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Abstract
In the past decade, multi-agent scheduling studies have become more widespread. 
However, the evaluation of these issues in the flow shop scheduling environment 
has received almost no attention. In this article, we investigate two problems. One 
problem is a common due date problem of constrained two-agent scheduling of jobs 
in a two-machine flow shop environment to minimize the weighted sum of maxi-
mum earliness and maximum tardiness of first-agent jobs and restrictions of non-
eligibility on the tardiness of second-agent jobs. Another problem is a single-agent 
form of the two-agent problem when the number of second-agent jobs is zero. So, an 
optimal algorithm with polynomial time complexity is presented for the single-agent 
problem. For the two-agent problem, after it was shown to have minimum complex-
ity of ordinary NP-hardness, a branch and bound algorithm, based on efficient lower 
and upper bounds and dominance rules, was developed. The computational results 
show that the algorithm can solve the large-size instances optimally.
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1  Introduction

In most production and assembly systems, production scheduling is used widely and 
has great functional importance. In this situation, more than one operation is often 
performed on every job. Because most operations for all jobs must be done in a 
certain way, workshop scheduling is like a flow shop environment. Because of the 
importance of the flow shop scheduling problem, many researchers studied it under 
various assumptions (e.g. Hamdi and Loukil 2015; Li et  al. 2019; Rakrouki et  al. 
2020). Multi-agent scheduling problems in which several agents are competing for 
the use of shared resources have received growing attention in recent years. Unlike 
general multi-criterion scheduling problems, in which all jobs have to be evaluated 
by each criterion, in the multi-agent problems, each agent has its own set of jobs 
and follows only the desired criterion. Baker and Cole Smith (2003) and Agnetis 
et al. (2004) presented scheduling problems with two agents for the first time. Since 
then, more focus has been given to the multi-agent scheduling problems. In these 
problems, each agent has a criterion different from those of the other agents, and 
limited resources are used jointly. For more detailed discussion of multi-agent prob-
lems, interested readers are referred to Agnetis et al. (2014) and Perez-Gonzalez and 
Framinan (2014).

To date, few studies have been conducted on multi-agent flow shop scheduling 
problems. Suppose Ck

j
 and Tk

j
 denote completion time and tardiness of job j of agent 

k, respectively, and Uk
j
 has a zero–one value that indicates if the job j of agent k is 

tardy. Besides, Ck
max

 , Tk
max

 indicate maximum completion time and maximum tardi-
ness of the agent k jobs, respectively. Agnetis et al. (2004) examined the complexity 
of two-agent scheduling problems and showed that the problem F2||C1

max
∶ C2

max
≤ Q 

is NP-hard in the ordinary sense. Kim et al. (2017) studied this problem considering 
three special structures for processing times of each job of agents and investigated 
the complexity of these cases. Lee et  al. (2010) studied the two-agent scheduling 
problem F2��

∑
T1

j
∶
∑

U2

j
≤ 0 and proposed a branch and bound algorithm and a 

simulated annealing algorithm. Lee et  al. (2011) investigated the problem 
F2��

∑
C1

j
∶
∑

U2

j
≤ 0 , and after examining the complexity, provided a branch and 

bound algorithm and a simulated annealing algorithm to solve it. Luo et al. (2012) 
investigated the ordinary NP-hard problems F2||C1

max
+ �C2

max
 and 

F2||C1
max

∶ C2
max

≤ Q . For the first problem, they provided a pseudo-polynomial 
dynamic programming algorithm and then a simple approximation algorithm and a 
fully polynomial-time approximation scheme. For the second problem, a pseudo-
polynomial dynamic programming algorithm was also proposed, showing that if 
constraint C2

max
≤ Q is relaxed in the form of C2

max
≤ (1 + �)Q for 𝜀 > 0 , the approxi-

mation algorithm shows a worst-case ratio of (1 + �) . They applied a fully polyno-
mial-time approximation scheme to the relaxed problem. Shiau et al. (2015) investi-
gated the problem F2�LE�

∑
C1

j
∶ T2

max
≤ Q in which LE refers to the learning 

effect. They proposed a branch and bound algorithm and a genetic algorithm to solve 
the problem. The branch and bound algorithm and the genetic algorithm with a uni-
form crossover operator and a one-point mutation operator showed acceptable per-
formance for problems with up to 20 jobs and larger ones.
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Fan and Cheng (2016) studied the problems F2||C1
max

+ �C2
max

 and 
F2��

∑
C1

j
+ �C2

max
 in which � is the importance weight of the second agent objec-

tive function relative to the first one. They proved the ordinary NP-hardness of the 
first problem and proposed a pseudo-polynomial-time algorithm for it. For the sec-
ond problem, they proposed an approximation algorithm based on linear program-
ming relaxation. Yin et al. (2017) investigated a two-machine flow shop scheduling 
problem with two competing agents such that each agent has a criterion which is a 
function of the weighted number of just-in-time (JIT) jobs. They focused on finding 
the Pareto frontier and presented a bicriteria analysis of the problem. Jeong et  al. 
(2018) studied the same problem in which the first agent jobs are urgent, and the 
second agent ones are normal. The problem is minimizing the weighted sum of the 
total tardiness of the first agent and makespan of the second one. They proposed a 
branch and bound algorithm to solve the problem. The problem 
F2��

∑
T1

j
∶ C2

max
≤ Q was studied by Ahmadi-Darani et al. (2018). They proposed 

some optimal properties and a tabu search algorithm. Chen et al. (2018) investigated 
a multi-agent scheduling problem in a no-wait flow shop environment considering 
the weighted number of just-in-time jobs as agents’ objective function. They studied 
two variants of the problem: Constrained optimization and Pareto optimization. 
They proved the complexity of these two variants and proposed approximation algo-
rithms to solve them.

Meeting job due dates is a widely used criterion in scheduling problems, that 
is highly valued from the perspective of customers. Development and adoption of 
management methodologies such as the just-in-time (JIT) strategy have added value 
to this criterion. Not paying attention to due dates and delivering orders after due 
dates, in addition to penalties for tardiness, causes customer dissatisfaction and 
a desire to do business with rival companies. Finishing the jobs earlier than their 
due dates increases the storage costs or increase the probability of job deteriora-
tion. Most earliness/tardiness scheduling studies have considered min-sum criteria. 
However, there may be large values of earliness or tardiness for some jobs that cause 
difficulties in the production system. In assembly lines, jobs must be delivered by 
specified due dates. If a job is significantly early or tardy, then other jobs will not 
be completed, resulting in an imbalance in the assembly line. In the food industry, 
where companies must deliver fresh food to customers on time, earliness and tardi-
ness are both highly undesirable, especially when the product is perishable. This 
problem is solved by establishing a balance among job costs through the minimiza-
tion of the maximum scheduling cost of each job (min–max criteria). One of these 
criteria is the sum of maximum earliness and tardiness. This criterion seeks to mini-
mize the gap between maximum earliness and maximum tardiness; in the best-case 
scenario, this value will be zero.

The sum of the maximum earliness and maximum tardiness criterion ( ETmax ) 
was first studied by Amin-Nayeri and Moslehi (2000). They proposed a branch and 
bound algorithm for the single-machine scheduling problem. Moslehi et al. (2010) 
improved the presented branch and bound algorithm using an efficient dominance 
rule and a heuristic procedure as an upper bound. Since ETmax is a non-regular crite-
rion, better solutions can be achieved by adding forced idle time. Some researchers 



1406	 V. Nasrollahi et al.

1 3

investigated the ETmax criterion in different environments and with different 
assumptions, and provided numerous optimal and heuristic methods (Tavakkoli-
Moghaddam et al. 2005; Mahnam and Moslehi 2009; Moslehi et al. 2009; Yazdani 
et al. 2017).

Benmansour et  al. (2014) considered the single-machine scheduling problem 
with restricted common due dates, aiming to minimize the weighted sum of maxi-
mum earliness and tardiness penalties for the jobs, with and without periodic main-
tenance activity. They provided a polynomial-time algorithm to solve the problem 
without the periodic maintenance activity constraint. They then showed that the sec-
ond problem is a combination of the first one and the bin-packing problem.

In this article, we investigate the two-agent scheduling problem in a two-machine 
flow shop environment. The objective function is minimizing the weighted sum of 
maximum earliness and tardiness penalties and constraints on ineligible tardiness of 
second-agent jobs. Also, the single-agent form of this problem, when the number 
of second-agent jobs is zero, is studied. Hence, this article is an extension form of 
Benmansour et al. (2014) research from two points of view. First, we consider the 
two-machine flow shop scheduling problem, and second, we extend the defined two-
machine flow shop scheduling problem to a two-agent form.

