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Abstract
In this paper, a transportation problem (TP) with fuzzy costs in the presence of 
multiple and conflicting objectives is investigated. In fact, a fuzzy data envelop-
ment analysis (DEA) approach is proposed to solve the fuzzy multi-objective TP 
(FMOTP). To this end, each arc in FMOTP will be considered as a decision-mak-
ing unit (DMU). Next, those objective functions that needs to be maximized will 
be used to define the outputs of DMU and those that needs to be minimized will 
be used to define the inputs of DMU. Consequently, two different fuzzy efficiency 
scores will be derived for each arc by solving fuzzy DEA models. So, a unique fuzzy 
attribute will be defined for each arc by combining the resulting fuzzy efficiency 
scores. Therefore, the FMOTP will be converted into a single objective fuzzy TP 
that can be solved using the standard algorithms. Finally, using a numerical example 
the proposed approach has been illustrated.

Keywords  Fuzzy multi-objective transportation problem · Data envelopment 
analysis · Fuzzy arithmetic

1  Introduction

The transportation problem (TP) is one of the important topics in the context of 
operations research which is a specific case of linear programming (LP) prob-
lems. The central concept in TP is to determine the minimum total transporta-
tion cost of a commodity to satisfy the demand at destinations using the available 
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supply at the origins (Ebrahimnejad 2014; Alexiou and Katsavounis 2019; Ebra-
himnejad 2016). In a standard TP, in the problem formulation only the cost or 
profit from each origin to each destination is considered. For example, Ebrahim-
nejad and Verdegay (2018) investigated a TP which utilizes uncertainty as well 
as hesitation in predicting the transportation cost, availabilities and demands of 
products. Additionally, Kundu et  al. (2014b) formulated and solved two fixed 
charge transportation problems with type-2 fuzzy parameters. However, in many 
real-world transportation problems, there are situations where several objectives 
are to be considered and optimized at the same time. Such problems are called 
multi-objective transportation problems (MOTPs). In fact, the MOTP deals with 
the distribution of goods considering several objectives, such as transportation 
cost, delivery time and quantity of goods delivered, simultaneously.

Intensive investigations on MOTP have been made by researchers (Amir-
teimoori 2011; Li and Lai 2000). For example, a bicriteria transportation prob-
lem model was presented by Aneja and Nair (1979). In another study, Lee and 
Moore (1973) studied optimizing transportation problems with multiple objec-
tives. Climaco et al. (1993) developed interactive algorithms to solve MOTP and 
Kundu et  al. (2014a) investigated multi-objective solid transportation problems 
(MOSTP) under various uncertain environments. By designing an uncertain 
multi-objective multi-item fixed charge solid transportation problem with budget 
constraint at each destination, Majumder et al. (2019) presented a profit maximi-
zation and time minimization scheme which considers the existence of possible 
indeterminacy. Based on studies, data envelopment analysis (DEA) approaches 
appear to be more feasible with the aim of achieving optimal efficient solution to 
a MOTP. As an example, Zarafat Angiz et al. (2003) proposed a DEA model to 
evaluate the efficiency of each assignment subject using non-homogeneous costs. 
In another research, Chen and Lu (2007) extended the assignment problem by 
considering multiple inputs and outputs and solved it with the help of DEA. They 
modeled the assignment problem as a classical integer LP problem. Additionally, 
using the DEA approach, Amirteimoori (2011, 2012) proposed new methods to 
solve both the transportation problem and the shortest path problem in the case 
that multiple attributes are considered along the arcs. For the assignment problem 
with multiple attributes, Shirdel and Mortezaee (2015) solved the multi-criterion 
assignment problem using additive DEA model.

Due to insufficient data, lack of evidence, etc. data for a MOTP is not always 
exact; in fact, it can be fuzzy, arbitrary or combination of both. A MOTP which 
has at least one of its parameters in terms of fuzzy numbers, called fuzzy MOTP 
(FMOTP). To the best of our knowledge, there is very limited literature available 
in this area, including the following. In one study, Li and Lai (2000) proposed a 
fuzzy approach to solve the MOTP, and Ammar and Youness (2005) investigated 
efficiency of solutions and stability of the MOTP with fuzzy parameters in another 
study. Kundu et al. modeled and solved a multi-objective multi-item solid transpor-
tation problem with fuzzy coefficients for the objectives and constraints in Kundu 
et al. (2013) and presented the nearest interval approximation for continuous type-2 
fuzzy variable in Kundu et al. (2015). Lastly, Kocken et al. (2014) proposed a com-
pensatory fuzzy approach to solve multi-objective linear TP with fuzzy parameters.
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In this paper, the DEA approach (Amirteimoori 2011) has been extended to solve 
FMOTPs. To this end, each arc in a FMOTP has been associated with multiple fuzzy 
attributes. The idea behind the proposed approach is to convert the multiple fuzzy 
attributes with each arc into a unique fuzzy attribute; those objective functions that 
needs to be maximized have been used to define output indexes and those that need 
to be minimized have been used to define input indexes. Based on this idea, two dif-
ferent fuzzy efficiency scores have been derived for each arc by solving fuzzy DEA 
(FDEA) models. In the last phase, the resulting fuzzy efficiency scores are combined 
to get a unique fuzzy attribute. In other words, FMOTP will be converted into a sin-
gle objective fuzzy TP that can be solved by any standard algorithm for fuzzy TPs.

In recent years, many researchers have formulated fuzzy DEA models to deal 
with the situations where some of the input and output data are imprecise (Babaza-
deh et al. 2016; Tavana and Khalili-Damghani 2014). In other words, since the origi-
nal study by Sengupta (1992a, (1992b), a continuous interest and increased develop-
ment in fuzzy DEA literature has been appeared. The classical DEA models with 
fuzzy input and output data can be classified into general groups such as the toler-
ance approach (Sengupta 1992a; Kahraman and Tolga 1998), the �-level approach 
(Kao and Liu 2012; Saati et al. 2002; Hatami-Marbini and Saati 2018), the fuzzy 
ranking approach (Guo and Tanaka 2001; Guo 2009; Leon et  al. 2003), the pos-
sibility approach (Lertworasirikul et  al. 2003; Ruis and Sirvent 2017), the fuzzy 
arithmetic (Wang et al. 2009; Azar et al. 2016) and finally the multi-objective linear 
programming (MOLP) approach (Hatami-Marbini et  al. 2017). A comprehensive 
review of the fuzzy DEA methods can be found in Hatami-Marbini et  al. (2011). 
However, the proposed method in this paper is an improved method of the fuzzy 
arithmetic approach introduced by Wang et al. (2009). This approach evaluates the 
fuzzy efficiency of decision-making units (DMUs) by using three linear program-
ming problems according to fuzzy arithmetic without making any assumptions or 
doing too much computational effort.

On such motivation basis, the main contribution of this study are summarized 
as follows: (1) To the best of our knowledge, this study is the first attempt to solve 
fuzzy multi-objective transportation problems using fuzzy data envelopment analy-
sis approach; (2) The proposed fuzzy DEA approach provides an efficient way to 
convert FMOTP into a single objective fuzzy transportation problem; (3) In contrast 
to the existing multi-objective optimization approaches such as goal programming 
and fuzzy linear programming, the proposed technique keeps the structure of trans-
portation problem intact for the ease of solution and implementation; and finally (4) 
The use of the fuzzy DEA approach provides the simultaneous use of maximiza-
tion and minimization functions in modeling fuzzy multi-objective transportation 
problem.

The rest of the paper is organized as following. In Sect.  2, some preliminaries 
about fuzzy set theory, FMOTP and FDEA will be presented. Section 3 will pro-
pose the extended DEA approach to solve the FMOTP by converting it into a stand-
ard fuzzy TP. The main advantages of the proposed fuzzy DEA approach will be 
explained in Sect. 4. Following by that, in Sect. 5, a numerical example will be pre-
sented to illustrate the proposed approach. Results will be compared with the exist-
ing methods in Sect. 6 and finally, Sect. 7 will provide some concluding remarks.
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2 � Preliminaries

In this section, first some basic definitions and arithmetic operations on fuzzy numbers 
will be presented (Ebrahimnejad and Verdegay 2018; Ebrahimnejad 2019) and then the 
mathematical models of FMOTP and FDEA will be formulated (Wang et al. 2009). It 
is worth mentioning that without loss of generality, in this paper, fuzzy data, assumed 
to include uncertainty of triangular membership form.

