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Abstract
The closer the supply chain network (SCN) modeling to the real world, the more 
accurate decisions can be made. In this regard, it is essential to take into account 
of the factors in the real world such as the formation of the queuing system in the 
producers of the SCN, and batch transportation and processing (BTP) approaches, 
as well as the operational and disruption risks. In this research, batch sizes are con-
sidered equal to the potential transportation capacity of vehicles. The present paper 
considers simultaneous optimization of total cost, total time and average total num-
ber of commodities dispatched from any echelon of the SCN to the next echelon on 
a five-echelon multi-period SCN including suppliers, manufacturing plants, assem-
blers, distribution centers, and customers. To deal with the disruption risk, the reli-
ability of facilities in sending the commodities is computed based on the exponential 
distribution and is maximized in the third objective function. Additionally, to tackle 
the operational risk of the problem, we convert the proposed tri-objective mathe-
matical model into the robust mathematical model using Ben-Tal method (ρ-Robust 
method). Then five multi-objective decision-making (MODM) solution methods are 
selected to solve the problem. The results of these five methods are compared and 
the best MODM solution method is selected based on the objective function values 
and the CPU times. Finally, a novel solution is proposed to find the dominant and 
dominated objective functions in multi-objective models based on the uncertainty 
level (⍴) of the model.
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1 Introduction

Nowadays, due to the widespread human needs and the existence of competitive 
markets, there is an urging necessity to meet needs in the best way (i.e., shortest 
time, lowest cost, and best quality). In this regard, the supply chain management 
plays an important role in enhancing the customers’ satisfaction.

In other words, there are numerous companies that offer various products and 
services and there is a fierce competition between them to attract the customers. 
In this competitive market companies offering appropriate solutions for the cus-
tomers’ satisfaction will be successful. One of these solutions is that the custom-
ers should have access to the necessary commodities with the lowest prices and 
the distribution centers. This is where the important presentation of appropriate 
solutions in relation to the SCN comes up. The flows of primary pieces and fin-
ished products throughout the SCN should be performed in such a way that the 
above-mentioned goals are achieved.

In this research, the considered SCN is opened-loop and has five echelon con-
taining suppliers, manufacturing plants, assemblers, distribution centers, and cus-
tomers. The closer SCN modeling to the real world, the more accurate decisions 
can be made. In this regard, we attempt to introduce a more realistic model for 
supply chain network design (SCND) problem by considering the existing fac-
tors in the real world such as operational and disruption risks and formation of 
the queuing system in SCN producers. Our main motivation is to propose a novel 
model for SCND, unlike the classical supply chain problems.

In the classical supply chain problems, the aim was sending the products from 
an echelon of SCN to another in order to minimize the total cost. For example, 
Peidro et al. (2009) proposed a fuzzy mathematical programming model for sup-
ply chain planning. The objective function of the model was minimizing variable 
production cost, overtime cost of the resource, under-time cost of the resource, 
transport cost, inventory holding cost, and demand backlog cost. In another 
research, Keyvanshokooh et al. (2015) applied Bender’s decomposition algorithm 
for designing a closed-loop SCN. The objective function of the model was maxi-
mizing profit.

However, the mutual relations between various components of SCN with risk 
and uncertainty complicate decision-making and necessitate setting new goals 
(Pasandideh and Akhavan Niaki 2014).

Tang (2006) divided the supply chain risks into operational and disruption 
risks based on the source of uncertainties (Govindan et al. 2017, Goh et al. 2007; 
Kleindorfer and Saad 2005; Zhalechian et al. 2018; Ghavamifar et al. 2018, and 
Sabouhi et  al. 2018). In each echelon of SCN, such probable reasons as natu-
ral disasters (e.g., adverse weather conditions, earthquakes, and floods) or inten-
tional/unintentional human actions (e.g., war and terrorist attacks) might cause 
problems in dispatching the needed commodities from an echelon of SCN to 
the next echelon (Behdani (2013) and Snyder et  al. (2016)). These events have 
undesired effects on the supply chain’s goal and performance. Recently, Govin-
dan et  al. (2017) provided a review paper on the SCND under uncertainty and 
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attributed it to the operational and disruption risks. Studies about SCND under 
disruption risk can be divided into business and non-business supply chains 
(Govindan et al. 2017). The business supply chain aims to design a supply chain 
that can perform well even after disruption occurrence. On the other hand, the 
goal of non-business supply chain, which also known as humanitarian supply 
chain, is to deliver relief items to the established demand points after disasters.

