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Abstract
In this paper, we propose a new repair model for a cold standby system, which consists 
of two components and one repairman. It is assumed that the consecutive working 
time follows decreasing geometric process after repair, and the repair time interval is a 
constant for component 1. For component 2 (standby component), the failure process 
during working time follows Generalized Polya Process, which is a generalized ver-
sion of the nonhomogeneous Poisson process. Component 2 is rectified by General-
ized Polya Process repair when it fails. The repair time of component 2 is assumed to 
be negligible. Component 1 is assumed to have priority in use. The long-run average 
cost rate function of the system is deduced based on the failure number of component 
1. Moreover, the optimal replacement policy of model is established by minimizing 
the long-run average cost rate function theoretically, which proves the existence and 
uniqueness of the optimal replacement policy. Numerical examples are provided to 
verify the effectiveness of the proposed approaches. Sensitivity analysis are conducted 
to illustrate the influence of parameters under the optimal replacement policy.
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1 Introduction

Geometric process (GP) repair model is first introduced into the reliability areas 
and maintenance problems by Lam (1988a, b). It is a model that has been widely 
used in optimisation of maintenance policies. The GP was first discussed by Smith 
and Leadbetter (1963). In Lam’s model, two univariate replacement policies are 
discussed. One is based on the working age T of a system and another is based 
on the failure number N of the system. Stadje and Zuckerman (1990) generalized 
Lam’s work and introduced a general monotone process repair model. Finkelstein 
(1993) studied a general repair model based on a scale transformation. Zhang 
(1994) applied the GP in maintenance policy optimisation, in which Zhang gen-
eralized Lam’s work, proposed the bivariate replacement policy (T, N) and proved 
that the bivariate optimal policy (T ,N)∗ is better than univariate optimal policy N∗ 
and T∗ . In bivariate policy case, the system is replaced at the working age T or at 
the Nth failure of the system which occurs first. Lam (1988b), Stadje and Zucker-
man (1990) proved that optimal replacement policy N∗ is better than the optimal 
policy T∗ under some conditions. The different variants of the GP model is still 
researched. Braun et  al. (2005) studied the � series process. Chan et  al. (2006) 
proposed threshold GP. Wu and Wang (2017) studied the Semi-GP. Wu (2018) 
studied the doubly GP. Furthermore, Zhang and Wang (2009) proposed a new 
repair model based on the reliability and failure number of a system. Zhao and 
Nakagawa (2012) proposed age and periodic replacement last models with work-
ing cycles, and comparisons between such a replacement last and the conventional 
replacement first are made in detail. Zhao et al. (2015) proposed several approxi-
mate models in maintenance theory. Sheu et al. (2016) studied an operating sys-
tem subject to shock occurring as a non-homogeneous pure birth process. Zhang 
and Wang (2016) proposed the extended GP repairable model. Lim et al. (2016) 
studied an age replacement model based on imperfect repair with random prob-
ability. Berrade et al. (2017) proposed a new postponed delay time model. Ito et al. 
(2017) studied the reliability and preventive replacement problems for a K-out-of-
n system, where K is a stochastic parameter provided. Zhao et  al. (2017a) sum-
marized some perspectives and method in age replacement models. Levitin et al. 
(2018) studied heterogeneous 1-out-of-N warm standby systems when all compo-
nents can experience internal failures whereas operating components are exposed 
to the external shocks as well. The expression for the instantaneous availability 
is derived and the original numerical algorithm for its evaluation is suggested. In 
recent years, many extensions works have been studied. More generalized studies 
can be obtained from Tsai et al. (2017), Zhao et al. (2017b), Cha and Finkelstein 
(2018), Chen et al. (2019), Levitin and Finkelstein (2019) and so on.