The studied problem is interesting for production environments with periodic 
production and delivery. In these environments, manufacturers are faced with some 
orders that must be processed and delivered at the end of each period (e.g., weekly). 
The orders belong to the different types of customers (agents). For the first type of 
customers, a just-in-time objective of the weighted sum of maximum earliness and 
tardiness is essential, and early production or late one has imposed a penalty. For 
the second agent, which is more important than the other agent, no tardy delivery 
is allowed. So, the common due date of both agents is justified based on the defined 
period of the manufacturer.

The article is organized as follows: In the next section, the problem and nota-
tions are defined. In Sect. 3, the optimal properties of the single-agent problem are 
checked, and an optimal polynomial-time algorithm is provided. In Sect. 4, the two-
agent constrained scheduling problem in a two-machine flow shop environment is 
assessed. After investigating the complexity of the problem and developing a math-
ematical model, a branch and bound algorithm is provided to solve the problem. 
Computational experiments and results are reported in Sect. 5. Finally, conclusions 
and suggestions for future research are discussed in Sect. 6.

2 � Problem definition

The objective of the studied two-agent scheduling problem is minimizing the 
weighted sum of maximum earliness and tardiness penalties for the first-agent and 
restrictions on ineligible tardiness for the second-agent. The problem is defined in a 
two-machine flow shop environment. Also, the due dates of jobs are common. If n 
represents the total number of jobs, the problem is described as follows:

There are n jobs including J1, J2,… , Jn . Each job belongs to the first or second 
agent and should be processed on two machines, M1 and M2 . The set of first-agent 
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jobs has n1 members, including jobs J1, J2,… , Jn1 , and the set of second-agent jobs 
has n2 members, including jobs Jn1+1, Jn1+2,… , Jn . Processing time on machine i of 
job j is defined as pij . All jobs of the agents has a common due date value equal to d . 
The assumptions of this problem are:

•	 The machines are always available.
•	 All jobs are available at zero time
•	 Machines cannot process more than one job at a time, and jobs cannot be pro-

cessed simultaneously on two machines.
•	 Preempting the job processing on each machine is not allowed.
•	 Machines can also have forced idle time. This kind of idle time can be added 

before each job processing.
•	 Unforced idle time is a kind of idle time that cannot be removed by shifting the 

scheduled jobs to the left-hand side because of existing the previous jobs.

By defining the completion time of job j belonging to agent k on machine i as Ck
ij
 , 

earliness and tardiness values of job j belonging to agent k are obtained by Eqs. (1) 
and (2).

The objective function of the problem is shown as WET1
max

 , which is equal to 
�E1

max
+ �T1

max
 . In this notation, E1

max
 is the maximum earliness and T1

max
 is the maxi-

mum tardiness of first-agent jobs. The objective is to obtain optimal job scheduling 
such that the amount of �E1

max
+ �T1

max
 for first-agent jobs is minimized, provided 

that none of the second-agent jobs are tardy. Suppose that � and � are the weight of 
earliness and tardiness, respectively. Using the standard three-field notation scheme 
of Graham et  al. (1979), this problem is denoted by F2|||dj = d

|||�E
1

max
+ �T1

max
∶

∑
U2

j
≤ 0 . Since the objective function is not regular, it is possible to improve the 

objective function value by inserting idle time to increase the completion time of 
jobs. As mentioned before, we call this kind of idle time as forced idle time. Hence, 
the optimal solution may not exist in the set of semi-active schedules.

Some necessary notations are as follows:

nk	� Number of jobs of agent k where n1 + n2 = n . k = 1, 2

Nk	� Set of jobs of agent k where 
⋃2

k=1
Nk = N . k = 1, 2

Jk
[j]

	� The job of agent k in the jth position of the sequence j = 1, 2,… , n , 
k = 1, 2

pi[j]	� Processing time of the job in the jth position of the sequence on machine i 
i = 1, 2 , j = 1, 2,… , n

(1)Ek
j
= max

{
d − Ck

2j
, 0

}

(2)Tk
j
= max

{
Ck
2j
− d, 0

}



1408	 V. Nasrollahi et al.

1 3

Ck

i[j]
	� Completion time of the job of agent k in the jth position of the sequence on 

machine i i = 1, 2 , k = 1, 2 , j = 1, 2,… , n

Ck
max(S)

	� Makespan of agent k jobs in a given set/sequence S k = 1, 2

Ek
max(S)

	� Maximum earliness of agent k jobs in a given set/sequence S k = 1, 2

Tk
max(S)

	� Maximum tardiness of agent k jobs in a given set/sequence S k = 1, 2

Cmax(S)	� Makespan of jobs in a given set/sequence S
U2

j
	� If T2

j
> 0, it is equal to 1; otherwise, it is equal to 0. j = 1, 2,… , n2

FIT 	� Sum of forced idle time on the second machine for a given sequence
UIT	� Sum of unforced idle time on the second machine for a given sequence∑

j U
2

j
	� Number of tardy jobs of the second agent j = 1, 2,… , n2

3 � The single‑agent scheduling problem in a two‑machine flow shop

If in the problem F2���dj = d
���WET1

max
∶
∑

U2

j
≤ 0 , the number of second-agent jobs 

is zero; the problem of minimizing the weighted sum of earliness and tardiness is 
obtained. Using the notation scheme of Graham et  al. (1979), this problem is 
denoted as F2|||dj = d

|||WETmax . In this section, some optimal properties of this prob-
lem are provided and proved, and then an optimal polynomial time algorithm is 
developed to solve it.

3.1 � Optimal properties

In this section, some of the optimal properties of the problem F2|||dj = d
|||WETmax are 

presented.

Theorem 1  In the problem F2|||dj = d
|||WETmax , there is an optimal sequence with a 

permutation schedule.

Proof  Consider a schedule in which the sequences of jobs on machines 1 and 2 are 
different. In such a schedule, we can find a pair of jobs, j and k , such that job j 
operation precedes job k operation on machine 1, but on machine 2, job k operation 
precedes job j operation. If the operation of job j on machine 1 is interchanged by 
operation of job k , considering the common due date for all the jobs, and also the 
possibility of entering forced idle time, this change will not have a negative effect 
on the objective function. In other words, as a result of this change, the comple-
tion time of any operation on the second machine will not increase, and the possible 
reduction of completion time of any job on the second machine is repairable by add-
ing forced idle time to the beginning of the schedule of machine 2. Therefore, no 
increase in the maximum earliness and tardiness, and accordingly in the objective 
function value, will result from this change. Since the same argument applies to any 
schedule in which job sequences differ on machines 1 and 2, the property must hold 
in general.	�  ◻
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According to Theorem 1, to solve the problem F2|||dj = d
|||WETmax , it is sufficient to 

consider permutation schedules.

Theorem 2  In the problem F2|||dj = d
|||WETmax , there is an optimal sequence where 

there is not any type of idle time between two adjacent jobs on each machine.

Proof  Suppose in schedule S , we have an idle time of duration l between two adja-
cent jobs j and k . If the idle time is transferred to before the first job of the sequence, 
the completion time of job k and jobs after that will not change on the second 
machine. As a result, the maximum tardiness will not change. Also, the completion 
time of job j and previous jobs will be increased by l . As a result, the maximum ear-
liness will not increase. Therefore, the proof is complete.	�  ◻

Theorem 3  In the problem F2|||dj = d
|||WETmax , there is an optimal sequence where 

jobs on machine 1 start at time zero.

Proof  Suppose that, in an optimal schedule, there is an idle time of duration l before 
processing the jobs on the first machine. By eliminating idle time on machine 1 and 
starting the jobs from time zero, no change in the amount of completion time on 
machine 2 will be created. So, the objective function value does not increase.	�  ◻

Considering the possibility of tardiness of the first job of a certain sequence, without 
adding unforced or forced idle times, we define Y as the processing amount of the first 
job completed before d on the second machine. The maximum value of Y is calculated 
by Eq. (3).

Theorem 4  In the problem F2|||dj = d
|||WETmax , the objective function value for any 

given sequence is a function of FIT  , UIT  and p2[1].

Proof  Considering a given sequence S . If C2[1] and C2[n] are completion time of the 
first and last job on the second machine, respectively, the objective function value 
can be calculated as Eq. (4).

As a result of Theorem 2 and given adding forced idle time is allowed, the values of 
C2[1] and C2[n] can be calculated from Eqs. (5) and (6).

