, that way 
outperforming standard statistical benchmarks. This is particularly true when time 
series features are used in addition to historical data to train the networks. However, 
cross-learning had a negative impact for the rest of the ML methods examined, indi-
cating that different modeling approaches should be used based on the particularities 
of the forecasting method. Moreover, training ML methods in a cross-learning fash-
ion can lead to reduced computational costs.

Although this study supports the utilization of ML methods in demand fore-
casting and proposes some ways for improving their performance, some questions 
remain unanswered. For example, it is still unclear why some ML models, trained 
in a series-by-series fashion, perform better than others and why particular types of 
ML methods are more effective in applying cross-learning. Moreover, since inter-
mittency and erraticness seem to affect to some extent the performance of the fore-
casting methods, it would be interesting to further investigate their response when 
the values of these two features vary. In addition, given that this study explores 
only two basic time series features to facilitate cross-learning and assist the meth-
ods to identify series of similar characteristics, it would be reasonable to examine 
additional, explanatory features, such as data autocorrelation and normality. Other 
limitations of the present study refer to the particular characteristics of the exam-
ined dataset: Most of the series were non-seasonal, displayed low intermittency, 
and covered a single calendar year. Explanatory variables and information about the 
hierarchy of the products, which could be used to enhance cross-learning, was also 
missing. Thus, future research could expand this analysis for richer datasets, investi-
gating further the benefits of cross-learning methods.
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