Cold standby systems are widely used in some engineering fields. Using 
standby component can improve the reliability performance of the system and 
reduce the cost. In a nuclear plant, to reduce the risk of the ‘scram’ of a reactor 
in case of a coolant pipe breaking or some other failure happening, a standby die-
sel generator should be installed. In a hospital or a steel manufacturing complex, 
if the power supply suddenly suspends when required, the consequences might 
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be catastrophic, such as a patient may die in an operating room. In this case, a 
storage generator is usually equipped to provide electric power. Then the electric 
power and the storage generator form a cold standby power system. Usually, it is 
reasonable to assume that the storage generator is the standby component of the 
cold standby system. In the operating theater of a hospital, an operation have to 
be discontinued as soon as the power source is cut (i.e. power station failures). 
Usually, there is a standby power station (i.e. a storage battery) in the operating 
theater. Therefore, the power station (component 1) and the storage battery (com-
ponent 2) form a cold standby repairable system. Obviously, it is reasonable to 
assume that the storage battery is as good as new after repair, since its used time 
is shorter than the power station, and the repair time of the storage battery is also 
short, while the repair time of power stations is long, due to the complexity of the 
power stations equipment. Besides the electric power system in a hospital, some 
similar examples can be found from Lam (2007), Zhang and Wang (2007), Wang 
and Zhang (2011). Zhang and Wang (2007) studied a cold standby repairable sys-
tem. It is assumed that component 1 has priority in use when two components 
are all good. Wang and Zhang (2011) studied the optimal replacement policy for 
a cold standby system with preventive repair. Wang and Zhang (2016) studied a 
cold standby system and assumed that the failure process of standby component 
is nonhomogeneous Poisson process (NHPP).

Many researchers considered the failure system with the minimal repair, in which 
the failure intensity function of the system does not change. Barlow and Hunter 
(1960) concluded that the minimal repair does not have effect on the failure rate 
function of the system. Brown and Proschan (1983) studied the imperfect repair 
model, in which the system is replaced with probability p and minimal repair with 
probability 1 − p . Later, Nakagawa (1986) studied the minimal repair in preventive 
maintenance model. Many other works on minimal repair have been developed, such 
as Jaturonnateeaba (2006), Avenab (2008), Sheu and Li (2012). Although minimal 
repair has numerous advantages in model development and maintenance optimiza-
tion, it has practical limitations. In minimal repair system, NHPP is a usually used 
to describe the failure event process of the repairable system. However, NHPP has 
the property of an independent increment, i.e., the imminent failure process does not 
dependent on the failure history. In fact, it can be too restrictive to describe most of 
the real life problems. For example, in engineering maintenance problem, many sys-
tems are deteriorating gradually with the increasing of failure number. A system’s 
susceptibility to shocks (failure) increases with the failure number experienced 
previously. Thus a minor failure or even a negligible failure that had occurred dur-
ing the initial lifetime period can become harmful and even catastrophic with time. 
Namely most failure process of repairable systems are depending on the failure his-
tory and accumulative wear. NHPP is not a natural assumption for repairable mod-
els. More detailed research on the property of independent increment can be found 
in the Cha and Finkelstein (2009, 2011). However, in the paper of Wang and Zhang 
(2016), the failure number of component 2 follows NHPP.

Inspired by the above consideration, the main objective is to study the optimal 
replacement policy of cold standby system. Assuming that the failure process of com-
ponent 2 follows the Generalized Polya Process (GPP) in each periodic working time, 
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which is the generalized NHPP. The working time of component 1 follows GP and 
component 2 adopts GPP repair. A GPP repair restores the system to its operating 
status just prior to failure, and the failure intensity function after repair is the same as 
that just before failure. We derive the long-run average cost rate (ACR) function of 
the system based on the failure number of component 1 and investigate the optimal 
replacement policy both theoretically and numerically. The main contributions of this 
paper are twofold. On one hand, a more general and reasonable GGP maintenance 
model for a two components cold standby system is studied; on the other hand, the 
existence and uniqueness of the optimal replacement policy is proved.