In the field of non-business supply chains, Noyan (2012) investigated the prob-
lem of determining the response facility locations and the inventory levels of the 
relief supplies at each facility in the presence of uncertainty in demand and the dam-
age level of the disaster network. They considered a risk-averse two-stage stochastic 
programming model and specified the conditional-value-at-risk (CVaR) as the risk 
measure. Jabbarzadeh et al. (2012) investigated an integrated SCND problem with 
multiple distribution centers subjected to various types of disruptions. The problem 
was formulated as a mixed-integer non-linear programming (MINLP) model, which 
determined the location of distribution centers and the assignments of customers to 
distribution centers. They used a scenario-based modeling approach to formulate 
the disruptions at the distribution centers, in which each scenario specifies the per-
centage of disruptions for each distribution center. Liu and Guo (2014) proposed a 
stochastic optimization model for post-disaster relief logistics to guide the strategic 
planning with respect to the locations of temporary facilities, the mobilization levels 
of relief supplies, and the deployment of transportation assets with uncertainty on 
demands. Diabat et al. (2018) presented a bi-objective robust optimization model for 
the design of supply chains that was resilient to disaster scenarios. The model aimed 
to minimize the delivery time and cost of products to customers after the occurrence 
of a disaster while considering possible disruptions in facilities and routes between 
them. Jabbarzadeh et al. (2018) presented a stochastic robust optimization model for 
the design of a closed-loop SCN that performs resiliently in the face of disruptions. 
The proposed model was capable of considering lateral transshipment as a reactive 
strategy to cope with operational and disruption risks.

It is worth noting that in humanitarian supply chains, the demand for relief sup-
plies has a great deal of uncertainty, depending on the type, magnitude, and location 
of a disaster. In this regard, reliable SCND models assume a failure probability for 
a facility or transportation link in the face of disruption as a pre-specified param-
eter (Govindan et  al. 2017). In the context of reliable SCND models, Hatefi and 
Jolai (2014) investigated facility disruptions in a forward-reverse logistics network 
design problem. They proposed a mixed integer linear programming (MILP) model 
with augmented ⍴-robust constraints to control the reliability of the network among 
disruption scenarios. Pasandideh and Akhavan Niaki (2014) considered the disrup-
tion risk in SCN warehouses and computed the reliability of warehouses based on 
the exponential distribution function. Their model had two objective functions; (1) 
minimizing total costs consisting of fixed opening costs, transportation costs, and 
processing costs and (2) maximizing the average total number of products dis-
patched from warehouses to customers. Hatefi et al. (2015) proposed a credibility-
constrained programming model for the reliable design of an integrated forward-
reverse logistics network with hybrid facilities under uncertainty and random facility 
disruptions. To deal with the disruption risk, a novel mathematical model was first 
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developed that integrates the network design decisions in both forward and reverse 
flows and utilizes reliability concepts to deal with facilities disruption. Yousefi-Bab-
adi et al. (2017) investigated disruption risks in a closed-loop petrochemical SCN. 
They proposed a multi-objective MINLP model for designing a petrochemical SCN 
under uncertainty environments, namely disruption risks and less knowledge of 
parameters. They proposed an objective function that minimized the failure prob-
ability of facilities.

Some researchers modeled the uncertainty related to disruptions as a finite set 
of discrete scenarios. For example, Klibi and Martel (2012) presented a scenario-
based SCND approach and proposed two design models using stochastic program-
ming. Furthermore, they discussed risk avoidance and SCN resilience and proposed 
three design models to improve SCN resilience. Baghalian et al. (2013) developed a 
stochastic mathematical formulation for designing a network of multi-product sup-
ply chain comprising several capacitated production facilities, distribution centers, 
and retailers in markets under uncertainty. The model considered demand-side and 
supply-side uncertainties simultaneously. They used a path-based formulation that 
considered possible disruptions in manufacturers, distribution centers, and their con-
necting links. In another research, Sadghiani et al. (2015) investigated retail SCND 
under operational and disruption risks. They first proposed a deterministic multiple 
set-covering model. Then, they extended the proposed model to a possibilistic sce-
nario-based robust model by scenario generation and disruption profiling to design a 
robust and resilient retail network.

Furthermore, Tang (2006) and Tang and Tomlin (2008) introduced some mitiga-
tion strategies that can be applied to improve supply chains resiliency in the face 
of risks. The most popular mitigation strategies in the related literature are facility 
fortification, strategic stock, and sourcing strategy (Govindan et al. 2017). It is worth 
noting that a few papers such as Hasani and Khosrojerdi (2016); Li and Savachkin 
(2016), and Snyder et al. (2016) employed mitigation strategies against the disrup-
tion risk.

