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Abstract
In this work we present a greedy randomized adaptive search procedure (GRASP)-
based strategy for the set covering problem. The goal of this problem is to find a 
subset of columns from a zero-one matrix in order to cover all the rows with the 
minimal possible cost. The GRASP is a technique that through a sequential and 
finite number of steps constructs a solution using a set of simple randomized rules. 
Additionally, we also propose an iterated local search and reward/penalty procedures 
in order to improve the solutions found by the GRASP. Our approach has been tested 
using the well-known 65 non-unicost SCP benchmark instances from OR-library 
showing promising results.

Keywords GRASP · Set covering problem · Local search · Metaheuristics

1 Introduction

The non-unicost set covering problem (SCP) is a combinatorial problem that can be 
described as the problem of finding a subset of columns x from a m-row, n-column 
zero-one matrix A such that they cover all the rows of A at minimal cost. The SCP 
can be formulated as follows:

minimize

n∑
j=1

cjxj

subject to

n∑
j=1

aijxj ≥ 1, i ∈ {1, 2,… ,m},

xj ∈ {0, 1}.

 * Victor Reyes 
 victor.reyes.r@mail.pucv.cl

 Ignacio Araya 
 ignacio.araya@pucv.cl

1 Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile

http://orcid.org/0000-0002-3358-3906
http://crossmark.crossref.org/dialog/?doi=10.1007/s12351-019-00514-z&domain=pdf


2392 V. Reyes, I. Araya 

1 3

where cj is a n-size vector that represents the cost of each column in A. The SCP 
is an NP-hard problem (Garey and Johnson 1979) that can be used to model many 
different problems such as crew scheduling (Bartholdi 1981), data bases (Munagala 
et  al. 2005), vehicle routing  (Bramel and Simchi-Levi 1997), among others. Sev-
eral kind of algorithms have been developed for solving SCP instances. Preliminary 
works used exact algorithms, such as branch and bound and branch and cut strate-
gies  (Balas and Carrera 1996; Beasley 1987), however large SCP instances were 
intractable for them. Greedy algorithms (Chvatal 1979) are a good approach for large 
SCP instances, but they rarely generate good solutions because of its myopic and 
deterministic nature. Nevertheless, a greedy algorithm proposed in Lan and DePuy 
(2006) addresses these problems by incorporating randomization and memory to the 
process. Metaheuristics, such as genetic algorithms (Beasley and Chu 1996; Solar 
et al. 2002), simulated annealing (Brusco et al. 1999), ant colonies (Crawford et al. 
2014), have been the most common approach to solve SCP instances. Also, modern 
metaheuristics (García et al. 2017, 2019; Crawford et al. 2016, 2015; Lu and Vasko 
2015) have been used in the recent years.

In this work we present a greedy randomized adaptive search procedure 
(GRASP)  (Resende and Ribeiro 2010) strategy for solving the SCP. GRASP is a 
random iterative optimization procedure that works in two phases: a constructive 
and a local search phase. At the constructive phase, the procedure uses a randomized 
greedy heuristic in order to obtain an initial solution. For instance, unlike determin-
istic greedy heuristics, at each step the procedure selects one of the most promising 
columns from a set with size defined by the user. This can be seen as an exploration 
phase. On the other hand the local search phase allows the algorithm to exploit the 
neighborhood of the initial solution hoping to find much higher quality solutions. 
For instance, a swap method can be performed between an instantiated and an unin-
stantiated column.

Besides the SCP, GRASP-based techniques have been used extensively to solve 
similar operational research problems, such as the unicost SCP (Bautista and Pereira 
2007), the maximum covering problem  (Resende 1998), the max−min diversity 
problem (Resende et al. 2010), the set-k covering (Pessoa et al. 2013), among oth-
ers. Despite the difference between these problems, the GRASP phases are quite 
similar. At the constructive phase most of the approaches construct a limited list of 
promising columns, assigning a probability to each of them according to a certain 
rule, varying from the number of uncovered rows to more sophisticated functions. 
On the other hand, at the local search phase, most techniques are based on 0–1 swap 
movements between columns. Additionally, penalizing procedures for the columns 
are very common in order to retrieve information at the local search phase.