The rest of the paper is organized as follows. In Sect. 2, definitions of GP and 
GPP are introduced, and a new repair model for cold standby system with two com-
ponents is proposed. In Sect. 3, we derive the long-run ACR function of the system 
and analyze the optimal replacement policy N∗ theoretically. Simulation studies are 
concluded to verify the effectiveness of the theoretical analysis in Sect. 4. Section 5 
gives conclusions of this work.

2  Definitions and model assumptions

2.1  Definitions

For convenient purpose, we give the definitions of the GP and GPP as follows.

Definition 1 Assume that 
{
Xn, n = 1, 2,…

}
 is a sequence independent non-neg-

ative random variables. If the cumulative distribution function (CDF) of Xn is 
Fn(t) = F(an−1t) , for n = 1, 2,… , and a is a positive constant, then 

{
Xn, n = 1, 2,…

}
 

is called a GP (Lam 1988a), and a is the ratio of the GP.

Obviously, if a > 1 , 
{
Xn, n = 1, 2,…

}
 is stochastically decreasing; if 0 < a < 1 , {

Xn, n = 1, 2,…
}
 is stochastically increasing; if a = 1 , 

{
Xn, n = 1, 2,…

}
 is a renewal 

process.
Let {N(t), t ≥ 0} be the point process, N(t−) = {N(u), 0 ≤ u < t} be the history of 

the point process, and Ti be the time from 0 until the arrival of the ith event in [0, t). 
Then the point process is described by stochastic intensity �(t) , which is described 
as Lee and Cha (2016).

where N(t1, t2) denotes the number of events in time interval [t1, t2) , t1 < t2.

Definition 2 Generalized Polya Process (GPP) (Cha 2014)
A counting process {N(t), t ≥ 0} is called the GPP with the set of parameters 

(�(t), �, �) , � ≥ 0 , 𝛽 > 0 , if 

(1)�(t) = lim
�t→0

P[(N(t, t + �t) = 1)|N(t−)]
�t

= lim
�t→0

E[N(t, t + �t)|N(t−)]
�t

,
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 (i) N(0) = 0;
 (ii) �t = (�N(t−) + �)�(t).

When � = 0 , � = 1 , then �t = �(t) , the GPP is NHPP, which has intensity function �(t).
Some property of GPP is given as follows. The proof is provided in Cha (2014).

Proposition 1 Suppose that a counting process {N(t), t ≥ 0} is the GPP with the 
set of parameters (�(t), �, �) , � ≥ 0 , 𝛽 > 0 . Then the distribution of N(t) is

and

where �(t) = ∫ t

0
�(s) ds.

Based on the definition of GPP, GPP repair is given as follows.

Definition 3 GPP repair (Lee and Cha 2016)
For an item with failure rate �(t) , a repair type is called the ‘GPP repair’ with 

parameter � if {N(t), t ≥ 0} is the GPP with parameter set (�(t), �, 1) . The GPP repair 
was defined via three parameters (�(t), �, �) . Under the GPP repair process, the cor-
responding stochastic intensity is specified as

Remark 1 : 

(i) � determines the degree of repair, which means bigger � accelerates the deterio-
ration, and smaller � decelerates it. Furthermore, as � increases, the correspond-
ing repair becomes worse and worse.

According to the Definition 3, the GPP repair has one parameter � . Now we inter-
pret the effect of the parameter � from the modeling point of view. For this, the failure 
intensity function �(t) is defined as follows:

which represents the mean number of failures per unit time at time t. According to 
Proposition 1 and Definition 3, �(t) can be written as

(2)

P(N(t) = n) =

�

(
�

�
+ n

)

�

(
�

�

)
n!

(1 − exp {−��(t)})n × (exp {−��(t)})
�

� , n = 0, 1, 2,… ,

(3)E[N(t)] =
�

�
(exp {��(t)} − 1),

�t = (�(N(t−) + 1)�(t).

