
Vol.:(0123456789)

Operational Research (2021) 21:2391–2408
https://doi.org/10.1007/s12351-019-00514-z

1 3

ORIGINAL PAPER

A GRASP‑based scheme for the set covering problem

Victor Reyes1 · Ignacio Araya1

Received: 15 March 2018 / Revised: 2 April 2019 / Accepted: 11 August 2019 /
Published online: 21 August 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
In this work we present a greedy randomized adaptive search procedure (GRASP)-
based strategy for the set covering problem. The goal of this problem is to find a
subset of columns from a zero-one matrix in order to cover all the rows with the
minimal possible cost. The GRASP is a technique that through a sequential and
finite number of steps constructs a solution using a set of simple randomized rules.
Additionally, we also propose an iterated local search and reward/penalty procedures
in order to improve the solutions found by the GRASP. Our approach has been tested
using the well-known 65 non-unicost SCP benchmark instances from OR-library
showing promising results.

Keywords GRASP · Set covering problem · Local search · Metaheuristics

1 Introduction

The non-unicost set covering problem (SCP) is a combinatorial problem that can be
described as the problem of finding a subset of columns x from a m-row, n-column
zero-one matrix A such that they cover all the rows of A at minimal cost. The SCP
can be formulated as follows:

minimize

n∑
j=1

cjxj

subject to

n∑
j=1

aijxj ≥ 1, i ∈ {1, 2,… ,m},

xj ∈ {0, 1}.

 * Victor Reyes
 victor.reyes.r@mail.pucv.cl

 Ignacio Araya
 ignacio.araya@pucv.cl

1 Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile

http://orcid.org/0000-0002-3358-3906
http://crossmark.crossref.org/dialog/?doi=10.1007/s12351-019-00514-z&domain=pdf

2392 V. Reyes, I. Araya

1 3

where cj is a n-size vector that represents the cost of each column in A. The SCP
is an NP-hard problem (Garey and Johnson 1979) that can be used to model many
different problems such as crew scheduling (Bartholdi 1981), data bases (Munagala
et al. 2005), vehicle routing (Bramel and Simchi-Levi 1997), among others. Sev-
eral kind of algorithms have been developed for solving SCP instances. Preliminary
works used exact algorithms, such as branch and bound and branch and cut strate-
gies (Balas and Carrera 1996; Beasley 1987), however large SCP instances were
intractable for them. Greedy algorithms (Chvatal 1979) are a good approach for large
SCP instances, but they rarely generate good solutions because of its myopic and
deterministic nature. Nevertheless, a greedy algorithm proposed in Lan and DePuy
(2006) addresses these problems by incorporating randomization and memory to the
process. Metaheuristics, such as genetic algorithms (Beasley and Chu 1996; Solar
et al. 2002), simulated annealing (Brusco et al. 1999), ant colonies (Crawford et al.
2014), have been the most common approach to solve SCP instances. Also, modern
metaheuristics (García et al. 2017, 2019; Crawford et al. 2016, 2015; Lu and Vasko
2015) have been used in the recent years.

In this work we present a greedy randomized adaptive search procedure
(GRASP) (Resende and Ribeiro 2010) strategy for solving the SCP. GRASP is a
random iterative optimization procedure that works in two phases: a constructive
and a local search phase. At the constructive phase, the procedure uses a randomized
greedy heuristic in order to obtain an initial solution. For instance, unlike determin-
istic greedy heuristics, at each step the procedure selects one of the most promising
columns from a set with size defined by the user. This can be seen as an exploration
phase. On the other hand the local search phase allows the algorithm to exploit the
neighborhood of the initial solution hoping to find much higher quality solutions.
For instance, a swap method can be performed between an instantiated and an unin-
stantiated column.

Besides the SCP, GRASP-based techniques have been used extensively to solve
similar operational research problems, such as the unicost SCP (Bautista and Pereira
2007), the maximum covering problem (Resende 1998), the max−min diversity
problem (Resende et al. 2010), the set-k covering (Pessoa et al. 2013), among oth-
ers. Despite the difference between these problems, the GRASP phases are quite
similar. At the constructive phase most of the approaches construct a limited list of
promising columns, assigning a probability to each of them according to a certain
rule, varying from the number of uncovered rows to more sophisticated functions.
On the other hand, at the local search phase, most techniques are based on 0–1 swap
movements between columns. Additionally, penalizing procedures for the columns
are very common in order to retrieve information at the local search phase.

Meta-RaPS is one of the most well-known GRASP-based solvers used to solve
SCP instances (Lan et al. 2007). At the beginning, Meta-RaPS constructs a solution
by introducing randomness using two rule parameters: %priority and %restriction.
The first one determines the percentage of time that the best feasible element will be
chosen. The remaining time, the element added to the solution will be randomly cho-
sen from a candidate list. The second rule is used to determine the level of accept-
ance and thus the size of the candidate list. A set of rules are used to evaluate each
column. After a feasible solution is constructed, a local search method is a applied

2393

1 3

A GRASP-based scheme for the set covering problem

in order to improve the current solution. A number of columns are removed from the
solution while the other are fixed by using a user-defined parameter. Finally, it uses
adaptive memory mechanisms, that is, save information from the construction phase
in order to obtain better solutions. This last procedure can be seen as elite methods
used in genetic algorithms for the columns.

