
Vol.:(0123456789)

Operational Research (2022) 22:1039–1081
https://doi.org/10.1007/s12351-020-00591-5

1 3

ORIGINAL PAPER

A decision support model for robust allocation and routing 
of search and rescue resources after earthquake: a case 
study

Ghazaleh Ahmadi1 · Reza Tavakkoli‑Moghaddam1,2  · Armand Baboli3 · 
Mehdi Najafi4

Received: 17 March 2018 / Revised: 29 April 2020 / Accepted: 22 July 2020 / Published online: 27 July 2020 
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
The efficient planning of search and rescue (SAR) operations is highly impactful in 
the disaster response phase, which offers a limited time window with a declining 
chance for saving trapped people. The present paper introduces a new robust deci-
sion support framework for planning SAR resource deployment in post-disaster dis-
tricts. A two-stage decomposition approach is applied to formulate the problem as 
iterative interrelated stages of mixed-integer programming (MIP) models. The first 
stage presents a robust multi-period allocation model for maximizing fair and effec-
tive demand coverage in the affected districts during the entire planning horizon. 
It takes into account the time-sensitiveness of the operations via a time-dependent 
demand satisfaction measure and incorporates resource transshipment optimization. 
The second stage optimizes the routing of the resources allocated in the first stage 
for each district during the upcoming period. It aims to minimize the weighted sum 
of SAR demand fulfillment times under consideration of secondary destruction risk, 
resource collaboration, and rest time requirements. At the end of each period, the 
proposed framework can be re-executed to capture updated resource, demand, and 
travel time parameters. To tackle the environment’s inherent uncertainty, an interval-
based robust optimization approach is adopted. The proposed framework is solved 
and analyzed for an urban zone in Iran under an earthquake scenario. Results show 
that the proposed robust models have superior performance compared to a determin-
istic approach for adaptation to an uncertain disaster environment. More importantly, 
they prove to be a strong analysis tool for providing helpful managerial insights for 
the mitigation and preparedness phases.
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1 Introduction

Earthquakes have caused severe damage and numerous fatalities in recent years. 
They continue to catastrophically threaten millions of people’s lives, directly or 
indirectly, all over the world every year. According to the Significant Earthquake 
Database1 (NGDC/WSD), major earthquakes during the last decade caused more 
than 400,000 deaths and more than 500,000 injuries, and affected 103 countries. The 
Sichuan earthquake in China in 2008 and earthquakes in Haiti in 2010 and Nepal 
in 2015 were among the most destructive and affected more than 56 million people 
(EM-DAT). Immediately after earthquakes strike (French and Geldermann 2005), 
possible sudden structural collapses trigger search and rescue (SAR) operations in 
the response phase of the disaster management cycle, which aims at locating, extri-
cating and stabilizing trapped people (OCHA 2015).

SAR is a fight against time since the survival likelihood of trapped people 
declines over time (Noji 1997; Olson and Olson 1987). Hence, providing rescue 
operations in a disaster-impacted zone requires the timely availability of sufficient 
SAR resources based on the damage magnitude. However, given the response phase 
setting, especially in major disasters that cause damages over a large zone with mul-
tiple districts, these resources can face serious shortages for various reasons: failure 
in the preparedness phase to devise an agile initial response to the disaster; budget 
limitations; or logistical constraints. Despite the low presence of SAR teams in the 
vital initial hours, response teams from various local, national, and international 
governmental or non-governmental organizations gradually arrive. Therefore, devel-
oping well-structured mechanisms to alleviate the intra- and inter-organizational 
coordination challenges in disaster response is beneficial and important (Quarantelli 
1988; Altay and Green 2006; Balcik et al. 2010; Galindo and Batta 2013). The com-
plexity in the availability of resources, on the one hand, and the diminishing survival 
chances of trapped people on the other hand, highlight the significance of timely 
resource allocation in the life-saving endeavors of the response phase (Rolland et al. 
2010; Mohamadi and Yaghoubi 2017).

When disaster strikes, fair distribution of available resources is also fundamen-
tally important (Altay and Green 2006; Beamon and Balcik 2008; Hu et al. 2016; 
Erbeyoglu and Bilge 2020). The range of effects from overlooking the notion of fair-
ness in rescue resource allocation decisions extends beyond the response phase. It 
can lead to undesirable short-term and long-term social, economic, and environmen-
tal consequences, such as the occurrence of citizen dissatisfaction, increased com-
plications and health-related issues in the management of dead bodies, overwhelmed 
debris management, and additional environmental damages, unbalanced relief distri-
bution, and increased recovery efforts.

Although having an optimal allocation scheme is crucial in largely affected 
zones, its performance is strongly linked with how resources are operationally 

1 Earthquakes with one or more of the following five characteristics are listed as significant: (1) caused 
moderate damage (approximately $1 million or more); (2) caused deaths; (3) magnitude 7.5 or greater; 
(4) modified Mercalli Intensity (MMI) of X or greater; and (5) generated a tsunami (NGDC/WSD).
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deployed to serve demand locations in each district. Transportation disrup-
tions and different travel times between demand locations, the risk of second-
ary destructions leading to time-dependent SAR, resource safety concerns, 
and trapped population density in each location all highlight how the rout-
ing of resources is critical for timely, well-organized and efficient utilization of 
resources.

This becomes even more critical in urban regions since the presence of densely 
packed tall buildings, a large population, and complex street patterns can compli-
cate and extend the operations (Statheropoulos et al. 2015). Although effective SAR 
planning is important, it has received less attention from scholars compared with 
other operation management topics in the vast body of the disaster management lit-
erature. In Iran, with its history of highly destructive earthquakes, the risks of over-
looking these challenges endanger the capital, Tehran, more than other cities. Teh-
ran is the largest city in the nation with more than 8,000,000 residents (Statistical 
Center of Iran 2011), and it is located on three major active faults: the Mosha, North 
Tehran, and Rey faults (JICA 2000). These faults caused several deadly and destruc-
tive earthquakes in the region from 743 to 1170, and again in 1830 (Ambraseys and 
Melville 1977). The faults in the region are depicted in Fig. 1.

Decision making in such a complex setting characterized by high time-sensitivity, 
several operational constraints, different objectives (e.g., fairness and effectiveness 
in the presence of several beneficiaries) coupled with the uncertainty and unpredict-
ability of the situation (Balcik et  al. 2010; Galindo and Batta 2013; Hoyos et  al. 
2015) is a complex and difficult task (Clemen 1996). In such a context, the existence 
of a decision support framework, which tackles these challenges, can accommodate 
the decision makers with tools to analyze the situation and to make informed and 
right choices (Thompson et al. 2006; Cioca and Cioca 2010; Othman et al. 2017).

Fig. 1  a Map of faults and seismicity in Iran (Mojarab et al. 2014); b the 22 urban districts of Tehran and 
the position of major faults (Asadzadeh et al. 2015)



1042 G. Ahmadi et al.

1 3

Inspired by the vulnerability of Tehran in the face of potential earthquakes, and 
to address the challenging, highly complex and impactful problem of rescue opera-
tion management, this study develops a novel robust decision support framework for 
SAR planning optimization. The proposed framework, which also tackles the inher-
ently uncertain nature of the disaster environment by adopting interval-based robust 
optimization, integrates two major decisions: (1) allocation of available SAR teams 
among districts in the affected zone; and (2) routing of allocated resources to serve 
the demand locations in each district of the zone.

The main contributions of the developed decision support framework can be cat-
egorized as follows:

• Considering fairness and operational efficiency in allocation decisions.
• Addressing the risks of disruption in the operations from the occurrence of sec-

ondary destruction.
• Considering the inherent uncertainty of disasters by adopting an interval robust 

optimization framework for SAR allocation and routing.
• Incorporating two coordination mechanisms to increase management effective-

ness in the affected zone.

The rest of this paper is structured as follows. Section 2 reviews related studies 
in the literature. In Sect. 3, the problem is defined and the proposed framework is 
presented. Section 4 suggests the robust counterpart models. The application of the 
proposed framework to an urban district in Tehran is analyzed in Sect. 5. Conclu-
sions are drawn in Sect. 6.

2  Literature review

The present work mainly focuses on search and rescue operations in the earthquake 
response; but in a broader context, it is related to important decisions about resource 
allocation, scheduling, and routing in disaster response. The response phase has 
attracted the attention of the majority of disaster management contributors (Gold-
schmidt and Kumar 2016), and there is a rich body of research dealing with its dif-
ferent aspects. To not lose focus, the review mainly concerns papers that have stud-
ied allocation, scheduling, or routing decisions within the scope of SAR.