Meta-RaPS is one of the most well-known GRASP-based solvers used to solve 
SCP instances (Lan et al. 2007). At the beginning, Meta-RaPS constructs a solution 
by introducing randomness using two rule parameters: %priority and %restriction. 
The first one determines the percentage of time that the best feasible element will be 
chosen. The remaining time, the element added to the solution will be randomly cho-
sen from a candidate list. The second rule is used to determine the level of accept-
ance and thus the size of the candidate list. A set of rules are used to evaluate each 
column. After a feasible solution is constructed, a local search method is a applied 
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in order to improve the current solution. A number of columns are removed from the 
solution while the other are fixed by using a user-defined parameter. Finally, it uses 
adaptive memory mechanisms, that is, save information from the construction phase 
in order to obtain better solutions. This last procedure can be seen as elite methods 
used in genetic algorithms for the columns.

Unlike other techniques, our approach first selects the uncovered row with the 
smallest number of columns that can cover this row. Then we use the same set of 
rules as Meta-RaPS for evaluating these columns, instantiating one of them accord-
ing to a probability. The process is repeated until a solution is fully generated. In the 
local search phase we perform an iterated local search (ILS) to the found solution. 
The process is based in a divide and conquer scheme, i.e, we divide the solution in 
two random halves, we reset one of them (perturbation) and restart the construction 
from this partial solution. Additionally, we use a reward/penalty procedure to each 
column after the second phase is applied. This last procedure is used to improve 
the rate of convergence of our approach. We think that the main differences of our 
approach, related to other GRASP-based approaches, are:

1. It does not require an additional user-defined parameter for restricting the size of 
the list of promising columns.

2. It does not require any parameter besides the reward/penalty procedure.
3. Compared to modern metaheuristics our approach does not demands high tuning 

effort of its parameters for an optimal performance.

Although our approach is simpler and more general than other state-of-the-art 
algorithms, it still offers competitive and promising results in well-known set of 
SCP instances from OR-library and in a new set of large instance SCPs proposed 
in Umetani (2017).

The rest of the paper is organized as follows. In Sect. 2 we describe our approach 
in detail. In Sect.  3 we show the experimental results using our approach and in 
Sect. 4 we present the conclusions and our future work.

2  A GRASP‑based technique for the SCP

In this section we describe in detail our approach for solving and finding quality 
solutions for the SCP. The algorithm works in two phases. The first phase consists 
in constructing iterative a solution using a set of simple rules for evaluating and 
instantiating the columns of the input matrix A. After the solution is constructed we 
proceed to repair it by using an iterated local search procedure. In this phase we use 
a divide and conquer scheme for dividing the solution, resetting a part of it and start-
ing the search again from this point. The whole procedure is repeated until reaching 
a time limit.

Additionally, we use a reward/penalty mechanism for penalizing the columns of 
the matrix in order to accelerate the convergence of the whole strategy.
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2.1  Constructing a random solution

In this section we describe how our algorithm constructs a solution. First, we 
construct a map structure that maps each row to the set of columns that cover 
it. We sort this mapping from the lowest to the highest number of columns. For 
example, if we use the following A input matrix and the vector cost c:

We obtain the following map:

The rows are then covered in the order disposed by the structure. For each uncov-
ered row, we instantiate one column to cover it. For rows that may be covered by 
only one column, we simply instantiate the corresponding column (see Sect. 2.4). 
For each row with two or more columns, we evaluate its columns j by using a func-
tion f(j) selected randomly from a set of six evaluation functions proposed in Lan 
and DePuy (2006): cj∕pj , cj∕ log (1 + pj) , cj∕

√
pj , cj∕p2j  , 

√
cj∕pj , cj∕pj log pj ; where 

cj is the cost of the column j and pj represents the number of rows that may be cov-
ered by the column j (not counting the already covered rows). The idea of such 
amount of functions is to maintain diversity among the solutions constructed in this 
phase. Once we evaluate the columns, we propose two criteria to select the column 
to instantiate:

– Instantiate the column j with probability proportional to −f (j)
– Instantiate the column j minimizing f(j)

Note that, according to the evaluation functions and the selection criteria, col-
umns that covers more rows with a low cost are more likely to be instantiated.

The first criterion is applied with a probability of 1

#cols
 and the second one with 

a probability of 1 − 1

#cols
 , where #cols is the number of columns that can cover the 

current row. After instantiating a column, all the rows covered by this column are 
also removed from the map (2).