Unlike other techniques, our approach first selects the uncovered row with the
smallest number of columns that can cover this row. Then we use the same set of
rules as Meta-RaPS for evaluating these columns, instantiating one of them accord-
ing to a probability. The process is repeated until a solution is fully generated. In the
local search phase we perform an iterated local search (ILS) to the found solution.
The process is based in a divide and conquer scheme, i.e, we divide the solution in
two random halves, we reset one of them (perturbation) and restart the construction
from this partial solution. Additionally, we use a reward/penalty procedure to each
column after the second phase is applied. This last procedure is used to improve
the rate of convergence of our approach. We think that the main differences of our
approach, related to other GRASP-based approaches, are:

1. It does not require an additional user-defined parameter for restricting the size of
the list of promising columns.

2. It does not require any parameter besides the reward/penalty procedure.
3. Compared to modern metaheuristics our approach does not demands high tuning

effort of its parameters for an optimal performance.

Although our approach is simpler and more general than other state-of-the-art
algorithms, it still offers competitive and promising results in well-known set of
SCP instances from OR-library and in a new set of large instance SCPs proposed
in Umetani (2017).

The rest of the paper is organized as follows. In Sect. 2 we describe our approach
in detail. In Sect. 3 we show the experimental results using our approach and in
Sect. 4 we present the conclusions and our future work.

2 A GRASP‑based technique for the SCP

In this section we describe in detail our approach for solving and finding quality
solutions for the SCP. The algorithm works in two phases. The first phase consists
in constructing iterative a solution using a set of simple rules for evaluating and
instantiating the columns of the input matrix A. After the solution is constructed we
proceed to repair it by using an iterated local search procedure. In this phase we use
a divide and conquer scheme for dividing the solution, resetting a part of it and start-
ing the search again from this point. The whole procedure is repeated until reaching
a time limit.

Additionally, we use a reward/penalty mechanism for penalizing the columns of
the matrix in order to accelerate the convergence of the whole strategy.

2394 V. Reyes, I. Araya

1 3

2.1 Constructing a random solution

In this section we describe how our algorithm constructs a solution. First, we
construct a map structure that maps each row to the set of columns that cover
it. We sort this mapping from the lowest to the highest number of columns. For
example, if we use the following A input matrix and the vector cost c:

We obtain the following map:

The rows are then covered in the order disposed by the structure. For each uncov-
ered row, we instantiate one column to cover it. For rows that may be covered by
only one column, we simply instantiate the corresponding column (see Sect. 2.4).
For each row with two or more columns, we evaluate its columns j by using a func-
tion f(j) selected randomly from a set of six evaluation functions proposed in Lan
and DePuy (2006): cj∕pj , cj∕ log (1 + pj) , cj∕

√
pj , cj∕p2j ,

√
cj∕pj , cj∕pj log pj ; where

cj is the cost of the column j and pj represents the number of rows that may be cov-
ered by the column j (not counting the already covered rows). The idea of such
amount of functions is to maintain diversity among the solutions constructed in this
phase. Once we evaluate the columns, we propose two criteria to select the column
to instantiate:

– Instantiate the column j with probability proportional to −f (j)
– Instantiate the column j minimizing f(j)

Note that, according to the evaluation functions and the selection criteria, col-
umns that covers more rows with a low cost are more likely to be instantiated.

The first criterion is applied with a probability of 1

#cols
 and the second one with

a probability of 1 − 1

#cols
 , where #cols is the number of columns that can cover the

current row. After instantiating a column, all the rows covered by this column are
also removed from the map (2).

Going back to our example, we have to select one of the columns (2 or 3)
in order to cover the row r2 [see (2)]. Suppose that the function f (j) = cj∕pj is
selected, thus evaluating the columns we obtain f (2) = 1 and f (3) = 1.5 . The first

(1)A =

⎡
⎢⎢⎢⎢⎣

1 0 0 1 0 0 1

0 1 1 0 0 0 0

0 1 0 1 1 0 0

1 0 1 0 1 0 1

0 0 0 1 1 0 1

⎤
⎥⎥⎥⎥⎦
; c =

�
1 2 3 4 5 6 2

�

(2)

r2 → 2, 3

r1 → 1, 4, 7

r3 → 2, 4, 5

r5 → 4, 5, 7

r4 → 1, 3, 5, 7

2395

1 3

A GRASP-based scheme for the set covering problem

selection criterion would select the column 2 with a probability of 0.6 and the
column 3 with a probability 0.4. On the other hand, the second criterion would
select the second column.

Algorithm 1 shows the procedure related to this phase, where:

– The method create-pairs generates the sorted map (2) by using the input
matrix A.

– The while loop is performed until the map is empty, i.e., all the rows are cov-
ered.

– The procedure random-function selects one of the six random evaluation func-
tions.

1 procedure random-greedy (A,c) out: x
2 x ← (0, 0, ...);
3 map ← create-map(A);
4 while map is not empty do
5 cols ← first(map);
6 f ←random-function();
7 if rand(0, 1) ≤ 1

size(cols) then
8 j ← select j ∈ cols with probability

proportional to −f(j);
9 else

10 j ← select j ∈ cols minimizing f(j);
11 end
12 remove each element in map containing j;
13 xj ← 1;
14 end
15 return x;
16 end.

