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Abstract
The concepts of consistency definition and consistency index are usually used to 
measure the consistency of a preference relation. When interval numbers are used 
to express the preference information, the consistency of the derived interval-valued 
preference relations (IVPRs) is worth being investigated. In this study, a comment 
is provided for the ideas behind consistency definitions and consistency indexes of 
interval multiplicative reciprocal matrices (IMRMs) and interval additive reciprocal 
matrices (IARMs), respectively. A comparison is made by considering the two kinds 
of consistency definitions of IVPRs. It is found that the method of defining the con-
sistency of IVPRs in terms of the imaginary intervals is equivalent to that of defin-
ing the approximate consistency. Numerical examples are reported to illustrate the 
differences of the two consistency definitions of IVPRs. The observations illustrate 
that the fundamental inconsistency of IVPRs is compatible with the underlying idea 
of fuzzy sets. It is revealed that a consistent preference relation is only a particular 
case with a fixed value of the defined consistency index. In general, the consistency 
index could be used to quantify the deviation degree from a consistent real-valued 
preference relation.
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1 Introduction

In the 1970s, Saaty (1980, 1977) proposed the famous decision-making meth-
odology of the Analytic Hierarchy Process (AHP). Based on the AHP method, 
one decomposes a complex decision-making problem into various factors, then 
integrates these factors into hierarchical structures through dominating relations, 
and determines the relative importance of various factors in the hierarchy through 
pairwise comparisons. According to pairwise comparisons of alternatives, the 
opinions given by decision makers are represented through preference relations. 
These preference relations are used to determine the weights of alternatives and 
finally an optimal alternative is chosen. Up to now, the AHP approach has been 
widely studied and used in group decision-making problems (Brunelli 2015; 
Golden et al. 1989; Vaidyaab and Kumar 2006) and decision support systems (Lu 
et al. 2011, 2007; Ma et al. 2010). In the typical AHP, the integers in-between 1 
to 9 and their reciprocals are selected as the values of pairwise comparisons com-
pleted over a set of alternatives X =

{
x1, x2,… , xn

}
. Then a multiplicative recip-

rocal matrix (MRM) is formed as A = (aij)n×n, where aij denotes the preference 
intensity of the alternative xi over the alternative xj. In addition, following the 
idea of fuzzy sets (Zadeh 1965, 1996), the real number bij ∈ [0, 1] is used to rep-
resent the preference degree of the alternative xi over the alternative xj. A binary 
relation on X =

{
x1, x2,… , xn

}
 is defined and a preference relation B =

(
bij
)
n×n

 
is given. The matrix B =

(
bij
)
n×n

 is called as fuzzy preference relation (FPR) 
(Kacprzyk 1986; Nurmi 1981; Orlovsky 1978; Tanino 1984) and it is further 
renamed as additive reciprocal matrix (ARM) by considering the reciprocity of 
bij + bji = 1 (Liu et  al. 2014). From the definition of ARMs, it is seen that the 
values of bij are real numbers. However, owing to the complexity and uncertainty 
of real-world decision making problems, it is difficult to use precise values to 
express the preference information of decision makers. Saaty and Vargas (1987) 
applied interval numbers to model the uncertainty experienced by decision mak-
ers. Then an IMRM was defined by using the scale from 1/9 to 9. Various deci-
sion making models and their applications based on IMRMs have been studied 
(Herrera et al. 2005; Lin and Zhang 2017; Xu 2004; Zhou et al. 2016). Similarly, 
ARMs have been extended to IARMs to cope with the uncertainty experienced by 
decision makers in expressing their opinions (Herrera et al. 2005; Xu 2004; Zhou 
et al. 2014).

To avoid contradictory (conflicting) decisions, it is essential to define the 
transitivity and consistency of preference relations together with the judgements 
of decision makers. According to the typical AHP (Saaty 1980), if aij = aikakj 
(∀i, j, k = 1, 2,… , n) is satisfied for A = (aij)n×n, the comparison matrix is con-
sistent. Moreover, there are two methods to define the consistency of ARMs 
(Tanino 1984) and they are generalized by using a function in Chiclana et  al. 
(2009). One is the additive consistency of B =

(
bij
)
n×n

 satisfying the requirement 
bij = bik − bjk + 0.5 or bij + bjk + bki = bji + bkj + bik (∀i, j, k = 1, 2,… , n) (Herrera 
et  al. 2005). The other is the multiplicative consistency of B =

(
bij
)
n×n

 satisfy-
ing the condition bijbjkbki = bjibkjbik(∀i, j, k = 1, 2,… , n). For the consistency of 
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IMRMs, some methods have been reviewed and the approximate consistency has 
been defined in Liu et  al. (2017b). In addition, for the consistency of IARMs, 
some methods of defining the additive and multiplicative consistency have been 
investigated (Krejčí 2017, 2019; Liu et al. 2018b); and the additive approxima-
tion-consistency has been proposed in Liu et al. (2018b). Following the idea of 
quantifying inconsistency degrees of MRMs in Saaty (1980), the consistency 
indexes have attracted much attention to generally quantify the inconsistency 
degrees of IVPRs (Dong et  al. 2015, 2016; Wan et  al. 2018; Liu et  al. 2018c, 
2020). The methods of measuring the consistency of MRMs, ARMs, IMRMs, 
IARMs and hesitant reciprocal matrices have been further reviewed and investi-
gated by Li et al. (2018, 2019). On the other hand, it is found that a new method 
of defining the consistency of IMRMs has been proposed in Meng and Tan 
(2017) by introducing the concept of quasi-positive intervals. Similarly, the mul-
tiplicative consistency and additive consistency of IARMs have been redefined 
(Meng et  al. 2017a, c). It is noted that the idea behind the approximate con-
sistency is based on the viewpoint that IVPRs are inconsistent as compared to 
the real numbers (Liu et al. 2017b, 2018b). The methods of defining a consist-
ency of IVPRs in the series of works (Meng et al. 2017a; Meng and Tan 2017; 
Meng et  al. 2017c) are the direct extensions of consistent preference relations 
with real-number entries. Hence, it is worth to compare the two different meth-
ods of defining the consistency of IVPRs, and clarify the concepts of consist-
ency definition and consistency index. Motivated by the above discussions, here 
we comment on and compare the methods of defining the consistency of IVPRs 
(Liu et al. 2017b, 2018b; Meng et al. 2017a; Meng and Tan 2017; Meng et al. 
2017c). The main objective is to reveal the ideas behind these consistency defi-
nitions of IVPRs. The main novelty is the determination that the two approaches 
to defining the consistency of IVPRs are equivalent. By the way, the consistency 
indexes of IVPRs are analyzed and compared with the consistency definitions.

This paper is structured as follows. In Sect.  2, we give the definitions of 
IMRMs and IARMs, then review the arithmetic operations of interval num-
bers. Section 3 focuses on the methods of defining the consistency of IMRMs. 
The equivalence of the two approaches to consistency definitions of IMRMs 
is proved. In Sect.  4, the methods of defining the consistency of IARMs are 
addressed. The equivalence of the two approaches to the multiplicative consist-
ency and additive consistency of IARMs is investigated, respectively. The exist-
ing shortcoming is pointed out and a novel finding is offered. In Sect. 5, some 
further comparison and discussion are made by considering the meaning of 
imaginary intervals. It is found that the introduction of imaginary interval num-
bers is only used to satisfy the mathematical relations of consistent preference 
relations. Some comments are offered by comparing the concepts of consistency 
definition and consistency index. In Sect.  6, an algorithm for solving decision 
making problems with IVPRs is provided by considering all permutations of 
alternatives, and two numerical examples are reported. Some conclusions are 
covered in Sect. 7.



374 F. Liu et al.

1 3

2  Preliminaries

In this section, we first recall the definitions of IMRMs and IARMs, respectively, then 
review the arithmetic operations of interval numbers.

2.1  The concepts of IMRMs and IARMs

Let X =
{
x1, x2,… , xn

}
 denote the set of alternatives in a complex decision making 

problem. The concept of IMRMs is introduced as follows (Saaty and Vargas 1987):

Definition 1 (Saaty and Vargas 1987) The IVPR Ā =
(
āij
)
n×n

 is multiplicatively 
reciprocal with

The interval number āij = [a−
ij
, a+

ij
] indicates that the alternative xi is between a−

ij
 and 

a+
ij
 times as important as the alternative xj with the properties of a±

ij
> 0, a−

ij
< a+

ij
 , 

a−
ij
= 1∕a+

ji
, and a+

ij
= 1∕a−

ji
.

Similarly, the definition of IARMs is given as follows:

Definition 2 (Xu 2001, 2004) The IVPR B̄ = (b̄ij)n×n is additively reciprocal with

The interval number b̄ij = [b−
ij
, b+

ij
] stands for the preference intensity of the alterna-

tive xi over the alternative xj with the properties of 0 ≤ b±
ij
≤ 1, b−

ij
≤ b+

ij
, and 

b−
ij
+ b+

ji
= b+

ij
+ b−

ji
= 1.

One can see from Definitions 1 and 2 that the basic idea is to use interval numbers to 
express the opinions of decision makers. Thus some uncertainty experienced by deci-
sion makers can be captured. Moreover, when investigating the consistency of IVPRs 
Ā =

(
āij
)
n×n

 and B̄ = (b̄ij)n×n, it seems inevitable to apply the arithmetic operations 
of interval numbers. In what follows, we review the arithmetic operations of interval 
numbers.

Ā =

⎡
⎢⎢⎢⎣

[1, 1]
�
a−
12
, a+

12

�
⋯

�
a−
1n
, a+

1n

�
�
a−
21
, a+

21

�
[1, 1] ⋯

�
a−
2n
, a+

2n

�
⋮ ⋮ ⋱ ⋮�

a−
n1
, a+

n1

� �
a−
n2
, a+

n2

�
⋯ [1, 1]

⎤
⎥⎥⎥⎦
.