2.1 � Basic definitions on fuzzy numbers

Definition 2.1.1  A fuzzy number Ã , denoted by Ã = (al, am, au) , is called a trian-
gular fuzzy number if its membership function is given by relation (1)

Definition 2.1.2  A triangular fuzzy number Ã = (al, am, au) is said to be a non-neg-
ative (positive) triangular fuzzy number if and only if al ≥ 0(al > 0).

Definition 2.1.3  Let Ã = (al, am, au) and B̃ = (bl, bm, bu) be two positive triangu-
lar fuzzy numbers. Consequently, basic fuzzy arithmetic operations on these fuzzy 
numbers can be defined using the following relation (2):

2.2 � Mathematical model of FMOTP

Fuzzy MOTP (FMOTP) is a special type of multi-objective linear programming prob-
lem in which some of the parameters are represented in terms of fuzzy numbers. Sup-
pose that m sources contain different amounts of a commodity which must be distrib-
uted into n destinations. Associated with each link (i, j) from source i to destination j, 
there are h fuzzy attributes c̃k

ij
(k = 1,… , h) for transportation. The problem is to deter-

mine a feasible shipping plan from sources to destinations in order to optimize the 
objective functions. Let si be the supply of the commodity at source i and dj be the 
demand for the commodity at destination j. Then, the FMOTP with h fuzzy objectives 
can be formulated as the model (3); where xij represents the amount of commodity that 
is being transported from source i to destination j:

(1)𝜇Ã(x) =

⎧
⎪
⎨
⎪
⎩

x−al

am−al
for al ≤ x ≤ am

au−x

au−am
for am ≤ x ≤ au

(2)
Addition: Ã + B̃ = (al + bl, am + bm, au + bu)

Multiplication: Ã × B̃ = (al.bl, am.bm, au.bu)

Division: Ã∕B̃ = (al∕bu, am∕bm, au∕bl).
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Note that the best possible solution for FMOTP (3) would be the ideal solution 
f̃ =

(
f̃ ∗
1
, f̃ ∗
2
,… , f̃ ∗

h

)
 given by:

As the objective functions of FMOTP are conflicting, it is impossible to obtain 
the ideal values. In this case, distance between a feasible solution in the objective 
space and the ideal solution can be minimized with the aim of seeking a solution as 
close as possible to the ideal solution for each choice of a norm. In this case, we use 
the following weighted compromise programming problems based on �1 norm and �2 
norm:

(3)

Optimize z =

(
m∑

i=1

n∑

j=1

c̃1
ij
xij,… ,

m∑

i=1

n∑

j=1

c̃h
ij
xij

)

s.t.

n∑

j=1

xij = si i = 1,… ,m,

m∑

i=1

xij = dj j = 1,… , n,

xij ≥ 0, i = 1,… ,m, j = 1,… , n.

(4)

f̃k
∗
= Optimize

m∑

i=1

n∑

j=1

c̃k
ij
xij

s.t.

n∑

j=1

xij = si, i = 1,… ,m,

m∑

i=1

xij = dj, j = 1,… , n,

xij ≥ 0, i = 1, 2,… ,m, j = 1,… , n.

(5)

Min

h∑

k=1

wk

||||||

m∑

i=1

n∑

j=1

c̃k
ij
xij − f̃ ∗

k

||||||

s.t.

n∑

j=1

xij = si, i = 1,… ,m,

m∑

i=1

xij = dj, j = 1,… , n,

xij ≥ 0, i = 1, 2,… ,m, j = 1,… , n.
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2.3 � Mathematical model of FDEA

Data envelopment analysis is a mathematical methodology which is used to deter-
mine the relative efficiencies of DMUs with multiple inputs and outputs (Banker 
et al. 1984; Charnes et al. 1978).

Suppose the efficiencies of n homogeneous DMUs is to be evaluated. Each 
DMUj(j = 1,… , n) produces s different fuzzy outputs ỹj = (ỹ1j,… , ỹsj) , using m 
different fuzzy inputs x̃j = (x̃1j,… , x̃mj) . The multiplier form of the CCR model for 
evaluating the relative efficiency of DMUp is as the model (7):

where ur(r = 1,… , s) and vi(i = 1,… ,m) are the assigned weights to the outputs 
and inputs, respectively.

There are many approaches designed to solve fuzzy DEA models which either 
come from the direct defuzzification of fuzzy DEA models or optimistic and pes-
simistic DEA models. The former ignores the fact that a fuzzy fractional program-
ming cannot be transformed into a linear programming model in the traditional way 
that we do for a crisp fractional programming. While the latter requires the solution 
of a series of linear programming models based on different alpha cut sets; in other 
words, it requires considerable computational efforts to compute fuzzy efficiencies 
of DMUs. Considering this limitation, the fuzzy arithmetic approach that has been 
used to solve fuzzy DEA model in this paper, does not include the aforementioned 
transformations. According to this approach, the fuzzy DEA model is formulated 
as LP models without the need of making any assumptions and too much computa-
tional effort. Moreover, according to this approach, the exact mathematical form of 
membership functions related to the fuzzy efficiencies of DMUs can be achieved.

(6)

Min

⎡
⎢
⎢
⎣

h�

k=1

wk

�
m�

i=1

n�

j=1

c̃k
ij
xij − f̃ ∗

k

�2⎤
⎥
⎥
⎦

1

2

s.t.

n�

j=1

xij = si, i = 1,… ,m,

m�

i=1

xij = dj, j = 1,… , n,

xij ≥ 0, i = 1, 2,… ,m, j = 1,… , n.

(7)

Max 𝜃p =

∑s

r=1
urỹrp

∑m

i=1
vix̃ip

s.t. 𝜃j =

∑s

r=1
urỹrj

∑m

i=1
vix̃ij

≤ 1, j = 1,… , n,

ur, vi ≥ 0, r = 1,… , s, i = 1,… ,m.
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Therefore, to solve the FDEA model (7), a revised version of the fuzzy arithmetic 
approach proposed by Wang et  al. (2009) has been used in this study. To briefly 
explain this approach, without loss of generality, all input and output data are 
assumed to be characterized by positive triangular fuzzy numbers. Suppose that the 
positive triangular fuzzy numbers x̃ij = (xl

ij
, xm

ij
, xu

ij
) and ỹij = (yl

rj
, ym

rj
, yu

rj
) represent 

the input and output data of DMUj (j = 1,… , n) , respectively, for all i = 1,… ,m 
and r = 1,… , s . Then, according to fuzzy arithmetic, the fuzzy efficiency of DMUp 
can be evaluated from the following FDEA model (8):

Note that as long as �u
j
 is less than or equal to one, �l

j
 and �m

j
 will be automatically 

satisfied. To determine the fuzzy efficiency of DMUp , Wang et  al. (2009) trans-
formed model (8) into three LP models. However, these three LP models compute 
the values of �l

p
 , �m

p
 and �u

p
 separately. In other words, each model is computed with a 

different set of weight (u, v) without considering the other sets. While, as it can be 
seen in the model (8), 𝜃p ≈ (𝜃l

p
, 𝜃m

p
, 𝜃u

p
) must be obtained using a same set of weights 

(u, v) . Consequently, to avoid this problem, firstly, the value of the �l
p
 is obtained 

using the model (9) as follows:

Using the optimal weights of model (9), �m
p

 will be computed from the model (10) as 
following:

(8)

Maximize 𝜃p ≈ (𝜃l
p
, 𝜃m

p
, 𝜃u

p
) =

⎡
⎢
⎢
⎣

s∑

r=1

ury
l
rp

m∑

i=1

vix
u
ip

,

s∑

r=1

ury
m
rp

m∑

i=1

vix
m
ip

,

s∑

r=1

ury
u
rp

m∑

i=1

vix
l
ip

⎤
⎥
⎥
⎦

s.t. 𝜃j ≈ (𝜃l
j
, 𝜃m

j
, 𝜃u

j
) =

⎡
⎢
⎢
⎣

s∑

r=1

ury
l
rj

m∑

i=1

vix
u
ij

,

s∑

r=1

ury
m
rj

m∑

i=1

vix
m
ij

,

s∑

r=1

ury
u
rj

m∑

i=1

vix
l
ij

⎤
⎥
⎥
⎦
≤ 1 j = 1,… , n,

ur ≥ 0 r = 1,… , s, vi ≥ 0 i = 1,… ,m.