2.2 Iterated local search (ILS)

Although using the procedure random-greedy leads to quality solutions, there is still
a considerable gap between the solution fitness and optimum (see Fig. 1). Thus, we
propose a method for improving the generated solutions.

Algorithm 2 shows the procedure. The idea is to take the solution and reset a ran-
dom part of it, i.e. setting some variables xj to 0, and solving the problem again from
this state. To do that, first we group randomly the variables into two lists: L1 and L2
(line 6). These lists are also put into a queue of lists Q. We pop a list L from Q and
each xj in this list is set to 0. Then, we reuse the procedure random-greedy to com-
plete the solution. We apply the procedure with some minor modifications:

– The columns in the map are restricted to the corresponding variables in L.
– In each iteration we simply select the column minimizing the value cj∕pj , i.e.,

lines 6–11 are replaced by line 10 with f (j) = cj∕pj.

2396 V. Reyes, I. Araya

1 3

If the new generated solution x′ is better than the previous one, then we replace the
previous solution and the variables in L are grouped into two new lists. These new
lists are pushed into Q. If the new solution x′ does not show any improvements to the
solution, it is simply discarded. Then the process is repeated until Q is empty. If any
of the lists of the current queue Q produces an improvement of the solution, then the
whole process is repeated.

1 procedure ILS (A,x); out: x
2 Q ← {}; improvement← true;
3 while improvement do
4 improvement← false;
5 L ← {1, 2, ...,#cols(A)};
6 {L1, L2} ← grouping(L);
7 push(Q,L1);
8 push(Q,L2);
9 while Q is not empty do

10 L ←pop(Q);
11 for each i ∈ L, xj = 0;
12 x′ ← random-greedy∗(A, c);
13 if cost(x′) < cost(x) then
14 x ← x′;
15 {L1, L2} ← grouping(L);
16 push(Q,L1);
17 push(Q,L2);
18 improvement← true;
19 end
20 end
21 end
22 end.

2.3 The reward/penalty procedure

As is explained above, the construction and ILS procedures are repeated until a time
limit is reached. Then, the best solution found so far is returned. One issue related
to this strategy is that no information about the good or bad decisions is extracted or
used during the search.

Thus, in this section we propose a simple reward—penalty procedure for extract-
ing and using information during the search. This mechanism hopefully will allow
us to improve the process for generating quality solutions.

Our reward/penalty procedure simply assigns a penalty to each column of the
matrix. At the beginning of the search, the penalty of each column is initialized to 1.
If the method ILS improves the solution quality, then the penalties are updated in the
following way:

– If the column j is instantiated in the last reported solution, then its penalty pj
decreases in 𝛼 > 0.

– If the column j is not instantiated in the last reported solution, then its penalty pj
increases in 𝛽 > 0

2397

1 3

A GRASP-based scheme for the set covering problem

Finally, instead of using the value of f(j), we use pj ∗ f (j) for selecting the next col-
umn in the methods random-greedy and random-greedy∗ . Note that high values of pj
decreases the likelihood of selecting the column j and vice versa. In order to avoid
local optima we have limited the value of each penalty to the interval [min, max].

2.4 Pre‑processing

In order to reduce the size of the different SCP instances, we used two well known
pre-processing procedures before the actual search: column domination and column
inclusion (Fisher and Kedia 1990).

2.4.1 Column domination

If the set of rows covered by a column j is also covered by another column j′ with a
lower cost, then we said that j is dominated by j′ . Dominated columns are removed
from A.

2.4.2 Column inclusion

If a row is only covered by one column, then this column is included in every
solution.

3 Experiments

Our proposal has been implemented in C++,1 on an 2.4GHz CPU Intel Core
i7-4700MQ with 8GB RAM computer using Ubuntu 16.04 LTS x86_64. In order to
test the proposal, we used the 65 non-unicost SCP instances from OR-library2 which
are described in Table 1. Optimal solutions are known for all of these instances. The
results of the experiments are evaluated using: the mean value, the standard devia-
tion and the relative percentage deviation (RPD). The RPD quantifies the deviation
of the objective value x from the best known value x∗ . This value is computed as
follows:

Strategies were run 30 times on each instance. On each table we show the best
known solution (column Best-sol), the mean cost of the solutions found by our
approach (column mean), the standard deviation of the costs (column �), the mini-
mum cost found considering all the runs (column min) and the RPD related to the

RPD =
(
x − x∗

x∗

)
× 100

1 https ://githu b.com/varey esr/GRASP -SCP.
2 http://peopl e.brune l.ac.uk/~mastj jb/jeb/orlib /scpin fo.html.

https://github.com/vareyesr/GRASP-SCP
http://people.brunel.ac.uk/%7emastjjb/jeb/orlib/scpinfo.html

2398 V. Reyes, I. Araya

1 3

minimum cost. The algorithm stops when 20 seconds pass since the last best solu-
tion was found.