B̄ =

⎡
⎢⎢⎢⎣

[0.5, 0.5]
�
b−
12
, b+

12

�
⋯

�
b−
1n
, b+

1n

�
�
b−
21
, b+

21

�
[0.5, 0.5] ⋯

�
b−
2n
, b+

2n

�
⋮ ⋮ ⋱ ⋮�

b−
n1
, b+

n1

� �
b−
n2
, b+

n2

�
⋯ [0.5, 0.5]

⎤
⎥⎥⎥⎦
.
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2.2  Arithmetic operations of interval numbers

Let ā = [al, ar] be an interval number with real bounds al and ar. The interval 
ā = [al, ar] also means a set of real numbers denoted as {x|al ≤ x ≤ ar}. Typically, 
the arithmetic operations of interval numbers have been defined in Moorse (1966). 
That is, if defining the negative and the reciprocal of ā = [al, ar] as

and

one has the following arithmetic operations for two interval numbers ā = [al, ar] and 
b̄ = [bl, br] (Moorse 1966):

In particular, when al,r > 0 and bl,r > 0, it gives

According to the operation law of difference, it is found that the substraction (ā − ā) 
does not equal to zero. For example, when ā = [1, 2], it follows ā − ā = [−1, 1]. If 
the interval number ā denotes the preference intensity of the alternative xi over the 
alternative xj, the substraction of two same preference intensities should be zero. 
In other words, the result of ā − ā = [−1, 1] may be not reasonable (Hu and Wang 
2006; Krejčí 2019). In general, for three interval numbers ā, b̄ and c̄, the relation 
ā + b̄ = c̄ does not mean ā = c̄ − b̄. Moreover, the relation of ā ⋅ b̄ = c̄ can not yield 
ā = c̄∕b̄. The above phenomena reveal that the addition is not the inverse operation 
of subtraction and the multiplication is not the inverse operation of division accord-
ing to the typical arithmetic operations of interval numbers (Su et al. 1997). Further-
more, we always suppose ar ≥ al for an interval number ā = [al, ar]. If one considers 
the case of ar < al, the interval number ā = [al, ar] is defined as the “imaginary” 
interval (Su et  al. 1997). Correspondingly, the interval number ā = [al, ar] with 
ar ≥ al is called real. The real and imaginary intervals can be called uniformly the 

− ā = − [al, ar] = [−ar,−al] = {−x|x ∈ ā},

1∕ā = {1∕x|x ∈ ā},

Sum: ā + b̄ = {x + y|x ∈ ā, y ∈ b̄},

Difference: ā − b̄ = {x − y|x ∈ ā, y ∈ b̄},

Product: ā ⋅ b̄ = {xy|x ∈ ā, y ∈ b̄},

Quotient: ā∕b̄ = {x∕y|x ∈ ā, y ∈ b̄}.

(1)ā + b̄ = [al + bl, ar + br],

(2)ā − b̄ = [al − br, ar − bl],

(3)ā ⋅ b̄ = [albl, arbr],

(4)ā∕b̄ = al∕br, ar∕bl].
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generalized interval numbers or intervals. In addition, the quasi-positive interval is 
defined as follows:

Definition 3 (Meng et  al. 2017c; Meng and Tan 2017; Meng et  al. 2016) If 
ā =

[
al, ar

]
 satisfies al > ar and al, ar ∈ ℜ+, the interval number ā is said to be 

quasi-positive.

It is seen from Definition 3 that the so-called quasi-positive interval is also the 
imaginary interval with positive boundary values. On the other hand, the arithmetic 
operations of the generalized interval numbers have been discussed (Hu and Wang 
2006; Su et al. 1997; Zhou et al. 1996). For example, when considering the general-
ized interval number ā =

[
al, ar

]
 with al, ar ∈ ℜ+, the negative interval is defined 

as −ā =
[
−al,−ar

]
 and the reciprocal interval is ā−1 =

[
1∕al, 1∕ar

]
. The arithmetic 

operations of the generalized interval numbers for ā = [al, ar] and b̄ = [bl, br] with 
al,r > 0 and bl,r > 0 are given as follows:

As compared to (1)–(4), it is seen that the main differences are the substraction oper-
ation (6) and the division operation (8).

Based on the above discussion, one can see that the arithmetic operations of 
interval numbers are different from the arithmetic of real numbers. If the uncertainty 
experienced by decision makers is modelled by using interval numbers, the differ-
ence reflects the complexity and uncertainty of interval-valued comparison ratios. 
When defining consistency of IVPRs, it is found that the arithmetic operations of 
interval numbers may play an important role (Liu et al. 2017b, 2018b; Meng et al. 
2017a; Meng and Tan 2017; Meng et al. 2017c).

3  The methods for defining consistency of IMRMs

One can see that the basic idea of consistent preference relations is to capture the 
cardinal transitivity of opinions provided by decision makers (Saaty 1980; Tanino 
1984). In relative measurements, the consistency of the matrix Ā =

(
āij
)
n×n

 means 
that any entry āij can be obtained indirectly by using the product of āik and ākj for 
∀k = 1, 2,… , n. As shown in Dubois (2011), according to the arithmetic operations 
of interval numbers, the consistency of Ā =

(
āij
)
n×n

 cannot be defined by directly 
extending the method of defining consistent MRMs in Saaty (1980). In order to 
define the consistency of an IMRM Ā =

(
āij
)
n×n

, various approaches have been 

(5)ā + b̄ = [al + bl, ar + br],

(6)ā − b̄ = [al − bl, ar − br],

(7)ā ⋅ b̄ = [albl, arbr],

(8)ā∕b̄ = [al∕bl, ar∕br].
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proposed and reviewed such as those in Liu et al. (2017b); Meng and Tan (2017). 
Here we only need to recall the method in Meng and Tan (2017) by using Defini-
tion 3 and that of defining the approximate consistency in Liu et al. (2017b).

3.1  Consistency definitions of IMRMs

Following the concept of quasi-positive interval, the definition of quasi IMRMs is 
given as follows:

Definition 4 (Meng and Tan 2017) Let Ā =
(
āij
)
n×n

 be an IMRM. Ā� =
(
ā�
ij

)
n×n

 is 
said to be a quasi IMRM with respect to A if defining

for all i, j = 1, 2,… , n , where ā◦
ij
=
[
a−
ij
, a+

ij

]◦
=
[
a+
ij
, a−

ij

]
.

The condition (9) means that in order to produce Ā′, half of all entries in 
Ā =

(
āij
)
n×n

 should be changed to the quasi-positive intervals ā◦
ij
. For example, let us 

consider the following matrix (Meng and Tan 2017)

If changing the entries [2, 3],  [1, 2] and [2, 6] as [3, 2],  [2, 1] and [6, 2] respec-
tively, it gives a quasi IMRM as

It is found that the number of quasi IMRMs is C1
3
+ C2

3
+ C3

3
= 7 by considering the 

reciprocal property of the matrix Ā1. In fact, it is sufficient to consider the case of 
i > j or i < j. For instance, when i > j, there are n(n − 1)∕2 interval-valued entries in 
an IMRM Ā =

(
āij
)
n×n

. If one entry is changed as a quasi-positive interval number, 
there are C1

n(n−1)∕2
 cases. If two entries are changed to quasi-positive intervals, there 

are C2
n(n−1)∕2

 cases, and so on. Generally, we can obtain the number of quasi IMRMs 
in terms of A =

(
āij
)
n×n

 as

As shown in the above analysis, a quasi IVPR Ā� =
(
ā�
ij

)
n×n

 is constructed from 
Ā =

(
āij
)
n×n

 by changing one of two entries āij and āji to so called quasi-positive 
intervals. In addition, one has the following result:

(9)
{

ā�
ij
= āij,

ā�
ji
= ā◦

ji
,

or

{
ā�
ij
= ā◦

ij
,

ā�
ji
= āji,

Ā1 =

⎡⎢⎢⎣

[1, 1] [2, 3]
�
1∕2, 1

�
�
1∕3, 1∕2

�
[1, 1]

�
1∕6, 1∕2

�
[1, 2] [2, 6] [1, 1]

⎤⎥⎥⎦
.

Ā�
1
=

⎡⎢⎢⎣

[1, 1] [3, 2]
�
1∕2, 1

�
�
1∕3, 1∕2

�
[1, 1]

�
1∕6, 1∕2

�
[2, 1] [6, 2] [1, 1]

⎤⎥⎥⎦
.

C1
n(n−1)∕2

+ C2
n(n−1)∕2

+⋯ + C
n(n−1)∕2

n(n−1)∕2
= 2n(n−1)∕2 − 1.
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Theorem  1 Any quasi IMRM Ā� =
(
ā�
ij

)
n×n

 constructed from Ā =
(
āij
)
n×n

 can be 
changed to the matrix where all the entries above the diagonal are quasi-positive 
intervals and all the entries below the diagonal are standard intervals.

Proof Without loss of generality, it is assumed that all the entries below the diagonal 
are quasi-positive intervals in Ā′. That is, one has the following matrix:

In order to move the quasi-positive entries below the diagonal to the positions 
above the diagonal, one only needs to change the permutation of objectives as 
(xn, xn−1,… , x1). Then one can obtain the changed matrix as

It is seen from Ā′
c
 that all the entries above the diagonal are quasi-positive entries. 

This completes the proof.   ◻

In fact, for any quasi IMRM, there is a permutation of objectives such that all the 
quasi-positive entries are moved to the positions above the diagonal of the corre-
sponding quasi IVPR. Then the definition of consistent IMRMs is given as follows:

Definition 5 (Meng and Tan 2017) Let Ā =
(
āij
)
n×n

 be an IMRM. Ā is said to be 
consistent if there is an associated consistent quasi IMRM Ā� =

(
ā�
ij

)
n×n

 satisfying 
ā�
ij
= ā�

ik
⋅ ā�

kj
 for all i, k, j = 1, 2,… , n.