(3)Ymax = min
{
p2[1], d − p1[1]

}

(4)WETmax = �max
{
d − C2[1], 0

}
+ �max

{
C2[n] − d, 0

}

(5)C2[1] = UIT + FIT + p2[1]

(6)C2[n] = UIT + FIT +
∑

j
p2j
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By substituting Eqs. (5) and (6) in Eqs. (4), (7) is obtained.

To simplify Eq. (7), we investigated two cases of the problem, including the com-
pletion time of the first job in the sequence that is less or greater than the common 
due date, without considering unforced or forced idle times.

Case 1. If p2[1] < d − p1[1] , then Ymax = p2[1] . Possible cases of the problem are as 
follows, by adding forced or unforced idle times:
Case 1.1. If UIT + p2[1] ≥ d , because all the jobs are non-early, in both cases 
� ≤ � and 𝛼 > 𝛽 , forced idle time is not added ( FIT = 0 ). As a result, C2[1] ≥ d 
and the maximum tardiness will be associated with the last job in the sequence. 
Therefore, the objective function using Eq. (7) will be as Eq. (8).

Since the amount of 
∑

j p2j and d is always constant; the objective function value 
is a function of UIT  . As noted above, FIT  in this case is zero.
Case 1.2. Suppose UIT + p2[1] < d < UIT +

∑
j∈N p2j . In this case, given the lack 

of idle time, the amount of earliness and tardiness is non-zero. So, the problem is 
investigated in both cases � ≤ � and 𝛼 > 𝛽.

•	 If � ≤ � , because tardiness is more important than earliness, forced idle time 
is not added ( FIT = 0 ). The objective function is written as Eq.  (9) using 
Eq. (7).

	 
	   Since the amount of 

∑
j∈N p2j and d is always constant; the objective func-

tion value is a function of UIT  and p2[1] . As noted above, FIT  in this case is 
zero.

•	 If 𝛼 > 𝛽 , given the lack of idle time, the earliness and tardiness are non-zero. 
Therefore, the objective function is written as Eq. (10) using Eq. (7).

	 
	   Given that UIT + p2[1] < d , and earliness is more important than tardi-

ness, before starting the first job on the second machine, forced idle time is 
added by d − UIT − p2[1]. So, the first job will be completed in the time of d 
( C2[1] = d ). By substituting FIT = d − UIT − p2[1] , Eq. (11) will be obtained 
from Eq. (10).

	 

(7)
WETmax = �max

{
d −

(
UIT + FIT + p2[1]

)
, 0
}
+ �max{(UIT + FIT +

∑
j
p2j) − d, 0}

(8)WETmax = �
(
UIT +

∑
j∈N

p2j − d
)

(9)WETmax = (� − �)d + (� − �)UIT − �p2[1] + �
∑

j∈N
p2j

(10)WETmax = (� − �)(d − UIT − FIT) − �p2[1] + �
∑

j∈N
p2j

(11)WETmax = �(
∑

j∈N
p2j − p2[1])
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	   Since 
∑

j∈N p2j is always constant, the objective function value is a function 
of p2[1] . As mentioned before, FIT  in this case is equal to d − UIT − p2[1].

Case 1.3. If UIT +
∑

j∈N p2j ≤ d , then all the jobs are non-tardy. The problem is 
investigated in two cases, � ≤ � and 𝛼 > 𝛽.

•	 If � ≤ � , the objective function using Eq. (7) is written as Eq. (12).

	 
	   By adding a forced idle time of d − UIT −

∑
j∈N p2j before the first job on 

the second machine and finishing the last job in the time of d ( C2[n] = d ), the 
last job has zero earliness and tardiness, the remained jobs are early, and the 
maximum earliness will be associated with the first job. The objective func-
tion of the problem, by substituting FIT = d − UIT −

∑
j∈N p2j in Eq. (12), is 

written as Eq. (13).

	 
	   According to Eq.  (13), since 

∑
j∈N p2j is always constant, the objective 

function value is a function of p2[1] . As mentioned earlier, FIT  in this case is 
equal to d − UIT −

∑
j∈N p2j.

•	 If 𝛼 > 𝛽 , similar to the second part of case 1.2., the objective function of the 
problem is written as Eq. (14).

	 
	   Since 

∑
j∈N p2j is always constant, the objective function value is a function 

of p2[1] . As mentioned above, FIT  in this case is equal to d − UIT − p2[1].

Case 2. If p2[1] ≥ d − p1[1] , then Ymax = d − p1[1] . In this case, similar to case 1.1, 
in both cases, � ≤ � and 𝛼 > 𝛽 , the objective function of the problem will be as 
Eq. (15).

Since the amount of 
∑

j∈N p2j and d is always constant; the objective function 
value is a function of UIT  . As noted above, FIT  in this case is zero.	�  ◻

Corollary 1  In the problem F2|||dj = d
|||WETmax , for any given sequence, following 

Table 1, we can calculate the amount of forced idle time and the objective function.

It is notable to mention that Table 1 contents are a summary of the proof cases in 
Theorem 4.

Emmons and Vairaktarakis (2013) demonstrated that, in the two-machine flow 
shop scheduling problem of minimizing the maximum completion time of jobs 

(12)WETmax = �
(
d − UIT − FIT − p2[1]

)

(13)WETmax = �
(∑

j∈N
p2j − p2[1]

)

(14)WETmax = �
(∑

j∈N
p2j − p2[1]

)

(15)WETmax = �
(
UIT +

∑
j∈N

p2j − d
)
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considering non-simultaneous machine available times, the Johnson (1954) order is 
the optimal sequence. Thus, according to Theorem 4, Corollary 1, and Emmons and 
Vairaktarakis (2013), Theorem 5 can be drawn.

Theorem 5  To obtain the optimal schedule of problem F2|||dj = d
|||WETmax , it is suf-

ficient to consider n sequences where each job is placed in the first position of the 
sequence, and the other jobs are scheduled according to the Johnson order. Forced 
idle time is also determined, according to Corollary 1.

Proof  According to Theorem 4 the objective function value for any given sequence 
is a function of FIT  , UIT  and p2[1] . Therefore, to find an optimal sequence, it is 
sufficient to determine the total amount of forced idle time and the first-position 
job in the sequence on the second machine. The value of forced idle time is also 
calculated by Corollary 1. So, to find an optimal solution, n sequences are consid-
ered that each job is placed in the first position, and the other jobs are sequenced 
to minimize unforced idle time on the second machine. Emmons and Vairaktara-
kis (2013), proved that the Johnson order minimizes makespan (or total unforced 
idle time) in a two-machine flow shop scheduling problem considering ready time 
for each machine. Hence, the other jobs are sequenced based on the Johnson order. 
Therefore, the proof is complete.	�  ◻

According to Corollary 1, the maximum earliness and tardiness of jobs in a 
sequence can be determined by specifying the start time of the first job on the sec-
ond machine. If t0 is the start time of the first job of the sequence on the second 
machine, the maximum earliness and tardiness are calculated by Eqs. (16) and (17), 
respectively. In Eqs. (16) and (17), the interval 

[
0 − t0

]
 includes forced and unforced 

idle time on the second machine.

(16)Emax = max
{
0, d − t0 − p2[1]

}

Table 1   Amount of forced idle time and the objective function in the problem F2|dj = d|WETmax

Assumption Forced idle time ( FIT) Objective function value

p
2[1] < d − p

1[1] UIT + p
2[1] ≥ d � ≤ � 0 �

�
UIT +

∑
j∈N p

2j − d
�

𝛼 > 𝛽

UIT + p
2[1]

< d < FIT

+
∑

j∈N p
2j

� ≤ � 0 (� − �)(UIT − d) − �p
2[1]

+�
∑

j∈N p
2j

𝛼 > 𝛽 d − UIT − p
2[1] �(

∑
j∈N p

2j − p
2[1])

UIT +
∑

j∈N p
2j ≤ d � ≤ � d − UIT −

∑
j∈N p

2j �(
∑

j∈N p
2j − p

2[1])

𝛼 > 𝛽 d − UIT − p
2[1] �(

∑
j∈N p

2j − p
2[1])

p
2[1] ≥ d − p

1[1] � ≤ � 0 �
�
UIT +

∑
j∈N p

2j − d
�

𝛼 > 𝛽
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Considering the mentioned properties, the general structure of the optimal solu-
tion of jobs with the objective function �Emax + �Tmax is shown in Fig.  1. In this 
figure, I2 is equal to UIT + FIT .