3.1 Measuring the solution quality from the construction phase

As a first experiment, we would like to measure the solution quality (cost) generated
by our random greedy approach.

In Fig. 1 we show the RPD corresponding to the random greedy for each of the
65 instances. As it can be seen the greedy by itself can not reach to any optimum
solution in these instances. However, we expect that the ILS algorithm can improve
the generated solutions, converging to the optimum in a reasonable time.

3.2 Measuring the impact of the ILS algorithm

In this section we show the improving provided by the ILS process.

Table 1 Detail of the test
instances

Instance set No. of
instances

Rows # Columns Cost range

4 10 200 1000 [1, 100]
5 10 200 2000 [1, 100]
6 5 200 1000 [1, 100]
A 5 300 3000 [1, 100]
B 5 300 3000 [1, 100]
C 5 400 4000 [1, 100]
D 5 400 4000 [1, 100]
E 5 500 5000 [1, 100]
F 5 500 5000 [1, 100]
G 5 1000 10,000 [1, 100]
H 5 1000 10,000 [1, 100]

Fig. 1 Quality of solutions generated by the random greedy

2399

1 3

A GRASP-based scheme for the set covering problem

As a first experiment we show the importance of using a grouping list of size 2,
as is shown in the algorithm 2. In Fig. 2 we show the comparison between using
2,3,4 and 5 grouping lists.

From this result, we can see that increasing the number of initial partitions has a
negative outcome on the quality of the solution provided from our approach. This
can be explained because as we increment the number of initial partitions the ILS
process has less impact as a more local search is performed, i.e., it is more difficult
to leave local optima. Additionally, we also report that the convergence is in average
a 25% slower w.r.t. a grouping of size 2.

Table 2 reports the results using the construction and ILS process explained in
Sect. 2, using a grouping list of size 2. Note that the first number or letter of each
instance corresponds to the set. The best results were obtained when three of the six
evaluation functions were used (i.e., cj∕pj , cj∕ log (1 + pj) and cj∕

√
pj),

In 47/65 instances the RPD is equal to 0. Also for 19 of these instances we report
a � equal to 0, which means that we reach the optimal value in each of the 30 runs.
On the other hand, for the rest of the instances, we report results that are very close
to the optimal costs. Finally, note that the standard deviation is small for all the
instances, highlighting the stability of the approach.

In Fig. 3 we show a comparison between using and not using the ILS algorithm.
Note that using this algorithm outperforms significantly the previous results.

3.3 Including the reward/penalty procedure

In this section we include the reward/penalty procedure. At the beginning of the
search we set the penalty pj to 1 for each column j. Additionally, pj can only take
values between min = 0.5 and max = 1.5 . If some pj is greater than 1.5 (resp. lower
than 0.5) we set this penalty to 1.5 (resp 0.5). Several configuration were tested, but
the best results were obtained using the values of � = 0.05 and � = 0.01

Fig. 2 Comparison of different sizes of repairing lists. The y-axis shows the accumulative RPD value
while the x-axis indicates to the instance set

2400 V. Reyes, I. Araya

1 3

This procedure shows improvements in both, the quality of the solutions and the
time of convergence.

The results can be seen in the Table 3. In 51/65 instances we get RPD equal to
0 (i.e., two more than before). We also obtain a great improvement in terms of the
standard deviation. From the 51 instances obtaining a RPD equal to 0, in 28 we
report � = 0 and we can observe an important reduction in the rest of them.

Table 2 Results using the ILS procedure

We highlight in bold the instances where the RPD is equal to 0

Instance Best-sol Mean � Min RPD (%) Instance Best-sol Mean � Min RPD (%)

4-1 429 429.53 0.19 429 0 B-4 79 79 0 79 0
4-2 512 513.07 0.37 512 0 B-5 72 72 0 72 0
4-3 516 516.1 0.11 516 0 C-1 227 232.2 0.56 230 1.32
4-4 494 494.17 0.14 494 0 C-2 219 222.5 0.51 219 0
4-5 512 512.93 0.38 512 0 C-3 243 245.57 0.40 244 0.41
4-6 560 560 0 560 0 C-4 219 220.1 0.30 219 0
4-7 430 432 0 432 0.47 C-5 215 217.53 0.38 215 0
4-8 492 492.1 0.11 492 0 D-1 60 60.77 0.16 60 0
4-9 641 644.67 0.49 641 0 D-2 66 66.43 0.19 66 0
4-10 514 514 0 514 0 D-3 72 72.53 0.25 72 0
5-1 253 255.3 0.34 253 0 D-4 62 62 0 62 0
5-2 302 305.2 0.35 303 0.33 D-5 61 61 0 61 0
5-3 226 226.73 0.37 226 0 E-1 29 29 0 29 0
5-4 242 242.4 0.19 242 0 E-2 30 30.7 0.22 30 0
5-5 211 212 0 212 0.47 E-3 27 27.9 0.11 27 0
5-6 213 215 0 215 0.94 E-4 28 28.27 0.17 28 0
5-7 293 293 0 293 0 E-5 28 28 0 28 0
5-8 288 288 0 288 0 F-1 14 14.03 0.07 14 0
5-9 279 279 0 279 0 F-2 15 15 0 15 0
5-10 265 265 0 265 0 F-3 14 14.83 0.14 14 0
6-1 138 138.13 0.19 138 0 F-4 14 14.13 0.13 14 0
6-2 146 146 0 146 0 F-5 13 13.97 0.07 13 0
6-3 145 145 0 145 0 G-1 176 185.17 0.87 182 3.41
6-4 131 131 0 131 0 G-2 154 161.6 0.60 159 3.25
6-5 161 161 0 161 0 G-3 166 175.3 0.59 172 3.61
A-1 253 254.6 0.30 253 0 G-4 168 177.83 0.77 173 2.98
A-2 252 254.17 0.46 252 0 G-5 168 176.23 0.71 171 1.79
A-3 232 235 0.33 234 0.86 H-1 63 67.57 0.38 65 3.17
A-4 234 234.7 0.17 234 0 H-2 63 66.57 0.34 65 3.17
A-5 236 237.23 0.16 237 0.42 H-3 59 62.47 0.35 61 3.39
B-1 69 69 0 69 0 H-4 58 61.5 0.31 59 1.72
B-2 76 76 0 76 0 H-5 55 57.83 0.35 56 1.82
B-3 80 80 0 80 0