(9)

Max �l
p
=

∑s

r=1
ury

l
rp

∑m

i=1
vix

u
ip

s.t. �u
j
=

∑s

r=1
ury

u
rj

∑m

i=1
vix

l
ij

≤ 1, j = 1,… , n,

ur ≥ 0 r = 1,… , s, vi ≥ 0 i = 1,… ,m.
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where, �l∗
p

 is the optimum value of the model (9). Finally, using the optimal weights 
of the models (9) and (10), �u

p
 is computed from the model (11) as follows:

where, �l∗
p

 and �m∗
p

 are the optimum values of the models (9) and (10) respectively. In 
this way, each of the �l∗

p
 , �m∗

p
 and �u∗

p
 is computed with a same set of weights.

Theorem  2.1  The fuzzy efficiency of DMUp, derived by solving models (9)–(11), 
forms a triangular fuzzy number.

Proof  Let (u∗, v∗) = (u∗
1
,… , u∗

s
, v∗

1
,… , v∗

m
) be the optimal solution of model (11). 

The last constrains of this model imply that (u∗, v∗) ≥ 0 . On the other hand, by con-
sidering the form of the non-negative fuzzy input x̃ip = (xl

ip
, xm

ip
, xu

ip
) and fuzzy output 

ỹrp = (yl
rp
, ym

rp
, yu

rp
) we will have:

Therefore,

(10)

Max �m
p
=

∑s

r=1
ury

m
rp

∑m

i=1
vix

m
ip

s.t.

∑s

r=1
ury

l
rp

∑m

i=1
vix

u
ip

= �l∗
p

�u
j
=

∑s

r=1
ury

u
rj

∑m

i=1
vix

l
ij

≤ 1, j = 1,… , n,

ur ≥ 0 r = 1,… , s, vi ≥ 0 i = 1,… ,m.

(11)

Max �u
p
=

∑s

r=1
ury

u
rp

∑m

i=1
vix

l
ip

s.t.

∑s

r=1
ury

l
rp

∑m

i=1
vix

u
ip

= �l∗
p
,

∑s

r=1
ury

m
rp

∑m

i=1
vix

m
ip

= �m∗
p

�u
j
=

∑s

r=1
ury

u
rj

∑m

i=1
vix

l
ij

≤ 1, j = 1,… , n,

ur ≥ 0 r = 1,… , s, vi ≥ 0 i = 1,… ,m.

0 ≤ xl
ip
≤ xm

ip
≤ xu

ip
, i = 1,… ,m.

0 ≤ yl
rp
≤ ym

rp
≤ yu

rp
, r = 1,… , s.

0 ≤

m∑

i=1

v∗
i
xl
ip
≤

m∑

i=1

v∗
i
xm
ip
≤

m∑

i=1

v∗
i
xu
ip
.

0 ≤

s∑

r=1

u∗
r
yl
rp
≤

s∑

r=1

u∗
r
ym
rp
≤

s∑

r=1

u∗
r
yu
rp
.
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Consequently,

This means that 
∑s

r=1
u∗
r
ỹrp

∑m

i=1
v∗
i
x̃ip

=
�
𝜃l∗
p
, 𝜃m∗

p
, 𝜃u∗

p

�
maintains the form of non-negative trian-

gular fuzzy number and the proof is complete. 	�  ◻

Note that the models (9), (10) and (11) can be easily linearized into the models (12), 
(13) and (14), respectively:

0 ≤ �l∗
p
=

∑s

r=1
u∗
r
yl
rp

∑m

i=1
v∗
i
xu
ip

≤ �m∗
p

=

∑s

r=1
u∗
r
ym
rp

∑m

i=1
v∗
i
xm
ip

≤ �u∗
p

=

∑s

r=1
u∗
r
yu
rp

∑m

i=1
v∗
i
xl
ip

.

(12)

Max �l
p
=

s∑

r=1

ury
l
rp

s.t.

m∑

i=1

vix
u
ip
= 1,

s∑

r=1

ury
u
rj
−

m∑

i=1

vix
l
ij
≤ 0, j = 1,… , n,

ur ≥ 0 r = 1,… , s, vi ≥ 0 i = 1,… ,m.

(13)

Max �m
p
=

s∑

r=1

ury
m
rp

s.t.

m∑

i=1

vix
m
ip
= 1,

s∑

r=1

ury
l
rp
− �l∗

p

m∑

i=1

vix
u
ip
= 0,

s∑

r=1

ury
u
rj
−

m∑

i=1

vix
l
ij
≤ 0, j = 1,… , n,

ur ≥ 0 r = 1,… , s, vi ≥ 0 i = 1,… ,m.
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3 � Fuzzy efficient transportation plan

In this section, a FDEA approach will be used to explore the optimal solution for 
FMOTP (7). This FMOTP has h fuzzy objectives that need to be minimized and maxi-
mized. Every arc (i, j) is associated with h fuzzy attributes. For arc (i, j) attributes cor-
responding to the fuzzy objectives that should be minimized are considered as fuzzy 
input attributes and denoted by X̃ij = (x̃1

ij
,… , x̃k

ij
) in where x̃t

ij
= (xt,l

ij
, x

t,m

ij
, x

t,u

ij
) for all 

t = 1,… , k . Similarly, for arc (i, j) attributes corresponding to the fuzzy objectives that 
should be maximized are considered as fuzzy output attributes and denoted by 
Ỹij = (ỹ1

ij
,… , ỹs

ij
) in where ỹr

ij
= (yr,l

ij
, y

r,m

ij
, y

r,u

ij
) for all r = 1,… , s . It means that for 

every arc (i,  j) there exist k fuzzy inputs and s fuzzy outputs where h = k + s (see 
Fig. 1). The main idea behind the proposed approach is to convert the FMOTP into a 
single objective fuzzy TP based on DEA approach. To this end, first an interesting plan 
is proposed to define an efficiency score on every arc by solving FDEA models and 
then an efficient transportation plan is found by solving a crisp TP maximizing the 
resulting efficiency scores on arcs.

For every arc (i,  j) , two fuzzy efficiency scores are achieved as a criteria for the 
relative performance of the unit transportation objective from source i ( i = 1,… ,m ) 
to destination j ( j = 1,… , n ). With this in mind, every arc is considered as a DMU. In 
first step, by considering the source i as a target, the relative performance of the unit 
transportation objective from source i to destination j is given by solving the FDEA 
model (15) by changing j:

(14)

Max �u
p
=

s∑

r=1

ury
u
rp

s.t.

m∑

i=1

vix
l
ip
= 1,

s∑

r=1

ury
l
rp
− �l∗

p

m∑

i=1

vix
u
ip
= 0,

s∑

r=1

ury
m
rp
− �m∗

p

m∑

i=1

vix
m
ip
= 0,

s∑

r=1

ury
u
rj
−

m∑

i=1

vix
l
ij
≤ 0, j = 1,… , n,

ur ≥ 0 r = 1,… , s, vi ≥ 0 i = 1,… ,m.
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Note that model (15) tries to maximize the fuzzy efficiency of the arc (i, j) , provided 
that the fuzzy efficiency of the arcs (i,  f) (f = 1,… , n) cannot exceed 1. To obtain 
the optimum value of the model (15), i.e. Ẽ(1∗)

ij
= (E

(1∗),l

ij
,E

(1∗),m

ij
,E

(1∗),u

ij
) , each com-

ponent of the Ẽ(1∗)

ij
 should be obtained based on the revised form of the fuzzy arith-

metic approach mentioned in the previous section. In the other words, firstly, E(1∗),l

ij
 

should be computed from the model (16) as following:

In this step, both E(1∗),l

ij
 , E(1∗),m

ij
 can be obtained from the model (17) as it is shown in 

the following:

(15)

Ẽ
(1∗)

ij
= Max Ẽ

(1)

ij
=

∑s

r=1
urỹ

r
ij

∑k

t=1
vtx̃

t
ij

s.t. Ẽ
(1)

if
=

∑s

r=1
urỹ

r
if

∑k

t=1
vtx̃

t
if

≤ 1 f = 1,… , n,

ur ≥ 0, r = 1,… , s, vt ≥ 0, t = 1,… , k.

(16)

E
(1∗),l

ij
= Max

∑s

r=1
ury

r,l

ij

∑k

t=1
vtx

t,u

ij

s.t.

∑s

r=1
ury

r,u

if

∑k

t=1
vtx

t,l

if

≤ 1, f = 1,… , n,

ur ≥ 0, r = 1,… , s, vt ≥ 0, t = 1,… , k.

Fig. 1   Arc (i, j) with k fuzzy inputs and s fuzzy outputs
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Finally, in order to achieve the value of E(1∗),u

ij
 , the following model is solved using 

the optimal weights achieved from the models (16) and (17).