�(t) = lim
�t→0

E[N(t, t + �t)]

�t
=

dE[N(t)]

dt
,

�(t) = �(t) exp {��(t)}, t ≥ 0.
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When �(t) = 0.02t2 + 0.2 , �(t) was plotted for different � in Fig.  1. According to 
Fig. 1, it is easy to see that the parameter � determines the degree of the deteriora-
tion. And bigger � accelerates the deterioration of the system, whereas smaller � 
decelerates it.

2.2  Model assumptions

Now, a new repair model for a two components cold standby system based on two 
types of repairs is proposed. Some assumptions are given as follows.

Assumption 1 Component 1 is in a working state, and component 2 is in cold 
standby state at the same time.

Assumption 2 The successive working time interval of component 1 after repair 
forms a decreasing GP, which is denoted by {Xn, n = 1, 2,…} . The CDF of Xn is 
denoted by

where t > 0 , a > 1 is the ratio of the GP. The repair time interval of component 1 is 
denoted by T, and E(X1) = �.

Assumption 3 When component 2 fails, GPP repair is carried out. The fail-
ure process during repair time interval T follows the GPP with parameters set 
(�((i − 1)T + t), �, 1), i = 1, 2,… , where �((i − 1)T) denotes the failure intensity 
function after the ith repair of component 2. Similar to minimal repair. The dura-
tions of the GPP repair is negligible.

Fn(t) = F(an−1t),

0 1 2 3 4 5 6
t

0

0.5

1

1.5

2

2.5

3

φ
(t)

α=0
α=0.1
α=0.3
α=0.5
α=0.7

Fig. 1  The failure intensity function �(t) for different �
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Assumption 4 The replacement policy N based on the failure number of component 
1. Namely, the system is replaced at the Nth failure of component 1.

Assumption 5 The replacement time of the system is negligible.

The time interval between completion of the (i − 1) th repair and completion of 
the ith repair of component 1 is called the ith cycle. A working process of the cold 
standby system is illustrated in Fig. 2. Component 1 has two states, which is work-
ing or down. Component 2 is in working status when component 1 is being repaired. 
Component 2 would be repaired right away if it fails and its repair time is minimal 
and ignorable. After repair, component 2 will be ready to work instantaneously.

3  Optimal replacement policy N∗

Let C1 be the repair cost of component 1. C2 be the GPP repair cost of component 2 
and C0 be the replacement cost of the system. Let �n, n = 1, 2,… be the time between 
the (n − 1) th replacement and the nth replacement of the system, where �1 is the 
first replacement time of the system. Obviously, {�n, n = 1, 2,…} is a renewal pro-
cess. Let C(N) be the long-run ACR function of the system under the policy of N. 
According to the renewal reward theorem (Ross 1996), we have

where the R(t) denotes the profit within interval [0, t].
Let L and S denote the total working time and total repair time of the sys-

tem in a renewal cycle respectively. According to the assumptions 1-5, 
L = X1 + X2 +⋯ + XN + (N − 1)T  , S = (N − 1)T  . The length of the renewal 
cycle is L. Using NGP denotes the total GPP repair number of component 2 in the 
renewal cycle. According to the Eq. (3) of Proposition 1 in part 2, the expected 
failure number of GPP repair in the ith working period of component 2 is given 
by

C(N) = lim
t→+∞

E[R(t)]

t
,

Fig. 2  A possible working process of a cold standby system
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By applying the renewal reward theorem Ross (1996), the long-run ACR function 
C(N) is expressed as follows:

where �i = E(Xi) =
�

bi−1
.

Remark 2 : 

 (i) When the failure number of component 2 follows NHPP with intensity func-
tion �(t) in the time interval [0, t]. Then, the long-run ACR function is 

 (ii) If the failure number of component 2 forms a homogeneous Poisson process 
with intensity r. The failure number of component 2 in a renewal cycle is 
(N − 1)Tr . Then, the long-run ACR function becomes 

 (iii) If N = 1 , the long-run ACR function of the system is 

 this case is studied by Lee and Cha (2016).