Going back to our example, we have to select one of the columns (2 or 3) 
in order to cover the row r2 [see (2)]. Suppose that the function f (j) = cj∕pj is 
selected, thus evaluating the columns we obtain f (2) = 1 and f (3) = 1.5 . The first 

(1)A =

⎡
⎢⎢⎢⎢⎣

1 0 0 1 0 0 1

0 1 1 0 0 0 0

0 1 0 1 1 0 0

1 0 1 0 1 0 1

0 0 0 1 1 0 1

⎤
⎥⎥⎥⎥⎦
; c =

�
1 2 3 4 5 6 2

�

(2)

r2 → 2, 3

r1 → 1, 4, 7

r3 → 2, 4, 5

r5 → 4, 5, 7

r4 → 1, 3, 5, 7



2395

1 3

A GRASP-based scheme for the set covering problem  

selection criterion would select the column 2 with a probability of 0.6 and the 
column 3 with a probability 0.4. On the other hand, the second criterion would 
select the second column.

Algorithm 1 shows the procedure related to this phase, where:

– The method create-pairs generates the sorted map (2) by using the input 
matrix A.

– The while loop is performed until the map is empty, i.e., all the rows are cov-
ered.

– The procedure random-function selects one of the six random evaluation func-
tions.

1 procedure random-greedy (A,c) out: x
2 x ← (0, 0, ...);
3 map ← create-map(A);
4 while map is not empty do
5 cols ← first(map);
6 f ←random-function();
7 if rand(0, 1) ≤ 1

size(cols) then
8 j ← select j ∈ cols with probability

proportional to −f(j);
9 else

10 j ← select j ∈ cols minimizing f(j);
11 end
12 remove each element in map containing j;
13 xj ← 1;
14 end
15 return x;
16 end.

2.2  Iterated local search (ILS)

Although using the procedure random-greedy leads to quality solutions, there is still 
a considerable gap between the solution fitness and optimum (see Fig. 1). Thus, we 
propose a method for improving the generated solutions.

Algorithm 2 shows the procedure. The idea is to take the solution and reset a ran-
dom part of it, i.e. setting some variables xj to 0, and solving the problem again from 
this state. To do that, first we group randomly the variables into two lists: L1 and L2 
(line 6). These lists are also put into a queue of lists Q. We pop a list L from Q and 
each xj in this list is set to 0. Then, we reuse the procedure random-greedy to com-
plete the solution. We apply the procedure with some minor modifications:

– The columns in the map are restricted to the corresponding variables in L.
– In each iteration we simply select the column minimizing the value cj∕pj , i.e., 

lines 6–11 are replaced by line 10 with f (j) = cj∕pj.
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If the new generated solution x′ is better than the previous one, then we replace the 
previous solution and the variables in L are grouped into two new lists. These new 
lists are pushed into Q. If the new solution x′ does not show any improvements to the 
solution, it is simply discarded. Then the process is repeated until Q is empty. If any 
of the lists of the current queue Q produces an improvement of the solution, then the 
whole process is repeated.

1 procedure ILS (A,x); out: x
2 Q ← {}; improvement← true;
3 while improvement do
4 improvement← false;
5 L ← {1, 2, ...,#cols(A)};
6 {L1, L2} ← grouping(L);
7 push(Q,L1);
8 push(Q,L2);
9 while Q is not empty do

10 L ←pop(Q);
11 for each i ∈ L, xj = 0;
12 x′ ← random-greedy∗(A, c);
13 if cost(x′) < cost(x) then
14 x ← x′;
15 {L1, L2} ← grouping(L);
16 push(Q,L1);
17 push(Q,L2);
18 improvement← true;
19 end
20 end
21 end
22 end.

2.3  The reward/penalty procedure

As is explained above, the construction and ILS procedures are repeated until a time 
limit is reached. Then, the best solution found so far is returned. One issue related 
to this strategy is that no information about the good or bad decisions is extracted or 
used during the search.

Thus, in this section we propose a simple reward—penalty procedure for extract-
ing and using information during the search. This mechanism hopefully will allow 
us to improve the process for generating quality solutions.

Our reward/penalty procedure simply assigns a penalty to each column of the 
matrix. At the beginning of the search, the penalty of each column is initialized to 1. 
If the method ILS improves the solution quality, then the penalties are updated in the 
following way:

– If the column j is instantiated in the last reported solution, then its penalty pj 
decreases in 𝛼 > 0.

– If the column j is not instantiated in the last reported solution, then its penalty pj 
increases in 𝛽 > 0
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Finally, instead of using the value of f(j), we use pj ∗ f (j) for selecting the next col-
umn in the methods random-greedy and random-greedy∗ . Note that high values of pj 
decreases the likelihood of selecting the column j and vice versa. In order to avoid 
local optima we have limited the value of each penalty to the interval [min, max].