The linear form of the models (16), (17) and (18) can be written as the models (19), 
(20) and (21), respectively:

(17)

E
(1∗),m

ij
= Max

∑s

r=1
ury

r,m

ij

∑k

t=1
vtx

t,m

ij

s.t.

∑s

r=1
ury

r,l

ij

∑k

t=1
vtx

t,u

ij

= E
(1∗),l

ij

∑s

r=1
ury

r,u

if

∑k

t=1
vtx

t,l

if

≤ 1, f = 1,… , n,

ur ≥ 0, r = 1,… , s, vt ≥ 0, t = 1,… , k.

(18)

E
(1∗),u

ij
= Max

∑s

r=1
ury

r,u

ij

∑k

t=1
vtx

t,l

ij

s.t.

∑s

r=1
ury

r,l

ij

∑k

t=1
vtx

t,u

ij

= E
(1∗),l

ij
,

∑s

r=1
ury

r,m

ij

∑k

t=1
vtx

t,m

ij

= E
(1∗),m

ij
,

∑s

r=1
ury

r,u

if

∑k

t=1
vtx

t,l

if

≤ 1, f = 1,… , n,

ur ≥ 0, r = 1,… , s, vt ≥ 0, t = 1,… , k.

(19)

E
(1∗),l

ij
= Max

s∑

r=1

ury
r,l

ij

s.t.

k∑

t=1

vtx
t,u

ij
= 1,

s∑

r=1

ury
r,u

if
−

k∑

t=1

vtx
t,l

if
≤ 0, f = 1,… , n,

ur ≥ 0, r = 1,… , s, vt ≥ 0, t = 1,… , k.
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In the second step, by considering the destination j as a target, the relative perfor-
mance of the unit transportation objective from source i to destination j is given by 
solving the FDEA model (22) by changing i:

(20)

E
(1∗),m

ij
= Max

s∑

r=1

ury
r,m

ij

s.t.

k∑

t=1

vtx
t,m

ij
= 1,

s∑

r=1

ury
r,l

ij
−

k∑

t=1

vtx
t,u

ij
E
(1∗),l

ij
= 0,

s∑

r=1

ury
r,u

if
−

k∑

t=1

vtx
t,l

if
≤ 0, f = 1,… , n,

ur ≥ 0, r = 1,… , s, vt ≥ 0, t = 1,… , k.

(21)

E
(1∗),u

ij
= Max

s∑

r=1

ury
r,u

ij

s.t.

k∑

t=1

vtx
t,l

ij
= 1,

s∑

r=1

ury
r,l

ij
−

k∑

t=1

vtx
t,u

ij
E
(1∗),l

ij
= 0,

s∑

r=1

ury
r,m

ij
−

k∑

t=1

vtx
t,m

ij
E
(1∗),m

ij
= 0,

s∑

r=1

ury
r,u

if
−

k∑

t=1

vtx
t,l

if
≤ 0, f = 1,… , n,

ur ≥ 0, r = 1,… , s, vt ≥ 0, t = 1,… , k.

(22)

Ẽ
(2∗)

ij
= Max Ẽ

(2)

ij
=

s∑

r=1

urỹ
r
ij

k∑

t=1

vtx̃
t
ij

s.t. Ẽ
(2)

fj
=

s∑

r=1

urỹ
r
fj

k∑

t=1

vtx̃
t
fj

≤ 1 f = 1,… ,m,

ur ≥ 0, r = 1,… , s, vt ≥ 0, t = 1,… , k.
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Similar to model (15), the optimum value of the model (22), i.e. 
Ẽ
(2∗)

ij
= (E

(2∗),l

ij
,E

(2∗),m

ij
,E

(2∗),u

ij
) , can be obtained from the models (23), (24) and (25), 

respectively.

Existing difference between the models (16) and (23) seems to be worth notic-
ing. As mentioned, model (16) evaluates the arc (i,  j) in comparison with the arcs 
(i, f ) f = 1,… , n , while, model (23) evaluates this arc in compare with the arcs 
(f , j) f = 1,… ,m.

The same difference which was mentioned between the models (16) and (23) which 
exists between the models (17) and (24) and also the models (18) and (25).

The linear form of the models (23), (24) and (25) can be written as the models (26), 
(27) and (28), respectively:

(23)

E
(2∗),l

ij
= Max

∑s

r=1
ury

r,l

ij

∑k

t=1
vtx

t,u

ij

s.t.

∑s

r=1
ury

r,u

fj

∑k

t=1
vtx

t,l

fj

≤ 1, f = 1,… ,m,

ur ≥ 0, r = 1,… , s, vt ≥ 0, t = 1,… , k.

(24)

E
(2∗),m

ij
= Max

∑s

r=1
ury

r,m

ij

∑k

t=1
vtx

t,m

ij

s.t.

∑s

r=1
ury

r,l

ij

∑k

t=1
vtx

t,u

ij

= E
(2∗),l

ij

∑s

r=1
ury

r,u

fj

∑k

t=1
vix

t,l

fj

≤ 1, f = 1,… ,m,

ur ≥ 0, r = 1,… , s, vt ≥ 0, t = 1,… , k.

(25)

E
(2∗),u

ij
= Max

∑s

r=1
ury

r,u

ij

∑k

t=1
vtx

t,l

ij

s.t.

∑s

r=1
ury

r,l

ij

∑k

t=1
vtx

t,u

ij

= E
(2∗),l

ij
,

∑s

r=1
ury

r,m

ij

∑k

t=1
vtx

t,m

ij

= E
(2∗),m

ij

∑s

r=1
ury

r,u

fj

∑k

t=1
vtx

t,l

fj

≤ 1, f = 1,… ,m,

ur ≥ 0, r = 1,… , s, vt ≥ 0, t = 1,… , k.
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 As a result, for every arc (i,  j) two fuzzy efficiency scores Ẽ(1∗)

ij
 and Ẽ(2∗)

ij
 can be 

achieved. Now, the mean of Ẽ(1∗)

ij
 and Ẽ(2∗)

ij
 are used to derive a new fuzzy efficiency 

for arc (i, j) as it is shown in relation (29):

(26)

E
(2∗),l

ij
= Max

s∑

r=1

ury
r,l

ij

s.t.

k∑

t=1

vtx
t,u

ij
= 1,

s∑

r=1

ury
r,u

fj
−

k∑

t=1

vtx
t,l

fj
≤ 0, f = 1,… ,m,

ur ≥ 0, r = 1,… , s, vt ≥ 0, t = 1,… , k.

(27)

E
(2∗),m

ij
= Max

s∑

r=1

ury
r,m

ij

s.t.

k∑

t=1

vtx
t,m

ij
= 1,

s∑

r=1

ury
r,l

ij
−

k∑

t=1

vtx
t,u

ij
E
(2∗),l

ij
= 0,

s∑

r=1

ury
r,u

fj
−

k∑

t=1

vtx
t,l

fj
≤ 0, f = 1,… ,m,

ur ≥ 0, r = 1,… , s, vt ≥ 0, t = 1,… , k.

(28)

E
(2∗),u

ij
= Max

s∑

r=1

ury
r,u

ij

s.t.

k∑

t=1

vtx
t,l

ij
= 1,

s∑

r=1

ury
r,l

ij
−

k∑

t=1

vtx
t,u

ij
E
(2∗),l

ij
= 0,

s∑

r=1

ury
r,m

ij
−

k∑

t=1

vtx
t,m

ij
E
(2∗),m

ij
= 0,

s∑

r=1

ury
r,u

fj
−

k∑

t=1

vtx
t,l

fj
≤ 0, f = 1,… ,m,

ur ≥ 0, r = 1,… , s, vt ≥ 0, t = 1,… , k.
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The h fuzzy attributes is converted into a positive fuzzy attribute Ẽij in the FMOTP 
under consideration. In this way, the FMOTP (3) is converted into the fuzzy single 
objective TP (30):

 Finally, by solving the model (30), a transportation plan with maximum fuzzy effi-
ciency will be achieved.

Theorem 3.1  The optimal solution of FTP (30) is an efficient solution of FMOTP 
(3).

Proof  It is worth mentioning that the objective function of FTP (30) is the weighted 
sum objective function of the FMOTP (3). As the optimal solution of the weighted 
sum problem is known already with positive weights, it will always be efficient solu-
tion of the MOLP under consideration (Ehrgott 2005).