Now, the optimal replacement policy N∗ of the system by minimizing the long-
run ACR function is discussed theoretically. The optimal N∗ is analyzed under 
some conditions in Theorem 1.

Firstly, we compute the difference between C(N + 1) and C(N) as follows

1

�

(
exp

{
� ∫

T

0

�((i − 1)T + t) dt

}
− 1

)
, i = 1, 2,… ,N.

(4)

C(N) =
C1(N − 1)T + C2E[NGP] + C0

E
�∑N

i=1
Xi

�
+ (N − 1)T

=

C1(N − 1)T + C2

�∑N

i=1

1

�

�
exp

�
� ∫ T

0
�((i − 1)T + t) dt

�
− 1

��
+ C0

∑N

i=1
�i + (N − 1)T

,

C(N) =
C1(N − 1)T + C2(N − 1) ∫ T

0
�(t) dt + C0

∑N

i=1
�i + (N − 1)T

.

C(N) =
C1(N − 1)T + C2(N − 1)Tr + C0

∑N

i=1
�i + (N − 1)T

.

C(1) =

C2

�

(
exp

{
� ∫ T

0
�(t) dt

}
− 1

)
+ C0

�1
,
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where

and

The denominator of Eq. (5) is positive. So the sign of C(N + 1) − C(N) is depend on 
the sign of numerator � (N) in Eq. (5). It is easy to get C(N + 1) − C(N) > 0 if and 
only if 𝛹 (N) > 0.

Next, the property of the function � (N) is given as follows.

Lemma 1 : If the failure rate function �(t) is increasing with t, then function � (N) is 
increasing with N.

The proof will be divided into two parts.

Proof (i) First we show �1(N) is increasing with N. This can be easily see by the 
following:

(5)

C(N + 1) − C(N)

=

C1NT + C2

�∑N+1

i=1

1

�

�
exp

�
� ∫ T

0
�((i − 1)T + t) dt

�
− 1

��
+ C0

∑N+1

i=1
�i + NT

−

C1(N − 1)T + C2

�∑N

i=2

1

�

�
exp

�
� ∫ T

0
�((i − 1)T + t) dt

�
− 1

��
+ C0

∑N

i=1
�i + (N − 1)T

=
� (N)

�∑N+1

i=1
�i + NT

��∑N

i=1
�i + (N − 1)T

� ,

� (N) = �1(N) + �2(N),

�1(N) = C1T

[
N∑

i=1

�i − (N − 1)�N+1

]
− C

(
�N+1 + T

)
,

�2(N) = C2

[
N∑

i=1

�i + (N − 1)T

]
1

�

(
exp

{
� ∫

T

0

�((N − 1)T + t) dt

}
− 1

)

− C2

(
�N+1 + T

)
[
N−1∑

i=1

1

�

(
exp

{
� ∫

T

0

�((i − 1)T + t) dt

}
− 1

)]
.

(6)

𝛹1(N + 1) − 𝛹1(N) = C1T

[
N+1∑

i=1

𝜆i − N𝜆N+2

]
− C0(𝜆N+2 + T)

− C1T

[
N∑

i=1

𝜆i − (N − 1)𝜆N+1

]
+ C0(𝜆N+1 + T)

= (𝜆N+1 − 𝜆N+2)(C1NT + C0) > 0.
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(ii) The difference of the �2(N + 1) − �2(N) is

where

By differentiating f(N) with respect to T, we have

(7)

�2(N + 1) − �2(N)

= f (N) + C2(�N+1 − �N+2)

[
N−1∑

i=1

1

�

(
exp

{
� ∫

T

0

�((i − 1)T + t) dt

}
− 1

)]
,

(8)

f (N) = C2

[
N+1∑

i=1

�i + NT

]
1

�

(
exp

{
� ∫

T

0

�(NT + t) dt

}
− 1

)

− C2

[
N∑

i=1

�i + �N+2 + NT

]
1

�

(
exp

{
� ∫

T

0

�((N − 1)T + t) dt

}
− 1

)
.