3.2 � Solution algorithm

In this section, we proposed an algorithm that determines the optimal sequence 
of jobs and the start time of the first job of the sequence on the second machine. 
According to Corollary 1, the algorithm tries to obtain the optimal schedule, 
determining unforced idle time, the processing time of the first job on the second 
machine, and forced idle time.

The proposed algorithm performs as follows: First, the jobs are ordered 
according to the Johnson rule in order to minimize the maximum completion 
time on the second machine ( Cmax ). Then, n different sequences of jobs are gener-
ated, transferring job j to the beginning of the sequence. The aim of generating n 
sequences is to find a schedule that has a minimum value of WETmax . In the case 
of � ≤ � , for each sequence, the jobs on the first machine are started from time 
zero and placed on the second machine without forced idle time. Unforced idle 
time on the second machine is transferred to the start of the sequence. The objec-
tive function for each n sequence is calculated, and a sequence with the minimum 
cost is selected. In the 𝛼 > 𝛽 case, for each sequence, jobs are started on the first 
machine from time zero and placed on the second machine in such a way that the 
first job is completed in d or later (if there is no possibility of completion in time 
d ). Unforced idle time on the second machine is transferred to the start of the 
sequence. The objective function value for each n sequence is calculated, and a 
sequence with the minimum cost is selected. The pseudo-code of this algorithm is 
shown in Fig. 2.

The above presented exact algorithm includes jobs sorting according to the 
Johnson rule, with the time complexity of O(nlogn), and then a loop to transfer 
each job to the start of the sequence. Since each time a job is transferred to the 
start of the sequence, the Johnson order remains constant; the provided algorithm 

(17)Tmax = t0 +
∑

j
p2j − d

Fig. 1   The general structure of the optimal solution of the problem F2|||dj = d
|||WETmax
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has a time complexity of O(nlogn) . This algorithm determines the optimal values 
of three decision variables: idle time on the second machine, maximum earliness, 
and maximum tardiness.

4 � The two‑agent scheduling problem in a two‑machine flow shop

In this section, the constrained two-agent scheduling problem in a two-machine flow 
shop environment is investigated. The objective is minimizing the weighted sum of 
earliness and tardiness penalties considering the constraint of non-eligibility of tar-
diness for the second-agent. First, the complexity and some of the optimal proper-
ties of the problem are studied. Then, the mathematical programming model of the 
problem is developed. Finally, a branch and bound algorithm is presented to find the 
optimal solution.

4.1 � Complexity, theorems and optimal properties

To the best of our knowledge, no studies in the literature have examined the problem 
F2�dj = d�WET1

max
∶
∑

U2

j
≤ 0 . So, before using and providing any solution proce-

dure, the problem complexity is examined in Theorem 6.

Fig. 2   Pseudo-code of solution algorithm for F2|||dj = d
|||WETmax
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Theorem  6  The problem F2�dj = d��E1
max

+ �T1
max

∶
∑

U2

j
≤ 0 has a minimum 

complexity of ordinary NP-hardness.

Proof  Consider the problem F2�dj = d��E1
max

+ �T1
max

∶
∑

U2

j
≤ 0 with the assump-

tions � = 0 , � = 1, and d = Q . So, the problem converts to 
F2�dj = Q�T1

max
∶
∑

U2

j
≤ 0 . Because the due date is common for all jobs, the con-

straint of ineligibility of tardiness for the second-agent is equivalent to requiring that 
the completion time of any second-agent job does not exceed the common due date 
Q . Therefore, the constraint 

∑
U2

j
≤ 0 can be written as C2

j
≤ Q for all second-agent 

jobs. Given that constraint C2

j
≤ Q is equivalent to requiring that the maximum com-

pletion time of the second-agent jobs does not exceed Q i.e. C2
max

≤ Q , the investi-
gated problem can be written as F2||max

{
C1
max

− Q, 0
}
∶ C2

max
≤ Q.	�  ◻

In the term max
{
C1
max

− Q, 0
}
 , because Q is constant, it is sufficient just to mini-

mize the maximum completion time of the first-agent jobs. Therefore, the problem 
F2

���dj = d
����E

1
max

+ �T1
max

∶
∑

U2

j
≤ 0 , with the assumptions � = 0 , � = 1 and 

d = Q , converts to the problem F2||C1
max

∶ C2
max

≤ Q . Since the problem 
F2||C1

max
∶ C2

max
≤ Q is NP-hard in the ordinary sense (Agnetis et  al. (2004)), the 

problem F2�dj = d��E1
max

+ �T1
max

∶
∑

U2

j
≤ 0 has a minimum complexity of ordi-

nary NP-hardness.
In the third section, the problem F2|dj = d|WETmax was investigated, and some 

optimal properties were presented. For some of the presented single-agent theorems, 
adding second-agent jobs and the constraint of not having tardiness does not change 
the optimality conditions of the single-agent properties, and therefore, they are 
extended for the problem F2�dj = d�WET1

max
∶
∑

U2

j
≤ 0 . It is notable to mention 

that proofs of these theorems are very similar to the single-agent ones. These prop-
erties are presented in the form of three theorems, as follows:

1.	 In the problem F2�dj = d�WET1
max

∶
∑

U2

j
≤ 0 , there is an optimal sequence with 

a permutation schedule.
2.	 In the problem F2�dj = d�WET1

max
∶
∑

U2

j
≤ 0 , there is an optimal sequence 

where there is no idle time between two consecutive jobs on each machine.
3.	 In the problem F2�dj = d�WET1

max
∶
∑

U2

j
≤ 0 , there is an optimal sequence 

where jobs on the first machine are started at time zero.

Because there is no possibility of completing the second-agent jobs after the due 
date, any feasible sequence of the problem F2�dj = d�WET1

max
∶
∑

U2

j
≤ 0 can be 

classified as four sets A , B , C and D , according to Fig. 3.
According to Fig. 3, the sets A , B , C and D are defined as follows:
Set A : A set of second-agent jobs that are completed at the beginning of the 

sequence and before the first scheduled job of the first agent (Eq. (18)).

(18)A = {j|C2

2j
< C1

2[1]
}
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Set B : Single-member set that includes the first scheduled job of the first agent.
Set C : A set of first- and second-agent jobs that are completed after the first 

scheduled job of the first agent and before the due date (Eq. (19)).

Set D : A set of first-agent jobs that are completed after the due date (Eq. (20)).

Each set A , C and D can be empty. The set of all jobs is equal to A ∪ B ∪ C ∪ D.

Theorem  7  In the problem F2�dj = d�WET1
max

∶
∑

U2

j
≤ 0 , there is an optimal 

schedule in which the jobs order of the sets A , C and D is the Johnson order.

Proof  The proof is clear.	�  ◻

4.2 � The mixed‑integer linear programming model

In this section, a mixed-integer linear programming model is developed for 
F2�dj = d�WET1

max
∶
∑

U2

j
≤ 0 based on the permutation property of the optimal 

solution and Theorem 7. This model is developed based on assigning the jobs to the 
sets A , B , C and D . In this model, Cij , Ej , Tj , Emax and Tmax are continuous and non-
negative decision variables, and ASj , BSj , CSj and DSj are binary decision variables 
having a value of one if job j is placed in the specified set; otherwise, they will be 
zero. It is assumed that all jobs, including first- and second-agent jobs, are sorted 
based on the Johnson rule, and have been indexed accordingly. It should be noted 
that the agent index has not been used in the symbols. Also, the objective function 
of each agent is determined in the constraints.