As the values of Ẽij given in (29) are considered as the weights of the weighted 
sum problem(3), it is sufficient to show that Ẽij > 0 . According to definition of 
Ẽij =

Ẽ
(1∗)

ij
+Ẽ

(2∗)

ij

2
 we should prove that Ẽ

(1∗)

ij
=
(
Ẽ
(1∗),l

ij
, Ẽ

(1∗),m

ij
, Ẽ

(1∗),u

ij

)
> 0 and 

Ẽ
(2∗)

ij
=
(
Ẽ
(2∗),l

ij
, Ẽ

(2∗),m

ij
, Ẽ

(2∗),u

ij

)
> 0 . To do so, we need to prove Ẽ(1∗),l

ij
> 0 and 

Ẽ
(2∗),l

ij
> 0 according to definition of a positive fuzzy number. As Ẽ(1∗),l

ij
 and Ẽ(2∗),l

ij
 are 

the optimal values (efficiency scores) of the crisp input-oriented models of DEA, we 
have 0 < Ẽ

(1∗),l

ij
≤ 1 and 0 < Ẽ

(2∗),l

ij
≤ 1 . 	�  ◻

Regarding model (30), it should be noted that the only uncertainty is about the pre-
cise values of the Ẽij ; it means there is no uncertainty about the supply and demand of 
the product. There are some convenient methods to deal with these kinds of problems. 
One of them is the proposed method by Kaur and Kumar (2012) based on a ranking 
function. They modified the existing methods to find the initial basic feasible solution 
and proposed the generalized fuzzy modified distribution method to find the fuzzy 
optimal solution with the help of basic feasible solutions. Another method which has 
been used in current study is the proposed approach by Ebrahimnejad (2014), in which 
the author pointed out that it is possible to find an optimal solution of the problem 

(29)Ẽij =
Ẽ
(1∗)

ij
+ Ẽ

(2∗)

ij

2

(30)

Max z =

m∑

i=1

n∑

j=1

Ẽijxij

s.t.

n∑

j=1

xij = si i = 1,… ,m,

m∑

i=1

xij = dj j = 1,… , n,

xij ≥ 0, i = 1,… ,m, j = 1,… , n.
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without solving any fuzzy TP. To this end, it is enough to use any arbitrary linear rank-
ing function, the rank of each fuzzy number be substituted instead of the corresponding 
fuzzy number in the fuzzy TP under consideration. In this way, the fuzzy transportation 
problem is converted into crisp one which is easily solved by the standard transporta-
tion algorithms. Their results are independent of the choice of the linear ranking func-
tion. In other words, although the obtained solution may be different but the results are 
still valid for the new solution. As a result, to achieve the crisp form of the fuzzy TP 
under discussion, the ranking index ℜ(Ã) = (al + 4am + au)∕6 can be used in which 
Ã = (al, am, au) is a triangular fuzzy number.

In this section, another popular technique called fuzzy programming method for 
solving FTP (30) will be explored. To do so, consider Ẽij =

(
El
ij
,Em

ij
,Eu

ij

)
 , the FTP (30) 

is simplified to the following multi-objective problem:

to solve model (31), the positive ideal solution (PIS) and negative ideal solution 
(NIS) are obtained by solving the following linear programming problems:

Hence, the linear membership functions of z̃1 , z̃2 and z̃3 are given as below:

(31)

Min z1 =

m∑

i=1

n∑

j=1

(
Em
ij
− El

ij

)
xij

Max z2 =

m∑

i=1

n∑

j=1

Em
ij
xij

Max z3 =

m∑

i=1

n∑

j=1

(
Eu
ij
− Em

ij

)
xij

s.t. Constraints of Model (30).

(32)

zPIS
1

= Min
m∑

i=1

n∑

j=1

�
Em
ij
− El

ij

�
xij zNIS

1
= Max

m∑

i=1

n∑

j=1

�
Em
ij
− El

ij

�
xij

s.t. Constraints of Model (30). s.t. Constraints of Model (30).

zPIS
2

= Maz
m∑

i=1

n∑

j=1

Em
ij
xij zNIS

2
= Min

m∑

i=1

n∑

j=1

Em
ij
xij

s.t. Constraints of Model (30). s.t. Constraints of Model (30).

zPIS
3

= Maz
m∑

i=1

n∑

j=1

�
Eu
ij
− Em

ij

�
xij z

NIS
3

= Min
m∑

i=1

n∑

j=1

�
Eu
ij
− Em

ij

�
xij

s.t. Constraints of Model (30). s.t. Constraints of Model (30).

(33)𝜇z̃1
(z1) =

⎧
⎪
⎨
⎪
⎩

1, z1 < zPIS
1

zNIS
1

−z1

zNIS
1

−zPIS
1

, zPIS
1

< z1 < zNIS
1

0, z1 > zNIS
1
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Finally, according to the fuzzy programming approach, the following model is 
solved:

By substituting the membership functions of (33)–(35) into the problem (36), the 
following problem is obtained:

4 � Main advantages of the fuzzy DEA approach

The proposed algorithm provides a novel framework of analysis to formalize and 
solve FMOTP problems with fuzzy transportation costs. The algorithm builds on 
the fuzzy data envelopment analysis approach allowing us to select the most favora-
ble weights FMOTP is converted into a weighted sum scalarization version. The 
procedure consists of firstly selecting the most desirable weights of weighted sum 
problem of FMOTP and then refines such weights through the corresponding fuzzy 
DEA models defined by the subsequent linear programming problems. To this end, 
first for each arc two fuzzy efficiencies are derived by solving two fuzzy DEA mod-
els and then the resulting fuzzy efficiencies are combined to define a total fuzzy 
efficiency of that arc. This fuzzy efficiency is considered as the weight of that arc 
showing how efficient this arc is to transport every unit of commodity from source 
to destination.

One of the main advantages of the algorithm relies on its computational sim-
plicity, allowing for its implementation within complex network structures ; i.e. 
the set of linear maximization problems constitutes an intuitive framework to build 

(34)𝜇z̃2
(z2) =

⎧
⎪
⎨
⎪
⎩

1, z2 > zPIS
2

z2−z
NIS
2

zPIS
2

−zNIS
2

, zNIS
2

< z2 < zPIS
2

0, z2 < zNIS
2

(35)𝜇z̃3
(z3) =

⎧
⎪
⎨
⎪
⎩

1, z3 > zPIS
3

z3−z
NIS
3

zPIS
3

−zNIS
3

, zNIS
3

< z3 < zPIS
3

0, z3 < zNIS
3

(36)

Max 𝛼

s.t.𝜇z̃i
(zi) ≥ 𝛼, i = 1, 2, 3,

Constraints of Model (30).

(37)

Max �

s.t. z1 ≤ zNIS
1

−
(
zNIS
1

− zPIS
1

)
�,

z2 ≥ zNIS
2

+
(
zPIS
2

− zNIS
2

)
�,

z3 ≥ zNIS
3

+
(
zPIS
3

− zNIS
3

)
�,

Constraints of Model (30).
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the DEA structure to be used to solve the FMOTP problem which is defined by the 
fuzzy arc weights of the network.

The ideal way to solve a fuzzy multi-objective transportation problem as a spe-
cial case of fuzzy multi-objective linear programming problem would be to optimize 
the decision maker’s fuzzy utility function. However, it is not possible to obtain a 
mathematical representation of the decision maker’s fuzzy utility function in many 
problems. The fuzzy DEA approach proposed in this paper introduces an efficient 
plan for the FMOTP without explicit the knowledge of the decision maker’s fuzzy 
utility function.

A frequently discussed method in FMOTP is the weighted sum approach , in 
which each fuzzy objective function is multiplied by a strictly positive scalar weight. 
The weighted fuzzy objective functions are summed to form a composite fuzzy 
objective function. Then, all that is needed is to choose appropriate weights which 
are determined by decision makers based on their preference and according to rela-
tive importance of objective functions. Since in real-world applications, the decision 
maker has little information about the data of the problem, it is difficult for them to 
establish the appropriate weights. Therefore, the determined weights of the fuzzy 
objective functions and the derived solution based on this approach are question-
able. However, according to fuzzy DEA approach proposed in this study, the most 
favorable weights are obtained based on a strong mathematical theory and regarding 
the data of the problem.

5 � Numerical example

To illustrate the proposed approach, the numerical example provided in Amir-
teimoori (2011) will be used in this section by replacing its original inputs/outputs 
for every arc with fuzzy ones.