(9)

f
�(N) = C2N

1

�

(
exp

{
� �

T

0

�(NT + t) dt

}
− exp

{
�0 �

T

0

�((N − 1)T + t) dt

})

+ C2

[
N+1∑

i=1

�
i
+ NT

]
×

(
�((N + 1)T) + �

T

0

N��(NT + t) dt

)

×

(
exp

{
� �

T

0

�(NT + t) dt

}
− 1

)
− C2

[
N∑

i=1

�
i
+ �

N+2 + NT

]

×

(
�(NT) + �

T

0

(N − 1)��((N − 1)T + t) dt

)

×

(
exp

{
� �

T

0

�((N − 1)T + t) dt

}
− 1

)

≥C2N
1

�

(
exp

{
� �

T

0

�(NT + t) dt

}
− exp

{
� �

T

0

�((N − 1)T + t) dt

})

+ C2

[
N+1∑

i=1

�
i
+ NT

]
×

(
�((N + 1)T) + �

T

0

N��(NT + t) dt

)

×

(
exp

{
� �

T

0

�(NT + t) dt

}
− 1

)
− C2

[
N∑

i=1

�
i
+ �

N+1 + NT

]

×

(
�(NT) + �

T

0

(N − 1)��((N − 1)T + t) dt

)

×

(
exp

{
� �

T

0

�((N − 1)T + t) dt

}
− 1

)

= C2N
1

�

(
exp

{
� �

T

0

�(NT + t) dt

}
− exp

{
� �

T

0

�((N − 1)T + t) dt

})

+ C2

[
N+1∑

i=1

�
i
+ NT

]
×

(
exp

{
� �

T

0

�(NT + t) dt

}
− 1

)

×

(
�((N + 1)T) − �(NT) + �

T

0

N��(NT + t) dt

− �
T

0

(N − 1)��((N − 1)T + t) dt

)
,



115

1 3

A new repair model and its optimization for cold standby system  

 
since �(t) is increasing with t, then

Meanwhile 𝜆�(t) > 0 , which implies

Therefore f �(N) > 0 , i.e., the function of f(N) is increasing with N. f (N) > 0 because 
exp

{
𝛼 ∫ T

0
𝜆((i − 1)T + t) dt

}
− 1 > 0, i = 1, 2,…N.

Thus, 𝛹2(N + 1) − 𝛹2(N) > 0 . i.e., the �2(N) is increasing with N for any fixed 
T > 0 . According to the above (i) and (ii), the function � (N) is increasing with N.  
 ◻

Lemma 2 : Assume the failure rate function �(t) is strictly increasing, then 
� (∞) = lim

N→+∞
� (N) = ∞.

Proof (i) Since lim
N→+∞

�N = 0 , lim
N→+∞

(N − 1)�N+1 =
N−1

bN
� = 0,

lim
N→+∞

N∑
i=1

�i =
b�

b−1
,

hence

(ii) �2(N) can be also expressed as

where

and

𝜆((N + 1)T) >𝜆(NT),

exp

{
𝛼 �

T

0

𝜆(NT + t) dt

}
≥ exp

{
𝛼 �

T

0

𝜆((N − 1)T + t) dt

}
.

∫
T

0

N𝜆�(NT + t) dt < ∫
T

0

(N + 1)𝜆�(NT + t) dt.

(10)

lim
N→+∞

�1(N) = lim
N→+∞

{
C1T

[
N∑

i=1

�i − (N − 1)�N+1

]
− C0(�N+1 + T)

}

= lim
N→+∞

{
C1T

N∑

i=1

�i − C0T

}

= C1T
b�

b − 1
− C0T .