2401

1 3

A GRASP-based scheme for the set covering problem

In Fig. 4 we include a comparison between our complete approach and the tech-
nique without the reward/penalty procedure. Note that the most important reduc-
tions occur in the last 10 instances, the hardest ones.

3.4 Comparing to modern metaheuristics

In this section we include a comparison between modern metaheuristics used in
the last few years to deal with the SCP. The metaheuristics used for this compari-
son are: binary cuckoo search (BCS), binary black hole (BBH), the binary shuffled
frog leaping algorithm (BSFLA) (Soto et al. 2017; Crawford et al. 2015), teaching-
learning based optimization (TLBO) (Lu and Vasko 2015) and the K-means transi-
tion algorithm for the BBH (KMTA-BBH) (García et al. 2019). Note that, unlike
our approach, these metaheuristics use sophisticated mechanisms and demands high
tuning effort of its parameters for an optimal performance.

Table 4 reports the comparison between the previous techniques using the set
problems E, F, G and H of the OR-library. Compared to these modern metaheuris-
tics our approach behaves well, obtaining in 16/20 instances the best results (only
being surpassed by KMTA-BBH with 19/20).

In Fig. 5 we include the comparison between our complete approach (GRASP)
and some of the previous metaheuristics using the accumulative RPD. From the
figure our approach outperforms the strategies BBH and BSFLA, and it performs
similar to BCS. Our approach has a good performance in the instances B,C,D,E,
however as it can be seen, in the last two group of instances BCS and GRASP have
comparable performances.

In order to confirm the effectiveness of our approach, we use the ranked based
statistical analysis. It consist in assigning ranks to each algorithm based on the
performance. The performance of an algorithm a1 is considered better than a2 ; if
a1 obtains an average minimum objective function than a2 in a shortest compu-
tational time. A rank 1 is assigned to the best performing algorithm, a rank 2 is
assigned to the second best perform algorithm and so on. The average ranks for

Fig. 3 Comparison of our approach using and not using the ILS process. The y-axis shows the accumula-
tive RPD value while the x-axis indicates to the instance set

2402 V. Reyes, I. Araya

1 3

the algorithms considered are: GRASP= 1.45 , BCS = 1.75 , BBH = 3.05 , BSFLA
= 3.75 . According to this ranking, GRASP is the best performing algorithm
among these techniques, followed by BCS, then BBH and BSFLA achieving the
worst results. To analyze the statistical significance of differences between the
evaluated ranks, we make use of the Nemenyi post-hoc test (Nemenyi 1963).

Table 3 Results using the ILS process

We highlighted in bold the instances where the RPD is equal to 0

Instance Best-sol Mean � Min RPD (%) Instance Best-sol Mean � Min RPD (%)