2.4  Pre‑processing

In order to reduce the size of the different SCP instances, we used two well known 
pre-processing procedures before the actual search: column domination and column 
inclusion (Fisher and Kedia 1990).

2.4.1  Column domination

If the set of rows covered by a column j is also covered by another column j′ with a 
lower cost, then we said that j is dominated by j′ . Dominated columns are removed 
from A.

2.4.2  Column inclusion

If a row is only covered by one column, then this column is included in every 
solution.

3  Experiments

Our proposal has been implemented in C++,1 on an 2.4GHz CPU Intel Core 
i7-4700MQ with 8GB RAM computer using Ubuntu 16.04 LTS x86_64. In order to 
test the proposal, we used the 65 non-unicost SCP instances from OR-library2 which 
are described in Table 1. Optimal solutions are known for all of these instances. The 
results of the experiments are evaluated using: the mean value, the standard devia-
tion and the relative percentage deviation (RPD). The RPD quantifies the deviation 
of the objective value x from the best known value x∗ . This value is computed as 
follows:

Strategies were run 30 times on each instance. On each table we show the best 
known solution (column Best-sol), the mean cost of the solutions found by our 
approach (column mean), the standard deviation of the costs (column � ), the mini-
mum cost found considering all the runs (column min) and the RPD related to the 

RPD =
(
x − x∗

x∗

)
× 100

1 https ://githu b.com/varey esr/GRASP -SCP.
2 http://peopl e.brune l.ac.uk/~mastj jb/jeb/orlib /scpin fo.html.

https://github.com/vareyesr/GRASP-SCP
http://people.brunel.ac.uk/%7emastjjb/jeb/orlib/scpinfo.html


2398 V. Reyes, I. Araya 

1 3

minimum cost. The algorithm stops when 20 seconds pass since the last best solu-
tion was found.

3.1  Measuring the solution quality from the construction phase

As a first experiment, we would like to measure the solution quality (cost) generated 
by our random greedy approach.

In Fig. 1 we show the RPD corresponding to the random greedy for each of the 
65 instances. As it can be seen the greedy by itself can not reach to any optimum 
solution in these instances. However, we expect that the ILS algorithm can improve 
the generated solutions, converging to the optimum in a reasonable time.

3.2  Measuring the impact of the ILS algorithm

In this section we show the improving provided by the ILS process.

Table 1  Detail of the test 
instances

Instance set No. of 
instances

# Rows # Columns Cost range

4 10 200 1000 [1, 100]
5 10 200 2000 [1, 100]
6 5 200 1000 [1, 100]
A 5 300 3000 [1, 100]
B 5 300 3000 [1, 100]
C 5 400 4000 [1, 100]
D 5 400 4000 [1, 100]
E 5 500 5000 [1, 100]
F 5 500 5000 [1, 100]
G 5 1000 10,000 [1, 100]
H 5 1000 10,000 [1, 100]

Fig. 1  Quality of solutions generated by the random greedy
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As a first experiment we show the importance of using a grouping list of size 2, 
as is shown in the algorithm 2. In Fig. 2 we show the comparison between using 
2,3,4 and 5 grouping lists.

From this result, we can see that increasing the number of initial partitions has a 
negative outcome on the quality of the solution provided from our approach. This 
can be explained because as we increment the number of initial partitions the ILS 
process has less impact as a more local search is performed, i.e., it is more difficult 
to leave local optima. Additionally, we also report that the convergence is in average 
a 25% slower w.r.t. a grouping of size 2.

Table 2 reports the results using the construction and ILS process explained in 
Sect. 2, using a grouping list of size 2. Note that the first number or letter of each 
instance corresponds to the set. The best results were obtained when three of the six 
evaluation functions were used (i.e., cj∕pj , cj∕ log (1 + pj) and cj∕

√
pj),

In 47/65 instances the RPD is equal to 0. Also for 19 of these instances we report 
a � equal to 0, which means that we reach the optimal value in each of the 30 runs. 
On the other hand, for the rest of the instances, we report results that are very close 
to the optimal costs. Finally, note that the standard deviation is small for all the 
instances, highlighting the stability of the approach.

In Fig. 3 we show a comparison between using and not using the ILS algorithm. 
Note that using this algorithm outperforms significantly the previous results.