Consider an automobile manufacturer which has assembly plants located in eight 
towns: A, B, C, D, E, F, G and H. The manufacturer chooses the shipping cost as 
only objective that should be minimized and the value of shipment along with the 
profit as objectives that should be maximized to assemble and distribute the cars 
to major markets in three towns: I, J and K. All appropriate data of the shipping 
costs, value of shipments and profits are available as triangular fuzzy sets, denoted 
by ordered triple (al, am, au) , which are listed in Table1. The precise quantities of the 
supplies si (i = 1,… ,m) and demands dj (j = 1,… , n) are also listed in Table 1.

To solve the current FMOTP, as mentioned in Sect.  3, all three existing fuzzy 
attributes related to each arc (i, j) should be converted into a positive fuzzy attribute 
Ẽij . To this end, each arc must be considered as a DMU with one input and two out-
puts. In fact, the shipping cost will have an input role and the value of the shipment 
together with the profit play the outputs roles.

By considering the source i as a target, the fuzzy efficiency scores Ẽ(1∗)

ij
 s should 

be obtained using the model (15). The model corresponds to the arc (A, K) , as an 
instance, is as the model (38):
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To solve the model (38), three linear programming models (39), (40) and (41) 
should be solved, respectively:

(38)

E
(1∗)

AK
= Max [u1(3800, 3950, 4050) + u2(380, 400, 410)]⟋v1(390, 395, 410)

s.t. [u1(3800, 3950, 4050) + u2(380, 400, 410)]⟋v1(390, 395, 410) ≤ 1,

[u1(3400, 3500, 3550) + u2(480, 500, 510)]⟋v1(525, 531, 540) ≤ 1,

[u1(372, 380, 390) + u2(590, 600, 615)]⟋v1(425, 431, 436) ≤ 1,

u1, u2, v1 ≥ 0.

Table 1   Data of the example

I J K si

Shipping cost (525, 531, 540) (425, 431, 436) (390, 395, 410)
A ⇒ Value of shipment (3400, 3500, 3550) (372, 380, 390) (3800, 3950, 4050) 10

Profit (480, 500, 510) (590, 600, 615) (380, 400, 410)
Shipping cost (386, 394, 411) (410, 418, 425) (505, 512, 520)

B ⇒ Value of shipment (2800, 2850, 2940) (2380, 2395, 2410) (2500, 2590, 2620) 13
Profit (590, 600, 615) (685, 700, 710) (480, 485, 500)
Shipping cost (400, 405, 412) (505, 512, 520) (400, 412, 420)

C ⇒ Value of shipment (305, 310, 320) (400, 409, 415) (380, 390, 405) 11
Profit (790, 800, 815) (970, 1000, 1050) (1000, 1100, 1150)
Shipping cost (350, 355, 365) (490, 493, 500) (560, 570, 590)

D ⇒ Value of shipment (275, 290, 295) (370, 385, 400) (412, 419, 425) 7
Profit (700, 705, 715) (600, 617, 630) (500, 518, 525)
Shipping cost (294, 299, 304) (380, 398, 412) (300, 315, 320)

E ⇒ Value of shipment (410, 415, 425) (500, 512, 520) (250, 255, 270) 9
Profit (580, 585, 595) (475, 490, 500) (365, 380, 390)
Shipping cost (314, 319, 324) (458, 464, 472) (430, 435, 450)

F ⇒ Value of shipment (508, 512, 520) (202, 215, 220) (345, 355, 360) 9
Profit (480, 488, 496) (300, 305, 320) (505, 512, 520)
Shipping cost (614, 619, 625) (480, 490, 510) (350, 354, 365)

G ⇒ Value of shipment (606, 612, 620) (500, 510, 520) (500, 550, 580) 4
Profit (614, 619, 625) (490, 505, 512) (480, 490, 510)
Shipping cost (450, 456, 462) (382, 394, 402) (430, 439, 445)

H ⇒ Value of shipment (290, 299, 305) ((500, 512, 520) (490, 499, 510) 6
Profit (595, 601, 605) (424, 432, 440) (505, 519, 530)
dj 30 25 14
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Similarly, the values of the Ẽ(1∗)

ij
 s can be obtained for the other arcs. The optimum 

value of the models (39), (40) and (41), together with the obtained results for other 
Ẽ
(1∗)

ij
 can be seen in Table 2.

Similarly, by considering the destination j as a target, the fuzzy efficiency scores 
Ẽ
(2∗)

ij
 s should be computed. Again, considering the arc (A,  K) as an example, the 

E
(2∗)

AK
 can be obtained from the model (42):

(39)

E
(1∗),l

AK
= Max 3800u1 + 380u2

s.t. 410v1 = 1,

4050u1 + 410u2 − 390v1 ≤ 0,

390u1 + 615u2 − 425v1 ≤ 0,

3550u1 + 510u2 − 525v1 ≤ 0,

u1, u2, v1 ≥ 0.

(40)

E
(1∗),m

AK
= Max 3950u1 + 400u2

s.t. 395v1 = 1,

3800u1 + 380u2 − 410E
(1∗),l

AK
v1 = 0,

4050u1 + 410u2 − 390v1 ≤ 0,

390u1 + 615u2 − 425v1 ≤ 0,

3550u1 + 510u2 − 525v1 ≤ 0,

u1, u2, v1 ≥ 0.

(41)

E
(1∗),u

AK
= Max 4050u1 + 410u2

s.t. 390v1 = 1,

3800u1 + 380u2 − 410E
(1∗),l

AK
v1 = 0,

3950u1 + 400u2 − 395E
(1∗),m

AK
v1 = 0,

4050u1 + 410u2 − 390v1 ≤ 0,

390u1 + 615u2 − 425v1 ≤ 0,

3550u1 + 510u2 − 525v1 ≤ 0,

u1, u2, v1 ≥ 0.
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According to model (42), values of the E(2∗),l

AK
 , E(2∗),m

AK
 and E(2∗),u

AK
 can be obtained by 

solving the linear programming models (43), (44) and (45), respectively:

(42)

E
(2∗)

AK
= Max [u1(3800, 3950, 4050) + u2(380, 400, 410)]⟋v1(390, 395, 410)]

s.t. [u1(3800, 3950, 4050) + u2(380, 400, 410)]⟋v1(390, 395, 410) ≤ 1,

[u1(2500, 2590, 2620) + u2(480, 485, 500)]⟋v1(505, 512, 520) ≤ 1,

[u1(380, 390, 405) + u2(1000, 1100, 1150)]⟋v1(400, 412, 420) ≤ 1,

[u1(412, 419, 425) + u2(500, 518, 525)]⟋v1(560, 570, 590) ≤ 1,

[u1(250, 255, 270) + u2(365, 380, 390)]⟋v1(300, 315, 320) ≤ 1,

[u1(345, 355, 360) + u2(505, 512, 520)]⟋v1(430, 435, 450) ≤ 1,

[u1(500, 550, 580) + u2(480, 490, 510)]⟋v1(350, 354, 365) ≤ 1,

[u1(490, 499, 510) + u2(505, 519, 530)]⟋v1(430, 439, 445) ≤ 1,

u1, u2, v1 ≥ 0

(43)

E
(2∗),l

AK
= Max 3800u1 + 380u2

s.t. 410v1 = 1,

4050u1 + 410u2 − 390v1 ≤ 0,

2620u1 + 500u2 − 505v1 ≤ 0,

405u1 + 1150u2 − 400v1 ≤ 0,

425u1 + 525u2 − 560v1 ≤ 0,

270u1 + 390u2 − 300v1 ≤ 0,

360u1 + 520u2 − 430v1 ≤ 0,

580u1 + 510u2 − 350v1 ≤ 0,

510u1 + 530u2 − 430v1 ≤ 0,

u1, u2, v1 ≥ 0.

Table 2   Values of the Ẽ(1∗)

ij
 

indecies for the arcs
I J K

A (0.78,0.82,0.84) (0.94,0.96,1.00) (0.89,0.96,1.00)
B (0.90,0.95,1.00) (0.94,0.97,1.00) (0.63,0.66,0.68)
C (0.73,0.76,0.79) (0.76,0.79,0.81) (0.89,0.93,1.00)
D (0.94,0.97,1.00) (0.88,0.93,0.97) (0.83,0.87,0.90)
E (0.94,0.97,1.00) (0.84,0.89,0.95) (0.56,0.60,0.64)
F (0.95,0.97,1.00) (0.40,0.42,0.44) (0.71,0.74,0.77)
G (0.67,0.69,0.70) (0.66,0.71,0.73) (0.90,0.95,1.00)
H (0.96,0.98,1.00) (0.91,0.95,1.00) (0.92,0.96,1.00)
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Similarly, the values of the Ẽ(2∗)

ij
 s can be obtained for the other arcs. The results of 

the models (43), (44) and (45) are shown in Table 3 together with the other Ẽ(2∗)

ij
s.