4-1 429 429.87 0.13 429 0 B-4 79 79 0 79 0
4-2 512 512 0 512 0 B-5 72 72 0 72 0
4-3 516.2 516.2 0.25 516 0 C-1 227 229.83 0.44 228 0.44
4-4 494 494 0 494 0 C-2 219 221.8 0.25 221 0.91
4-5 512 512.43 0.31 512 0 C-3 243 243.83 0.24 243 0
4-6 560 560 0 560 0 C-4 219 219.47 0.21 219 0
4-7 430 432 0 432 0.47 C-5 215 216.4 0.25 215 0
4-8 492 492 0 492 0 D-1 60 60.73 0.17 60 0
4-9 641 643.2 0.37 641 0 D-2 66 66.1 0.11 66 0
4-10 514 514 0 514 0 D-3 72 72 0 72 0
5-1 253 255.23 0.35 253 0 D-4 62 62 0 62 0
5-2 302 304.73 0.43 303 0.33 D-5 61 61 0 61 0
5-3 226 226.57 0.32 226 0 E-1 29 29 0 29 0
5-4 242 242.43 0.19 242 0 E-2 30 30.5 0.19 30 0
5-5 211 212 0 212 0.47 E-3 27 27.83 0.14 27 0
5-6 213 215 0 215 0.94 E-4 28 28.1 0.11 28 0
5-7 293 293 0 293 0 E-5 28 28 0 28 0
5-8 288 288 0 288 0 F-1 14 14.2 0.15 14 0
5-9 279 279 0 279 0 F-2 15 15 0 15 0
5-10 265 265 0 265 0 F-3 14 14.77 0.16 14 0
6-1 138 138 0 138 0 F-4 14 14.2 0.15 14 0
6-2 146 146 0 146 0 F-5 13 13.77 0.16 13 0
6-3 145 145 0 145 0 G-1 176 177.2 0.28 176 0
6-4 131 131 0 131 0 G-2 154 157.47 0.27 156 1.30
6-5 161 161 0 161 0 G-3 166 170.97 0.39 169 1.81
A-1 253 255.17 0.28 254 0 G-4 168 174.27 0.38 172 2.38
A-2 252 252.6 0.27 252 0 G-5 168 172.5 0.4 170 1.19
A-3 232 234.67 0.30 233 0.43 H-1 63 65.37 0.27 64 1.59
A-4 234 234.03 0.07 234 0 H-2 63 65 0.14 64 1.59
A-5 236 237.17 0.20 236 0 H-3 59 60.97 0.07 60 1.69
B-1 69 69 0 69 0 H-4 58 59.57 0.25 58 0
B-2 76 76 0 76 0 H-5 55 55.83 0.22 55 0
B-3 80 80 0 80 0

2403

1 3

A GRASP-based scheme for the set covering problem

This test is useful to determinate if the performance of two algorithms significantly
differs or not. It considers the performance of two algorithms significantly different if
their corresponding average ranks differ by at least a specific threshold critical differ-
ence. Considering a significance level of 1% level of significance the critical difference

Fig. 4 Comparison between our approach using the ILS process and including the reward/penalty proce-
dure. The y-axis shows the accumulative RPD value while the x-axis indicates to the instance set

Table 4 Comparison between our approach and modern metaheuristics in a subset of the OR-library

For each instance, we highlighted in bold the best solution

Instance Best-sol GRASP BCS BBH BSFLA TLBO KMTA-BBH

E-1 29 29 29 29 29 29 29
E-2 30 30 31 31 31 30 30
E-3 27 27 28 28 28 28 27
E-4 28 28 30 29 29 28 28
E-5 28 28 28 28 28 28 28
F-1 14 14 14 14 15 14 14
F-2 15 15 15 15 15 15 15
F-3 14 14 15 16 16 14 14
F-4 14 14 15 15 15 15 14
F-5 13 13 14 14 15 13 13
G-1 176 176 176 179 182 179 176
G-2 154 156 156 158 161 156 155
G-3 166 169 169 169 173 168 166
G-4 168 172 170 170 173 172 170
G-5 168 170 170 168 174 168 168
H-1 63 64 64 66 68 64 64
H-2 63 64 64 67 66 64 64
H-3 59 60 61 65 62 61 60
H-4 58 58 59 63 63 59 59
H-5 55 55 56 62 59 56 55

2404 V. Reyes, I. Araya

1 3

value is 1.05. In Table 5 shows the difference between the average ranks of the algo-
rithms. From this table we infer that our GRASP approach and BCS have comparable
performance, and that BBH and BSFLA are outperformed by our approach.

3.5 CPU times

In this final section we report the mean CPU times in seconds spent by our approach,
BCS and Meta-RaPS for all the benchmark instances used in this work. The results
are shown in Table 6. Our approach has good results compared to the other strategies,
obtaining the best solution from Table 3 in less than 1 s in 39 instances. However in
the hard instances (G and H) the algorithm requires a good amount of time to obtain
good results. Instances G-1, G-2 and G-3 are the ones with the worst results. In 37/65
instances our approach converge faster.

3.6 Testing with new large‑scale SCP instances

For today standards, the previous instances might not be large enough to prove the
efficiency of our approach. In Umetani (2017) the author uses a SCP-generator to
create a new set of larger SCP instances and propose a data mining approach for
reducing the search space of local search algorithms. By generating a graph of the

Fig. 5 Comparison between our approach and some modern metaheuristics

Table 5 Pairwise difference between the average ranks of the algorithms

Critical difference = 1.05 for a significance level of 1% for the Nemenyi post-hoc test

Algorithm (rank) GRASP (1.45) BCS (1.75) BBH (3.05) BSFLA (3.75)

GRASP – 0.30 1.60 2.30
BCS – – 1.30 2.00
BBH – – – 0.70
BSFLA – – – –

2405

1 3

A GRASP-based scheme for the set covering problem

problem, the authors can identify promising pairs (resp. quartets) of variables in
order to apply a 2-flip (resp. 4-flip) operation between them. Note that this approach
is only useful in large instance problems, as the graph-related procedure is highly
CPU-time demanding. Some of the benchmarks used in this work are described
in Table 7. As it can be seen, these instances are considerably larger than the OR-
library ones. To our knowledge, these new instances have not been tested by other

Table 6 Cpu times in seconds for our grasp-based approach, binary cuckoo search and Meta-RaPS