3.3  Including the reward/penalty procedure

In this section we include the reward/penalty procedure. At the beginning of the 
search we set the penalty pj to 1 for each column j. Additionally, pj can only take 
values between min = 0.5 and max = 1.5 . If some pj is greater than 1.5 (resp. lower 
than 0.5) we set this penalty to 1.5 (resp 0.5). Several configuration were tested, but 
the best results were obtained using the values of � = 0.05 and � = 0.01

Fig. 2  Comparison of different sizes of repairing lists. The y-axis shows the accumulative RPD value 
while the x-axis indicates to the instance set



2400 V. Reyes, I. Araya 

1 3

This procedure shows improvements in both, the quality of the solutions and the 
time of convergence.

The results can be seen in the Table 3. In 51/65 instances we get RPD equal to 
0 (i.e., two more than before). We also obtain a great improvement in terms of the 
standard deviation. From the 51 instances obtaining a RPD equal to 0, in 28 we 
report � = 0 and we can observe an important reduction in the rest of them.

Table 2  Results using the ILS procedure

We highlight in bold the instances where the RPD is equal to 0

Instance Best-sol Mean � Min RPD (%) Instance Best-sol Mean � Min RPD (%)

4-1 429 429.53 0.19 429 0 B-4 79 79 0 79 0
4-2 512 513.07 0.37 512 0 B-5 72 72 0 72 0
4-3 516 516.1 0.11 516 0 C-1 227 232.2 0.56 230 1.32
4-4 494 494.17 0.14 494 0 C-2 219 222.5 0.51 219 0
4-5 512 512.93 0.38 512 0 C-3 243 245.57 0.40 244 0.41
4-6 560 560 0 560 0 C-4 219 220.1 0.30 219 0
4-7 430 432 0 432 0.47 C-5 215 217.53 0.38 215 0
4-8 492 492.1 0.11 492 0 D-1 60 60.77 0.16 60 0
4-9 641 644.67 0.49 641 0 D-2 66 66.43 0.19 66 0
4-10 514 514 0 514 0 D-3 72 72.53 0.25 72 0
5-1 253 255.3 0.34 253 0 D-4 62 62 0 62 0
5-2 302 305.2 0.35 303 0.33 D-5 61 61 0 61 0
5-3 226 226.73 0.37 226 0 E-1 29 29 0 29 0
5-4 242 242.4 0.19 242 0 E-2 30 30.7 0.22 30 0
5-5 211 212 0 212 0.47 E-3 27 27.9 0.11 27 0
5-6 213 215 0 215 0.94 E-4 28 28.27 0.17 28 0
5-7 293 293 0 293 0 E-5 28 28 0 28 0
5-8 288 288 0 288 0 F-1 14 14.03 0.07 14 0
5-9 279 279 0 279 0 F-2 15 15 0 15 0
5-10 265 265 0 265 0 F-3 14 14.83 0.14 14 0
6-1 138 138.13 0.19 138 0 F-4 14 14.13 0.13 14 0
6-2 146 146 0 146 0 F-5 13 13.97 0.07 13 0
6-3 145 145 0 145 0 G-1 176 185.17 0.87 182 3.41
6-4 131 131 0 131 0 G-2 154 161.6 0.60 159 3.25
6-5 161 161 0 161 0 G-3 166 175.3 0.59 172 3.61
A-1 253 254.6 0.30 253 0 G-4 168 177.83 0.77 173 2.98
A-2 252 254.17 0.46 252 0 G-5 168 176.23 0.71 171 1.79
A-3 232 235 0.33 234 0.86 H-1 63 67.57 0.38 65 3.17
A-4 234 234.7 0.17 234 0 H-2 63 66.57 0.34 65 3.17
A-5 236 237.23 0.16 237 0.42 H-3 59 62.47 0.35 61 3.39
B-1 69 69 0 69 0 H-4 58 61.5 0.31 59 1.72
B-2 76 76 0 76 0 H-5 55 57.83 0.35 56 1.82
B-3 80 80 0 80 0
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In Fig. 4 we include a comparison between our complete approach and the tech-
nique without the reward/penalty procedure. Note that the most important reduc-
tions occur in the last 10 instances, the hardest ones.

3.4  Comparing to modern metaheuristics

In this section we include a comparison between modern metaheuristics used in 
the last few years to deal with the SCP. The metaheuristics used for this compari-
son are: binary cuckoo search (BCS), binary black hole (BBH), the binary shuffled 
frog leaping algorithm (BSFLA) (Soto et al. 2017; Crawford et al. 2015), teaching-
learning based optimization (TLBO) (Lu and Vasko 2015) and the K-means transi-
tion algorithm for the BBH (KMTA-BBH)  (García et  al. 2019). Note that, unlike 
our approach, these metaheuristics use sophisticated mechanisms and demands high 
tuning effort of its parameters for an optimal performance.