2.1  Resource allocation

Zhang et  al. (2012) proposed a deterministic model for the allocation of multiple 
resources to multiple affected nodes to fully serve demand after primary and pos-
sible secondary disasters. They applied a heuristic approach to minimize total costs 
of resource allocation to primary disasters and opportunity costs of arrival at pos-
sible secondary ones. Chu and Zhong (2015) addressed the allocation of medical 
teams shortly after a severe disaster. They defined saving functions for different 
degrees of severity and maximized the expected number of survivals via a nonlinear 
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mathematical allocation of available teams at different points. Zhang et al. (2016) 
developed a deterministic two-stage allocation model for restoring interdepend-
ent lifeline infrastructure after disruptions. A cost minimization model selects the 
destroyed components in the first stage, and then restoration scheduling is deter-
mined by a makespan minimization model. A heuristic algorithm was proposed to 
solve the proposed models. Su et al. (2016) addressed the collaboration of various 
emergency agencies (hospitals, police stations, etc.) to respond to concurrent inci-
dents in disaster zones. They chose the sum of travel times and allocation costs as an 
objective function, treated the parameters as deterministic, and developed a differen-
tial evolution (DE) algorithm as their solution approach. Xiang and Zhuang (2016) 
developed a queuing network for patients with deteriorating conditions after large-
scale disasters and proposed two optimization models for death rate minimization 
and system time minimization.

2.2  Scheduling and routing

As suggested by Wex et  al. (2013), building a service tour for each resource unit 
in the affected district can be viewed in both the scheduling and routing domains. 
Fiedrich et al. (2000) developed a dynamic optimization model to schedule technical 
equipment in SAR, and also considered construction stabilization and rehabilitation 
of transportation lifeline tasks to minimize fatalities. Chen and Miller-Hooks (2012) 
developed a multi-stage stochastic program to optimize the routing of homogenous 
SAR teams in a large urban zone to maximize the number of saved people. Tak-
ing the arrival time of SAR teams as a priori versus considering demand, service 
times, and travel times as random variables, they proposed a sequence of interrelated 
two-stage stochastic programs as their solution approach and determined the tours of 
SAR teams. Zheng et al. (2018) presented a multi-objective fuzzy rescue task sched-
uling and risk minimization formulation and solved it with a multi-objective bioge-
ography optimization (BBO) algorithm. They treated task weights, risk factors, and 
processing and travel time parameters as fuzzy numbers and considered a nonlinear 
fuzzy risk exposure function for rescue units.

Yan et  al. (2014) proposed a cost minimization logistical support scheduling 
model with stochastic travel time in a given emergency repair network. Adopting 
average travel times, they simplified the stochastic model to a deterministic model 
and used a heuristic decomposition approach. Lei et al. (2015) proposed a determin-
istic service tardiness minimization model to find a timely dispatching schedule for 
medical supplies originating from different depots by preplanned routes of medi-
cal teams in the aftermath of a disaster. Cao et al. (2018) developed a deterministic 
multi-objective model for multi-period optimization of emergency rescue vehicles 
routing in post-disaster operations. In addition to the minimization of the rescue 
operation time, they considered the accumulated number of an unserved population 
at each period as the rescue delay cost objective function. Furthermore, by defining 
a rescue utility score for each demand node, they defined the rescue utility objec-
tive function. They used a hybrid NSGA-II and ant colony optimization algorithm 
to solve the model. Bodaghi et al. (2020) presented a deterministic completion time 
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minimization model to determine the scheduling of expandable and non-expanda-
ble resources in emergency operations. To count for the uncertain input parameters, 
their proposed framework runs the model for a set of plausible scenarios and selects 
the most common plan. Liu et al. (2020) developed a two-phase efficiency-focused 
routing optimization model. They evaluated the rescue efficiency of each arc based 
on its travel time and risk as well as the affected population, secondary hazard prob-
ability, and damage severity by a DEA model in the first phase. Considering the loss 
of efficiency for the remaining arcs over the operation progress, the second phase 
maximizes the total efficiency score of the selected visit sequence.

Wex et al. (2013) proposed a deterministic binary quadratic formulation to deter-
mine service routes of rescue teams with different capabilities to minimize the sum 
of the weighted completion time. They addressed different greedy, construction, and 
improvement heuristics, in addition to a Mont Carlo simulation method, to solve 
their NP-hard model. Extending their research, Schryen et al. (2015) presented two 
deterministic models to coordinate assignment and scheduling of multi-skill rescue 
units, with and without collaboration, for serving multiple incidents with different 
requirements. They proposed a heuristic solution method, which was later improved 
by a branch-and-price algorithm, developed by Rauchecker and Schryen (2019). 
Shahparvari et  al. (2017) addressed short-notice evacuation of the population in 
a bush fire disaster with hard time windows. They presented a possibilistic rescue 
routing model with the objective function of maximizing the number of transferred 
evacuees. Although their work is in the evacuation stream, it shares similarities with 
our focused area because it considers capacitated rescue resources with uncertain 
demand loads and route traveling times. Table 1 gives an overview of the main char-
acteristics of the above research.

Although there is increasing interest in the planning of resources during SAR 
operations, the considered studies either overlooked existing uncertainty in the dis-
aster response reality or tackled it mostly with fuzzy logic, stochastic optimization, 
and scenario-based robust optimization approaches. While these methods add value 
to deterministic models, which ignore the situation’s inherent uncertainty, their 
results and successful application highly rely on decision-makers’ knowledge of 
uncertain parameters in the form of membership functions, probability distributions, 
or possible scenarios (Bozorgi-Amiri et al. 2013). However, many underdeveloped 
or developing countries have difficulties in accessing well-recorded reliable his-
torical data or high-precision simulations. Hence, determining these characteristics 
for post-disaster time-sensitive SAR operations can lead to more inaccuracy or be 
operationally impractical or inefficient. Furthermore, the use of deterministic mod-
els with expected values is accompanied by the risk that solutions will be infeasi-
ble and/or non-optimal in cases of uncertain input parameter perturbations (Mulvey 
et al. 1995; Ben-Tal et al. 2009).

Such inefficiencies in the management of scarce rescue resources during disaster 
response with a slipping rate of survival can lead to higher losses caused by an inef-
ficient allocation of resources among demand locations, waste of SAR teams’ time 
in non-optimal routes, and higher safety risks for SAR teams. To close this gap, this 
paper develops a robust SAR planning model based on the interval robust approach 
proposed by Bertsimas and Sim (2004) to address uncertainty in both the allocation 
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and routing stages. Although a few papers on humanitarian relief (Baron et al. 2011; 
Najafi et al. 2013; Zhang and Jiang 2014; Zokaee et al. 2016) have applied interval 
data robust formulations, to the best of the authors’ knowledge, it has not been intro-
duced in the SAR literature.

As the primary mission of humanitarian operations is saving lives and alleviating 
human suffering, the majority of the studies focus on effectiveness rather than cost-
related objectives (Falasca et al. 2009). Most of the previous studies have focused 
on fatality minimization or operation time minimization, and they have mostly 
neglected the fairness challenge in allocation and scheduling models. The majority 
of studies have not looked into the collaboration of non-identical SAR resources in 
task completion. Furthermore, although task weights can represent task risk rank-
ings, only a few studies have explicitly addressed secondary risks.

Our study is most similar to the work by Schryen et al. (2015) in the assignment 
and routing of collaborating teams with different skills. We extend their model and 
contribute to the SAR literature by:

• Incorporating realistic interval uncertainties and developing a novel robust allo-
cation routing framework.

• Addressing fairness by maximizing the minimum timely coverage of affected 
districts by SAR resources in the allocation stage.

• Considering operation disruption by including secondary destruction risk of 
locations with or adjacent to unstable structures.

• Coordinating available resources and command centers in different districts of 
the impacted zone in two ways. First, since urban zones are often districted, the 
presented decision support framework considers a multi-district multi-period set-
ting. It better corresponds to the resource assignment decision process that arises 
at a tactical level in the response phase. Second, it incorporates the resource 
transshipement between affected districts for effective operations management 
and loss minimization.

• Accounting for additional operational constraints in the routing of rescue teams 
including idling for rest periods and the impact of secondary destructions on the 
operation duration.

As per the definition, the investigated problem belongs to the broader field of 
resource-constrained routing and scheduling as well as resource-constrained pro-
ject scheduling problems (Yan et al. 2009; Hartmann and Briskorn 2010; Paraskevo-
poulos et al. 2017). Addressing both allocation and routing issues in these problems 
makes them computationally complex problems that belong to NP-hard class (Garey 
and Johnson 1990; Miller and Franz 1996; Lenstra and Rinnooy Kan 1981; Laporte 
2007). Furthermore, there is even incremental complexity due to the consideration of 
real-world constraints reflected from the interviews with the SAR experts, such as the 
arrival of new resources over the planning horizon, transshipment of resources between 
districts, resource collaboration in demand locations, and time-sensitive SAR times 
(Schiffer et  al. 2019). In the related literature, the assignment of resources and their 
service tours in SAR problems and the other variants of resource-constrained project 
scheduling or routing problems are modeled and solved following simultaneous or 
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two-stages decomposition approaches (Paraskevopoulos et  al. 2017; Yalçındağ et  al. 
2016). However, the intrinsic complexity of the problem, which contradicts the need 
for decision-making agility, especially in disaster response, has made the decomposi-
tion approaches efficient and interesting methods being applied in numerous stud-
ies (Schmid et al. 2013; Rolland et al. 2010; Nickel et al. 2012; Allaoua et al. 2013; 
Yalçındağ et al. 2016; Can and Ulusoy 2014; Misir et al. 2015; Yalçındağ and Matta 
2017; Attia et al. 2019; Dahmen et al. 2020, Memari et al. 2020).