For each instance, we highlighted in bold the best CPU time

Instance GRASP BCS Meta-RaPS Instance GRASP BCS Meta-RaPS

4-1 0.04 1.92 1.36 B-4 1.06 3.39 2.25
4-2 0.29 1.92 0.24 B-5 0.43 3.45 0
4-3 0.44 2.15 0.29 C-1 1.99 3.27 0.43
4-4 0.22 2.07 0.39 C-2 4.69 3.39 12.8
4-5 0.08 2.14 0.90 C-3 4.37 3.39 26.2
4-6 0.07 2.09 0.10 C-4 2.97 3.35 24.2
4-7 0.16 1.90 0.04 C-5 1.33 3.49 1.79
4-8 0.07 1.95 1.46 D-1 0.74 4.68 3.13
4-9 0.47 1.95 3.47 D-2 4.12 4.70 13.5
4-10 0.10 2.16 0.08 D-3 0.77 4.69 1.31
5-1 0.51 2.01 1.55 D-4 5.43 5.69 0.20
5-2 0.22 2.08 0.59 D-5 1.44 5.74 0.29
5-3 0.22 2.19 1.14 E-1 0.13 5.82 0.73
5-4 0.47 2.21 0.32 E-2 1.30 4.81 46.1
5-5 0.05 2.02 0.33 E-3 4.58 4.91 5.95
5-6 0.05 2.30 0.14 E-4 0.89 4.84 39.6
5-7 0.15 2.14 1.03 E-5 0.30 4.76 0.81
5-8 0.04 2.13 0.08 F-1 0.20 8.36 4.29
5-9 0.10 2.05 0.04 F-2 0.08 9.86 3.80
5-10 0.06 2.14 0.03 F-3 1.29 9.82 1.84
6-1 0.09 2.81 0.25 F-4 0.92 9.23 5.44
6-2 0.04 2.84 0.02 F-5 0.04 8.82 33.2
6-3 0.19 2.85 0.02 G-1 80.3 10.9 298
6-4 0.04 2.90 0.34 G-2 59.3 9.51 222
6-5 0.12 2.93 1.02 G-3 55.8 9.82 21.5
A-1 2.04 2.89 6.22 G-4 8.29 9.33 194
A-2 0.23 2.71 0.28 G-5 66.6 9.22 47.5
A-3 4.66 2.82 16.9 H-1 43.4 13.8 3917
A-4 2.22 2.99 0.04 H-2 43.5 14 238
A-5 0.68 2.92 9.37 H-3 33.4 14 783
B-1 0.11 3.25 0.14 H-4 47.7 16.1 1358
B-2 0.40 3.38 0.53 H-5 36.8 19.3 5.62
B-3 1.42 3.37 0.62

2406 V. Reyes, I. Araya

1 3

metaheuristics. The results reported by our approach can be seen in Table 8, which
are compared to the optimum values reported in Umetani (2017). Additionally the
CPU-time spent by the authors correspond to 1200 s (resp. 1800 s) for the I class
instances (resp. J).

Despite not find any optimal solution, our approach behaves well in larger
instances where both � and the RPD have low values.

4 Conclusions

In this paper we present a GRASP scheme for solving the SCP. Our approach works
in three phases: construction solutions, applying an ILS process and penalizing col-
umns. In the first phase we basically select and instantiate columns using a set of
evaluation functions based on a previous research. Unlike other GRASP algorithms,
we consider all the columns satisfying certain criteria, thus no additional parameter
is involved here. In the second phase we perform an iterative local search procedure
to the solution, resetting a part of it and restarting the search from that point. Finally,
we penalize columns by analyzing the solution reported by the ILS algorithm. We
have tested our approach using a well known set of benchmark instances, obtaining
promising results.

Without taking into account the reward/penalty procedure and the time
limit, our GRASP algorithm is parameter free. Compared to more sophisticated

Table 7 Detail of the test
instances

Instance set No. of
instances

Rows # Columns Cost range

I 5 1000 50,000 [1, 100]
J 5 1000 100,000 [1, 100]

Table 8 Results of our approach
using larger SCPs instances

Instance Best-sol Mean � Min RPD (%) Time (s)

I-1 153 161 2.46 157 2.61 1089
I-2 158 165 2.00 163 3.16 918
I-3 153 159 2.63 155 1.31 853
I-4 165 172 2.86 168 1.82 646
I-5 161 169 2.25 165 2.48 640
J-1 128 137 2.98 132 3.13 1122
J-2 130 140 1.45 135 3.85 1722
J-3 128 135 1.58 133 4 1735
J-4 128 136.5 1.41 131 2 1640
J-5 131 140 3.91 134 2 1676

2407

1 3

A GRASP-based scheme for the set covering problem

metaheuristics, we obtain comparable solutions in only a fraction of the time of the
other approaches.

As a future work we plan to implement a more sophisticated mechanism for con-
trolling the penalty of the columns in order to improve the results in larger instances
and avoid local optima.

Acknowledgements This work is supported by the Fondecyt Project 1160224.