Table  4 reports the comparison between the previous techniques using the set 
problems E, F, G and H of the OR-library. Compared to these modern metaheuris-
tics our approach behaves well, obtaining in 16/20 instances the best results (only 
being surpassed by KMTA-BBH with 19/20).

In Fig. 5 we include the comparison between our complete approach (GRASP) 
and some of the previous metaheuristics using the accumulative RPD. From the 
figure our approach outperforms the strategies BBH and BSFLA, and it performs 
similar to BCS. Our approach has a good performance in the instances B,C,D,E, 
however as it can be seen, in the last two group of instances BCS and GRASP have 
comparable performances.

In order to confirm the effectiveness of our approach, we use the ranked based 
statistical analysis. It consist in assigning ranks to each algorithm based on the 
performance. The performance of an algorithm a1 is considered better than a2 ; if 
a1 obtains an average minimum objective function than a2 in a shortest compu-
tational time. A rank 1 is assigned to the best performing algorithm, a rank 2 is 
assigned to the second best perform algorithm and so on. The average ranks for 

Fig. 3  Comparison of our approach using and not using the ILS process. The y-axis shows the accumula-
tive RPD value while the x-axis indicates to the instance set
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the algorithms considered are: GRASP= 1.45 , BCS = 1.75 , BBH = 3.05 , BSFLA 
= 3.75 . According to this ranking, GRASP is the best performing algorithm 
among these techniques, followed by BCS, then BBH and BSFLA achieving the 
worst results. To analyze the statistical significance of differences between the 
evaluated ranks, we make use of the Nemenyi post-hoc test (Nemenyi 1963).

Table 3  Results using the ILS process

We highlighted in bold the instances where the RPD is equal to 0

Instance Best-sol Mean � Min RPD (%) Instance Best-sol Mean � Min RPD (%)

4-1 429 429.87 0.13 429 0 B-4 79 79 0 79 0
4-2 512 512 0 512 0 B-5 72 72 0 72 0
4-3 516.2 516.2 0.25 516 0 C-1 227 229.83 0.44 228 0.44
4-4 494 494 0 494 0 C-2 219 221.8 0.25 221 0.91
4-5 512 512.43 0.31 512 0 C-3 243 243.83 0.24 243 0
4-6 560 560 0 560 0 C-4 219 219.47 0.21 219 0
4-7 430 432 0 432 0.47 C-5 215 216.4 0.25 215 0
4-8 492 492 0 492 0 D-1 60 60.73 0.17 60 0
4-9 641 643.2 0.37 641 0 D-2 66 66.1 0.11 66 0
4-10 514 514 0 514 0 D-3 72 72 0 72 0
5-1 253 255.23 0.35 253 0 D-4 62 62 0 62 0
5-2 302 304.73 0.43 303 0.33 D-5 61 61 0 61 0
5-3 226 226.57 0.32 226 0 E-1 29 29 0 29 0
5-4 242 242.43 0.19 242 0 E-2 30 30.5 0.19 30 0
5-5 211 212 0 212 0.47 E-3 27 27.83 0.14 27 0
5-6 213 215 0 215 0.94 E-4 28 28.1 0.11 28 0
5-7 293 293 0 293 0 E-5 28 28 0 28 0
5-8 288 288 0 288 0 F-1 14 14.2 0.15 14 0
5-9 279 279 0 279 0 F-2 15 15 0 15 0
5-10 265 265 0 265 0 F-3 14 14.77 0.16 14 0
6-1 138 138 0 138 0 F-4 14 14.2 0.15 14 0
6-2 146 146 0 146 0 F-5 13 13.77 0.16 13 0
6-3 145 145 0 145 0 G-1 176 177.2 0.28 176 0
6-4 131 131 0 131 0 G-2 154 157.47 0.27 156 1.30
6-5 161 161 0 161 0 G-3 166 170.97 0.39 169 1.81
A-1 253 255.17 0.28 254 0 G-4 168 174.27 0.38 172 2.38
A-2 252 252.6 0.27 252 0 G-5 168 172.5 0.4 170 1.19
A-3 232 234.67 0.30 233 0.43 H-1 63 65.37 0.27 64 1.59
A-4 234 234.03 0.07 234 0 H-2 63 65 0.14 64 1.59
A-5 236 237.17 0.20 236 0 H-3 59 60.97 0.07 60 1.69
B-1 69 69 0 69 0 H-4 58 59.57 0.25 58 0
B-2 76 76 0 76 0 H-5 55 55.83 0.22 55 0
B-3 80 80 0 80 0
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This test is useful to determinate if the performance of two algorithms significantly 
differs or not. It considers the performance of two algorithms significantly different if 
their corresponding average ranks differ by at least a specific threshold critical differ-
ence. Considering a significance level of 1% level of significance the critical difference 