It is seen from Definition  5 that the method of defining the consistency of 
Ā =

(
āij
)
n×n

 is dependent on the multiplicative transitivity of consistent MRMs 
(Saaty 1980) and the arithmetic operations of interval numbers. However, in Meng 
and Tan (2017), the authors did not discuss how to compute the product of two 
quasi-positive intervals. In fact, the multiplication operation of generalized interval 
numbers (7) has been used after some analysis. For example, it is easy to verify that 
the entries in A′

1
 satisfy the relation of ā�

ij
= ā�

ik
⋅ ā�

kj
 (i, k, j = 1, 2,… , n) according to 

the multiplication operation (7). In other words, the objective of introducing the 

Ā� = (ā�
ij
)n×n =

⎡
⎢⎢⎢⎢⎢⎣

x1 x2 ⋯ xn
x1 [1, 1]

�
a−
12
, a+

12

�
⋯

�
a−
1n
, a+

1n

�
x2

�
a+
21
, a−

21

�
[1, 1] ⋯

�
a−
2n
, a+

2n

�
⋮ ⋮ ⋮ ⋱ ⋮

xn
�
a+
n1
, a−

n1

� �
a+
n2
, a−

n2

�
⋯ [1, 1]

⎤
⎥⎥⎥⎥⎥⎦

.

Ā�
c
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xn xn−1 ⋯ x1

xn [1, 1]
�
a+
n(n−1)

, a−
n(n−1)

�
⋯

�
a+
n1
, a−

n1

�

xn−1

�
a−
(n−1)n

, a+
(n−1)n

�
[1, 1] ⋯

�
a+
(n−1)1

, a−
(n−1)1

�

⋮ ⋮ ⋮ ⋱ ⋮

x1
�
a−
1n
, a+

1n

� �
a−
1(n−1)

, a+
1(n−1)

�
⋯ [1, 1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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quasi-positive intervals is only to satisfy the mathematical relation of multiplicative 
transitivity.

On the other hand, we recall the method of defining the approximate consistency 
of IMRMs in Liu et al. (2017b). Let � ∶ {1, 2,… , n} → {1, 2,… , n} be a bijective 
mapping. For convenience, it is also assumed that � denotes a permutation of 
{1, 2,… , n}. The application of � to Ā =

(
āij
)
n×n

 leads to an IMRM with permuta-
tions Ā𝜎 =

(
ā𝜎
ij

)
n×n

 where ā𝜎
ij
= [a−

𝜎(i)𝜎(j)
, a+

𝜎(i)𝜎(j)
]. We further define two MRMs 

C� =
(
c�
ij

)
n×n

 and D� =
(
d�
ij

)
n×n

 where

Then the approximate consistency of IMRMs is defined as follows:

Definition 6 (Liu et al. 2017b) An IMRM Ā =
(
āij
)
n×n

 exhibits approximate consist-
ency, if there is a permutation � such that C� =

(
c�
ij

)
n×n

 and D� =
(
d�
ij

)
n×n

 are all 
consistent.

One can see from Definition  6 that the approximate consistency of IMRMs is 
based on the consistency of two boundary matrices C� =

(
c�
ij

)
n×n

 and 

D� =
(
d�
ij

)
n×n

. The basic idea behind the approximate consistency is to stress that 
IMRMs are inconsistent in nature, which is in agreement with the idea of fuzzy sets 
(Zadeh 1965). The consistency property of IMRMs is characterized by using the 
consistency property of the two boundary matrices offered by the decision maker. 
The method of defining the approximate consistency is related to the process of con-
structing IMRMs. As shown in Dong et al. (2016) and Li et al. (2019), Definition 6 
can be called the boundary consistency of IMRMs under permutations of objectives. 
Moreover, the reciprocal property of Ā =

(
āij
)
n×n

 has been used in Definition 6, and 
it is independent of the arithmetic operations of interval numbers.

3.2  The equivalence of the two approaches

We further investigate the relation of consistent IMRMs according to Definitions 5 
and 6. The following result is obtained:

Theorem 2 Let Ā =
(
āij
)
n×n

 be an IMRM. The method of defining approximate con-
sistency of Ā in Definition 6 is equivalent to that of defining the consistency of Ā in 
Definition 5.

Proof Let Ā =
(
āij
)
n×n

 be an IMRM with approximate consistency accord-
ing to Definition 6. There exists a permutation � of {1, 2,… , n} such that the two 

(10)c𝜎
ij
=

⎧
⎪⎨⎪⎩

a−
𝜎(i)𝜎(j)

, i < j,

1, i = j,

a+
𝜎(i)𝜎(j)

, i > j,

d𝜎
ij
=

⎧
⎪⎨⎪⎩

a+
𝜎(i)𝜎(j)

, i < j,

1, i = j,

a−
𝜎(i)𝜎(j)

, i > j.
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multiplicative reciprocal relations C� and D� are all consistent. For convenience, we 
write C� and D� as follows:

In what follows, the entries in C� and D� are used to form a quasi IVPR Ā�𝜎 = (ā𝜎
ij
)n×n 

or Ã�𝜎 = (ã𝜎
ij
)n×n as follows:

or

By considering the consistency of C� and D� , it is verified that the consistent rela-
tions ā𝜎

ij
= ā𝜎

ik
⋅ ā𝜎

kj
 and ã𝜎

ij
= ã𝜎

ik
⋅ ã𝜎

kj
 are satisfied for Ã′𝜎 and Ā′𝜎 respectively. As 

shown in Meng and Tan (2017), the consistency in Definition  5 is invariant with 
respect to the permutations �. It is concluded that Ā =

(
āij
)
n×n

 is consistent accord-
ing to Definition 5.

On the contrary, suppose that Ā =
(
āij
)
n×n

 is an IMRM with consistency follow-
ing Definition  5. There exists an associated quasi IMRM Ā� =

(
ā�
ij

)
n×n

 satisfying 
ā�
ij
= ā�

ik
⋅ ā�

kj
 for all i, k, j = 1, 2,… , n. Without loss of generality, it is assumed that

C� =

⎡
⎢⎢⎢⎢⎣

1 a−
�(1)�(2)

⋯ a−
�(1)�(n)

a+
�(2)�(1)

1 ⋯ a−
�(2)�(n)

⋮ ⋮ ⋱ ⋮

a+
�(n)�(1)

a+
�(n)�(2)

⋯ 1

⎤
⎥⎥⎥⎥⎦
,

D� =

⎡
⎢⎢⎢⎢⎣

1 a+
�(1)�(2)

⋯ a+
�(1)�(n)

a−
�(2)�(1)

1 ⋯ a+
�(2)�(n)

⋮ ⋮ ⋱ ⋮

a−
�(n)�(1)

a−
�(n)�(2)

⋯ 1

⎤
⎥⎥⎥⎥⎦
.

Ā�𝜎 =

⎡⎢⎢⎢⎢⎢⎣

[1, 1]
�
a−
𝜎(1)𝜎(2)

, a+
𝜎(1)𝜎(2)

�
⋯

�
a−
𝜎(1)𝜎(n)

, a+
𝜎(1)𝜎(n)

�
�
a+
𝜎(2)𝜎(1)

, a−
𝜎(2)𝜎(1)

�
[1, 1] ⋯

�
a−
𝜎(2)𝜎(n)

, a+
𝜎(2)𝜎(n)

�

⋮ ⋮ ⋱ ⋮�
a+
𝜎(n)𝜎(1)

, a−
𝜎(n)𝜎(1)

� �
a+
𝜎(n)𝜎(2)

, a−
𝜎(n)𝜎(2)

�
⋯ [1, 1]

⎤⎥⎥⎥⎥⎥⎦

,

Ã�𝜎 =

⎡⎢⎢⎢⎢⎢⎣

[1, 1]
�
a+
𝜎(1)𝜎(2)

, a−
𝜎(1)𝜎(2)

�
⋯

�
a+
𝜎(1)𝜎(n)

, a−
𝜎(1)𝜎(n)

�
�
a−
𝜎(2)𝜎(1)

, a+
𝜎(2)𝜎(1)

�
[1, 1] ⋯

�
a+
𝜎(2)𝜎(n)

, a−
𝜎(2)𝜎(n)

�

⋮ ⋮ ⋱ ⋮�
a−
𝜎(n)𝜎(1)

, a+
𝜎(n)𝜎(1)

� �
a−
𝜎(n)𝜎(2)

, a+
𝜎(n)𝜎(2)

�
⋯ [1, 1]

⎤⎥⎥⎥⎥⎥⎦

.

Ā� =

⎡
⎢⎢⎢⎣

[1, 1]
�
a+
12
, a−

12

�
⋯

�
a+
1n
, a−

1n

�
�
a−
21
, a+

21

�
[1, 1] ⋯

�
a+
2n
, a−

2n

�
⋮ ⋮ ⋱ ⋮�

a−
n1
, a+

n1

� �
a−
n2
, a+

n2

�
⋯ [1, 1]

⎤
⎥⎥⎥⎦
.
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In fact, if another quasi IMRM Ã′ satisfies the condition ā�
ij
= ā�

ik
⋅ ā�

kj
, we can per-

form a permutation � of Ã′ such that Ā′ is determined from Ã′ according to Theo-
rem 1. Applying the condition ā�

ij
= ā�

ik
⋅ ā�

kj
, we have the following two consistent 

MRMs:

Based on Definition 6, Ā =
(
āij
)
n×n

 is of approximate consistency. The proof of the 
theorem is completed.   ◻

In what follows, we use an example to illustrate Theorem 2. Let us consider the 
following IVPR:

By considering the permutation � = (1, 3, 2, 4), it gives

One can determine that C� and D� are all consistent. This means that the matrix Ā2 
is of approximate consistency in virtue of Definition 6. Moreover, based on the con-
cept of quasi-positive intervals, we construct a quasi IMRM as follows:

It is computed that the entries in Ā′
2
 satisfy the consistent relation ā�

ij
= ā�

ik
⋅ ā�

kj
 in 

terms of the multiplication operation (7). This means that the matrix Ā2 is consistent 
in terms of Definition 5.

C =

⎡
⎢⎢⎢⎣

1 a−
12

⋯ a−
1n

a+
21

1 ⋯ a−
2n

⋮ ⋮ ⋱ ⋮

a+
n1

a+
n2

⋯ 1

⎤
⎥⎥⎥⎦
, D =

⎡
⎢⎢⎢⎣

1 a+
12

⋯ a+
1n

a−
21

1 ⋯ a+
2n

⋮ ⋮ ⋱ ⋮

a−
n1

a−
n2

⋯ 1

⎤
⎥⎥⎥⎦
.