Subject to

(19)C =

{
j
|||C2j

⟩
C1

2[1]
&C2j ≤ d

}

(20)D =

{
j
|||C

1

2j

⟩
d
}

(21)minWETmax = �Emax + �Tmax

(22)ASj + CSj = 1 ∀j ∈ N2

Fig. 3   The general structure of jobs sequence on the second machine in a feasible solution of problem 
F2

���dj = d
���WET1

max
∶
∑

U2

j
≤ 0
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(23)BSj + CSj + DSj = 1 ∀j ∈ N1

(24)
∑

j
BSj = 1 ∀j ∈ N1

(25)Cij ≤ Cil − pil + BigM1

(
2 − ASj − ASl

)
∀j, l ∈ N2, ∀i ∈ M, j < l

(26)Cij ≤ Cil − pil + BigM1

(
2 − CSj − CSl

)
∀j, l ∈ N, ∀i ∈ M, j < l

(27)Cij ≤ Cil − pil + BigM2

(
2 − DSj − DSl

)
∀j, l ∈ N1, ∀i ∈ M, j < l

(28)Cij ≤ Cil − pil + BigM1

(
2 − ASj − BSl

)
∀j ∈ N2, ∀l ∈ N1, ∀i ∈ M

(29)Cij ≤ Cil − pil + BigM1

(
2 − BSj − CSl

)
∀j ∈ N1, ∀l ∈ N, ∀i ∈ M

(30)Cij ≤ Cil − pil + BigM2

(
2 − BSj − DSl

)
∀j ∈ N1, ∀l ∈ N, ∀i ∈ M

(31)Cij ≤ Cil − pil + BigM2

(
2 − CSj − DSl

)
∀j ∈ N, ∀l ∈ N1, ∀i ∈ M

(32)C2j − BigM2

(
1 − CSj

)
≤ d ∀j ∈ N

(33)C2j − BigM2

(
1 − DSj

)
≥ d + 1 ∀j ∈ N1

(34)C1j ≥ p1j ∀j ∈ N

(35)C2j ≥ C1j + p2j ∀j ∈ N

(36)Tj − Ej = C2j − d ∀j ∈ N1

(37)Emax ≥ Ej ∀j ∈ N1

(38)Tmax ≥ Tj ∀j ∈ N1

(39)ASj ∈ {0, 1} ∀j ∈ N2

(40)CSj ∈ {0, 1} ∀j ∈ N
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In this model, Eq. (21) represents the objective function. Equation (22) assigns each 
second agent job to just one of the sets A and C . Also, Eq.  (23) assigns each first 
agent job to just one of the sets B , C and D . Equation (24) ensures that among the 
first agent jobs, only one job can be placed in the position of the first job of the first 
agent.

Constraints (25) (26) and (27) indicate that no two jobs of one of the sets A , C 
and D can overlap in a time. Also, given that these three constraints are defined for 
jobs j < l , in the sets A , C and D , the jobs are ordered according to the Johnson rule. 
In constraints (28), (29), (30) and (31), the time overlap between the jobs of the sets 
( B and A ), ( C and B ), ( D and B ) and ( D and C ) is controlled. It is notable to mention 
that by considering constraints (32) and (33), constraint (31) is redundant. However, 
adding constraint (31) to the model reduces the solution time.

Constraint (32) controls the condition of completing jobs in the set C at or before 
the time d . Constraint (33) specifies that the jobs of the set D should be completed 
after the time d . Constraint (34) ensures that the completion time of each job on the 
first machine is not less than its processing time. In other words, the start time of any 
job will not have a negative value on the first machine. Constraint (35) ensures that 
the completion time of each job on the second machine will not be less than the sum 
of the completion time of that job on the first machine and its processing time on the 
second machine. In other words, no job can be started on the second machine before 
completing its operation on the first machine. BigM1 and BigM2 are sufficiently large 
positive scalars with minimum values of d and C

max
(
jo
) + d , respectively. C

max
(
jo
) is 

equal to the maximum completion time of the reverse Johnson order of all jobs.
Since any solution satisfying Ej ≥ 0 and Tj ≥ 0 is dominated by Eq.  (43) or 

Eq. (44), then Eq. (36) is always applied.

Constraints (37) and (38) determine the maximum earliness and tardiness. Con-
straints (39), (40) and (41) define the binary variables ASj , BSj , CSj and DSj . Con-
straints (42) defines the non-negative variables Ej and Tj.

4.3 � Heuristic procedure (METRSA)

According to the presented optimal properties, a heuristic algorithm called 
METRSA (Minimizing ETmax Regardless of the Second Agent jobs) is provided for 
F2�dj = d�WET1

max
∶
∑

U2

j
≤ 0 . In this algorithm, the second-agent jobs are placed 

at the beginning of the sequence based on the Johnson order. Then n1 sequences are 

(41)DSj,BSj ∈ {0, 1} ∀j ∈ N1

(42)Tj,Ej ≥ 0 ∀j ∈ N

(43)Tj = C2j − d and Ej = 0 if C2j > d

(44)Ej = d − C2j and Tj = 0 if C2j ≤ d
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considered such that in each one, a first-agent job is placed after the second-agent 
jobs, and the remainder of the first-agent jobs are sorted based on the Johnson order. 
The objective function values of these n1 sequences are calculated, and a sequence 
with the minimum cost is selected. The steps of METRSA are as follows:

Step 1. Arrange and index the first-agent jobs according to the Johnson order. 
Name the set of the arranged jobs IAG1 and consider its k th job as J[k] . Set k = 1.
Step 2. Arrange the second-agent jobs according to the Johnson order and place 
them at the beginning of the sequence.
Step 3. Place job J[k] immediately after the second-agent scheduled jobs and 
schedule the remained jobs of set IAG1 after that, based on the indexed order. 
Name the resulting sequence s[k].
Step 4. Move unforced idle time to the beginning of the sequence and calculate 
the optimal value of forced idle time for machines.
Step 5. Calculate the maximum value of earliness and tardiness of sequence s[k] 
and set F[k] = �E1

max
+ �T1

max
 . If k = n1 , go to Step 6; otherwise, set k = k + 1 and 

go to Step 3.
Step 6. Calculate the minimum value of F[k] for 1 ≤ k ≤ n1 and put it in F∗ . F∗ is 
the objective value of the algorithm solution.
Step 7. Stop.

The METRSA algorithm includes sorting of jobs based on the Johnson rule, with 
time complexity of O(nlogn), and then a loop to transfer each first-agent job to the 
beginning of the sequence of first-agent jobs. Since every time a first-agent job is 
transferred to the beginning of the first-agent sequence, the Johnson order remains 
constant. So, the proposed algorithm has a time complexity of O(nlogn).

4.4 � Branch and bound algorithm

According to Theorem 7, we designed a branch and bound algorithm to solve the 
problem F2�dj = d�WET1

max
∶
∑

U2

j
≤ 0 . In this algorithm, the branching strategy is 

based on assigning each job to each of the sets A, B, C, and D, and the jobs of sets A, 
C and D, are arranged according to the Johnson rule. Components of the proposed 
branch and bound algorithm are described below.

Branching scheme The basis of branching is assigning each job to any of the sets 
A , B , C and D . It is assumed that all first- and second-agent jobs are sorted based on 
the Johnson order and indexed accordingly. The order of entering the jobs to the tree 
is the same. In the first level of the tree, the first job of the first agent is determined 
among the indexed jobs of the first agent and assigned to the set B . At the next lev-
els, two branches should be generated for any job entering the search tree. If the 
entering job belongs to the first agent, a branch is associated with the job assigned 
to the set C, and the other branch is related to the assignment of the job to the set 
D . If the entering job belongs to the second agent, two branches are associated 
with assigning the job to the set A and C . Because the entering order of jobs to the 
tree is based on the Johnson order, in each node of the tree, the order of scheduled 
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jobs in each set is based on the Johnson order. Figure 4 shows the tree search of 
the proposed branch and bound for an example with four jobs. In this example, the 
jobs were indexed based on the Johnson order. The jobs J1 and J3 belong to the first 
agent, and the jobs J2 and J4 belong to the second agent. For each node, the number 
in the square reflects the generating order of that node.

Search strategy A depth-first strategy is used to select the node for branching. 
In each step having a partial sequence of jobs ( � ), new branches are generated by 
adding unscheduled jobs to the set � such that they satisfy feasibility conditions and 
dominance rules. During the search procedure, the objective function of a found 
schedule is compared with the upper bound, and the upper bound is updated if 
required. It should be noted that the optimal duration of forced idle time cannot be 
calculated until a complete sequence is achieved. So, a partial sequence of � is not a 
final schedule, and there is a possibility of changes in forced idle time calculated in 
each node and completion times in the complete sequence.

Whenever a complete sequence of S is achieved, after transferring the unforced 
idle time of the second machine to the beginning of the sequence, the conditions of 
forced idle time are investigated. The UIT value for the complete sequence S is cal-
culated according to Eqs. (45) and (46).

(45)if Cmax(S) < d and 𝛼 ≤ 𝛽 ⇒ UIT = d − Cmax(S)

(46)if 𝛼 > 𝛽 ⇒ UIT = min
{
max

{
d − C1

2[1]
, 0

}
, d − C2

max(S)

}

Fig. 4   Tree search of the proposed branch and bound for an example with four jobs
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According to Eq. (45), if Cmax(S) < d and � ≤ � , all jobs are non-tardy. As a result, 
the maximum tardiness value will be zero, and the maximum earliness value will be 
positive. By adding forced idle time with a value of d − Cmax(S) before starting the 
first job on the second machine and finishing the last job in the time d ( C2[n] = d ), 
the last job of sequence S has an earliness and a tardiness value of zero. The remain-
ing jobs will be early, and the maximum earliness will be calculated from the first 
job of the first agent. Also, according to Eq. (46), if 𝛼 > 𝛽 , forced idle time is added 
before the start of the first job on the second machine such that the first-agent job is 
completed at d and none of the second-agent jobs will be tardy. So, if the first job of 
the first agent is scheduled between the second-agent jobs, idle time will be −C2

max(S)
 ; 

and if it is scheduled after the all second-agent jobs, idle time will be 
max

{
d − c1

2[1]
, 0

}
.