Fig. 4  Comparison between our approach using the ILS process and including the reward/penalty proce-
dure. The y-axis shows the accumulative RPD value while the x-axis indicates to the instance set

Table 4  Comparison between our approach and modern metaheuristics in a subset of the OR-library

For each instance, we highlighted in bold the best solution

Instance Best-sol GRASP BCS BBH BSFLA TLBO KMTA-BBH

E-1 29 29 29 29 29 29 29
E-2 30 30 31 31 31 30 30
E-3 27 27 28 28 28 28 27
E-4 28 28 30 29 29 28 28
E-5 28 28 28 28 28 28 28
F-1 14 14 14 14 15 14 14
F-2 15 15 15 15 15 15 15
F-3 14 14 15 16 16 14 14
F-4 14 14 15 15 15 15 14
F-5 13 13 14 14 15 13 13
G-1 176 176 176 179 182 179 176
G-2 154 156 156 158 161 156 155
G-3 166 169 169 169 173 168 166
G-4 168 172 170 170 173 172 170
G-5 168 170 170 168 174 168 168
H-1 63 64 64 66 68 64 64
H-2 63 64 64 67 66 64 64
H-3 59 60 61 65 62 61 60
H-4 58 58 59 63 63 59 59
H-5 55 55 56 62 59 56 55
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value is 1.05. In Table 5 shows the difference between the average ranks of the algo-
rithms. From this table we infer that our GRASP approach and BCS have comparable 
performance, and that BBH and BSFLA are outperformed by our approach.

3.5  CPU times

In this final section we report the mean CPU times in seconds spent by our approach, 
BCS and Meta-RaPS for all the benchmark instances used in this work. The results 
are shown in Table 6. Our approach has good results compared to the other strategies, 
obtaining the best solution from Table 3 in less than 1 s in 39 instances. However in 
the hard instances (G and H) the algorithm requires a good amount of time to obtain 
good results. Instances G-1, G-2 and G-3 are the ones with the worst results. In 37/65 
instances our approach converge faster.

3.6  Testing with new large‑scale SCP instances

For today standards, the previous instances might not be large enough to prove the 
efficiency of our approach. In Umetani (2017) the author uses a SCP-generator to 
create a new set of larger SCP instances and propose a data mining approach for 
reducing the search space of local search algorithms. By generating a graph of the 

Fig. 5  Comparison between our approach and some modern metaheuristics

Table 5  Pairwise difference between the average ranks of the algorithms

Critical difference = 1.05 for a significance level of 1% for the Nemenyi post-hoc test

Algorithm (rank) GRASP (1.45) BCS (1.75) BBH (3.05) BSFLA (3.75)

GRASP – 0.30 1.60 2.30
BCS – – 1.30 2.00
BBH – – – 0.70
BSFLA – – – –
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problem, the authors can identify promising pairs (resp. quartets) of variables in 
order to apply a 2-flip (resp. 4-flip) operation between them. Note that this approach 
is only useful in large instance problems, as the graph-related procedure is highly 
CPU-time demanding. Some of the benchmarks used in this work are described 
in Table 7. As it can be seen, these instances are considerably larger than the OR-
library ones. To our knowledge, these new instances have not been tested by other 

Table 6  Cpu times in seconds for our grasp-based approach, binary cuckoo search and Meta-RaPS