Ā2 =

⎡
⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4
x1 [1, 1] [1, 1.3] [1.2, 1.3] [1.2, 1.6]

x2
�
10∕13, 1

�
[1, 1] [1, 1.2]

�
1.2, 16∕13

�
x3

�
10∕13, 10∕12

� �
10∕12, 1

�
[1, 1]

�
1, 16∕13

�
x4

�
10∕16, 10∕12

� �
13∕16, 10∕12

� �
13∕16, 1

�
[1, 1]

⎤
⎥⎥⎥⎥⎥⎦

.

C� =

⎡
⎢⎢⎢⎣

1 1.2 1 1.2

10∕12 1 10∕12 1

1 1.2 1 1.2

10∕12 1 10∕12 1

⎤
⎥⎥⎥⎦
,

D� =

⎡
⎢⎢⎢⎣

1 1.3 1.3 1.6

10∕13 1 1 16∕13

10∕13 1 1 16∕13

10∕16 13∕16 13∕16 1

⎤⎥⎥⎥⎦
.

Ā�
2
=

⎡⎢⎢⎢⎢⎣

x1 x3 x2 x4
x1 [1, 1] [1.2, 1.3] [1, 1.3] [1.2, 1.6]

x3 [10∕12, 10∕13] [1, 1] [10∕12, 1] [1, 16∕13]

x2 [1, 10∕13] [1.2, 1] [1, 1] [1.2, 16∕13]

x4 [10∕12, 10∕16] [1, 13∕16] [10∕12, 13∕16] [1, 1]

⎤⎥⎥⎥⎥⎦
.
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4  The methods for defining consistency of IARMs

Let us recall the methods of defining the consistency of IARMs. There are two 
kinds of consistency definitions for IARMs, which is following the methods of 
defining the consistency of ARMs (Tanino 1984). One is multiplicative consist-
ency similar to that of IMRMs and the other is additive consistency.

4.1  Consistency definitions of IARMs

It is convenient to recall the definition of quasi IARMs as follows:

Definition 7 (Meng et  al. 2017c) Assume that B̄ =
(
b̄ij
)
n×n

 is an IARM. 
B̄� =

(
b̄�
ij

)
n×n

 is a quasi IARM with respect to B̄ if

for all i, j = 1, 2,… , n, where b̄◦
ij
=
[
b−
ij
, b+

ij

]◦
=
[
b+
ij
, b−

ij

]
.

Obviously, Definition  7 is similar to Definition  4 and one can construct 
2n(n−1)∕2 − 1 quasi IARMs with respect to B̄. As shown in Theorem 1, there is a 
permutation such that all the entries above the diagonal of the quasi IARM are 
quasi-positive intervals. Following the idea in Definition  5, the multiplicative 
consistency of IARMs is defined as follows:

Definition 8 (Meng et al. 2017c) Let B̄ =
(
b̄ij
)
n×n

 be an IARM and B̄� =
(
b̄�
ij

)
n×n

 be 
a quasi one with respect to B̄. B̄ =

(
b̄ij
)
n×n

 is of multiplicative consistency, if there is 
a quasi-matrix B̄� =

(
b̄�
ij

)
n×n

 satisfying

for all i, k, j = 1, 2,… , n.

It is noted from Definition  8 that the multiplicative consistency of IARMs 
is dependent on the method of defining multiplicative consistency of ARMs in 
Tanino (1984) and the multiplication operation of interval numbers. The objec-
tive of introducing quasi-positive intervals is only to satisfy the relation (12). In 
addition, based on the addition and substraction operations of interval numbers 
together with the quasi-positive intervals, the additive consistency of IARMs can 
be defined as follows:

(11)
{

b̄�
ij
= b̄ij,

b̄�
ji
= b̄◦

ji
,

or

{
b̄�
ij
= b̄◦

ij
,

b̄�
ji
= b̄ji,

(12)b̄�
ij
⋅ b̄�

jk
⋅ b̄�

ki
= b̄�

ji
⋅ b̄�

ik
⋅ b̄�

kj
,



383

1 3

Measuring consistency of interval‑valued preference…

Definition 9 (Meng et al. 2017a) It is assumed that B̄� =
(
b̄�
ij

)
n×n

 is a quasi IARM 

constructed from B̄ =
(
b̄ij
)
n×n

. If there is a B̄� =
(
b̄�
ij

)
n×n

 such that one of the follow-
ing three relations is satisfied:

for all i, k, j = 1, 2,… , n, B̄ =
(
b̄ij
)
n×n

 is of additive consistency.

In order to illustrate the above consistency definitions, we investigate the fol-
lowing matrix:

When the entries [0.3, 0.4],  [0.25, 0.55] and [0.45, 0.65] are replaced by [0.4, 0.3],  
[0.55, 0.25] and [0.65, 0.45],  respectively, one has

It can be easily verified that the entries in B̄′
2
 satisfy the relation (15), meaning that 

B̄2 is of additive consistency in terms of Definition 9.
Furthermore, we recall the method of defining the additive approximation-con-

sistency of IARMs in Liu et  al. (2018b). Applying � to B̄ =
(
b̄ij
)
n×n

, we obtain 
B̄𝜎 =

(
b̄𝜎
ij

)
n×n

 where b̄𝜎
ij
= [b−

𝜎(i)𝜎(j)
, b+

𝜎(i)𝜎(j)
]. Defining two ARMs as P� = (p�

ij
)n×n 

and Q� = (q�
ij
)n×n where

the definition of additive approximation-consistency is given as follows:

Definition 10 (Liu et al. 2018b) Suppose that B̄𝜎 is an IARM with permutations �. If 
there exists a permutation � such that P� and Q� are all of additive consistency, B̄ is 
of additive approximation-consistency.

(13)b̄�
ij
= b̄�

ik
− b̄�

jk
+ 0.5,

(14)b̄�
ij
+ 0.5 = b̄�

ik
+ b̄�

kj
,

(15)b̄�
ij
+ b̄�

jk
+ b̄�

ki
= b̄�

ji
+ b̄�

ik
+ b̄�

kj
,

B̄2 =

⎡⎢⎢⎣

[0.5, 0.5] [0.3, 0.4] [0.25, 0.55]

[0.6, 0.7] [0.5, 0.5] [0.45, 0.65]

[0.45, 0.75] [0.35, 0.55] [0.5, 0.5]

⎤⎥⎥⎦
.

B̄�
2
=

⎡⎢⎢⎣

[0.5, 0.5] [0.4, 0.3] [0.55, 0.25]

[0.6, 0.7] [0.5, 0.5] [0.65, 0.45]

[0.45, 0.75] [0.35, 0.55] [0.5, 0.5]

⎤⎥⎥⎦
.

(16)p𝜎
ij
=

⎧⎪⎨⎪⎩

b−
𝜎(i)𝜎(j)

, i < j,

0.5, i = j,

b+
𝜎(i)𝜎(j)

, i > j,

q𝜎
ij
=

⎧⎪⎨⎪⎩

b+
𝜎(i)𝜎(j)

, i < j,

0.5, i = j,

b−
𝜎(i)𝜎(j)

, i > j,
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Similarly, the multiplicative approximation-consistency of IARMs can be also 
defined. That is, one has the following definition:

Definition 11 Assume that B̄𝜎 is an IARM with permutations �. If there exists a per-
mutation � such that P� and Q� are all of multiplicative consistency, B̄ is of multipli-
cative approximation-consistency.

Different to Definitions 8 and 9, the additive and multiplicative approximation-
consistency of IARMs in Definitions 10 and 11 are based on two boundary matrices 
P� = (p�

ij
)n×n and Q� = (q�

ij
)n×n, and they can be called the boundary consistency of 

IARMs under permutations of alternatives following the existing concept (Dong 
et al. 2016; Li et al. 2019).

4.2  The equivalence of the two approaches

The relations of consistent IARMs according to Definitions  8–11 are considered, 
respectively. In terms of Definitions 8 and 11, we have the following result:

Theorem 3 Let B̄ =
(
b̄ij
)
n×n

 be an IARM. The method of defining multiplicative con-
sistency of B̄ =

(
b̄ij
)
n×n

 according to Definition 8 is equivalent to that of multiplica-
tive approximation-consistency in terms of Definition 11.

Proof It is assumed that B̄ =
(
b̄ij
)
n×n

 is of multiplicative approximation-consistency 
in virtue of Definition 11. There is a permutation � such that the two matrices P� 
and Q� defined by using (16) are of multiplicative consistency. It is convenient to 
express P� and Q� as

and

Then the following relations are satisfied

(17)P� =

⎡
⎢⎢⎢⎢⎣

0.5 b−
�(1)�(2)

⋯ b−
�(1)�(n)

b+
�(2)�(1)

0.5 ⋯ b−
�(2)�(n)

⋮ ⋮ ⋱ ⋮

b+
�(n)�(1)

b+
�(n)�(2)

⋯ 0.5

⎤
⎥⎥⎥⎥⎦
,

(18)Q� =

⎡
⎢⎢⎢⎢⎣

0.5 b+
�(1)�(2)

⋯ b+
�(1)�(n)

b−
�(2)�(1)

0.5 ⋯ b+
�(2)�(n)

⋮ ⋮ ⋱ ⋮

b−
�(n)�(1)

b−
�(n)�(2)

⋯ 0.5

⎤
⎥⎥⎥⎥⎦
.