References

Balas E, Carrera MC (1996) A dynamic subgradient-based branch-and-bound procedure for set covering.
Oper Res 44(6):875–890

Bartholdi JJ III (1981) A guaranteed-accuracy round-off algorithm for cyclic scheduling and set covering.
Oper Res 29(3):501–510

Bautista J, Pereira J (2007) A grasp algorithm to solve the unicost set covering problem. Comput Oper
Res 34(10):3162–3173

Beasley JE (1987) An algorithm for set covering problem. Eur J Oper Res 31(1):85–93
Beasley JE, Chu PC (1996) A genetic algorithm for the set covering problem. Eur J Oper Res

94(2):392–404
Bramel J, Simchi-Levi D (1997) On the effectiveness of set covering formulations for the vehicle routing

problem with time windows. Oper Res 45(2):295–301
Brusco M, Jacobs L, Thompson G (1999) A morphing procedure to supplement a simulated annealing

heuristic for cost- and coverage-correlated set-covering problems. Ann Oper Res 86:611–627
Chvatal V (1979) A greedy heuristic for the set-covering problem. Math Oper Res 4(3):233–235
Crawford B, Soto R, Cuesta R, Paredes F (2014) Application of the artificial bee colony algorithm for

solving the set covering problem. Sci World J 2014:1–8
Crawford B, Soto R, Peña C, Palma W, Johnson F, Paredes F (2015) Solving the set covering problem

with a shuffled frog leaping algorithm. In: Asian conference on intelligent information and database
systems. Springer, pp 41–50

Crawford B, Soto R, Riquelme-Leiva M, Peña C, Torres-Rojas C, Johnson F, Paredes F (2015) Modified
binary firefly algorithms with different transfer functions for solving set covering problems. In: Soft-
ware engineering in intelligent systems. Springer, pp 307–315

Crawford B, Soto R, Córdova J, Olguín E (2016) A nature inspired intelligent water drop algorithm and
its application for solving the set covering problem. In: Artificial intelligence perspectives in intel-
ligent systems. Springer, pp 437–447

Fisher ML, Kedia P (1990) Optimal solution of set covering/partitioning problems using dual heuristics.
Manage Sci 36(6):674–688

García J, Crawford B, Soto R, García P (2017) A multi dynamic binary black hole algorithm applied to
set covering problem. In: International conference on harmony search algorithm. Springer, pp 42–51

García J, Crawford B, Soto R, Astorga G (2019) A clustering algorithm applied to the binarization of
swarm intelligence continuous metaheuristics. Swarm Evol Comput 44:646–664

Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness.
Freeman, San Francisco

Lan G, DePuy GW (2006) On the effectiveness of incorporating randomness and memory into a multi-
start metaheuristic with application to the set covering problem. Comput Ind Eng 51(3):362–374

Lan G, DePuy GW, Whitehouse GE (2007) An effective and simple heuristic for the set covering prob-
lem. Eur J Oper Res 176(3):1387–1403

Lu Y, Vasko FJ (2015) An or practitioner’s solution approach for the set covering problem. Int J Appl
Metaheuristic Comput (IJAMC) 6(4):1–13

Munagala K, Babu S, Motwani R, Widom J, Thomas E (2005) The pipelined set cover problem. In:
ICDT, vol 5. Springer, pp 83–98

Nemenyi P (1963) Distribution-free multiple comparisons. Unpublished Ph.D. dissertation, Princeton
University, New Jersey, 73 pp

2408 V. Reyes, I. Araya

1 3

Pessoa LS, Resende MG, Ribeiro CC (2013) A hybrid lagrangean heuristic with grasp and path-relinking
for set k-covering. Comput Oper Res 40(12):3132–3146

Resende MG (1998) Computing approximate solutions of the maximum covering problem with grasp. J
Heuristics 4(2):161–177

Resende MG, Ribeiro CC (2010) Greedy randomized adaptive search procedures: advances, hybridiza-
tions, and applications. In: Handbook of metaheuristics. Springer, pp 283–319

Resende MG, Martí R, Gallego M, Duarte A (2010) Grasp and path relinking for the max–min diversity
problem. Comput Oper Res 37(3):498–508

Solar M, Parada V, Urrutia R (2002) A parallel genetic algorithm to solve the set-covering problem.
Comput Oper Res 29(9):1221–1235

Soto R, Crawford B, Olivares R, Barraza J, Figueroa I, Johnson F, Paredes F, Olguín E (2017) Solving the
non-unicost set covering problem by using cuckoo search and black hole optimization. Nat Comput
16(2):213–229

Umetani S (2017) Exploiting variable associations to configure efficient local search algorithms in large-
scale binary integer programs. Eur J Oper Res 263(1):72–81

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	A GRASP-based scheme for the set covering problem
	Abstract
	1 Introduction
	2 A GRASP-based technique for the SCP
	2.1 Constructing a random solution
	2.2 Iterated local search (ILS)
	2.3 The rewardpenalty procedure
	2.4 Pre-processing
	2.4.1 Column domination
	2.4.2 Column inclusion

	3 Experiments
	3.1 Measuring the solution quality from the construction phase
	3.2 Measuring the impact of the ILS algorithm
	3.3 Including the rewardpenalty procedure
	3.4 Comparing to modern metaheuristics
	3.5 CPU times
	3.6 Testing with new large-scale SCP instances

	4 Conclusions
	Acknowledgements
	References