Finally, by averaging the fuzzy efficiency scores Ẽ(1∗)

ij
 and Ẽ(2∗)

ij
 , values of the Ẽij s 

(i = 1,… ,m, j = 1,… , n) can be seen in Table 4.
By having the fuzzy efficiency scores Ẽij s, all that needs to be done is solving the 

relevant fuzzy single objective model (46):

(44)

E
(2∗),m

AK
= Max 3950u1 + 400u2

s.t. 395v1 = 1,

3800u1 + 380u2 − 410E
(2∗),l

AK
v1 = 0,

4050u1 + 410u2 − 390v1 ≤ 0,

2620u1 + 500u2 − 505v1 ≤ 0,

405u1 + 1150u2 − 400v1 ≤ 0,

425u1 + 525u2 − 560v1 ≤ 0,

270u1 + 390u2 − 300v1 ≤ 0,

360u1 + 520u2 − 430v1 ≤ 0,

580u1 + 510u2 − 350v1 ≤ 0,

510u1 + 530u2 − 430v1 ≤ 0,

u1, u2, v1 ≥ 0.

(45)

E
(2∗),u

AK
= Max 4050u1 + 410u2

s.t. 390v1 = 1,

3800u1 + 380u2 − 410E
(2∗),l

AK
v1 = 0,

3950u1 + 400u2 − 395E
(2∗),m

AK
v1 = 0,

4050u1 + 410u2 − 390v1 ≤ 0,

2620u1 + 500u2 − 505v1 ≤ 0,

405u1 + 1150u2 − 400v1 ≤ 0,

425u1 + 525u2 − 560v1 ≤ 0,

270u1 + 390u2 − 300v1 ≤ 0,

360u1 + 520u2 − 430v1 ≤ 0,

580u1 + 510u2 − 350v1 ≤ 0,

510u1 + 530u2 − 430v1 ≤ 0,

u1, u2, v1 ≥ 0.
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To solve the problem (46), as mentioned in the section 3, we follow the approach 
proposed by Ebrahimnejad (2014). Therefore, each fuzzy efficiency should be 
replaceed with its corresponding rank obtained from the linear ranking function 
ℜ(Ã) = (al + 4am + au)∕6 in which Ã = (al, am, au) is a triangular fuzzy number. 
The related results are shown in Table 5.

(46)

Max ẼAIxAI + ẼAJxAJ + ẼAKxAK + ẼBIxBI + ẼBJxBJ + ẼBKxBK + ẼCIxCI + ẼCJxCJ

+ ẼCKxCK + ẼIxDI + ẼDJxDJ + ẼDKxDK + ẼEIxEI + ẼEJxEJ + ẼEKxEK + ẼFIxFI

+ ẼFJxFJ + ẼFKxFK + ẼGIxGI + ẼGJxGJ + ẼGKxGK + ẼHIxHI + ẼHJxHJ + ẼHKxHK

s.t. xAI + xAJ + xAK = 10,

xBI + xBJ + xBK = 13, , xEI + xEJ + xEK = 9,

xCI + xCJ + xCK = 11 , xFI + xFJ + xFK = 9,

xDI + xDJ + xDK = 7, xGI + xGJ + xGK = 4,

xHI + xHJ + xHK = 6,

xAI + xBI + xCI + xDI + xEI + xFI + xGI + xHI = 30,

xAJ + xBJ + xCJ + xDJ + xEJ + xFJ + xGJ + xHJ = 25,

xAK + xBK + xCK + xDK + xEK + xFK + xGK + xHK = 14,

xij ≥ 0 for all i,j.

Table 3   Values of the Ẽ(2∗)

ij
 

indecies for the arcs
I J K

A (0.83,0.87,0.89) (0.66,0.68,0.71) (0.89,0.96,1.00)
B (0.90,0.95,1.00) (0.95,0.97,1.00) (0.61,0.63,0.65)
C (0.94,0.97,1.00) (0.90,0.94,1.00) (0.83,0.93,1.00)
D (0.94,0.97,1.00) (0.59,0.61,0.63) (0.32,0.34,0.35)
E (0.94,0.97,1.00) (0.58,0.62,0.66) (0.42,0.44,0.48)
F (0.75,0.77,0.80) (0.31,0.32,0.34) (0.41,0.43,0.45)
G (0.49,0.50,0.51) (0.48,0.52,0.53) (0.51,0.55,0.58)
H (0.63,0.65,0.66) (0.53,0.56,0.58) (0.44,0.46,0.48)

Table 4   Values of the Ẽij 
indecies for the arcs

I J K

A (0.80,0.84,0.87) (0.80,0.82,0.85) (0.89,0.96,1.00)
B (0.90,0.95,1.00) (0.94,0.97,1.00) (0.62,0.65,0.67)
C (0.83,0.86,0.89) (0.83,0.86,0.91) (0.86,0.93,1.00)
D (0.94,0.97,1.00) (0.73,0.77,0.80) (0.57,0.61,0.63)
E (0.94,0.97,1.00) (0.71,0.75,0.80) (0.49,0.52,0.56)
F (0.85,0.87,0.90) (0.36,0.37,0.39) (0.56,0.59,0.61)
G (0.58,0.59,0.61) (0.57,0.61,0.63) (0.71,0.75,0.79)
H (0.79,0.81,0.83) (0.72,0.75,0.79) (0.68,0.71,0.74)
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According to Table 5, the crisp form of the fuzzy single objective model will be 
as follows:

 Finally, at the end, by solving the model (47), a fuzzy transportation plan with the 
maximum fuzzy efficiency is determined as follows:

6 � Results and discussions

Considering the resulted efficient transportation plan, 10, 13, 11, 7, 9, 9, 5 and 1 cars 
should be transported from the assembly plants located in towns A, B, C, D, E, F, G, 
H, H to the major markets located in towns K, J, J, I, I, I, J, I, and J, respectively. This 

(47)

Max 0.84xAI + 0.82xAJ + 0.96xAK + 0.95xBI + 0.97xBJ + 0.64xBK + 0.86xCI

+ 0.87xCJ + 0.93xCK + 0.97xDI + 0.77xDJ + 0.60xDK + 0.97xEI + 0.75xEJ

+ 0.52xEK + 0.87xFI + 0.37xFJ + 0.59xFK + 0.59xGI + 0.61xGJ + 0.75xGK

+ 0.81xHI + 0.76xHJ + 0.71xHK

s.t. xAI + xAJ + xAK = 10,

xBI + xBJ + xBK = 13, xEI + xEJ + xEK = 9,

xCI + xCJ + xCK = 11, xFI + xFJ + xFK = 9,

xDI + xDJ + xDK = 7, xGI + xGJ + xGK = 4,

xHI + xHJ + xHK = 6,

xAI + xBI + xCI + xDI + xEI + xFI + xGI + xHI = 30,

xAJ + xBJ + xCJ + xDJ + xEJ + xFJ + xGJ + xHJ = 25,

xAK + xBK + xCK + xDK + xEK + xFK + xGK + xHK = 14,

xij ≥ 0 for all i,j.

xAK = 10, xBJ = 13, xCJ = 11, xDI = 7,

xEI = 9, xFI = 9, xGJ = 4, xHI = 5, xHJ = 1.

Table 5   The crisp values of the 
efficiency scores Ẽijs

ℜ(Ẽij) = (Ẽl
ij
+ 4Ẽm

ij
+ Ẽu

ij
)∕6

 I  J  K

A 0.839347 0.822687 0.957496
B 0.952678 0.97182 0.644977
C 0.862361 0.865448 0.931813
D 0.971213 0.767434 0.604772
E 0.968221 0.754571 0.522251
F 0.871747 0.37111 0.587937
G 0.594691 0.608342 0.749353
H 0.813214 0.755946 0.708504
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efficient transportation plan to transport the cars from the assembly plants to the major 
markets is illustrated in Fig. 2.

By substituting the efficient transportation plan in each objective function, the mem-
bership functions of fuzzy shipping cost ( �1(x) ), fuzzy value of shipment ( �2(x) ) and 
fuzzy profit ( �3(x) ) are given as follows:

(48)�
1
(x) =

⎧
⎪
⎨
⎪
⎩

x−26739

414
, 26739 ≤ x ≤ 27153

27724−x

571
, 27153 ≤ x ≤ 27724

(49)�
2
(x) =

⎧
⎪
⎨
⎪
⎩

x−87477

2237
, 87477 ≤ x ≤ 89714

91330−x

1616
, 89714 ≤ x ≤ 91330

Fig. 2   Efficient transportation 
plan
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Figure  3 shows the membership functions of fuzzy shipping cost, fuzzy value of 
shipment as well as fuzzy profit.