In comparison, in the present research, we consider the disruption risk in all of 
the SCN facilities containing suppliers, producers, and distributors. Hence, we max-
imize the reliability of facilities in sending the commodities, as the third objective 
function. It is of note that this method can be categorized in the field of reliable 
SCND models.

The operational risks are rooted in the inherent uncertainties of SCN, such as 
uncertainty in supply, demand, transportation times, and costs (Govindan et  al. 
2017). The operational risks usually have no influence on the functionality of the 
supply chain’s elements. However, they affect the operational factors, which are 
basically assumed to be uncertain. Besides, disruption risks can affect the function-
ality of the supply chain’s elements (Govindan et  al. 2017). Since disruption risk 
can change the topology of the SCN and increases the reallocation of facilities and 
customers and the total cost of SCND having an undesired influence on the supply 
chain’s goal and functionality (Shen et al., 2010). However, operational risks cannot 
change the topology of SCN and have no influence on the reallocation of facilities 
and customers. In other words, the impact of operational risks is not high enough to 
change the goals and functionality of SCN.
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Three common approaches exist to deal with operational uncertainty, including 
stochastic programming, fuzzy programming, and robust programming (Zhalechian 
et al. 2018). In the stochastic programming method, we should estimate a probabil-
ity distribution function for any uncertain parameter of the proposed model to deal 
with the operational risks. Stochastic programming approach has some important 
drawbacks: (1) in some real cases, estimation of the probability distribution func-
tion of uncertain parameters is impossible due to lack of sufficient historical data 
(Hamidieh et al. 2017), and (2) increase of the number of uncertain parameters can 
increase the complexity of the model.

Fuzzy programming approach is another method applying experts’ knowledge 
and incomplete available data to deal with operational risk. This method can adjust 
the satisfaction level of uncertain parameters based on the decision-makers’ opinion. 
However, it does not guarantee optimization of the satisfaction levels and reliability 
of the output results (Hamidieh et al. 2017).

Robust programming method can control the performance of the model and help 
to solve the deficiencies of the fuzzy programming method (See Ben-Tal and Nemi-
rovski 1998, 2000; Bertsimas and Sim 2004; Inuiguchi and Sakawa 1995; José Alem 
and Morabito 2012; Mulvey et al. 1995; Pan and Nagi, 2010; Soyster 1973). Robust 
optimization approach provides a framework to handle the uncertainty of parameters 
that could immunize the optimal solution for any realization of the uncertainty in a 
given bounded uncertainty set (Ben-Tal and Nemirovski 2008). Therefore, we select 
the robust programming approach (Ben-Tal method) to deal with operational risk.

In order to deal with operational risks by robust programming, Hatefi and Jolai 
(2014) investigated a reliable forward-reverse logistics network design under 
demand uncertainty. They applied ⍴-Robustness method to cope with the opera-
tional risk. Zokaee et al. (2014) presented a robust optimization model for the design 
of a supply chain facing uncertainty in demand, supply capacity, and major cost 
data including transportation and shortage cost parameters. To this aim, they first 
presented a base model for determining the strategic ‘location’ and tactical ‘allo-
cation’ decisions for a deterministic four-tier supply chain. The model was then 
extended to incorporate uncertainty in key input parameters using a robust optimiza-
tion approach. Ghodratnama et al. (2015) proposed a novel tri-objective hub loca-
tion-allocation model and applied a robust and fuzzy goal programming approach 
to tackle operational risk. Talaei et al. (2016) suggested a bi-objective optimization 
model for designing a carbon-efficient closed-loop SCN. They proposed a robust 
fuzzy framework for dealing with the operational risk of the proposed model. 
Ramezanian and Behboodi (2017) designed a blood SCN with uncertainties in sup-
ply and demand. They applied a robust optimization approach to handle operational 
risk. Zahiri et al. (2017) designed a pharmaceutical SCN with uncertainties in costs 
and demand. They proposed a novel robust possibilistic optimization approach to 
deal with operational risk. In this research, the operational uncertainties are con-
sidered in such parameters as a set of costs, set of times, and various capacities of 
facilities.

Heidari-Fathian and Pasandideh (2018) investigated Green-Blood SCND under 
operational risk. They expressed the uncertainty involved in the nature of supply-
ing the blood by the donors and also the demand for the blood product. Therefore, 
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they applied a robust optimization approach in the model to deal with this type of 
uncertainty.