After calculating the optimal forced idle time for a complete sequence, it will be 
accepted as a feasible sequence. Then, the objective function of this sequence is cal-
culated and compared with the upper bound. If the objective function value is less 
than the upper bound, the upper bound will be updated.

Lower bound In each node, the lower bound of the partial sequence, indicated as 
LBWETmax , is calculated based on Theorem 8 (named LB1WETmax ), Theorem 9 (named 
LB2WETmax ) and Corollary 2. In the following, one algorithm for calculating each 
lower bound and the related theorems are given.

Calculation algorithm for L⃗B1 ⃗WETmax
:

Step 1 Consider � as the sequence of scheduled jobs in the sets A , B , C and D.
Step 2 Add forced idle time of duration d − Cmax(C) before the first job of the first 
agent such that the last job of set C is completed at time d.
Step 3 Calculate the maximum earliness value of the first-agent jobs and set it to 
E1

max(�)
.

Step 4 Set the completion time of the first job of the set D to d + 1.
Step 5 Calculate the maximum tardiness of jobs of the set D and set it to T1

max(�)
.

Step 6 Set LB1WETmax = �E1

max(�)
+ �T1

max(�)
.

Step 7 Stop.

Theorem 8  The value obtained from the calculation algorithm for LB1WETmax is a 
lower bound for a partial sequence in the problem F2�dj = d�WET1

max
∶
∑

U2

j
≤ 0.

Proof  Since due dates have a common value, after transferring the unforced idle 
time of the second machine to the beginning of the sequence and considering forced 
idle time, the maximum earliness of a partial sequence � is calculated by Eq. (47).

According to the algorithm for calculating LB1WETmax , in Eq.  (47), the amount of 
forced idle time before the first-agent job is added by UIT = d − Cmax(C) such that 
the last job of the set C is completed at time d . Therefore, Eq. (47) can be written as 

(47)E1

max(�)
= max

{
d − C1

2[1]
, 0

}
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Eq. (48). In Eq. (48), Cmax(C) is the maximum completion time belonging to the set 
C.

Since Cmax(C) is not decreased by completing the partial sequence � , the maxi-
mum earliness of the complete sequence will not be less than E1

max(�)
 . In other words, 

inequality (49) is established. In this equation, E∗
max

 represents the maximum earli-
ness of the optimal sequence.

It is clear that in a partial sequence � , among the jobs of the sets A , C and D , only 
the jobs of the set D have positive tardiness value. Given the existing condition of 
a job in set D (completing after d ), to calculate the maximum tardiness of a partial 
sequence � , it is assumed in Eq. (50) that the first job of the set D is completed at 
the earliest possible time of d + 1 . In this equation, Cmax(D) and C2[1](D) show, respec-
tively, the maximum completion time of the jobs that belong to the set D , and the 
completion time of the first job in the schedule of the jobs belonging to the set D.

Given that in a complete sequence, the completion time of the first job of the set 
D will not be less than d + 1 , the maximum tardiness of the set D jobs in a complete 
sequence will not be less than T1

max(�)
 . In other words, inequality (51) is established. 

In this constraint, T∗
max

 represents the maximum earliness of the optimal sequence.

By comparing inequalities (49) and (51), inequality (52) is obtained.

So, we can say that the value obtained from the algorithm for calculating LB1WETmax 
is a lower bound for �E∗

max
+ �T∗

max
 in the problem F2|dj = d|�E1

max
+ �T1

max
∶∑

U2

j
≤ 0.	�  ◻

Calculation algorithm for L⃗B2 ⃗WETmax
:

Step 1 Consider � as the sequence of scheduled jobs in the sets A , B , C and D . 
Define the set of unscheduled jobs as �′.
Step 2 If 𝛼 > 𝛽 , go to Step 3; otherwise, go to Step 5.
Step 3 Set � = � ∪ �� and calculate E1

max(�)
 similarly to the calculation procedure 

for LB1WETmax.
Step 4 Schedule the first-agent jobs of �′ in the set D and after the set � jobs 
according to the Johnson order. Go to Step 11.

(48)E1

max(�)
= max

{
Cmax(C) − C1

2[1]
, 0

}

(49)E∗
max

≥ E1

max(�)

(50)T1

max(�)
= Cmax(D) − C2[1](D) + 1

(51)T∗
max

≥ T1

max(�)

(52)�E∗
max

+ �T∗
max

≥ �E1

max(�)
+ �T1

max(�)
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Step 5 Schedule the second-agent jobs of the set �′ in the set A after the set � jobs 
according to the Johnson order. In the case of infeasibility, schedule the remained 
jobs in the set C after the set � jobs.
Step 6 Add the first-agent jobs of the set �′ to the set C according to the Johnson 
order until the completion time of jobs of the set C does not exceed d.
Step 7 Add forced idle time of duration d − Cmax(C) before the first job of the first 
agent, such that the last job of the set C is completed at d.
Step 8 Calculate the maximum earliness of the first-agent jobs and put it in 
E1

max(�∪��)
.

Step 9 In order to calculate the maximum tardiness, reconsider the sequence � 
and the set �′ . Schedule the scheduled jobs, including the first job of the first 
agent and jobs of the set C along with all the second-agent jobs of the set �′ 
immediately after the jobs of the set A , according to the Johnson order. Do this 
procedure until the completion time of the last job is greater than or equal to d for 
the first time.
Step 10 Assign the unscheduled first-agent jobs to the set D.
Step 11 Set the completion time of the first job of the set D to d + 1.
Step 12 Calculate the maximum tardiness of the set D jobs and put it in T1

max(�∪��)
.

Step 13 Set LB2WETmax = �E1

max(�∪��)
+ �T1

max(�∪��)
.

Step 14 Stop.

Theorem 9  The value obtained from the calculation algorithm for LB2WETmax is a 
lower bound for a partial sequence in the problem F2�dj = d�WET1

max
∶
∑

U2

j
≤ 0.

Proof  In the algorithm for calculating LB2WETmax , the values of E1

max(�∪��)
 and 

T1

max(�∪��)
 are calculated separately. Calculation of these two values in the two cases 

of 𝛼 > 𝛽 and � ≤ � is different. These two cases are examined below.

•	 Case 𝛼 > 𝛽:

In the case of 𝛼 > 𝛽 , the E1

max(�∪��)
 is calculated similarly to the calculation algo-

rithm for LB1WETmax . In other words, according to inequality (49), inequality (53) is 
established.

Since 𝛼 > 𝛽 is established, in the complete sequence, efforts are made to com-
plete the first job of the first agent at d or later (if there is no possibility of complet-
ing in d ), and the remained jobs of the first-agent after d . This action improves the 
objective function of the problem. According to the calculation algorithm of 
LB2WETmax , in the complete sequence, the number of tardy first-agent jobs cannot be 
less than the number of the set D jobs. Also, the completion time of the first job of 
the set D is not less than d + 1 . Therefore, the tardiness of the set D jobs in the 

(53)E∗
max

≥ E1

max(�∪��)
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complete sequence will not be less than T1

max(�∪��)
 . In other words, inequality (54) is 

established.

•	 Case � ≤ �:

Since � ≤ � is established, in the complete sequence, efforts are made to com-
plete the first-agent jobs before the due date d as far as possible. These efforts lead to 
improving the objective function of the problem. So, in the calculation algorithm for 
LB2WETmax , to calculate E1

max(�∪��)
 , efforts are made to schedule all second-agent jobs 

and the largest possible number of first-agent jobs before the due date d . The remain-
ing space will be filled by adding forced idle time before the first job of the first 
agent. Therefore, the maximum earliness of the complete sequence will not be less 
than E1

max(�∪��)
 . In other words, inequality (55) is established.

In the algorithm for calculating LB2WETmax , efforts are made to complete the larg-
est possible number of jobs before the due date d . These jobs have no tardiness. 
Next, the remained first-agent jobs are assigned to the set D . In the complete 
sequence, the number of the set D jobs will not be less than this number. In the cal-
culation algorithm for LB2WETmax , the first job of the set D is completed at the earli-
est possible time of d + 1 , and in the complete sequence, the completion time of the 
first job of the set D will not be less than d + 1 . Therefore, the maximum tardiness of 
the set D in the complete sequence will not be less than T1

max(�∪��)
 . In other words, 

inequality (56) is established.