(11)�2(N) = �1(N) +�2(N),

(12)

�1(N) = C2T

{
(N − 1)

N∑

i=1

1

�

(
exp

{
� ∫

T

0

�((i − 1)T + t) dt

}
− 1

)

− N

N−1∑

i=1

1

�

(
exp

{
� ∫

T

0

�((i − 1)T + t) dt

}
− 1

)}
,
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Since �(t) is increasing up to ∞ , we have

(13)

�2(N) = C2

{ N∑

i=1

1

�

(
exp

{
� ∫

T

0

�((i − 1)T + t) dt

}
− 1

) N∑

i=1

�i

−

N−1∑

i=1

1

�

(
exp

{
� ∫

T

0

�((i − 1)T + t) dt

}
− 1

) N+1∑

i=1

�i

}
.

(14)

�1(N) = C2T

{
(N − 1)

N∑

i=1

1

�

(
exp

{
� �

T

0

�((i − 1)T + t) dt

}
− 1

)

− N

N−1∑

i=1

1

�

(
exp

{
� �

T

0

�((i − 1)T + t) dt

}
− 1

)}

= C2T

{
N

N∑

i=1

1

�

(
exp

{
� �

T

0

�((i − 1)T + t) dt

}
− 1

)

− N

N−1∑

i=1

1

�

(
exp

{
� �

T

0

�((i − 1)T + t) dt

}
− 1

)}

−

N∑

i=1

1

�

(
exp

{
� �

T

0

�((i − 1)T + t) dt

}
− 1

)

= C2T

[
1

�

(
exp

{
� �

T

0

�((N − 1)T + t) dt

}
− 1

)

−

N∑

i=1

1

�

(
exp

{
� �

T

0

�((i − 1)T + t) dt

}
− 1

)]
≥ 0.

(15)

�2(N) = C2

{ N∑

i=1

1

�

(
exp

{
� �

T

0

�((i − 1)T + t) dt

}
− 1

) N∑

i=1

�i

−

N−1∑

i=1

1

�

(
exp

{
� �

T

0

�((i − 1)T + t) dt

}
− 1

) N+1∑

i=1

�i

}

≥C2

�

(
exp

{
� �

T

0

�((N − 1)T + t) dt

}
− 1

) N∑

i=1

�i

−
C2

�
(N − 1)

(
exp

{
� �

T

0

�((N − 1)T + t) dt

}
− 1

)
�N+1

=
C2

�

(
exp

{
� �

T

0

�((N − 1)T + t) dt

}
− 1

)[N+1∑

i=1

�i − (N − 1)�N+1

]
.

(16)lim
N→+∞

(
exp

{
� ∫

T

0

�((N − 1)T + t) dt

}
− 1

)
= ∞,
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hence

and

according to the Eqs. (11)–(19)

  ◻

When N = 1 , � (1) = C1T� − C0

(
�

b
+ T

)
+ C2

�

�

(
exp

{
� ∫ T

0
�(t) dt

}
− 1

)
 and 

𝛹 (1) > 0 ⟺ C(2) > C(1) , namely the long-run ACR function is minimized by 
N = 1 , therefore the optimal policy is N∗ = 1.

According to the above Lemmas 1 and 2, we obtain the following Theorem 1.

Theorem 1 Assume that r(t) is increasing. The following results hold.

 (i) If C1T𝜆 + C2
𝜆

𝛼

(
exp

{
𝛼 ∫ T

0
𝜆(t) dt

}
− 1

)
> C0

(
𝜆

b
+ T

)
 , the optimal N∗ = 1.

 (ii) If r(t) is increasing, and r(∞) = ∞ , � (∞) = ∞ , then there exists an unique 
optimal policy N∗ such that 

4  Numerical examples

In this section, numerical examples for illustrating the effectiveness of our model 
and optimal replacement policy are provided. 

(1) Let the failure rate function of the component 2 as �(t) = 0.01t2 with param-
eter b = 1.15 , � = 50 , T = 3 . The condition of Theorem 1 is thus satisfied. The 
optimal replacement policy N∗ and C(N∗) for different values of C0 , C1 and � 
are shown in Table 1 when C2 = 5 , T = 3 . For example, when C1 = 50 , C2 = 5 , 
C0 = 4000 , � = 0.5 , the optimal replacement policy N∗ = 6 . It is easy to see 
that the optimal replacement policy N∗ is decreasing with the increasing of � , 
however the optimal C(N∗) is increasing with � increasing.