Furthermore, to make our SCN modeling more realistic, we pay attention to the 
formation of the queuing system in the producers of SCN. In the real world, a queu-
ing system usually is formed in the producers of SCN after receiving various com-
modities. Commodities usually wait in these queues. Therefore, their waiting time 
and service time (waiting time + processing time) are increased. As a result, the 
delivery time of final products to customers is increased and customer satisfaction 
is declined. Computation of waiting time and service time of commodities based on 
the problem variables is necessary for their entrance in the SCN modeling. Then, 
we can easily minimize them in objective functions. In this regard, we present a 
solution to compute the parameters of the formed queuing system in SCN producers 
based on the batch transportation and processing (BTP) approaches. In other words, 
the BTP approaches are used to compute the parameters of the formed queuing sys-
tem in the SCN producers.

Some scholars have attempted to propose more realistic models for SCNs opti-
mization. They applied queuing system concepts in the modeling of SCNs. For this 
purpose, they usually use two methods for calculating the parameters of the queuing 
system: (1) Markov process and (2) algebraic relations.

In the field of application of Markov process, Vahdani et al. (2012) proposed a novel 
robust-M/M/c queuing model to design a reliable network of facilities in a closed-loop 
supply chain under uncertainty. For this purpose, a mathematical programming model 
with two objective functions was introduced. The first objective function was to mini-
mize the total costs and the second one was to minimize the expected transportation 
costs after the failure of facilities of a logistics network (expected failure cost). Vah-
dani et  al. (2013) designed a reliable logistics network considering operational risk 
and queuing theory. The type of queuing system was M/M/C. They used the proposed 
method by Torabi and Hassini to tackle the operational risk of the proposed model. In 
another research, Vahdani and Mohamadi (2015) suggested a bi-objective optimiza-
tion model for designing closed loop SCN. The type of queuing system was multi-
priority M/M/C. They employed the robust optimization method to deal with the oper-
ational risk. Yousefi-Babadi et al. (2017) applied the Jackson network and M/M/m/C 
queuing model for designing a reliable petrochemical SCN.

In the field of algebraic relations application for calculating parameters of the 
formed queuing system, Ghodratnama et al. (2015) proposed a novel multi-objective 
hub location-allocation problem with the formation of a queuing system in hubs. 
Their model consisted of three objective functions; (1) minimizing the total cost, (2) 
minimizing the total service times and the tardiness and earliness times of the flows, 
and (3) minimizing the total greenhouse gas.

The distinction of our research with the above-mentioned studies is using the 
potential capacity of vehicles as the size of input batches to the formed queuing sys-
tems in the SCN producers. We also consider two types of risks as follows; (1) dis-
ruption risk and (2) operational risk. In fact, our main contribution is combining the 
operational and disruption risks as well as the queuing system concepts to attain a 
more realistic model for SCN optimization.

Table 1 presents a number of studies relevant to our research.



1969

1 3

Optimizing a robust tri‑objective multi‑period reliable…

Ta
bl

e 
1 

 R
ev

ie
w

 o
f r

ef
er

en
ce

s

Re
fe

re
nc

es
N

et
w

or
k 

St
ru

ct
ur

e
C

on
si

de
ra

tio
n 

of
 fa

ci
lit

ie
s r

el
i-

ab
ili

ty

B
at

ch
 tr

an
sp

or
ta

-
tio

n 
an

d 
pr

oc
es

s-
in

g 
ap

pr
oa

ch
es

O
bj

ec
tiv

e 
fu

nc
tio

ns
Ro

bu
stn

es
s 

ap
pr

oa
ch

C
om

pa
ris

on
 

be
tw

ee
n 

so
lu

tio
n 

m
et

ho
ds

O
pe

ne
d-

 
Lo

op
C

lo
se

d-
Lo

op
To

ta
l c

os
t/

pr
ofi

t
To

ta
l t

im
e

Re
lia

bi
lit

y 
of

 
fa

ci
lit

ie
s

Pe
id

ro
 e

t a
l. 

(2
00

9)
●

●
K

lib
i a

nd
 M

ar
te

l (
20

12
)

●
●

Ja
bb

ar
za

de
h 

et
 a

l. 
(2

01
2)

●
●

●
B

ag
ha

lia
n 

et
 a

l. 
(2

01
3)

●
●

●
●

Pa
sa

nd
id

eh
 a

nd
 A

kh
av

an
 N

ia
ki

 
(2

01
4)

●
●

●
●

●

H
at

efi
 e

t a
l. 

(2
01

4)
●

●
●

H
at

efi
 e

t a
l. 

(2
01

5)
●

●
●

(L
iu

 a
nd

 G
uo

 2
01

4)
●

●
Zo

ka
ee

 e
t a

l. 
(2

01
4)

●
●

●
G

ho
dr

at
na

m
a 

et
 a

l. 
(2

01
5)

●
●

●
●

●
Pi

sh
va

ee
 e

t a
l. 