To overcome the drawback of simultaneous modelling of both decisions while ben-
efiting from joint allocation routing decision-making, a two-stage framework is pro-
posed in this study. The first stage takes arriving resource availability times as a priori 
and builds robust assignment of available and incoming teams to affected districts over 
a multi-period horizon for SAR response. This stage maximizes allocation fairness by 
maximizing minimum SAR demand coverage over the whole zone and determines: 
(1) the allocated number of resources in each district for each period; and (2) resource 
transfers to other districts or discharging decisions over the planning horizon. The out-
puts of the first stage for the first period of the planning horizon are fed into the second 
stage. The second stage models the routing of each district’s allocated teams among its 
demand locations during the several hours’ duration of that period. It integrates fatality 
and time minimization by taking the trapped population in each demand location of the 
district as the importance weight in an objective function of minimizing the weighted 
sum of task completion times. The model allows team collaboration and takes into 
account SAR tasks’ non-preemptive characteristics. To have the optimal weighted sum 
of demand locations’ SAR completion times, this stage determine (1) the sequence of 
demand location visits for each team; and (2) the amount of SAR activity of each team 
for each demand location on their routes.

After implementing the first period’s allocation and routing decisions, the plan-
ning framework is run again for the remaining periods of the horizon. In the first 
stage, the allocation model is solved again to capture the actual status of operation 
progress and upcoming updates on input parameters. Afterward, with the new allo-
cation scheme, the second stage is run with the updated data to optimize the routing 
of allocated teams for the next period. This cycle continues until the end of the SAR 
planning horizon in the response phase.

Proactive approaches in the mitigation and preparedness phases play a key role in 
reducing disaster loss in the built environment (Mojtahedi and Lan Oo 2014). There-
fore, the proposed decision support framework is designed, not only to help SAR 
planning during the response phase but more importantly, to also equip relevant 
disaster stakeholders with a tool for more effective use of resources in investment, 
training, and capability-building decisions during the risk mitigation and prepared-
ness phases.

3  Problem description

This study proposes a two-stage approach to optimize the planning of SAR opera-
tions in disaster-impacted zones. It assumes that the affected zone is divided into 
several districts. Each district, with several demand locations, has three types of 
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demand based on the damage severity and requires teams with a compatible set of 
skills to serve them.

The first stage addresses the coverage of affected districts’ SAR demand over 
the entire SAR timeline in the response phase and formulates it as a multi-period 
fair resource allocation model (MPFRAM). For each severity type, the model 
takes the total estimated SAR demand in each district and computes the minimum 
demand coverage over the entire affected zone. Based on the importance weight 
of each demand type, the objective function maximizes the allocation fairness by 
maximizing the weighted sum of all demand types’ minimum coverage over the 
affected zone.

To account for allocation effectiveness about deteriorating chances of saving 
lives, a decreasing utility parameter is considered for allocation in each period. 
Incorporation of this parameter, which is driven by the declining survival rate 
of trapped people after large-scale disasters (Fiedrich et al. 2000), represents the 
importance of operation effectiveness and favorability of quick demand response 
(Gralla et  al. 2014; Erbeyoglu and Bilge 2020). Having the utility parameters 
as the weights, each district’s demand satisfaction is calculated as the weighted 
sum of allocated SAR work over the whole horizon. To have optimal utilization 
of capacities against demand, the model allows for an exchange of SAR units 
between districts wherever it is beneficial, according to demand coverage status 
and district distances. As SAR operations evolve and response time shrinks, fewer 
SAR teams are required and the affected zone prepares for debris management 
and road restoration. So, the model considers both the deployment and release of 
SAR units in decision variables. However, due to the usual scarcity of resources 
versus overwhelming demand, releasing rescue SAR units are not expected unless 
in the last periods. The main assumptions and outcomes of this stage can be sum-
marized as follows.

Assumptions:

• SAR demand and travel time parameters are considered uncertain and 
assumed to be symmetrically distributed at the given intervals.

• The number of arriving new SAR teams at each period is assumed to be 
known.

• Each period consists of T hours (e.g., 12 h), and T can be set based on decision 
environment circumstances.

• The utility of resource allocation in each period represents that period’s demand 
coverage efficiency and declines over time.

• SAR teams can travel between districts to improve SAR capacity utilization 
versus demand. However, the travel time between resource-exchanging districts 
decreases the amount of possible SAR work.

Outputs:

• The allocated number of resources in each district for each period.
• The resource transfer to other districts or discharging decisions over the planning 

horizon.
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The outputs of the first stage for the first period are fed into the second stage. This 
stage addresses the deployment of allocated teams in the first period of the planning 
horizon for each district. It formulates the problem as a single period capacitated 
resource routing model (SPCRRM) and optimizes the weighted sum of SAR task 
completion times in the district’s demand locations. Each demand location needs 
the SAR operation in one of the three types of demand based on its damage severity. 
Similarly and with hierarchical levels of skills, each team has a specific capability 
degree, which qualifies them for serving the respective demand type and less severe 
situations. Due to the uncertain changing environment in the aftermath of natural 
disasters, SAR operation times, the number of trapped people, and the travel time 
between demand locations within each district are assumed to be uncertain, and an 
interval robust approach is adopted to deal with that.

Some of the demand locations, which include residential buildings, schools, 
hotels, malls, and urban infrastructure, may be at a higher risk of further destruc-
tion and extended operation time due to situations like being located on the coast-
line with tsunami risk, or being adjunct to partially-collapsed unstable structures. To 
adapt the realistic vulnerability of rescue success to operation timing in such situa-
tions, an estimated threshold time is considered for high-priority demand locations. 
These locations, which should be identified based on expert input, are assumed to 
require longer operation time if they are not served before their threshold time.

The amount of required operation time at each demand location is stated in terms 
of hours. It may be accomplished by several teams and can be estimated based on 
building dimensions, approximate trapped population, damage severity, etc. The 
model adopts the realistic constraint of work-rest periods in difficult working condi-
tions for SAR operations. This assumption becomes vital in team scheduling when 
the disaster-impacted zone is exposed to infectious disease or dangerous materi-
als (Sawik 2010). The maximum limit of working hours and the rest duration is 
assumed a priori, but teams are not allowed to interrupt an unfinished task, even if 
it exceeds their shift time. If several teams serve at a single demand location, their 
service times should be overlapping, or follow an end-to-start relationship with 
at least one other team until the task is completed. Any task that is planned to be 
started during that period should be completed and removed from the district’s total 
SAR demand. The start time of each team on the last location of their tour, along 
with their assigned SAR activity hours, determine their availability time for the next 
period. The main outputs of this stage are as follows:

• The sequence of demand location visits for each team.
• The amount of SAR activity of each team in each demand location on their route.
• The expected operation finish time for each demand location based on the start of 

SAR and the team engagement amounts. This also determines team availability 
times for the next period, whether in the same district, in the transfer link’s desti-
nation district, or out of the SAR mission.

Due to the very vague status of input parameters over the whole search and res-
cue phase (120  h), a dynamically changing environment, and the rapidly incom-
ing updated data, SPCRRM considers a single period of 12  h duration. After 
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implementing the allocation and routing decisions of the first period, the planning 
horizon is updated and the proposed framework is re-run to capture the actual 
operation progress and information updates. By the inclusion of realized remaining 
demand in each district and other input parameter updated vales, MPFRAM is run 
for the remaining periods of the horizon. Building on the outputs of the first stage 
and benefiting from the newly arrived data, the second stage SPCRRM is run for the 
next period to optimize the routing of allocated teams in each district. This cycle 
is repeated until the end of the SAR timeline in the response phase. The flow of 
information between the two stages is outlined in Fig. 2. Feeding updated input data 
into the models requires a well-designed and stable communication infrastructure, 
and can highly impact the effectiveness of search and rescue operations (Mohamadi 
et al. 2019).

The next two sub-sections present the formulations of the problem as mixed-inte-
ger linear programming (MILP) models.

3.1  First stage: MPFRAM

The mathematical model in the first stage uses the following notation and decision 
variables.