For each instance, we highlighted in bold the best CPU time

Instance GRASP BCS Meta-RaPS Instance GRASP BCS Meta-RaPS

4-1 0.04 1.92 1.36 B-4 1.06 3.39 2.25
4-2 0.29 1.92 0.24 B-5 0.43 3.45 0
4-3 0.44 2.15 0.29 C-1 1.99 3.27 0.43
4-4 0.22 2.07 0.39 C-2 4.69 3.39 12.8
4-5 0.08 2.14 0.90 C-3 4.37 3.39 26.2
4-6 0.07 2.09 0.10 C-4 2.97 3.35 24.2
4-7 0.16 1.90 0.04 C-5 1.33 3.49 1.79
4-8 0.07 1.95 1.46 D-1 0.74 4.68 3.13
4-9 0.47 1.95 3.47 D-2 4.12 4.70 13.5
4-10 0.10 2.16 0.08 D-3 0.77 4.69 1.31
5-1 0.51 2.01 1.55 D-4 5.43 5.69 0.20
5-2 0.22 2.08 0.59 D-5 1.44 5.74 0.29
5-3 0.22 2.19 1.14 E-1 0.13 5.82 0.73
5-4 0.47 2.21 0.32 E-2 1.30 4.81 46.1
5-5 0.05 2.02 0.33 E-3 4.58 4.91 5.95
5-6 0.05 2.30 0.14 E-4 0.89 4.84 39.6
5-7 0.15 2.14 1.03 E-5 0.30 4.76 0.81
5-8 0.04 2.13 0.08 F-1 0.20 8.36 4.29
5-9 0.10 2.05 0.04 F-2 0.08 9.86 3.80
5-10 0.06 2.14 0.03 F-3 1.29 9.82 1.84
6-1 0.09 2.81 0.25 F-4 0.92 9.23 5.44
6-2 0.04 2.84 0.02 F-5 0.04 8.82 33.2
6-3 0.19 2.85 0.02 G-1 80.3 10.9 298
6-4 0.04 2.90 0.34 G-2 59.3 9.51 222
6-5 0.12 2.93 1.02 G-3 55.8 9.82 21.5
A-1 2.04 2.89 6.22 G-4 8.29 9.33 194
A-2 0.23 2.71 0.28 G-5 66.6 9.22 47.5
A-3 4.66 2.82 16.9 H-1 43.4 13.8 3917
A-4 2.22 2.99 0.04 H-2 43.5 14 238
A-5 0.68 2.92 9.37 H-3 33.4 14 783
B-1 0.11 3.25 0.14 H-4 47.7 16.1 1358
B-2 0.40 3.38 0.53 H-5 36.8 19.3 5.62
B-3 1.42 3.37 0.62
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metaheuristics. The results reported by our approach can be seen in Table 8, which 
are compared to the optimum values reported in Umetani (2017). Additionally the 
CPU-time spent by the authors correspond to 1200 s (resp. 1800 s) for the I class 
instances (resp. J).

Despite not find any optimal solution, our approach behaves well in larger 
instances where both � and the RPD have low values.

4  Conclusions

In this paper we present a GRASP scheme for solving the SCP. Our approach works 
in three phases: construction solutions, applying an ILS process and penalizing col-
umns. In the first phase we basically select and instantiate columns using a set of 
evaluation functions based on a previous research. Unlike other GRASP algorithms, 
we consider all the columns satisfying certain criteria, thus no additional parameter 
is involved here. In the second phase we perform an iterative local search procedure 
to the solution, resetting a part of it and restarting the search from that point. Finally, 
we penalize columns by analyzing the solution reported by the ILS algorithm. We 
have tested our approach using a well known set of benchmark instances, obtaining 
promising results.

Without taking into account the reward/penalty procedure and the time 
limit, our GRASP algorithm is parameter free. Compared to more sophisticated 

Table 7  Detail of the test 
instances

Instance set No. of 
instances

# Rows # Columns Cost range

I 5 1000 50,000 [1, 100]
J 5 1000 100,000 [1, 100]

Table 8  Results of our approach 
using larger SCPs instances

Instance Best-sol Mean � Min RPD (%) Time (s)

I-1 153 161 2.46 157 2.61 1089
I-2 158 165 2.00 163 3.16 918
I-3 153 159 2.63 155 1.31 853
I-4 165 172 2.86 168 1.82 646
I-5 161 169 2.25 165 2.48 640
J-1 128 137 2.98 132 3.13 1122
J-2 130 140 1.45 135 3.85 1722
J-3 128 135 1.58 133 4 1735
J-4 128 136.5 1.41 131 2 1640
J-5 131 140 3.91 134 2 1676
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metaheuristics, we obtain comparable solutions in only a fraction of the time of the 
other approaches.

As a future work we plan to implement a more sophisticated mechanism for con-
trolling the penalty of the columns in order to improve the results in larger instances 
and avoid local optima.
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