According to inequalities (53) and (54) for the case 𝛼 > 𝛽 , and inequalities (55) 
and (56) for the case � ≤ � , inequality (57) is obtained.

So, we can say that the value obtained from the calculation algorithm for LB2WETmax 
is a lower bound for �E∗

max
+ �T∗

max
 in the problem F2|dj = d|�E1

max
+ �T1

max
∶∑

U2

j
≤ 0.

By comparing Eqs. (52) and (57), Eq. (58) is obtained.

According to inequality (58), Corollary 2 can be drawn.

(54)T∗
max

≥ T1

max(�∪��)

(55)E∗
max

≥ E1

max(�∪��)

(56)T∗
max

≥ T1

max(�∪��)

(57)�E∗
max

+ �T∗
max

≥ �E1

max(�∪��)
+ �T1

max(�∪��)

(58)�E∗
max

+ �T∗
max

≥ max
{
�E1

max(�)
+ �T1

max(�)
, �E1

max(�∪��)
+ �T1

max(�∪��)

}
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Corollary 2  The value of LBWETmax obtained from Eq. (59) is a lower bound for a 
partial sequence � in the problem F2�dj = d�WET1

max
∶
∑

U2

j
≤ 0.

Upper bound To get a feasible solution for F2�dj = d��E1
max

+ �T1
max

∶
∑

U2

j
≤ 0 as 

an upper bound, before entering the branching and in the root node, the METRSA 
algorithm is executed. The objective function obtained from the METRSA algo-
rithm is considered as the upper bound UBWETmax.

Dominance rules The following three dominance rules are presented. They are 
used for fathoming the nodes and branches in the branch and bound algorithm.

Consider schedule sDR1 in which the second-agent jobs are scheduled at the begin-
ning of the sequence based on the Johnson order, and the first-agent jobs are sched-
uled after them based on the reverse Johnson order. Maximum completion time of 
all the jobs of schedule sDR1 is denoted by Cmax(sDR1).

Theorem  10  (Dominance rule 1) In the problem F2�dj = d�WET1
max

∶
∑

U2

j
≤ 0 , 

assuming � ≤ � , if inequality (60) is established, the sequence obtained from the 
METRSA algorithm is optimal.

Proof  According to inequality (60), due date d is greater than the maximum comple-
tion time in the schedule sDR1 . The METRSA algorithm acquires the best scheduling 
of the first-agent jobs with the assumption that the second-agent jobs are scheduled 
at the beginning of the sequence. Also, the reverse Johnson order will result in the 
maximum value of maximum completion time. Therefore, if due date d is greater 
than the maximum completion time for all the jobs in the schedule sDR1 , considering 
the assumption of � ≤ � , forced idle time is added to the beginning of the sequence 
of the second machine such that the last job of the second machine in the sequence 
obtained from the METRSA algorithm is completed at time d . The duration of this 
forced idle time is more than or equal to the makespan resulting from the sequence 
of the Johnson order of the second-agent jobs. Consequently, scheduling the second-
agent jobs at the beginning of the sequence and during idle time, according to the 
Johnson order, is possible, and the sequence derived from the METRSA algorithm 
is optimal.	�  ◻

Theorem  11  (Dominance rule 2) In the problem F2�dj = d�WET1
max

∶
∑

U2

j
≤ 0, 

assuming 𝛼 > 𝛽 , if inequality (61) is established, the sequence obtained from the 
METRSA algorithm is optimal.

Proof  According to inequality (61), due date d is greater than the completion time of 
the first job of the first agent in the sequence obtained from the METRSA algorithm 
with the notation of C1

2[1](METRSA)
 . In the optimal schedule of the problem 

(59)LBWETmax = max
{
LB1WETmax, LB2WETmax

}

(60)Cmax(sDR1) ≤ d

(61)C1

2[1](METRSA)
≤ d
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F2�dj = d�WET1
max

∶
∑

U2

j
≤ 0, assuming 𝛼 > 𝛽 , concerning the legality of forced 

idle time, jobs on the second machine are arranged in such a way that the first job 
will be completed at or later than time d (if there is no possibility of completion at 
time d ). If due date d is greater than or equal to the makespan derived from schedul-
ing the second-agent jobs at the beginning of the sequence and after the first job of 
the first agent according to the Johnson order, which is obtained from the METRSA 
algorithm, the amount of space required to place the second-agent jobs based on the 
Johnson order exists at the beginning of the sequence. Hence, the sequence obtained 
from the METRSA algorithm is optimal.	�  ◻

Theorem 12  (Dominance rule 3) In the problem F2�dj = d�WET1
max

∶
∑

U2

j
≤ 0 , if 

in a partial sequence � , the maximum completion time of the sequence obtained 
from the Johnson order of the jobs of the sets A , B and C , along with all the second-
agent jobs of the set �′ , is greater than the common due date d , this sequence is not 
feasible.

Proof  It is not allowed to complete the second-agent jobs after the due date based on 
the problem definition. Also, having a job in the sets A , B or C requires completing 
it before d . If the maximum completion time obtained by the Johnson order of the 
sets A , B and C , along with all the second-agent jobs of the set �′ , and as a result, 
the minimum possible makespan for these operations exceeds d , at least one of the 
above two conditions are violated. Thus, by completing the partial sequence � , an 
infeasible sequence is obtained.	�  ◻

5 � Computational results

In order to investigate the performance of the proposed branch and bound algorithm 
in the problem F2�dj = d�WET1

max
∶
∑

U2

j
≤ 0 , two sets of instances for both cases 

� = 1 ≤ � = 5 and 𝛼 = 5 > 𝛽 = 1 were generated. Because the processing time of 
jobs does not affect the performance of the algorithm, it was generated from a dis-
crete uniform distribution in the range of [1, 10]. The common due date value in the 
case � ≤ � is determined by Eq. (62), according to the literature on the scheduling 
problem (Gelders and Sambandam 1978; Armentano and Ronconi 1999; Hasija and 
Rajendran 2004; Perez-Gonzalez and Framinan 2010) and adapting for the two-
agent problem. Also, since the due dates calculated by Eq.  (62), for the instances 
with the assumption 𝛼 > 𝛽 have large values, and due to dominance rule 2, these 
instances were solved polynomially before entering the branch and bound. There-
fore, to determine more difficult instances in the case 𝛼 > 𝛽 , the common due date 
was generated by Eq. (63). Because of the desirability of generating instances with 
different difficulty levels, two equations were used to generate the common due date. 
In order to evaluate the effect of the due date on algorithm performance, in Eq. (62), 
the value of �1 was selected from the set of {0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 and 
1.2}, and in Eq. (63), the value of �2 was selected from the set of {0.05, 0.1, 0.2, 0.4, 
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0.6, 0.8 and 1.0}. In this equation, C1

max(jo)
 and C2

max(jo)
 indicate maximum completion 

time of the first- and second-agent jobs based on the Johnson order, respectively.

To investigate the effects of the number of first- and second-agent jobs on the 
algorithm performance, three combinations 2n1 = n2 , n1 = n2 and n1 = 2n2 were 
considered. Based on the number of these combinations and the values of �1 and �2 , 
24 (3 × 8) problem groups named GA01 to GA24 for the case of � ≤ � and 21 (3 × 7) 
groups named GB01 to GB21 for the case 𝛼 > 𝛽 were formed. In each group, in the 
case ≤ � , 20 instances were generated for each size 45, 50, 100, 150, 200, 300, 500, 
1000 and 2000 jobs. Also, in the case 𝛼 > 𝛽 , 20 instances were generated for each 
size 100, 150, 200, 300, 500 and 700 jobs.

The branch and bound algorithm was coded in Visual C #2013 , and problem 
instances were solved on a computer system with Intel® Core™ i7-2600 CPU 3.4 
GHz and 4.00GB RAM in a 32 − bit Windows 7 operating system environment. A 
time constraint of 3600 s was applied to solve instances by the branch and bound 
algorithm optimally. Tables  2 and 3 show the computational results for 
F2

���dj = d
���WET1

max
∶
∑

U2

j
≤ 0 in cases � ≤ � and 𝛼 > 𝛽 , respectively.

The proposed mixed-integer linear programming model was able to solve 
instances up to 25 jobs in size. Since the branch and bound algorithm showed better 
performance than the model, the results of the model are not presented.