Indices and parameters: 

s Demand types (s ∈ {1, 2, 3})

k, k′ Districts in the affected zone (k, k� ∈ {1, 2,… ,R})

t T-hour SAR deployment planning periods (t ∈ {1, 2,… ,Z})

First Stage
Zone Scale

Multi-Period Horizon

Run the SPCRRM for the current 
period for each district

Run the MPFRAM

Updated demand location profiles:
Demand type
Required SAR time
Trapped population
Secondary risk existence
Travel time to other demand 
locations

Travel times between districts
Remaining demand in each district
Resource availability
Remaining Periods

Second Stage
District Scale

Single-Period Horizon

External update

External update

Database
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Execution Stage
Implementing the current 
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Fig. 2  SAR two-stage decision support framework
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�t Estimated survival utility in period t
dsk Total required SAR operation type s in district k
cst Number of SAR teams with type s capability arriving in the 

impacted zone at period t
gkk′ Travel time between district k and k’
ws Importance weight of missions with severity degree of s
T Duration of each SAR deployment planning period

Decision variables: 

xt
sk

Number of teams with type s capability allocated to district k in period t
yskk′ t Number of teams with type s capability transferred from district k to k’ in period t
hskt Number of newly arrived teams with type s capability allocated to district k in period t
fskt Number of excess teams with type s capability in district k to leave in period t
covs Minimum effective coverage of demand for task type s among affected districts

zst =

{

1

0

If there is an increase in the number of allocated teams for demand type s in the 
affected zone from period t − 1 to t

Otherwise

The model is formulated as follows:

s.t.

(1)Max
∑

s

wscovs

(2)
xt
sk
= hskt − fskt +

∑

k�

k� ≠ k

ysk�kt −
∑

k�

k� ≠ k

yskk�t ∀ s, k, t = 1

(3)
xt
sk
= xt−1

sk
+ hskt − fskt +

∑

k�

k� ≠ k

ysk�kt −
∑

k�

k� ≠ k

yskk�t ∀ s, k, t > 1

(4)
∑

k

hskt ≤ cstzst ∀ t, s

(5)
∑

k

fskt ≤
(

1 − zst
)

t
∑

t�=1

cst� ∀ s, t

(6)covsdsk −
∑

t

(

Txt
sk
−
∑

k�

gk�kysk�kt

)

�t ≤ 0 ∀ s, k



1054 G. Ahmadi et al.

1 3

To account for fair allocation, the objective function maximizes the demand cov-
erage for the district with the lowest coverage score. This also results in minimiz-
ing the gap between the coverage statuses of different districts, and hence, fairness 
is taken into consideration. Since there are different demand types for severity, the 
objective function takes the weighted sum of all three types’ minimum level of cov-
erage over all the districts in the affected zone.

Constraints (2) and (3) **calculate the number of SAR teams in each district. 
Each district may cover its demand from multiple sources, including teams allocated 
in the previous period, transferred teams from other districts, and allocation of new 
teams that reach to the hot zone at each period. Constraint (4) is a capacity con-
straint for the total number of new teams assigned in each period over the whole 
affected zone. As operations progress, for each demand type for which the amount 
of allocated resources exceeds the remaining total demand, the operation center 
should decide to discharge excess teams (Constraint (5)). These teams can either be 
assigned as fresh resources for satisfying the remaining demand in less severe tasks 
and be taken into the updated cst parameter, or dispatched for further operations of 
the response phase, like relief item distribution.

Constraint (6) computes the minimum coverage level for each demand type 
over the affected districts. Although the transshipment of resources enables better 
resource utilization, the time spent on traveling between the districts reduces the 
remaining time for the operation in the destination district. Hence, the lost time is 
subtracted from the resources’ effective allocated times. To incorporate the reduc-
tion in the survival rate of trapped people over response time shrinkage, the effec-
tiveness of allocated resources in each period is considered by the help of utility 
weights. Sign constraints are given in Constraints (7) and (8).

After solving the first stage, the number of allocated teams for each demand type 
and each district in the first period is fed into SPCRRM in the second stage to plan 
the teams’ SAR activities in each district. It is a single-period capacitated routing 
model that schedule the operations of the allocated teams in each district for the 
duration (e.g. 12 h) of the first period of the remaining planning horizon.

3.2  Second stage: SPCRRM

The mathematical model in the second stage uses the following notation and deci-
sion variables.

Indices and parameters: 

i SAR teams (i ∈ {1, 2,… ,N})

j, j′ Demand locations, where 1 and m are dummy nodes representing the command base 
(j, j� ∈ {1, 2,… ,m})

dj Location j’s demand type dj ∈ {1, 2, 3}

(7)xt
sk
, yskk′t, hskt, fskt ≥ 0, int, covs ≥ 0

(8)zst ∈ {0, 1}
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pj People trapped in location j
ci Team i’s capability type ci ∈ {1, 2, 3}

gjj′ Travel time between location j and j’
�j Estimated threshold time at which SAR time at location j increases (due to secondary 

destructions)
b′
j

Required SAR time in location j before the threshold time
aj Additional SAR time in location j after the threshold time
�i Time at which team i is available in the affected district
L Minimum acceptable involvement of a team in the operation at a location
T Duration of the route planning period
� Shift time
� Rest time

Decision variables: 

sij Start time of team i at location j
s′
j

Start time of SAR at location j
fj Completion time of SAR at location j
bij Amount of SAR activity by team i at location j
wij Amount of continuous SAR activity along the route by 

team i after visiting location j

q�
j
=

{

1

0

If location j is included in the schedule
Otherwise

qij =

{

1

0

If location j is allocated to team i
Otherwise

yj =

{

1

0

If SAR starts at location j after its threshold time
Otherwise

xij =

{

1

0

If team i arrives first at location j
Otherwise

vijj� =

{

1

0

If team i visits location j’ after location j along their route
Otherwise

rij =

{

1

0

If team i needs to rest after visiting location j
Otherwise

And the model is formulated as follows:

s.t.

(9)Min
∑

j

pjfj

(10)
q�
j
≤

∑

i

ci ≥ dj

qij ∀ j
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The objective function (9) minimizes the weighted sum of SAR completion 
times in affected locations. Since the populations of trapped people in the demand 
locations are used as importance weights, the objective function can be inter-
preted as the total man-hours waiting to receive SAR services over all the loca-
tions in the district. Constraint (10) is an integrality constraint that makes sure 
that locations with assigned SAR teams are selected in the routing plan. Con-
straint (11) guarantees that the start time of the SAR mission by each team at 
each selected demand location cannot exceed the duration of the planning period. 
Each started SAR activity will continue until completion. The completion time, 
which might be later than the period’s duration, determines the teams’ availabil-
ity times in the next period. Only qualified teams may get involved in serving 
each demand type, and this case is addressed in the whole model via appropriate 
condition(s). Teams are ready to start their route once they arrive at the command 
base, as shown in Constraint (12).

Constraints (13) to (16) calculate the start time of the SAR at each demand 
location as the earliest time of operation by the allocated qualified teams.

Constraint (17) ensures that each selected demand location is fully served by con-
tributing teams. Constraint (18) guarantees that if the operation starts at a location, 
there should be at least one team present to complete the job; in other words, the 
work cannot be interrupted, and the involved teams may not leave the demand loca-
tion prior the SAR completion unless another team continues the mission.

(11)sij ≤ Tqij ∀ i, j;j ≠ 1;j ≠ m;ci ≥ dj

(12)sij ≥ �iqij ∀ i, j = 1

(13)s�
j
≤ T

(

1 − qij
)

+ sij ∀ i, j;j ≠ 1;j ≠ m;ci ≥ dj

(14)s�
j
≥ sij + (1 − T)

(

1 − xij
)

∀i, j;j ≠ 1;j ≠ m; ci ≥ dj

(15)

∑

i

ci ≥ dj

xij = q�
j

∀ j; j ≠ 1;j ≠ m

(16)xij ≤ qij ∀i, j; ci ≥ dj

(17)
yjaj + b�

j
q ≤

∑

i

ci ≥ dj

bij ∀ j

(18)sij + bij ≤ s�
j
+ b�

j
q�
j
+ yjaj ∀ i, j j ≠ 1;j ≠ m;ci ≥ dj
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Constraint (19) states that once a team is allocated to a demand location, they 
should serve in the mission for a minimum amount of time. Constraints (20) and 
(21) determine whether each location receives its required SAR before the threshold 
time.

Constraints (22) to (26) compute the total continuous work of each team, along 
with their route after visiting each demand location. As shown in Constraints (22) 
to (24), the consecutive work of a team after a location is equal to their SAR activ-
ity in that location only if this node is visited right after a rest time or at the start of 
the route. Constraints (25) and (26) accumulate the SAR activities of the team at the 
linked locations along the route if the team’s working shift is not finished yet.

Constraints (27) and (28) determine the necessity of rest time for each team after 
each SAR visit. Constraint (29) ensures the integrality relation of assigning the team 
for SAR activity on each demand location and their work amount.