It is worthy to note that by solving the single objective FTP (46) based on the 
fuzzy programing technique, the following transportation plan is obtained according 
to the model (37):

 Based on the transportation plan, the fuzzy shipping cost, fuzzy value of shipment 
and fuzzy profit are given as (27837.55, 28360.41, 28907.11), (54483.75, 55542.26, 
56843.99) and (40827.88, 41843.84, 42835.26), respectively. It can be seen that the 
fuzzy shipping cost derived based on the proposed approach is less than the one 
derived from the fuzzy programming technique. Additionally, the fuzzy value of 
shipment and fuzzy profit obtained based on the proposed technique are greater than 
those derived from the fuzzy programming technique. So, the proposed approach to 
solve FTP (30) is preferable considering the obtained transportation plan. In general, 
there are several important advantages of the proposed method compared with the 
fuzzy programing technique: 

⊳	� The classical problem (37) applied for solving FTP (30) is not a transportation 
structured problem; whereas problem derived from the proposed approach to 
solve FTP (30) is a classical transportation problem.

⊳	� The optimal solution for the FTP (30) obtained using the proposed method has 
integer values, whereas the fuzzy programing technique yields fuzzy optimal 
solution with non-integer values in the fuzzy quantities of some products to be 
transported from origins to destinations, which have no physical meaning.

⊳	� The classical problem (37) utilized to solve FTP (30) with the fuzzy program-
ing technique has more constraints and variables when compared with problem 
derived from the proposed approach. Therefore, utilizing the proposed tech-
nique to solve FTP (30) is highly economical in comparison with the fuzzy 

(50)�
3
(x) =

⎧
⎪
⎨
⎪
⎩

x−43134

955
, 43134 ≤ x ≤ 44089

45209−x

1120
, 44089 ≤ x ≤ 45209

xAJ = 10, xBI = 6.52, xBJ = 6.48, xCI = 7.11, xCK = 3.89, xDI = 7,

xEI = 2.89, xEK = 6.11, xFI = 6.48, xFJ = 2.52, xGK = 4, xHJ = 6.

Fig. 3   Membership functions of the fuzzy objective functions
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programming technique from a computational viewpoint, considering the num-
ber of constraints and variables.

⊳	� Utilizing fuzzy DEA approach proposed in this study, the FMOTP (3) is con-
verted into a single objective FTP without modifying the structure of the trans-
portation problem, whereas using other popular techniques such as goal pro-
gramming method and fuzzy approach would increase the number of constraints 
for the problem by adding new ones. Therefore, if the problem requires an inte-
ger optimal solution, then fuzzy DEA approach can be used by simply deter-
mining an optimal solution to the transportation problem obtained by ignoring 
the integrality restrictions, while goal programming method and fuzzy program-
ming approach are not able to find integer solutions without adding the integral-
ity restrictions.

 Note that by solving the FMOTP based on the given data in Table 1, the follow-
ing solution is obtained according to problem (5) as an approximation of the ideal 
solution:

According to this transportation plan, the fuzzy shipping cost, fuzzy value of ship-
ment and fuzzy profit are given as (26875, 27467, 28286), (94627, 97234, 99775) 
and (40364, 41644, 42797), respectively. It should be noted that the fuzzy shopping 
cost (26739, 27153, 27724) ) which is derived using the proposed method is less 
than the fuzzy shopping cost (26875, 27467, 28286) achieved by solving model (5). 
Additionally, the fuzzy profit (43134, 44089, 45209) which is achieved using the 
proposed method is greater than the fuzzy profit (40364, 41644, 42797) received by 
solving model (5). Therefore, the proposed method is preferable considering fuzzy 
shopping cost and fuzzy profit.

Similarly, by solving the FMOTP based on the given data in Table 1, the follow-
ing solution is obtained according to problem (6) as an approximation of the ideal 
solution:

According to this transportation plan, the fuzzy shipping cost, fuzzy value of ship-
ment and fuzzy profit are given as (27536.87, 28115.14, 28847.29), (93616.73, 
96087.96, 98356.14) and (41143.64, 42406.05, 43537.45), respectively. It follows 
that the fuzzy shopping cost (26739, 27153, 27724) derived based on the pro-
posed method is less than the fuzzy shopping cost (27536.87, 28115.14, 28847.29) 
achieved by solving model (6). Moreover, the fuzzy profit (43134, 44089, 45209) 
derived using the proposed method is greater than the fuzzy profit (41143.64, 
42406.05, 43537.45) given by solving model (6). Therefore, the proposed method 
is preferable considering fuzzy shopping cost and fuzzy profit based on the results 
derived by �2 norm.

xAk = 10, xBI = 13, xCJ = 7, xCK = 4, xDI = 7, xEI = 1, xEJ = 8, xFI = 9, xGJ = 4, xHJ = 6.

xCK = 10, xBI = 9.48, xBJ = 3.52, xCJ = 7, xDI = 7,

xEI = 0.52, xEJ = 8.48, xFI = 9, xGJ = 4, xHJ = 6.
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7 � Conclusions

In the last few decades, the traditional TP considers only single objective func-
tion. Nowadays, when a homogeneous product is transferred from a source to dif-
ferent destinations in competitive economic condition, there would be more than 
single criterion including the transportation cost, average delivery time of prod-
uct, deterioration rate of goods. Consequently, the traditional TP is not efficient to 
accommodate such real-life decision-making problems. Moreover, in traditional 
TP, it is assumed that all the relevant parameters like supply, demand and trans-
portation cost, are precise. However, in most of the real-world situations, these 
parameters are imprecise due to impact of different reasons, such as incomplete 
information. To overcome such situations, TP with fuzzy multi-objective func-
tions has been investigated in a way that functions would contradict to each other. 
Also, a FDEA approach is proposed to convert the FMOTP into a fuzzy single 
objective. To this end, existing fuzzy arithmetic approaches for solving FDEA 
models have been revised in order to find the same weights for each separate 
DEA model to obtain the fuzzy efficiency scores of each arc. Next, the result-
ing fuzzy efficiency scores of each arc have been aggregated into a unique one. 
The obtained unique fuzzy efficiency score has been considered as the final fuzzy 
cost of a single objective fuzzy TP. Finally, an existing ranking function-based 
approach for solving the single-objective fuzzy TP have been used to find the 
optimal solution.

The proposed technique does not require the goal and parametric approaches 
which are difficult to implement in real-life situations. By employing the pro-
posed approach to find the efficient solution, there is no need for prior knowledge 
of the fuzzy programming and goal programming approaches which are challeng-
ing for a new decision maker. The proposed method to solve the FMOTP (3) is 
based on traditional transportation algorithms. Therefore, the existing and easily 
available software can be used for the same. Moreover, it is possible to assume 
a generic ranking index for comparing the fuzzy numbers involved in the single 
objective FTP (30), in such a way that each time that the decision maker wants to 
solve the FTP problem they can choose (or propose) the ranking index that best 
suits the FTP problem. It is worth noting that in the goal programming approach 
an aspiration level of the objective function should be given initially by the deci-
sion maker. Since in real-world application, the decision maker has little informa-
tion about the data of the problem under consideration, it is difficult for them to 
establish the mentioned data. As a result, the derived solution using this approach 
is questionable. However, the proposed fuzzy DEA approach applied in this study 
not only gives the efficient transportation plan without any knowledge of decision 
maker, but also keeps the transportation structure of the problem.

Finally, it is worth mentioning that this study links the FMOTP and FDEA 
together. In this way, most of the existing concepts in FDEA can be transformed 
into the FMOTP. For example, as for future research it would be worthwhile to 
solve the FMOTP using other approaches from the FDEA such as common set 
of weights (CSW) (Contreras et al. 2019). As another direction for further study, 
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there could be interest in examining a situation in which the attributes corre-
sponding to each arc are only from the maximizing or minimizing type. In this 
situation, all DMUs will be without input or output which require the different 
models to be evaluated. Finally, the work is in progress to extend the DEA based 
approach (Shirdel and Mortezaee 2015) for solving multi-objective shortest path 
problem (Abbaszadeh Sori et al. 2020a, b; Ebrahimnejad 2020).

Acknowledgements  The authors would like to thank the anonymous reviewers and the associate editor 
for their insightful comments and suggestions.
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