(19)p�
ij
⋅ p�

jk
⋅ p�

ki
= p�

ji
⋅ p�

ik
⋅ p�

kj
,

(20)q�
ij
⋅ q�

jk
⋅ q�

ki
= q�

ji
⋅ q�

ik
⋅ q�

kj
.
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Clearly, we can construct a quasi IARM as

In virtue of (19) and (20), it is noted that the entries in B̄′𝜎 satisfy the relation 
b̄
�
𝜎

ij
⋅ b̄

�
𝜎

jk
⋅ b̄

�
𝜎

ki
= b̄

�
𝜎

ji
⋅ b̄

�
𝜎

ik
⋅ b̄

�
𝜎

kj
 under the multiplication operations of interval 

numbers.
Inversely, if B̄ =

(
b̄ij
)
n×n

 is of multiplicative consistency by using Definition 8, 
there is a quasi IARM B̄� =

(
b̄�
ij

)
n×n

 satisfying the relation of 
b̄�
ij
⋅ b̄�

jk
⋅ b̄�

ki
= b̄�

ji
⋅ b̄�

ik
⋅ b̄�

kj
 for all i, k, j = 1, 2,… , n. It is supposed that

When another quasi IVPR B̃′ satisfies the condition of multiplicative consistency, 
there is a permutation � such that B̄′ is obtained from B̃′. The application of 
b̄�
ij
⋅ b̄�

jk
⋅ b̄�

ki
= b̄�

ji
⋅ b̄�

ik
⋅ b̄�

kj
 leads to two ARMs with multiplicative consistency as 

follows

This means that the matrix B̄ =
(
b̄ij
)
n×n

 is of multiplicative approximation-consist-
ency according to Definition 11. The proof of the theorem is completed.   ◻

For example, we consider the IARM as follows:

A quasi IARM can be constructed as

B̄�𝜎 =

⎡
⎢⎢⎢⎢⎢⎣

[0.5, 0.5]
�
b−
𝜎(1)𝜎(2)

, b+
𝜎(1)𝜎(2)

�
⋯

�
b−
𝜎(1)𝜎(n)

, b+
𝜎(1)𝜎(n)

�
�
b+
𝜎(2)𝜎(1)

, b−
𝜎(2)𝜎(1)

�
[0.5, 0.5] ⋯

�
b−
𝜎(2)𝜎(n)

, b+
𝜎(2)𝜎(n)

�

⋮ ⋮ ⋱ ⋮�
b+
𝜎(n)𝜎(1)

, b−
𝜎(n)𝜎(1)

� �
b+
𝜎(n)𝜎(2)

, b−
𝜎(n)𝜎(2)

�
⋯ [0.5, 0.5]

⎤
⎥⎥⎥⎥⎥⎦

.

B̄� =

⎡
⎢⎢⎢⎣

[0.5, 0.5]
�
b+
12
, b−

12

�
⋯

�
b+
1n
, b−

1n

�
�
b−
21
, b+

21

�
[0.5, 0.5] ⋯

�
b+
2n
, b−

2n

�
⋮ ⋮ ⋱ ⋮�

b−
n1
, b+

n1

� �
b−
n2
, b+

n2

�
⋯ [0.5, 0.5]

⎤
⎥⎥⎥⎦
.

P =

⎡⎢⎢⎢⎣

0.5 b−
12

⋯ b−
1n

b+
21

0.5 ⋯ b−
2n

⋮ ⋮ ⋱ ⋮

b+
n1

b+
n2

⋯ 0.5

⎤⎥⎥⎥⎦
, Q =

⎡⎢⎢⎢⎣

0.5 b+
12

⋯ b+
1n

b−
21

0.5 ⋯ b+
2n

⋮ ⋮ ⋱ ⋮

b−
n1

b−
n2

⋯ 0.5

⎤⎥⎥⎥⎦
.

B̄3 =

⎡⎢⎢⎢⎣

x1 x2 x3
x1

�
1∕2, 1∕2

� �
1∕3, 3∕4

� �
1∕4, 3∕4

�
x2

�
1∕4, 2∕3

� �
1∕2, 1∕2

� �
2∕5, 1∕2

�
x3

�
1∕4, 3∕4

� �
1∕2, 3∕5

� �
1∕2, 1∕2

�

⎤⎥⎥⎥⎦
.
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It is found that the entries in B̄′
3
 satisfy the condition of multiplicative consistency, 

meaning that B̄3 is of multiplicative consistency according to Definition 8. In addi-
tion, we can construct two ARMs as follows:

It is seen that the matrices P3 and Q3 are of multiplicative consistency, mean-
ing that the matrix B̄3 is of multiplicative approximation-consistency according to 
Definition 11.

In addition, by considering Definitions 9 and 10, we obtain the following result:

Theorem 4 It is assumed that B̄ =
(
b̄ij
)
n×n

 is an IARM. The method of defining addi-
tive consistency of B̄ =

(
b̄ij
)
n×n

 from Definition  9 is equivalent to that of additive 
approximation-consistency in terms of Definition 10.

Proof Suppose that B̄ =
(
b̄ij
)
n×n

 is of additive approximation-consistency (Defini-
tion 10). There is a permutation � such that two matrices P� and Q� defined by using 
(16) are additively consistent. That is, by applying (17) and (18), it follows

By constructing the quasi IARM through P� and Q� as B̄′𝜎 in Theorem 3, it is found 
that one has the relation of b̄�

𝜎

ij
+ b̄

�
𝜎

jk
+ b̄

�
𝜎

ki
= b̄

�
𝜎

ji
+ b̄

�
𝜎

ik
+ b̄

�
𝜎

kj
 by using (21) and (22). 

This means that B̄ =
(
b̄ij
)
n×n

 is additively consistent as shown in Definition 9.
On the contrary, it is assumed that B̄ =

(
b̄ij
)
n×n

 is of additive consistency by using 
Definition 9. Similar to Theorem 3, a quasi IARM is constructed and two ARMs 
with additive consistency can be given. That is, B̄ =

(
b̄ij
)
n×n

 is of additive approxi-
mation-consistency according to Definition 10.   ◻

4.3  A further finding

Furthermore, we consider an IARM B̄ =
(
b̄ij
)
n×n

 with multiplicative consistency 
according to Definition  8. Then there is an associated multiplicative consistent 
quasi-IARM B̄� =

(
b̄�
ij

)
n×n

. It is stated that the condition b̄�
ij
⋅ b̄�

jk
⋅ b̄�

ki
= b̄�

ji
⋅ b̄�

ik
⋅ b̄�

kj
 

B̄�
3
=

⎡⎢⎢⎢⎣

x1 x2 x3
x1

�
1∕2, 1∕2

� �
1∕3, 3∕4

� �
1∕4, 3∕4

�
x2

�
2∕3, 1∕4

� �
1∕2, 1∕2

� �
2∕5, 1∕2

�
x3

�
3∕4, 1∕4

� �
3∕5, 1∕2

� �
1∕2, 1∕2

�

⎤⎥⎥⎥⎦
.

P3 =

⎡
⎢⎢⎣

1∕2 1∕3 1∕4

2∕3 1∕2 2∕5

3∕4 3∕5 1∕2

⎤
⎥⎥⎦
, Q3 =

⎡
⎢⎢⎣

1∕2 3∕4 3∕4

1∕4 1∕2 1∕2

1∕4 1∕2 1∕2

⎤
⎥⎥⎦
.

(21)p�
ij
+ p�

jk
+ p�

ki
= p�

ji
+ p�

ik
+ p�

kj
,

(22)q�
ij
+ q�

jk
+ q�

ki
= q�

ji
+ q�

ik
+ q�

kj
.
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for each triple (i, j, k) corresponds to one of the following four cases (Meng et al. 
2017c):

Let us first analyze the relation (23) and obtain the following result:

Theorem  5 Let B̄ =
(
b̄ij
)
n×n

 be an IARM with multiplicative consistency (Defini-
tion 8). The relation (23) is satisfied if and only if the interval matrix B̄ degenerates 
to an ARM.

Proof When the matrix B̄ =
(
b̄ij
)
n×n

 is an IARM with multiplicative consistency 
according to Definition  8, there is an associated multiplicative consistent quasi-
IARM B̄� =

(
b̄�
ij

)
n×n

 satisfying b̄�
ij
⋅ b̄�

jk
⋅ b̄�

ki
= b̄�

ji
⋅ b̄�

ik
⋅ b̄�

kj
 for all i, k, j = 1, 2,… , n. If 

the relation (23) is satisfied, we have the following relations:

for ∀i, j = 1, 2,… , n. Moreover, since b−
ij
≤ b+

ij
, it follows

In other words, only when b−
ij
= b+

ij
, ∀i, j = 1, 2,… , n, the relations in (27) are satis-

fied. This implies that the interval-valued matrix B̄ =
(
b̄ij
)
n×n

 degenerates to an 
ARM.

On the other hand, if all the entries in the matrix B̄ satisfy b−
ij
= b+

ij
= bij 

( ∀i, j = 1, 2,… , n ). We have the following results:

Under the assumption of multiplicative consistency (Tanino 1984), one has 
bijbjkbki = bjibikbkj, meaning that b̄ij ⋅ b̄jk ⋅ b̄ki = b̄◦

ji
⋅ b̄◦

ik
⋅ b̄◦

kj
 . The proof is completed.  

 ◻

(23)b̄ij ⋅ b̄jk ⋅ b̄ki = b̄◦
ji
⋅ b̄◦

ik
⋅ b̄◦

kj
,

(24)b̄◦
ij
⋅ b̄jk ⋅ b̄ki = b̄ji ⋅ b̄

◦

ik
⋅ b̄◦

kj
,

(25)b̄ij ⋅ b̄
◦

jk
⋅ b̄ki = b̄◦

ji
⋅ b̄◦

ik
⋅ b̄kj,

(26)b̄ij ⋅ b̄jk ⋅ b̄
◦

ki
= b̄◦

ji
⋅ b̄ik ⋅ b̄

◦

kj
.

(27)
{

b−
ij
b−
jk
b−
ki
= b+

ji
b+
kj
b+
ik
,

b+
ij
b+
jk
b+
ki
= b−

ji
b−
kj
b−
ik
,

(28)
{

b−
ij
b−
jk
b−
ki
≤ b+

ij
b+
jk
b+
ki
,

b+
ji
b+
kj
b+
ik
≥ b−

ji
b−
kj
b−
ik
.