(19)bij ≥ Lqij ∀ i, j j ≠ 1;j ≠ m

(20)s�
j
≥ yj�j ∀ j; j ≠ 1;j ≠ m

(21)s�
j
≤ Tyj + �j

(

1 − yj
)

∀ j; j ≠ 1;j ≠ m

(22)wij ≥ bij ∀ i, j; j ≠ 1;j ≠ m;ci ≥ dj

(23)
wij� ≤ bij� +M

(

2 − vijj� − rij
)

∀ i, j, j�;j ≠ j� j, j� ≠ 1; j, j� ≠ m;ci ≥ dj;ci ≥ dj�

(24)wij� ≤ bij� +M
(

1 − vijj�
)

∀ i, j�; j = 1;j ≠ j�;ci ≥ dj�

(25)
wij� ≤ wij + bij� +M

(

1 − vijj�
)

∀ i, j, j�; j ≠ j�;j, j� ≠ 1;j, j� ≠ m;ci ≥ dj;ci ≥ dj�

(26)
wij� ≥ wij + bij� −M

(

1 + rij − vijj�
)

∀i, j, j�; j ≠ j�; j, j� ≠ 1;j, j� ≠ m;ci ≥ dj;ci ≥ dj�

(27)wij ≤ Mrij +
(

�
(

1 − rij
))

∀ i, j;j ≠ 1;j ≠ m;ci ≥ dj

(28)wij ≥ �rij ∀i, j;j ≠ 1;j ≠ m;ci ≥ dj

(29)wij ≤ Mqij ∀ i, j;j ≠ 1;j ≠ m;ci ≥ dj

(30)
sij + bij + gjj� + rij� ≤ sij� +M

(

1 − vijj�
)

∀i, j, j�;j ≠ j�;j ≠ m;ci ≥ dj;ci ≥ dj�
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Constraint (30) calculates the start time of operation by each team at each 
demand location along their route. Constraints (31) and (32) ensure that each 
selected demand location has a predecessor and successor node on the team’s route. 
The finish time of SAR at each location is calculated in Constraint (33) as the latest 
time of operation completion by the assigned teams. While the start of SAR at each 
selected demand location should be within the routing period’s duration, the finish 
time might be later, since no interruption is allowed until the selected location’s total 
demand is satisfied. Sign constraints are given in Constraints (34) and (35).

The solution provided by solving this stage flows back to the first stage to com-
plete the planning framework. This feedback, along with the externally updated 
information, enables the first stage to re-optimize the allocation decisions for the 
remaining horizon and to continue the operation planning.

In the ever-changing disaster environment, the inherent uncertainty of parame-
ters limits the applicability of deterministic models. Hence, this section introduces 
the model’s interval-based robust counterpart, which keeps the model flexible and 
robust in real-world applications.

4  Interval data robust optimization

In practice in an uncertain environment, there are parameters with unknown exact 
values that may be actualized differently from their estimated nominal values. These 
gaps are potentially capable of violating some constraints and hurting solution opti-
mality. Therefore, there is a need for implementing solution approaches that remain 

(31)

∑

j�

j� ≠ j

j� ≠ 1

ci ≥ dj

vijj� = qij ∀ i, j;j ≠ m;ci ≥ dj

(32)

∑

j�

j� ≠ j

j� ≠ m

ci ≥ dj

vij�j = qij ∀ i, j;j ≠ 1;ci ≥ dj

(33)fj ≥ sij + bij +M
(

1 − q�
j

)

∀ i, j;j ≠ 1;j ≠ m

(34)sij, s
′
j
, fj,wij, bij ≥ 0

(35)xij, yj, qij, q
�
j
, vijj� , rij ∈ {0, 1}
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robust in terms of feasibility and solution quality in the presence of uncertainty 
(Bertsimas and Sim 2004).

Soyster (1973) was the first to develop a model to meet this need. However, his 
model, which constructed a solution feasible for all the data in a convex set, was too 
conservative. This first attempt was further developed by Ben-Tal and Nemirovski 
(1998, 1999, 2000), El-Ghaoui and Lebret (1997), El-Ghaoui et al. (1998), Bertsi-
mas and Sim (2004) and Bertsimas and Thiele (2006). Bertsimas and Sim (2004) 
proposed a solution approach for linear mathematical models with an uncertain 
coefficient matrix. Their approach does not increase the model’s complexity and has 
a flexible in a conservatism level; it is briefly described below.

Bertsimas and Sim (2004) considered the following model and assumed that the 
i-th constraint has �i uncertain technological coefficients with values that lie in a 
stochastic symmetric interval 

[

āij − âij, āij + âij
]

 , and exactly one parameter with 
a �i − �i perturbation, where �j is not necessarily an integer and may take up any 
value in 

[

0, |
|

Ji
|

|

]

 with Ji being the set of uncertain coefficients in constraint i.

To ensure the model stays feasible after the Γi coefficients’ perturbations, they 
rewrote the model with the help of a protection function �i

(

x∗.�i

)

:

where 𝛽i
�

x∗,𝛤i

�

= max{Si∪{ti}�Si⊆Ji,�Si�=𝛤i.ti∈Ji⧵Si}

�

∑

j∈Si

âij
�

�

�

x∗
j

�

�

�

+
�

𝛤i − 𝛤i

�

âij
�

�

�

x∗
j

�

�

�

�

.

�i
(

x∗,�i

)

 protects the feasibility by embedding the largest possible deviation of 
left-hand side coefficients in i-th constraint. So it needs to find a Γi set of coefficients 
that can cause the biggest perturbation:

In this model, positive values of zij represent the coefficients in the �i uncer-
tainty level whose perturbation can cause the biggest risk of violating the right-
hand side in the i-th Constraint (36) and (37). Since this model is feasible and 
bounded, according to the strong duality property, its dual problem is also fea-
sible and bounded, and its objective value is equal to the primal. If zi and pij are 

(36)
Max z = cx

ãx ≤ b

1 ≤ x ≤ u

(37)

Max z = cx

ãx + 𝛽i
(

x∗,𝛤i

)

≤ b

l ≤ x ≤ u

(38)

𝛽i
(

x∗,𝛤i

)

= max
∑

j∈Ji

âij
|

|

|

x∗
j

|

|

|

zij

s.t.
∑

j∈Ji

zij ≤ 𝛤i

0 ≤ zij ≤ 1 ∀ j ∈ Ji
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the auxiliary dual variables of Model (38), one can rewrite Model (37) into its 
ID robust counterpart model (39) by replacing �i

(

x∗.�i

)

 with the dual model of 
Model (38). The use of �i , which is called “the budget of uncertainty” (BoU), 
facilitates user flexibility in calibrating the robustness of the method based on the 
preferred conservatism level (Bertsimas et al. 2011).

Using �i as the allowed summation of perturbations in uncertain parameters of 
row i, this approach enables the user to make the trade-off between the probabil-
ity of violating the i-th constraint and the effect on the objective function of the 
nominal problem (Bertsimas et al. 2011). Bertsimas and Sim (2004) proved that 
if more than �i uncertain parameters change in the i-th constraint, the probability 
of the constraint’s violation is at most B

(

n,�i

)

 , which is approximated by the fol-
lowing bound:

where n = |

|

Ji
|

|

 and �() is the cumulative distribution function of a standard normal 
variable.

Hence, one can protect the solution against infeasibility by choosing an appro-
priate level of �i , depending on the number of uncertain parameters present in 
that constraint. Testing different pairs of 

(

n,�i

)

 , the proposed approach is capable 
of guaranteeing a robust feasible solution without sacrificing too much optimality.

In the case of constraints that are similar to Constraint (6), in which there is 
only one uncertain demand parameter per constraint for each (s, k) , Bertsimas and 
Sim’s approach results in several BoU parameters � k

s
 , each ranging from 0 to 1 

for the demand uncertainty in each constraint. This means that even examining 
only 0 and 1 options for each dsk ’s BoU leads to 2s∗k states, which is computation-
ally infeasible to deal with. Therefore, Bertsimas and Thiele (2006) extended the 
work of Bertsimas and Sim (2004) to account for such situations. Their proposed 
robust method considered an accumulated conservatism parameter �  for the rel-
evant set of uncertain parameters, which are dispersed among different rows of 
constraints.

In the above example, s denotes the demand type and remains in the conserva-
tism level definition. While, the notion of the district is removed, and the method 

(39)

Max z = cx

s.t.
∑

j

āijxj + zi𝛤i +
∑

j∈Ji

pij ≤ bi

zi + pij ≥ âijyj ∀ i, j ∈ Ji

− yj ≤ x ≤ yj ∀ j

lj ≤ xj ≤ uj ∀ j

zi, pij, yj ≥ 0

B
�

n,�i

�

≈ 1 − �

�

�i − 1
√

n

�
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considers a single �s to accumulate the budget of uncertainty for all districts’ 
demand type s. Therefore, each district’s share of demand uncertainty becomes 
�s

R
 , where R is the number of districts.
In line with the characteristics of both studies, this paper adopts the interval data 

robust method presented by Bertsimas and Sim (2004) and Bertsimas and Thiele 
(2006) to address uncertain parameters in both stages. SAR demand and the travel 
time parameters in the first stage, and trapped population, required SAR times, 
threshold times, and travel time parameters in the second stage are treated as uncer-
tain and are considered in symmetric interval forms. These intervals are fed in by 
damage estimation applications and systems, expert input, and information updates 
received during the operations.