(17)lim
N→+∞

[
N+1∑

i=1

�i − (N − 1)�N+1

]
=

b�

b − 1
,

(18)lim
N→+∞

�2(N) = ∞,

(19)lim
N→+∞

�2(N) = ∞,

(20)lim
N→+∞

� (N) = ∞.

(21)N∗ = min{ N | � (N) ≥ 0}.
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(2) Let b = 1.15 , � = 50 , C1 = 50 , C2 = 5 , C0 = 2000 , � = 0.3 , T = 3 . The experi-
mental results show that the optimal replacement policy N∗ = 7 and the corre-
sponding C(7) = 12.19 . The curve of C(N) is plotted in Fig. 3 and the curve of 

Table 1  The optimal 
replacement policy N∗ and 
corresponding C(N∗) for 
different values of C

0
 , C

1
 and � 

when T = 3 , C
2
= 5

� N
∗

C(N∗) � N
∗

C(N∗)

C
0
= 2000 0.1 9 10.96 C

0
= 2000 0.1 8 14.84

C
1
= 50 0.2 8 11.58 C

1
= 100 0.2 7 15.09

0.3 7 12.19 0.3 6 15.42
0.4 6 12.63 0.4 6 15.85
0.5 5 13.20 0.5 5 16.13
0.6 5 13.54 0.6 5 16.47
0.7 5 14.11 0.7 5 17.04
0.8 4 14.64 0.8 4 17.24
0.9 4 14.83 0.9 4 17.43

C
0
= 4000 0.1 11 17.27 C

0
= 4000 0.1 10 21.62

C
1
= 50 0.2 8 18.75 C

1
= 100 0.2 8 22.51

0.3 7 19.96 0.3 7 23.46
0.4 6 21.22 0.4 6 24.45
0.5 6 22.13 0.5 6 25.35
0.6 5 23.31 0.6 5 26.24
0.7 5 23.88 0.7 5 26.81
0.8 5 24.83 0.8 5 27.76
0.9 4 26.37 0.9 4 28.97

1 2 3 4 5 6 7 8 9 10 11
N
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40

60

80

100

120

140

160

C
(N

)

Fig. 3  The long-run ACR function C(N)
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� (N) is plotted in Fig. 4. According to Fig. 4, the optimal N∗ is the minimal N 
satisfying 𝛹 (N) > 0.

(3) Assume that � = 50 , C1 = 50 , C2 = 5 , C0 = 2000 , � = 0.3 , T = 3 . The long-run 
ACR function C(N) for different values of b is shown in Fig. 5. We can see that 
the long-run ACR function becomes bigger when b increases.

(4) Furthermore, assume that � = 50 , C1 = 50 , C2 = 5 , C0 = 2000 , b = 1.2 , T = 3 , 
the long-run ACR function C(N) for different values of � is plotted in Fig. 6. The 

1 2 3 4 5 6 7 8 9 10
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Fig. 4  The function � (N) against N 
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Fig. 5  The long-run ACR function C(N) for different values of b 
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long-run ACR function becomes bigger and bigger when � increases. The trend 
of growth is obvious especially when � = 0.9.

5  Conclusions and future work

In this paper, a repair model for a cold standby system based on two types of failure 
repairs is proposed. Therefore, it is general model and will have a great potential 
in application. The long-run ACR function of the system is derived. Moreover, the 
existence and uniqueness of the optimal replacement policy is proved. Numerical 
examples were conducted to illustrate the theoretical results. From our experience, 
we can believe that an optimal replacement policy will exist. Sensitivity analysis 
were performed to study the effect of parameters on the optimal replacement policy.

In the future, we will consider the time needed for repair and replacement in the 
system and study the optimal maintenance policies for repair systems with one work-
ing state and multiple failure state models. This is more realistic and challenging.
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