(29)
{

b̄ij ⋅ b̄jk ⋅ b̄ki = b−
ij
b−
jk
b−
ki
= b+

ij
b+
jk
b+
ki
= bijbjkbki,

b̄◦
ji
⋅ b̄◦

ik
⋅ b̄◦

kj
= b+

ji
b+
ik
b+
kj
= b−

ji
b−
ik
b−
kj
= bjibikbkj.
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It is seen from Theorem 4 that the relation (23) is only related to an ARM with 
multiplicative consistency. In general, it is not suitable to state that a consistent 
IARM could satisfy (23). Additionally, one can see from the findings in Liu et al. 
(2018b) that when the boundary matrices are consistent for any permutation, the 
interval-valued matrix B̄ =

(
b̄ij
)
n×n

 degenerates to an ARM. That is to say, the rela-
tion (23) is equivalent to the particular case that the two boundary matrices 
P� = (p�

ij
)n×n and Q� = (q�

ij
)n×n are of multiplicative consistency for any permutation 

�.

Second, we consider the cases of (24)–(26). As stated in Meng et al. (2017c), the 
multiplicative consistency of IARMs given in Definition 8 is independent of the per-
mutations of alternatives. When introducing a permutation �, the relations (24)–(26) 
can be rewritten as the following three cases, respectively:

Moreover, the relations (30)–(32) correspond to the following ones respectively:

On the other hand, according to Theorem  3, B̄ =
(
b̄ij
)
n×n

 is also with multi-
plicative approximation-consistency. This means that there is a permutation 
� = (�(1), �(2),… , �(n)) such that P� and Q� are of multiplicative consistency. It is 
further found that for boundary matrices P� and Q� with multiplicative consistency, 
we have the following results. 

Case 1: When i < k < j or j < k < i , it follows 

Case 2: When j < i < k or k < i < j , one has 

(30)b̄◦
𝜎(i)𝜎(j)

⋅ b̄
𝜎(j)𝜎(k) ⋅ b̄𝜎(k)𝜎(i) = b̄

𝜎(j)𝜎(i) ⋅ b̄
◦

𝜎(i)𝜎(k)
⋅ b̄◦

𝜎(k)𝜎(j)
,

(31)b̄
𝜎(i)𝜎(j) ⋅ b̄

◦

𝜎(j)𝜎(k)
⋅ b̄

𝜎(k)𝜎(i) = b̄◦
𝜎(j)𝜎(i)

⋅ b̄◦
𝜎(i)𝜎(k)

⋅ b̄
𝜎(k)𝜎(j),

(32)b̄
𝜎(i)𝜎(j) ⋅ b̄𝜎(j)𝜎(k) ⋅ b̄

◦

𝜎(k)𝜎(i)
= b̄◦

𝜎(j)𝜎(i)
⋅ b̄

𝜎(i)𝜎(k) ⋅ b̄
◦

𝜎(k)𝜎(j)
.

(33)

{
b+
�(i)�(j)

b−
�(j)�(k)

b−
�(k)�(i)

= b−
�(j)�(i)

b+
�(i)�(k)

b+
�(k)�(j)

,

b+
�(i)�(j)

b+
�(j)�(k)

b+
�(k)�(i)

= b+
�(j)�(i)

b−
�(i)�(k)

b−
�(k)�(j)

,

(34)

{
b−
�(i)�(j)

b+
�(j)�(k)

b−
�(k)�(i)

= b+
�(j)�(i)

b+
�(i)�(k)

b−
�(k)�(j)

,

b+
�(i)�(j)

b−
�(j)�(k)

b+
�(k)�(i)

= b−
�(j)�(i)

b−
�(i)�(k)

b+
�(k)�(j)

,

(35)

{
b−
�(i)�(j)

b−
�(j)�(k)

b+
�(k)�(i)

= b+
�(j)�(i)

b−
�(i)�(k)

b+
�(k)�(j)

,

b+
�(i)�(j)

b+
�(j)�(k)

b−
�(k)�(i)

= b−
�(j)�(i)

b+
�(i)�(k)

b−
�(k)�(j)

.

b+
�(i)�(j)

b−
�(j)�(k)

b−
�(k)�(i)

= b−
�(j)�(i)

b+
�(i)�(k)

b+
�(k)�(j)

,

b−
�(i)�(j)

b+
�(j)�(k)

b+
�(k)�(i)

= b+
�(j)�(i)

b−
�(i)�(k)

b−
�(k)�(j)

.
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Case 3: When i < j < k or k < j < i , it gives 

The observations show that the relations (30)–(32) correspond to Cases 1–3, 
respectively.

For instance, we consider the following IVPR (Meng et al. 2017c):

A quasi IARM is constructed by introducing the permutation � = (1, 4, 3, 2) as 
follows:

One can see that the relation (12) is satisfied for B̄′
4
, then B̄4 is of multiplicative con-

sistency by using Definition 8. Correspondingly, the boundary matrices P�

4
 and Q�

4
 

are given as follows:

After some computations, we can determine that the relation (32) is equivalent to 
the one of Case 3. As an example, we compute p�

12
p�
23
p�
31

= p�
21
p�
13
p�
32

≈ 0.1209 and 
q�
12
q�
23
q�
31

= q�
21
q�
13
q�
32

≈ 0.1098. Since �(1) = 1, �(2) = 4, �(3) = 3, �(4) = 2 and 
for i = 1 < j = 2 < k = 3, Case 3 is satisfied. That is, we have

b+
�(i)�(j)

b−
�(j)�(k)

b+
�(k)�(i)

= b−
�(j)�(i)

b+
�(i)�(k)

b−
�(k)�(j)

,

b−
�(i)�(j)

b+
�(j)�(k)

b−
�(k)�(i)

= b+
�(j)�(i)

b−
�(i)�(k)

b+
�(k)�(j)

.

b+
�(i)�(j)

b+
�(j)�(k)

b−
�(k)�(i)

= b−
�(j)�(i)

b−
�(i)�(k)

b+
�(k)�(j)

,

b−
�(i)�(j)

b−
�(j)�(k)

b+
�(k)�(i)

= b+
�(j)�(i)

b+
�(i)�(k)

b−
�(k)�(j)

.

B̄4 =

⎡⎢⎢⎢⎢⎣

x1 x2 x3 x4
x1 [0.5, 0.5] [0.427, 0.706] [0.544, 0.698] [0.439, 0.59]

x2 [0.294, 0.573] [0.5, 0.5] [0.49, 0.615] [0.374, 0.512,]

x3 [0.302, 0.456] [0.385, 0.51] [0.5, 0.5] [0.384, 0.396]

x4 [0.41, 0.561] [0.488, 0.626] [0.604, 0.616] [0.5, 0.5]

⎤⎥⎥⎥⎥⎦
.

B̄�
4
=

⎡⎢⎢⎢⎢⎣

x1 x4 x3 x2
x1 [0.5, 0.5] [0.439, 0.59] [0.544, 0.698] [0.427, 0.706]

x4 [0.561, 0.41] [0.5, 0.5] [0.604, 0.616] [0.488, 0.626]

x3 [0.456, 0.302] [0.396, 0.384] [0.5, 0.5] [0.385, 0.51]

x2 [0.573, 0.294] [0.512, 0.374] [0.615, 0.49] [0.5, 0.5]

⎤⎥⎥⎥⎥⎦
.

P�

4
=

⎡⎢⎢⎢⎢⎣

x1 x4 x3 x2
x1 0.5 0.439 0.544 0.427

x4 0.61 0.5 0.604 0.488

x3 0.456 0.396 0.5 0.385

x2 0.573 0.512 0.615 0.5

⎤⎥⎥⎥⎥⎦
,

Q�

4
=

⎡⎢⎢⎢⎢⎣

x1 x4 x3 x2
x1 0.5 0.59 0.698 0.706

x4 0.41 0.5 0.616 0.626

x3 0.302 0.384 0.5 0.51

x2 0.294 0.374 0.49 0.5

⎤⎥⎥⎥⎥⎦
.
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and obtain

Theorems 2–4 show that the effects of two methods for defining the consistency of 
IVPRs are equivalent. In the next section, we further discuss the idea behind the two 
approaches for defining the consistency of IVPRs and the consistency indexes of 
IVPRs.

5  Further comments and comparison

It is observed from the above analysis that the two approaches of defining the con-
sistency of IVPRs are equivalent. The observations can be extended to analyze the 
existing consistency definitions of the preference relations with triangular fuzzy 
numbers (Liu et al. 2017a, 2018a; Meng et al. 2017b). The similar analysis has been 
omitted due to the direct extensions of the obtained results. It should be pointed out 
that the concept of consistency definition is an attempt to capture the strict transi-
tivity of a comparison matrix (Saaty 1980; Tanino 1984), which is the source of 
the consistency definitions of IVPRs. As compared to consistency definition, the 
concept of consistency index is to quantify the inconsistency degree of a preference 
relation (Saaty 1980; Herrera-Viedma et al. 2007). A consistent preference relation 
corresponds to a particular value of its consistency index. For example, the consist-
ency index (CI) and consistency ratio (CR) were defined by Saaty (1980) to measure 
the inconsistency degrees of MRMs. When the CI or CR of a matrix equals to zero, 
the matrix is consistent. The CI or CR of any inconsistent MRM is bigger than zero. 
A consistency measure of ARMs (cl) was defined by Herrera-Viedma et al. (2007). 
A consistent ARM corresponds to cl = 1 and the values of cl for all inconsistent 
ARMs are less than 1. The above observation reveal that if and only a preference 
relation is consistent, the value of the defined consistency index is a particular one. 
That is, a consistent preference relation is only a particular case with a fixed value of 
the defined consistency index. Hence, it is of much interest to further compare the 
ideas underlying the consistency definitions and consistency indexes, respectively.