4.1  MPFRAM robust counterpart

� 2
k
 is the number of districts with stochastic travel times from district k. rk and vkk′ 

are dual variables of the protection function of districts’ travel times. Since there are 
R districts considered in the first-stage allocation formulation, �

1
s

R
 is defined as the 

level of conservatism for demand parameters as stated in Eq. (40). Furthermore, qsk 
and usk are the corresponding regular dual variables for protecting the model’s fea-
sibility against demand uncertainty. Equations (40) to (43) substitute Constraint (6) 
and build the first stage’s robust counterpart.

4.2  SPCRRM robust counterpart

�  , which is independently defined for each district in the second stage, is the num-
ber of demand locations with uncertain populations. �1 and �2

j
 are defined to address 

duality in the protective function of population coefficients. Equation (9) is replaced 
with Eqs.  (44) and (45). To adopt Bertsimas and Sim’s (2004) approach in the 
uncertain coefficients in the objective function, the worst case occurs when all the 
locations have higher populations, worsening the weighted summation of comple-
tion times. So, in the presence of conservatism level �  , the objective function can be 
written as Min =

∑

j pjfj + �j

�

f ∗
j
,�

�

 , and the rest follows the approach introduced 
by Bertsimas and Sim (2004).

(40)

covsd̄sk +
𝛤 1
s

R
qsk + usk −

∑

t

Txt
sk
𝜃t +

∑

t

∑

k�

ḡk�kysk�kt𝜃t + 𝛤 2
k
rk +

∑

k�

vkk� ≤ 0 ∀ s, k

(41)qsk + usk ≥ covsd̂sk ∀ s, k

(42)rk + vkk� ≥ ĝk�k

∑

t

ysk�kt𝜃t ∀s, k, k�

(43)qsk, usk, rk, vkk′ ≥ 0
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Since there are (m − 2) demand locations in each district, � 3 determines the con-
servatism level of the SAR times of all locations. Therefore, � 3

m−2
 is each location’s 

budget of uncertainty for SAR time. �1
j
 and �2

j
 are the dual variables of the SAR time 

uncertainty protection function. Let m’ be the number of locations in the risk of sec-
ondary destruction and operation time expansion, then �

4

m′
 is considered to be each 

high-risk location’s price of robustness for uncertain additional operation time. �1
j
 

and �2
j
 are the dual variables to protect the model’s feasibility against the uncertainty 

of required additional SAR time after secondary destruction. Equations (46) to (49) 
replace Eqs. (17) and (18).

Similarly, �
5

m′
 is considered as the conservatism level for uncertain threshold times 

in demand locations with the risk of operation expansion. Since uncertain threshold 
times appear in two different sets of constraints, two protection functions are 
required. One addresses the feasibility of Constraint (20) with dual variables �1

j
 and 

�2
j
 by Eqs.  (50) and (52); and one protects Constraint (21) against the threshold 

time’s uncertainty by � ′1
j

 and � ′2
j

 in Eqs. (51) and (53). There are (m − 2)2 possible 
independent outflow links between the demand locations in the second stage; and 
therefore, � 6

(m−2)2
 defines the level of conservatism for travel times for each pair of 

locations. Since in Eq. (30), the uncertain travel time parameter is not multiplied by 
any variable, the constraint’s feasibility protection is obtained by the inclusion of 
travel time perturbation based on its budget of uncertainty.

(44)Min
∑

j

p̄jfj + 𝛤𝜁1 +
∑

j

𝜁2
j

(45)𝜁1 + 𝜁2
j
≥ p̂jfj ∀ j

(46)
yjāj +

𝛤 4

m�
𝛽1
j
+ 𝛽2

j
+ b̄�

j
q�
j
+

𝛤 3

m − 2
𝛼1
j
+ 𝛼2

j
≤

∑

i

ci ≥ dj

bij ∀ j

(47)

sij + bij ≤ s�
j
+ b̄�

j
q�
j
+ yjaj +

𝛤 3

m − 2
𝛼1
j
+ 𝛼2

j
+

𝛤 4

m�
𝛽1
j
+ 𝛽2

j
∀ i, jci ≥ dj;j ≠ 1,m

(48)𝛼1
j
+ 𝛼2

j
≥ b̂�

j
q�
j

∀ j j ≠ 1,m

(49)𝛽1
j
+ 𝛽2

j
≥ yjâj ∀ j j ≠ 1,m

(50)yj𝜖j +
𝛤 5

m�
𝛾1
j
+ 𝛾2

j
≤ s�

j
∀jj ≠ 1,m
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Replacing Eqs. (9), (17), (18), (20), (21) and (30) with Eqs. (44) to (55) builds 
the second stage’s robust counterpart.

5  Case study

To show the effectiveness of the proposed model, this section describes a robust 
SAR allocation and routing example based on an earthquake scenario in an urban 
part of Iran’s capital, Tehran. It is the most populated city in the country, with 22 
municipal districts, and is located in the southern foothills of the Alborz Mountains, 
in an earthquake-prone region (Fig. 3). It is surrounded by three major seismically 
active faults, Mosha to the northeast, North Tehran to the north, and Rei to the south, 
as well as hidden faults underneath the whole city’s sediment layers (JICA 2000). 
The city has expanded tremendously over the past 50 years, and now has more than 
8,000,000 inhabitants and covers an area of 730 km2. It is now considered one of the 
cities most vulnerable to earthquakes in the world (Amini Hosseini et al. 2014).

The scenario considered, called the Tehran floating earthquake scenario (TFES), 
was developed to assess the city’s relative vulnerability and considers the hidden 
faults underneath the city. In the case of an earthquake caused by these faults, which 
are simulated to be 13  km in length and 10  km in width, everywhere in the city 
would have a similar probability of occurrence, with a seismic intensity of 8–9 on 
the MMI scale (JICA 2000; Ashtari et al. 2005).

Inspired by the results of the TFES simulation for a nighttime earthquake, this 
section presents the results of MPFAM implementation in one of Tehran’s municipal 
districts (District 6) for a 6-period planning horizon and elaborates on the findings 
from solving SPCRRM in one of its subdistricts for the first period.

District 6 has an area of 21 km2 and nearly 235,000 inhabitants and is located 
in the central part of the capital. It is one of the oldest districts in the city and has 

(51)s�
j
+

𝛤 5

m�
𝛾 �1
j
+ 𝛾 �2

j
≤ Tyj + 𝜖j

(

1 − yj
)

∀jj ≠ 1,m

(52)𝛾1
j
+ 𝛾2

j
≥ yj𝜖j ∀ j j ≠ 1,m

(53)𝛾 �1
j
+ 𝛾 �2

j
≥
(

1 − yj
)

𝜖j ∀ j j ≠ 1,m

(54)

sij + bij +

(

ḡjj� + ĝjj�
𝛤 6

(m − 2)2

)

+ rij𝜌 ≤ sij� +M
(

1 − vijj�
) ∀ i, j, j�j ≠ j�

j ≠ m;ci ≥ dj, dj�

(55)�1
j
, �2

j
, �1

j
, �2

j
, �1

j
, �2

j
, �1′

j
, �2′

j
, �1, �2

j
≥ 0
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special characteristics compared to the rest,2 which highlights the importance of 
SAR planning for successful loss prevention, not only at the district level but also 
beyond the district at the city level.

• An average of 9% of its population is above 64 years old, putting this district 
among the top three for the oldest population and among the most vulnerable 
districts, compared with an average of 6% in the Tehran megacity.

• Up to 26% of its buildings are more than 30 years old.
• It hosts the city’s second-largest waste collection center and one of its five water 

treatment plants.
• This district is the second frequent traffic destination among Tehran’s 22 dis-

tricts. It is located in a focal part with access to the city’s main urban routes and 
is one of the key passages for delivering aid to the southern districts.

Figure  3 introduce the district with its subdistricts, and Table  2 presents the 
TFES3 simulation results for a nighttime earthquake. The nominal values for SAR 
demand and travel times were extrapolated by SAR experts based on several criteria 
such as the number and severity of damaged buildings, average number of floors, 
average number of households in the buildings, and casualty estimates.