According to Table 2, 93.54% of the instances studied in the case � ≤ � , were 
solved optimally, that 96.1% of these optimally solved instances were solved by the 
branch and bound algorithm and 3.9% of them were solved by dominance rule 1.

Figure 5 shows the percentages of optimally solved instances concerning prob-
lem size. Increasing the number of jobs decreases the number of instances solved by 
the branch and bound. This trend is logical due to increased solution time and the 
increase in the number of schedules examined to find the optimal solution. The ver-
tical dotted line on the graph represents a threshold for disability to solve all groups. 
Therefore, instances that are placed before this line were solved in all groups opti-
mally. However, instances that are placed after the line belong to only the groups 
that the branch and bound algorithm were capable of solving them. So, in groups 
GA07 , GA08 , GA15 , GA16 , GA23 , GA24 , i.e., the groups with �1 of 1.0 and 1.2, the 
instances were solved up to 200 jobs in size and their results are reported. Also, the 
percentage of optimally solved instances increased in the instances with more than 
200 jobs in size.

As is evident in Fig.  5, the percentage of optimally solved instances by domi-
nance rule 1 is decreased by increasing the problem size, and for instances with 300 
jobs or more becomes zero. The reason for this decline is that by increasing the 
number of jobs and therefore increasing unforced idle time, conditions for the estab-
lishment of dominance rule 1 require a greater due date. Therefore, a lower number 

(62)d = C2

max(jo)
+ �1C

1

max(jo)

(63)d = C2

max(jo)
+ �2 max

j∈N1

{
p2j

}
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of instances satisfies the dominance rule 1 condition, and the instances are solved 
before entering the branch and bound.

Figure 6 shows the diagram of the percentages of optimally solved instances con-
cerning �1 . This diagram shows that by increasing �1 , the number of instances solved 
optimally by dominance rule 1 in groups with �1 values higher than 0.8 increases. 
Therefore, the number of optimally solved instances entered into the branch 
and bound algorithm decreases. Since by increasing �1 , due dates increase, more 
instances satisfy the conditions of dominance rule 1, and the percentage of optimally 
solved instances by dominance rule 1 increases.

Given the results in Table  3, among all instances examined in the case 𝛼 > 𝛽 , 
96.11% were solved optimally, that 73.9% of them were solved by the branch and 
bound algorithm, and 26.1% of them were solved by dominance rule 2.

Figure 7 shows the diagram of the percentages of optimally solved instances con-
cerning problem size in the case 𝛼 > 𝛽 . In all groups, all instances were solved up to 
500 jobs optimally. Also, the percentage of instances solved optimally by dominance 
rule 2 shows a constant trend for all sizes. Also, the percentage of instances solved 
optimally by the branch and bound algorithm up to 500 jobs shows a constant trend. 
This percentage is reduced for larger sizes because of increasing in solution time and 
increasing in the number of schedules to be checked to find the optimal solution.

Fig. 5   Diagram of the percentage of optimally solved instances concerning problem size in the case 
� ≤ �

Fig. 6   Diagram of the percentage of optimally solved instances concerning �
1
 in the case � ≤ �
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Figure  8 shows the diagram of the percentages of optimally solved instances 
concerning �2 . By increasing �2 , the number of optimal instances solved by domi-
nance rule 2 increases. Also, due dates are increased, and more instances satisfy the 
dominance rule 2 conditions. So, the number of optimally solved instances by this 
dominance rule increases. As a result of the increasing number of instances solved 

Fig. 7   Diagram of the percentage of optimally solved instances concerning problem size in the case 
𝛼 > 𝛽

Fig. 8   Diagram of the percentage of optimally solved instances concerning �
2
 in the case 𝛼 > 𝛽

Table 4   A summary of the branch-and-bound performance in two cases � ≤ � and 𝛼 > 𝛽

a In the groups with �
1
 of 1.0 and 1.2, the instances were solved up to 200 jobs

Indicator � ≤ � 𝛼 > 𝛽

Percentage of optimally solved instances 93.54 96.11
Percentage of optimally solved instances by DR1 or DR2 3.9 26.11
Maximum sizes in which all instances were solved optimally in a time 

constraint of 3600 s
2n

1
= n

2
45 500

n
1
= n

2
50 500

n
1
= 2n

2
50 500

Maximum size of optimally solved instances in a time constraint of 3600 s 2000a 700
Most difficult groups concerning instances solved optimally 2n

1
= n

2
2n

1
= n

2

Best performance in fathoming nodes by LB2 DR3
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by dominance rule 2, the number of instances entered into the branch and bound 
algorithm decreases.

Previously, the branch and bound performance was investigated in both cases 
� ≤ � and 𝛼 > 𝛽 and effective factors were introduced and analyzed. Table 4 sum-
marizes the branch and bound performance.

Based on Table  4, the percentage of instances solved optimally by dominance 
rules 1 and 2 before entering the branch and bound is higher in 𝛼 > 𝛽 . This is 
because of greater due date in the case 𝛼 > 𝛽 which causes more instances to be 
satisfied in the condition of dominance rule 1. Also, a meaningful difference exists 
between the sizes that all the instances were solved in both cases � ≤ � and 𝛼 > 𝛽 . 
This difference arises because, in the case 𝛼 > 𝛽 , to obtain an optimal solution, it 
has to be decided whether the assignment of the second-agent jobs to the set C can 
improve the objective function. However, in the case � ≤ � , to obtain an optimal 
solution, the position of all first- and second-agent jobs must be examined on the eli-
gible sets. As a result, the two-agent problem in the case � ≤ � is more difficult than 
in the case 𝛼 > 𝛽 . That is why the sizes in which all the instances were solved in the 
time constraint of 3600 s are greater in the case 𝛼 > 𝛽 than in the case � ≤ �.

In the case � ≤ � , the branch and bound algorithm was able to solve most of 
the large instances. This ability is due to the excellent performance of LB2WETmax 
in fathoming the nodes in the first level of the branch and bound tree. So, in the 
case � ≤ � , the branch and bound algorithm can solve instances up to 2000 jobs in 
the time constraint of 3600 s, while in the case 𝛼 > 𝛽 , the maximum size of solved 
instances is 700.

Since the basis for calculating the lower bounds is the objective function of the 
first-agent jobs, by increasing the number of first-agent jobs, the efficiency of these 
lower bounds increases. So, the most difficult groups in both cases � ≤ � and 𝛼 > 𝛽 
are the groups with greater numbers of second-agent jobs than first-agent jobs. 
According to Eqs. (62) and (63), the due date in the case 𝛼 > 𝛽 gets smaller values 
than in the case � ≤ � . So, dominance rule 3 performs better in fathoming the nodes. 
Because this dominance rule investigates the completion possibility of the second-
agent jobs before the due date according to a partial sequence at each node before 
calculating the lower bound LB2WETmax . The lower bound LB2WETmax , which deter-
mines the position of all jobs, including scheduled and unscheduled jobs in each 
set, gets a greater maximum tardiness value in the case � ≤ � and this lower bound 
fathoms more nodes than LB1WETmax and DR3.

6 � Conclusions and suggestions for future researches

In this article, the constrained two-agent scheduling problem in a two-machine 
flow shop environment was investigated. The objective is minimizing the weighted 
sum of maximum earliness and maximum tardiness of the first-agent jobs consid-
ering that the second agent jobs are not allowed to be tardy. Also, a single-agent 
form of this problem when the number of second-agent jobs is zero was studied. To 
solve the single-agent problem, we investigated the optimal scheduling properties. 
Based on these properties, an exact algorithm with polynomial time complexity was 
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presented. To solve the two-agent problem, we show that it had a minimum com-
plexity of ordinary NP-hard. Then, the optimal scheduling properties of this problem 
were studied, and a mathematical programming model based on the optimal proper-
ties was proposed. Also, a branch and bound algorithm based on efficient lower and 
upper bounds and dominance rules were developed for the two-agent problem. To 
investigate the performance of the proposed branch and bound algorithm, we gener-
ated and solved several instances. The computational results showed the ability of 
the algorithm to solve 93.54% of the total generated instances up to 2000 jobs in the 
case � ≤ � and 96.11% of the total generated instances up to 700 jobs in the case 
𝛼 > 𝛽.

Considering different weights for the job or different specifications of them can 
be carried out as an extension of the investigated problems. Another suggestion for 
further research is the development of the two-agent problem, which can be pre-
sented by considering a common due date for the jobs of each agent separately. 
Also, considering a different due date for each job can be an exciting issue.

Acknowledgements  We would like to thank the anonymous referees; whose comments undoubtedly 
improved the manuscript.
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