5.1  The underlying ideas of the consistency definitions

In what follows, we further compare the idea behind the two approaches defining 
consistency of IVPRs in Definitions 5, 8, 9 and approximate consistency of IVPRs 
in Definitions 6,  10,  11, respectively. In order to analyze Definitions 5,  8,  9, it is 
inevitable to consider the generalized interval numbers and their arithmetic opera-
tions. One should ask what is the meaning of imaginary and quasi interval numbers. 

b+
�(1)�(2)

b+
�(2)�(3)

b−
�(3)�(1)

= b−
�(2)�(1)

b−
�(1)�(3)

b+
�(3)�(2)

,

b−
�(1)�(2)

b−
�(2)�(3)

b+
�(3)�(1)

= b+
�(2)�(1)

b+
�(1)�(3)

b−
�(3)�(2)

,

b+
14
b+
43
b−
31

= b−
41
b−
13
b+
32

≈ 0.1098,

b−
14
b−
43
b+
31

= b+
41
b+
13
b−
32

≈ 0.1209.
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For example, the meaning of the interval [0.2,  0.7] is the set of real numbers 
{x|0.2 ≤ x ≤ 0.7}. The interval number [0.7, 0.2] is imaginary or quasi and what is 
its meaning? Obviously, there is not any explanation for the definition of imaginary 
and quasi interval numbers (Meng et al. 2017a, 2016; Meng and Tan 2017; Meng 
et al. 2017c). The introduction of quasi-positive IVPRs is only to satisfy the mathe-
matical relations of consistent judgements (Meng et al. 2017c; Meng and Tan 2017; 
Meng et al. 2016). Moreover, it is seen that the imaginary and quasi interval [0.7, 0.2] 
denotes the interval [0.7,+∞) ∪ (−∞, 0.2](Zhai 1998; Moorse 1966). While the 
interval āij = [0.2, 0.7] stands for the preference intensity of the alternative xi over 
the alternative xj , the imaginary and quasi interval number 
ā◦
ij
= [0.7, 0.2] = [0.7,+∞) ∪ (−∞, 0.2] means that the preference intensity is not in 

[0.2, 0.7]. Clearly, the explanation about the interval [0.7, 0.2] is not feasible for the 
preference intensity of decision makers on alternatives. The multiplicative consist-
ency defined in Definitions 5 and 8 is not related to the multiplicative transitivity of 
interval numbers. Moreover, when the judgements of decision makers are expressed 
as IARMs, the additive consistency defined in Definition 9 becomes independent of 
the additive transitivity of interval numbers. On the other hand, the approximate 
consistency of IVPRs defined in Definitions 6, 10 and 11 are related to the boundary 
matrices and regardless of the arithmetic operations of interval numbers. The idea 
behind the approximate consistency is that the fuzzy-valued judgements are incon-
sistent in nature and the reciprocal properties of IVPRs should be considered. The 
boundary values of interval numbers should be carefully estimated when providing 
comparison ratios of alternatives. The permutations of alternatives reflect the ran-
domness experienced by decision makers in comparing alternatives. The compari-
son shows that the more required properties of IVPRs have been incorporated in the 
concept of approximate consistency than the consistency based on the quasi-positive 
intervals. In addition, it is worth noting that in order to characterize the consistency 
of fuzzy-valued comparison matrices, an axiomatic approach has been proposed for 
triangular fuzzy multiplicative reciprocal matrices in Liu et al. (2017a) and IMRMs 
in Wang et al. (2019).

5.2  The ideas behind the consistency indexes of IVPRs

In general, the consistency indexes for measuring the inconsistency degree of IVPRs 
have been studied widely (Dong et al. 2015, 2016; Li et al. 2019; Liu et al. 2018c). 
In what follows, some reviews are reported by comparing with the consistency defi-
nitions of IVPRs.

• Optimistic consistency index of IVPRs
  It is seen from the consistency definitions of consistent IVPRs that an IVPR 

is of consistency if there is a consistent real-valued matrix whose entries belong 
to the interval-valued entries (Wang et al. 2005; Xu and Chen 2008; Lan et al. 
2012). This kind of consistency definition has been compared by considering the 
others (Liu et al. 2017b; Krejčí 2017, 2019). It is noted that the mentioned con-
sistency definitions are considered to be the best consistency indexes of IVPRs 
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(Dong et al. 2016; Li et al. 2019). In order to distinguish the concepts of consist-
ency definition and consistency index analogous to the classic ones (Saaty 1980; 
Tanino 1984), here the statements related to consistent IVPRs are classified as 
consistency definitions.

• Pessimistic consistency index of IVPRs
  Using the associated real-valued matrices of IVPRs, the consistency indexes 

of IVPRs have been proposed by defining the worst derivation degree from a 
consistent real-valued matrix (Dong et al. 2015, 2016; Li et al. 2019). The under-
lying idea is to use the consistency property of a real-valued matrix to capture 
the inconsistency degree of IVPRs. In a sense, the pessimistic consistency index 
of IVPRs is an improvement of the optimistic consistency definition (Li et  al. 
2019).

• Average consistency index of IARMs
  It is assumed that the entries of an ARM are randomly distributed in the inter-

vals belonging to an IARM. The average consistency index of IARMs has been 
proposed in Dong et al. (2016). One can find that if and only if the IARM degen-
erates to an additive consistent ARM, the value of the average consistency index 
equals to 1. This means that the average consistency index reflects the derivation 
degree of IARMs from an additive consistent ARM. As compared to the previ-
ous two cases, the average consistency index is based on the whole view of an 
interval-valued entry.

• Boundary consistency index of IVPRs
  Based on the boundary matrices of IVPRs, the consistency indexes have been 

proposed (Liu and Zhang 2014; Liu et al. 2014, 2018c, 2020; Wan et al. 2018). 
In particular, it is found that the permutations of alternatives have been consid-
ered in Liu et  al. (2018c, 2020) and the consistent MRMs and ARMs are the 
limiting cases. That is, when the values of the consistency indexes in Liu et al. 
(2018c, 2020) are chosen as a particular one, the IVPRs degenerate to a con-
sistent MRM or ARM. As compared to the classic consistency indexes (Saaty 
1980; Herrera-Viedma et al. 2007), the consistency indexes of IVPRs in Liu et al. 
(2018c, 2020) satisfy the proposed criterion. Hence, it is concluded that IVPRs 
and inconsistent real-valued preference relations are all the softened versions of 
a consistent real-valued comparison matrix. The consistency indexes in Liu et al. 
(2018c, 2020) can be used to quantify the deviation degree of IVPRs from a con-
sistent real-valued preference relation. This is similar to the situations in Saaty 
(1980) and Herrera-Viedma et al. (2007) for measuring the deviation degree of 
an inconsistent MRM or ARM from a consistent one. Following the concept of 
boundary consistency (Dong et al. 2016; Li et al. 2019), the consistency indexes 
in Liu et al. (2018c, 2020) can be called the boundary consistency indexes under 
permutations, since they are based on the two boundary matrices.

One can see from the above discussions that the consistency indexes are always used 
to capture the derivation degree of a preference relation from a consistent real-val-
ued one. The existing consistency definitions of IVPRs usually do not correspond 
a particular value of a consistency index of IVPRs. The behind reason is that the 
fuzzy-valued preference relations are inconsistent in the nature. As compared to the 
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concept of consistency definition, the consistency index exhibits more flexibility to 
reflect the consistency property of IVPRs. The methods of measuring the consist-
ency of IVPRs can be extended to investigate the consistency definitions and con-
sistency indexes of the other matrices under uncertainty such as the hesitant prefer-
ence relations (Li et al. 2018, 2019).

6  Illustrative examples and discussion

Although the two approaches to consistency definition of IVPRs are equivalent, 
the decision making models (Meng et al. 2017a, 2016; Meng and Tan 2017; Meng 
et al. 2017c) do not consider the effects of permutations of alternatives. In what fol-
lows, let us elaborate on an algorithm for addressing decision making problems with 
IVPRs under the consideration of approximate consistency. 

Step 1: Let X = {x1, x2,… , xn} be a set of alternatives. The decision maker could 
provide an IVPR Ā =

(
āij
)
n×n

 or B̄ =
(
b̄ij
)
n×n

.

Step 2: Checking approximate consistency of Ā or B̄ by using Definitions 6, 10 or 11, 
where the methods in Liu et al. (2017b, 2018b) can be used. If Ā or B̄ is not with 
approximate consistency, they can be adjusted to a new matrix with approximate 
consistency by using some methods (Xu and Wei 1999; Xu and Da 2003).

Step 3: Deriving interval priority weights of alternatives from IVPRs with approxi-
mate consistency, where the methods in Liu et al. (2017b) and Liu et al. (2018b) 
could be used.

Step 4: According to the possibility degree formula in Liu (2009), the possibility 
degree matrix is obtained.

Step 5: The ranking of alternatives is generated by using the row-column elimination 
method in Wang et al. (2005).

Step 6: End.

In what follows, two examples are carried out to illustrate the above algorithm and 
some comparisons are offered.

Example 1 (Meng and Tan 2017) A clothing manufacturer wants to choose a factory 
from four alternatives X = {x1, x2, x3, x4} . A decision maker provides the IMRM Ā3 
on X as:

Now we check the approximate consistency of Ā3 according to Definition  6. It 
is found that for all permutation � , the boundary matrices C� and D� determined 
from Ā3 are inconsistent, meaning that Ā3 does not satisfy the condition of approxi-
mate consistency. So we randomly choose a permutation of alternatives such as 

Ā3 =

⎡⎢⎢⎢⎣

[1, 1] [2, 3] [0.6325, 1.5265] [1, 2]�
1∕3, 1∕2

�
[1, 1]

�
1∕2, 0.84

�
[1, 1]�

1∕1.5265, 1∕0.6325
� �

1∕0.84, 2
�

[1, 1] [1.0815, 5]�
1∕2, 1

�
[1, 1]

�
1∕5, 1∕1.0815

�
[1, 1]

⎤⎥⎥⎥⎦
.
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� = (1, 2, 3, 4) to adjust C� and D� to two new matrices with consistency. Then an 
IMRM Ā𝜎

3
 with approximate consistency is obtained as follows:

By considering all the permutations (Liu et  al. 2017b, 2018b), the prior-
ity weights are computed as �1 = [0.2370, 0.3529], �2 = [0.2364, 0.2638], 
�3 = [0.2149, 0.2485], and �4 = [0.1722, 0.2649] . The matrix Pd1 of possibility 
degrees is obtained as:

The ranking of alternatives is determined as x1
88.69%

≻ x2
84.10%

≻ x3
64.19%

≻ x4. It is noted that 
the ranking of alternatives was given as x3 ≻ x4 ≻ x1 ≻ x2 in Meng and Tan (2017). 
There is some difference behind the main reason that here the randomness expe-
rienced by the decision maker is considered. For the purpose of comparisons, we 
further recall the adjusted matrix of Ā3 in Meng and Tan (2017) as follows:

It is found that Ā′
3
 is of approximate consistency in terms of Definition 6. The priority 

weights can be further computed as �1 = [0.2153, 0.3342], �2 = [0.2133, 0.2812], 
�3 = [0.2188, 0.2748], and �4 = [0.1620, 0.3003], where the method in Liu et  al. 
(2017b) has been used. Then the possibility degree matrix Pd2 is computed as 
follows:

Thereby the ranking of alternatives is x1
73.10%

≻ x2
50.66%

≻ x3
61.32%

≻ x4 . The obtained result 
is in agreement with the previous one. The comparison shows that the proposed 
algorithm is effective.