5.1  First‑stage results

To test the results for the first stage, uncertainty budgets ( � 1
l
,� 2

k
 ) are set as (5, 3, 

2) and (4, 3, 3, 3, 4, 3) with 20% perturbation from nominal values. So, 5 out of 
6 subdistricts have perturbations from their first-type demand nominal values, half 
have second-type demand different from nominal values, and 33% are not at their 
nominal third-type demand. Similarly, the travel time from the subdistrict 1 to four 

Fig. 3  Tehran urban District 6 with 6 subdistricts (Google map, Ghajari et al. 2017)

3 Loss data are altered to maintain confidentiality.

2 Atlas of Tehran metropolis, provided by Tehran municipality, 2006.
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other subdistricts and the travel times from subdistrict 4 to three other subdistricts 
are perturbed.

Figure  4 depicts the number of SAR units allocated to each subdistrict by the 
implementation of MPFRAM. The total number of allocated teams in each period 
and for each demand type represent the considered capacity of SAR resources and 
their distribution over the planning horizon. In the initial hours after the earthquake, 
only a small number of teams are available to carry out the SAR operations. The 
number of available teams for the lowest demand type (least severe) is relatively 
higher than for the other two since volunteer citizens from the neighborhood can 
cooperate in these cases. For more serious damage, the district’s capacity might not 
be sufficient, and the operations will depend on the arrival of professional resources 
from other districts, cities or countries, depending on the demand size.

As can be seen, to restore the maximum minimum weighted coverage among the 
subdistricts, subdistricts 4 and 6, with relatively more extensive damage, receive a 
major share of available capacity.

5.1.1  Sensitivity analysis

To check the results’ sensitivity to different situations, different levels of demand, 
and capacity are tested. Figure 5 illustrates the impacts of both SAR resource capac-
ity expansion and improving their availability lead time for subdistrict demand 
coverage.

This analysis, which can be used as a simulation tool, is capable of providing 
decision-makers with helpful managerial insights into “next steps” for improving the 
safety of the city’s residents. Following are the practical insights that can be deduced 
from sensitivity analysis of the studied case:

• For all three severity degrees, outcomes are more sensitive to the availability 
lead time of SAR teams than to increased numbers of resources.

• Highly qualified teams that are competent to be involved in severity type 3 
missions are more behind on demand compared with the other types; hence, 
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improvements in either capacity or arrival lead time of these teams can signifi-
cantly improve results.

• Although it is very difficult to build capacity or decrease availability lead time of 
highly qualified teams for all the subdistricts in the district, it is vital for the dis-
trict’s SAR success that the most vulnerable subdistricts (4 and 6) be marked for 
advanced development and training of potential local and neighbor professionals. 
As can be seen in the chart, there is a huge 40% opportunity that can be unlocked 
by a 20% increase in the number of teams and cutting the availability lead time 
by half.

• Lack of visible improvement in the results for the second severity degree group 
highlights the first priority, which is to fill the major gap between demand and 
SAR capacity.

• Considering that it is easier to build teams for the first-degree severity type, the 
analysis confirms at least 30% potential improvement if each subdistrict trains 
eligible and sufficient local teams.

Since the main damage to the districts’ residents’ safety, accessibility of roads, 
and operability of urban services is caused by medium and severe destruction, the 
sensitivity of SAR success to the vulnerability of structures to destruction is studied. 
Figure 6 presents a simulated glide path for improving district coverage by decreas-
ing damage to buildings (within the same SAR capacity). This glide path, together 
with district vulnerability and strategic character, can help to leverage relevant 
managerial decisions about reinforcement/renovation timelines and priorities. Using 
the proposed allocation model as a simulation tool for sensitivity analysis of SAR 
demand coverage before an earthquake strikes can be beneficial for disaster manage-
ment authorities in both the risk mitigation and preparedness phases.

5.1.2  Impact of different levels of uncertainty budgets

Furthermore, different levels of uncertainty budgets are used to show the trade-off 
between the model’s optimality and robustness in the allocation stage (Table 3). This 
analysis can help decision-makers with setting the model’s conservatism to maintain 
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feasibility and closeness-to-optimality when faced with uncertainty. As expected, 
eliminating deterministic and worst-case scenarios, the objective function follows 
a mild worsening trend when the model is immunized for higher perturbations and 
uncertainty budgets.

5.1.3  Performance analysis of proposed robust MPFRAM

To test the performance of the decisions suggested by the proposed robust model 
versus the deterministic approach, additional experiments are implemented. To this 
end, at perturbation levels of 20% and 30%, models with three sets of uncertainty 
budget s(� 1

l
,� 2

k
 ) equal to (6, 5), (4, 3) and (3, 2.5), leading respectively to 99%, 90% 

and 80% feasibility reliability, are implemented. For each perturbation level, the per-
formance of solutions provided by the robust models and the deterministic approach 
is then evaluated versus 20 uniformly generated random realizations of the uncertain 
parameters from their respective intervals. The outputs are compared based on their 
performances after inserting the proposed allocation decisions in Eqs. (1) to (8). For 
each model, three sub-measures are calculated to define total performance: (1) the 
new objective function value from the realized covs ; (2) the coverage unfairness at 
each severity degree based on the standard deviation of realized coverages between 
the subdistricts; and (3) the violation of Constraint (6). The latter is the difference 
between a model’s output for guaranteed coverage and its realized possible coverage 
of realized demand by the proposed allocation decisions. This infeasibility, which is 
of very high importance, means missed coverage promises and represents distorted 
resource requirement assessment.

To penalize unfavorable sub-measures and to unify the scale of all three parts of 
the measure, the total of realized demands for each type is used as a multiplier. The 
measure’s mean and its range of changes for different random realizations are calcu-
lated in each model.

The results presented in Fig. 7 demonstrate that the robust approach outperforms 
the deterministic model. In all cases, the robust approaches show a minimum per-
formance higher than the deterministic model’s average measure value. Also, this 
superiority is even reinforced in more volatile environments with higher possible 
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perturbations. At both uncertainty levels, the performance gap between the robust 
and deterministic approaches grows as the uncertainty budget increases. In other 
words, higher conservatism and solution immunization lead to lower deviations from 
promised coverage levels and to fewer resource miscalculations. While the appropri-
ate conservatism level depends on the decision-maker’s preference, the assessment 
shows that the robust allocation model presents a better fit for resource planning in 
SAR operations.

5.2  Second‑stage results

To test the model’s performance in the second stage, subdistrict 4 (Fig. 3), with an 
area of 4.9 km2 and 52,000 habitants, is selected. We consider six demand locations 
in this subdistrict according to the municipality neighborhood definitions. Demand 
location 1, with a high-risk CNG station and in proximity to four very tall buildings, 
is at risk of secondary destruction after the earthquake, and hence is considered for 
operation time expansion after the threshold time. In the second stage, (6, 4, 1, 1, 
10) are chosen as ( � ,� 3,� 4,� 5,� 6 ). This means that all demand locations’ popu-
lation parameters are assumed to be different from the nominal values. 66% of the 
locations have perturbed SAR processing time, only one of the locations with sec-
ondary destruction risk is assumed to have additional processing time and a thresh-
old time different from nominal values, and finally, the travel time on 10 travel links 
have perturbations. Five teams are considered as the available resources for SAR 
routing. Teams 1 and 2 are capable only for type 1 severity, teams 3 and 4 are quali-
fied for type 2 severity, and team 5 is capable of the most severe demand type. The 
other input data4 used to model the routing can be found in Table 4.

The second-stage model is run for a 12-hour period in Subdistrict 4, with 6 loca-
tions and 5 available teams, and the routing plan for allocated teams is determined. 
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Fig. 7  Performance of robust and deterministic approaches under uncertain parameter realizations at two 
perturbation levels

4 Data are altered to maintain confidentiality.
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Figure 8 shows the activity sequence for each SAR team in Subdistrict 4. Teams 1 
and 2 can only satisfy the SAR demand at the first location due to the demand sever-
ity compatibility. To shorten the completion time, both teams need to work concur-
rently. Location 2, with demand type 2, receives its required resources for SAR from 
both teams 3 and 4. Teams are not allowed to interrupt the operations unless another 
team gets involved. That is why the model decides to release team 3 to respond to 
locations 4 and 5, but keeps team 4 involved to fully satisfy location 2’s demands. 
Tasks that take the resource capacities beyond the current planning period get intro-
duced in the next period routing model as new tasks with their remained processing 
time. Team 3 enters a rest period after it leaves location 2 since it gets to its shift 
limit. It then continues to visit locations 4 and 5. Team 5 is the only team capable 
of handling the severe demand type. Hence, this resource capacity is not sufficient 
for both locations 3 and 6, so the model chooses to serve location 3 due to its higher 
population. And hence, location 6 remains unserved.

5.2.1  Sensitivity analysis

To estimate the operations’ success in minimizing the weighted SAR completion 
times under different circumstances, sensitivity analysis is completed in different 
categories. Table 5 shows that the delayed availability of SAR teams can worsen the 
objective function values. Since location 1, with the first severity level, is at risk for 
operation time expansion by delayed operation and has a similar population to loca-
tion 3 in the third severity category, scenarios 3 and 4 lead to similar weighted sums 
of completion times.

Due to different ratios of resource to demand in each severity degree, more 
insights can be drawn by a detailed investigation of the impact of different avail-
ability scenarios on teams’ workloads and missed survival opportunities. As can be 
seen, concurrent delays of all teams without injecting new resources, while keeping 
the same number of served demand locations, lead to increased exposure of the task-
force due to escalated demand and less remaining time. Moreover, depending on the 
delayed teams’ capability mix, the summation of delayed starts of rescue operations 
can become higher than arrival delays. It must be addressed during response simula-
tions before disaster strikes. Because there is a higher risk of resource arrival delays 
in the initial periods, which have the best survival chance.

Although the scenario simulation corresponds to a nighttime earthquake, the 
study of a daytime occurrence is equally important. Population distribution and den-
sity in different places (e.g., residential buildings, educational facilities, offices, or 
public spaces) differ during the day. Hence, the city’s risk exposure and vulnerabil-
ity can significantly change depending on earthquake onset time (Alexander 1996; 
Freire and Aubrecht 2012; Ara 2014). Also, the daytime transportation flow can 
complicate route accessibility and prolong rescue operations. Given the share of the 
studied district in the city’s daily trips, it is important to evaluate how changes in its 
connectivity to other parts of the city, which lead to different availability lead times 
of rescue teams and travel times within rescue tours, can impact operation planning 
and demand fulfilment.
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To this end, greater disruptions in accessibility leading to longer arrival and 
travel times of teams are tested. Figure 9a demonstrates that each demand location 
experiences delayed completion times in the presence of different accessibility pro-
longation situations. Location 1, with time-sensitive demand, experiences the high-
est impact. Since the disruptions are considered to impact all teams and travel times 
equally, the delay trends for the rest of the locations follow their priority status, 
depending on the population and availability of compatible resources. The increas-
ing trends of total delayed completion times are shown in Fig.  9b. This analysis, 
coupled with survival rate vulnerability, can be used to assess the need for urgent 
transportation speed-ups.

Fig. 8  SAR team’ activity sequences in Subdistrict 4

Table 5  Sensitivity of objective function to teams’ availability lead time

Arrival time of SAR teams

Base scenario Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Teams
 #1(type 1 capability) 1 1 1 1 3 6
 #2 (type 1 capability) 1 1 1 1 3 6
 #3 (type 2 capability) 1 1 3 3 3 6
 #4 (type 2 capability) 1 1 3 3 3 6
 #5 (type 3 capability) 1 3 3 6 3 6

Objective function 7,848,718 7,865,518 7,889,038 7,914,238 7,919,038 8,004,128
Increased workload ver-

sus base scenario
– – – – 6 11.5

Delayed rescue start 
versus base scenario

– 2 8 11 10 26.5

Run time (s) 6.7 9.4 13.4 7 48.1 52.9
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5.2.2  Impact of different levels of uncertainty budgets

In this section, the impact of different levels of uncertainty budgets on uncertain 
parameters is tested. For this purpose, the impact of each uncertainty budget on pop-
ulation, travel time and SAR time in the robust model optimal solution is studied 
for three perturbation levels of 10%, 20% and 30% and at three constraint feasibility 
reliability levels of 99%, 90% and 80%. The reliability scores are calculated accord-
ing to Bertsimas and Sim’s (2004) B

(

n,�i

)

 estimation. Additionally, the impact of 
concurrent variations of the above parameters in three reliability states is tested. The 
changes in the optimal solution of the robust model versus the deterministic model 
are calculated and presented in Fig. 10.

Since the population parameter has a bigger scale, its perturbations result in 
higher increases in weighted completion times, although the changes remain at 
almost the same level for different reliabilities. In contrast, while the impacts of SAR 
and travel times are smaller in magnitude, the solution demonstrates higher sensitiv-
ity to their perturbations and immunization efforts. For both SAR and travel time 
uncertainty, as the reliability level grows, the robust objective function value shows 
higher favorability versus the deterministic solution by the increase of perturbations. 
That is, as the uncertainty budget increases, perturbations of these two uncertain 
parameters from their nominal values cause greater increases in the objective func-
tion for immunization. So any effort to secure better estimates for these two param-
eters can avoid the destructive effects of their perturbations on the weighted sum of 
completion times, and allows a lower immunization cost. Dominated by the scale of 
the population parameter, joint variations in uncertain parameters are similar to the 
population in magnitude but exhibit higher sensitivity to reliability levels due to the 
presence of the other two parameters.
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Fig. 9  Demand locations’ delayed SAR completion with longer arrival and travel times
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5.2.3  Performance analysis of proposed robust SPCRRM

To test the performance of the decisions suggested by the proposed robust routing 
model versus the deterministic approach, additional experiments are carried out. 
First, for concurrent perturbations of uncertain population, SAR time and travel time 
at both 20% and 30%, three robust models with feasibility reliability levels of 99%, 
90% and 80%, and respective uncertainty budgets are established. The outputs of the 
robust and deterministic models are collected and then tested versus 20 uniformly 
generated random realizations of the uncertain parameters from their respective 20% 
and 30% perturbation intervals. The outputs are compared based on their perfor-
mances after inserting the proposed routing decisions in Eqs. (9) to (35). For each 
model, five sub-measures aiming at the evaluation of the realized objective function 
value and imposed infeasibilities are calculated to define total performance:

1. The new SAR completion times Min
∑

j p
realized

j
f new
j

 based on the proposed visit 
sequences.

2. The infeasibilities in meeting the realized SAR time b′realized
j

 of served demand 
locations versus the proposed bij.

3. The infeasibilities in providing uninterrupted operation in a case of collaboration 
in Constraint (18).
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4. The infeasibilities in the proposed operation start time s′
j
 versus the realized pos-

sible time s′new
j

 in Constraints (13) and (14).
5. The inefficiencies from both sooner-than-necessary and later-than-possible pro-

posed rest times, based on the assessment of realized continuous workload wnew
ij

 
in a case of following the rest visits rij proposed by the models.

To penalize unfavorable infeasibilities, the exposed population multiplied by a 
penalty factor is considered and added to the minimization objective function. The 
measure’s mean and its range of changes for different random realizations are calcu-
lated in each model and presented in Fig. 11.

The results demonstrate that the robust approach outperforms the deterministic 
model in all cases. The deterministic model’s output varies in a wider range, which 
decreases its reliability even more. While the robust models maintain consistent per-
formance in varied perturbations, the deterministic approach experiences a larger 
performance gap by when uncertainty increases. At both perturbation levels, the 
superiority of the robust model grows as the uncertainty budget and feasibility reli-
ability increase.

The evaluation shows that for optimizing the routing of SAR resources in an 
uncertain disaster environment, the decisions proposed by the robust approach offer 
better robustness and optimality. However, the reliability level needs to be tuned 
based on the decision-maker’s preference.

6  Concluding remarks

This paper presents a new decision support framework with a two-stage approach 
for robust allocation and routing of rescue teams in an earthquake response envi-
ronment. Both stages are designed to capture the operations’ effectiveness in fight-
ing against time in the battle to extricate trapped people. The first stage seeks a fair 
allocation scheme for SAR resources over the partitioned affected zone, and the sec-
ond stage aims at minimizing SAR completion times at demand locations, weighted 
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by the number of trapped people in each. To capture the real-world requirements 
for providing a robust solution in the presence of uncertain parameters, an interval 
data robust optimization approach is adopted. Demand, travel time, SAR process-
ing time, and population are considered to be uncertain parameters. The presented 
decision framework is capable of providing managers with appropriate insights on 
key points of focus and priorities for improved results before and during operations 
in the mitigation, preparedness, and response phases. Belonging to the broader fam-
ily of resource-constrained routing problems, several real-life constraints in the res-
cue teams’ service tours (e.g., idling rest periods, time-dependent service durations, 
hierarchical skill levels, and collaborative rescue service) are reflected.

The model is applied to a numerical example inspired by an earthquake scenario 
in an urban district in Iran’s capital, Tehran. Comprehensive analysis is done in both 
stages, and the sensitivity of the solution to different levels of resource capacities, 
availability lead times, travel times, and budget of uncertainty for uncertain param-
eters are studied. Additionally, in both stages, the superiority of the proposed robust 
models’ performance versus the deterministic approach in keeping a near-to-optimal 
and feasible solution under a perturbed environment is validated.

To solve larger problems, a heuristic or meta-heuristic algorithm needs to be 
developed and evaluated. Moreover, incorporating path selection for each pair of 
nodes in SAR routing, and integrating the allocation and routing of SAR teams with 
medical resource planning, crowd evacuation planning, or lifeline restoration plan-
ning in multi-objective setting are other interesting avenues for future research.
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