Example 2 (Meng et al. 2017c; Xu 2011) In a fire system, there are five critical fac-
tors X = {x1, x2, x3, x4, x5} given as follows: 

Ā𝜎

3
=

⎡
⎢⎢⎢⎣

[1, 1] [1.5200, 2.4310] [0.7721, 1.2134] [1.0742, 2.8526]

[0.4114, 0.6579] [1, 1] [0.5277, 0.5314] [0.7380, 1.2344]

[0.8242, 1.2951] [1.8818, 1.9131] [1, 1] [1.3586, 2.7794]

[0.3506, 0.9309] [0.8107, 1.3550] [0.3598, 0.7360] [1, 1]

⎤
⎥⎥⎥⎦
.

Pd1 =

⎡⎢⎢⎢⎢⎣

x1 x2 x3 x4
x1 0.5 0.8869 0.9830 0.9638

x2 0.1131 0.5 0.8410 0.8403

x3 0.0170 0.1590 0.5 0.6419

x4 0.0362 0.1597 0.3581 0.5

⎤⎥⎥⎥⎥⎦
.

Ā�
3
=

⎡⎢⎢⎢⎣

[1, 1] [1.7836, 2.011] [0.621, 1.5533] [1.5159, 2.3164]

[0.4973, 0.5607] [1, 1] [0.3402, 0.7511] [0.733, 1.269]

[0.6438, 1.6103] [1.3314, 2.9394] [1, 1] [0.9764, 3.7301]

[0.4317, 0.6597] [0.788, 1.3643] [0.2681, 1.0242] [1, 1]

⎤⎥⎥⎥⎦
.

Pd2 =

⎡⎢⎢⎢⎢⎣

x1 x2 x3 x4
x1 0.5 0.7310 0.7351 0.7803

x2 0.2690 0.5 0.5066 0.6164

x3 0.2649 0.4934 0.5 0.6132

x4 0.2197 0.3836 0.3868 0.5

⎤⎥⎥⎥⎥⎦
.
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x1:  Concealment by making use of landform;
x2:  Reduction of the mobility of enemy airplanes;
x3:  Combination with obstacle;
x4:  Cooperation with mutual firepower;
x5:  Air-defense capacity.

 In order to evaluate the importance of the factors to the fire deployment, a decision 
maker provides the following interval-valued matrix:

For the purpose of analyzing the IARM B̄5, there are two approaches. One is 
based on additive approximation-consistency and the other is to use multiplicative 
approximation-consistency. Since the additive approximation-consistency of an 
IARM has been considered in Liu et al. (2018b), here the concept of multiplicative 
approximation-consistency is utilized. According to Definition 11, it is found that B̄5 
does not satisfy the requirement of multiplicative approximation-consistency. Fur-
thermore, according to the method in Xu and Da (2003), we adjust P5 and Q5 derived 
from B̄5 to P′

5
 and Q′

5
 with multiplicative consistency; they are given as follows:

By using the method in Liu et al. (2018b), the interval weights are calculated as

The possibility degree matrix Pd3 is determined as

B̄5 =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4 x5
x1 [0.5, 0.5] [0.5, 0.7] [0.8, 0.9] [0.3, 0.5] [0.3, 0.6]

x2 [0.3, 0.5] [0.5, 0.5] [0.6, 0.7] [0.5, 0.6] [0.5, 0.5]

x3 [0.1, 0.2] [0.3, 0.4] [0.5, 0.5] [0.7, 0.9] [0.6, 0.7]

x4 [0.5, 0.7] [0.4, 0.5] [0.1, 0.3] [0.5, 0.5] [0.5, 0.6]

x5 [0.4, 0.7] [0.5, 0.6] [0.3, 0.4] [0.4, 0.5] [0.5, 0.5]

⎤
⎥⎥⎥⎥⎥⎥⎦

.

P�
5
=

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4 x5
x1 0.5 0.5025 0.5018 0.5009 0.4999

x2 0.4975 0.5 0.4990 0.4986 0.4974

x3 0.4982 0.5010 0.5 0.4999 0.4987

x4 0.4991 0.5014 0.5001 0.5 0.4990

x5 0.5001 0.5026 0.5013 0.5010 0.5

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Q�
5
=

⎡⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4 x5
x1 0.5 0.5087 0.5104 0.5094 0.5109

x2 0.4913 0.5 0.5005 0.5038 0.5033

x3 0.4896 0.4995 0.5 0.5100 0.5071

x4 0.1906 0.4962 0.4900 0.5 0.5015

x5 0.4891 0.4967 0.4929 0.4985 0.5

⎤⎥⎥⎥⎥⎥⎥⎦

.

�1 = [0.1846, 0.2360], �2 = [0.1737, 0.2149],

�3 = [0.1972, 0.2085], �4 = [0.1851, 0.2148],

�5 = [0.1735, 0.2183].
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Hence the ranking of alternatives is given as x1
64.49%

≻ x3
59.76%

≻ x4
59.04%

≻ x5
53.57%

≻ x2. On the 
other hand, the interval matrix B̄5 is also considered to be not of multiplicative con-
sistency in Meng et al. (2017c), which is in accordance with the previous finding. 
Then we also use the adjusted matrix with multiplicative consistency B̄′

5
 in Meng 

et al. (2017c) to compute, where

By considering all the permutations, the interval weights are obtained 
as �1 = [0.2055, 0.2155], �2 = [0.1967, 0.2033], �3 = [0.1980, 0.2017], 
�4 = [0.1985, 0.2023], and �5 = [0.1832, 0.1960]. We further determine the possi-
bility degree matrix Pd4 as follows:

It is obtained from Pd4 that the ranking of alternatives is x1
100%

≻ x4
56.06%

≻ x2
52.27%

≻ x3
100%

≻ x5. 
By comparing the two ranking orders of alternatives, we find that they are different. 
This means that it should be careful when dealing with an IARM without additive or 
multiplicative consistency.

Pd3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4 x5
x1 0.5 0.5665 0.6449 0.7014 0.7802

x2 0.4335 0.5 0.2925 0.3629 0.4643

x3 0.3551 0.7075 0.5 0.5976 0.6551

x4 0.2986 0.6371 0.4024 0.5 0.5904

x5 0.2198 0.5357 0.3449 0.4.96 0.5

⎤
⎥⎥⎥⎥⎥⎥⎦

.

B̄�
5
=

⎡
⎢⎢⎢⎢⎣

[0.5, 0.5] [0.569, 0.569] [0.567, 0.614]

[0.431, 0.433] [0.5, 0.5] [0.500, 547]

[0.386, 0.433] [0.453, 0.5] [0.5, 0.5]

[0.368, 0.371] [0.433, 0.438] [0.433, 0.485]

[0.373, 0.433] [0.439, 0.500] [0.486, 0.500]

←

[0.629, 0.632] [0.567, 0.627]

[0.562, 0.567] [0.5, 0.561]

[0.7, 0.9] [0.5, 0.514]

[0.515, 0.567] [0.433, 0.498]

[0.502, 0.567] [0.5, 0.5]

⎤⎥⎥⎥⎥⎦
,

Pd4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4 x5
x1 0.5 1 1 1 1

x2 0 0.5 0.5227 0.4394 1

x3 0 0.4773 0.5 0.3642 1

x4 0 0.5606 0.6358 0.5 1

x5 0 0 0 0 0.5

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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7  Conclusions

In order to cope with the uncertainty experienced by decision makers in a complex 
decision making problem, it is suitable to express the judgements as interval-valued 
preference relations (IVPRs). The consistency of judgements reflects the rationality 
of decision makers in comparing alternatives. A reasonable ranking of alternatives 
is also dependent on the consistency degree of preference relations. The latest view 
is that interval-valued judgements are inconsistent; and this finding is compatible 
with the undlying idea of fuzzy sets. Here we compare the two approaches to defin-
ing consistency of IVPRs and review the two concepts of consistency index and 
consistency definition. Some observations are given as follows:

• Two approaches to consistency definition of IVPRs are equivalent, where one is 
based on the concept of imaginary intervals and the other is based on the bound-
ary matrices.

• The concepts of consistency definition and consistency index are all used to 
measure the consistency of a preference relation. The consistency index has 
more flexibility than the consistency definition.

• The consistency index could be used to quantify the deviation degree of an 
inconsistent preference relation from a consistent real-valued one. It is not found 
that an existing consistency definition corresponds a particular value of a consist-
ency index for IVPRs.

It is seen that the above results are obtained by considering the IVPRs. In fact, there 
are the other interval-like preference relations such as interval-valued intuitionis-
tic fuzzy preference relations, interval-valued hesitant fuzzy preference relations, 
interval type-2 fuzzy preference relations and others. The similar analysis could be 
made in the future works. Moreover, some comparative studies could be made for 
consistency definitions and consistency indexes of the other preference relations 
under uncertainty. Axiomatic properties of characterizing the consistency defini-
tions and consistency indexes of fuzzy-valued comparison matrices could be further 
investigated.
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