(2
01

1)
●

●
●

Va
hd

an
i e

t a
l. 

(2
01

3)
●

●
K

ey
va

ns
ho

ko
oh

 e
t a

l. 
(2

01
5)

●
●

●
Sa

dg
hi

an
i e

t a
l. 

(2
01

5)
●

●
●

●
Ta

la
ei

 e
t a

l. 
(2

01
6)

●
●

●
Va

hd
an

i a
nd

 M
oh

am
ad

i (
20

15
)

●
●

●
H

as
an

i a
nd

 K
ho

sr
oj

er
di

 (2
01

6)
●

●
●

●
Li

 a
nd

 S
av

ac
hk

in
 (2

01
6)

●
●

●
R

am
ez

an
ia

n 
et

 a
l. 

(2
01

7)
●

●
●



1970 V. Nazari-Ghanbarloo, A. Ghodratnama 

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Re
fe

re
nc

es
N

et
w

or
k 

St
ru

ct
ur

e
C

on
si

de
ra

tio
n 

of
 fa

ci
lit

ie
s r

el
i-

ab
ili

ty

B
at

ch
 tr

an
sp

or
ta

-
tio

n 
an

d 
pr

oc
es

s-
in

g 
ap

pr
oa

ch
es

O
bj

ec
tiv

e 
fu

nc
tio

ns
Ro

bu
stn

es
s 

ap
pr

oa
ch

C
om

pa
ris

on
 

be
tw

ee
n 

so
lu

tio
n 

m
et

ho
ds

Yo
us

efi
-B

ab
ad

i e
t a

l. 
(2

01
7)

●
●

●
●

●
●

Za
hi

ri 
et

 a
l. 

(2
01

7)
●

●
●

Va
hd

an
i e

t a
l. 

(2
01

2)
●

●
●

●
D

ia
ba

t e
t a

l. 
(2

01
8)

●
●

●
●

Ja
bb

ar
za

de
h 

et
 a

l. 
(2

01
8)

●
●

●
H

ei
da

ri-
Fa

th
ia

n 
an

d 
Pa

sa
nd

id
eh

 
(2

01
8)

●
●

●
●

●

O
ur

 re
se

ar
ch

●
●

●
●

●
●

●
●



1971

1 3

Optimizing a robust tri‑objective multi‑period reliable…

In modeling the SCNs, some important components such as formed queuing 
system in the producers of the SCN and BTP approaches, as well as the reliability 
of facilities in sending the commodities, remain neglected. As Table  1 shows, 
none of the researchers considers the analysis of the formed queuing system in 
the producers of the SCNs by the BTP approaches under operational and disrup-
tion risks. Furthermore, none of the researchers has dealt with the simultaneous 
optimization of total cost, total time, and reliability of facilities in sending the 
commodities. It is worth noting that none of the researches compares MODM 
solution methods by various criteria under uncertainty, and none of them pro-
poses a solution to find the dominant and dominated objectives in multi-objective 
problems under uncertainty.

To the best of the authors’ knowledge, this is the first study proposing a tri-objec-
tive MILP robust optimization model with the BTP approaches, while considering 
the reliability of facilities and formation of queuing system in the designing of SCN 
networks. This is also the first paper proposing a robust MILP mathematical model 
for the simultaneous optimization of total cost, total time and average total number 
of commodities dispatched from any echelon of the SCN to the next echelon on a 
five-echelon, multi-period SCN. In this paper, a novel solution is also proposed to 
find the dominant and dominated objective functions in multi-objective models for 
the determined weights of objective functions based on the uncertainty level (⍴) of 
the model for the first time.

The main contributions of this study can be stated as follows:

• We present a novel tri-objective MILP robust mathematical model to optimize 
a five-echelon multi-period SCN by considering the BTP approaches, formed 
queuing systems in SCN producers, and the operational and disruption risks.

• Three dimensions of decision-making have been focused on simultaneously as: 
minimization of total cost, minimization of total time, and maximization of the 
average total number of commodities dispatched from any echelon of the SCN to 
the next echelon, since these reduce the total cost of products and product deliv-
ery time to the customers and increase the probability of satisfying the needs of 
customers, respectively.

• We propose a more realistic model for SCN optimization considering operational 
and disruption risks and queuing system.

• We maximize the reliability of facilities in sending the commodities in the third 
objective function to tackle the disruption risks.

• We use the ⍴-robust method to cope with the operational risks in the proposed 
tri-objective model.

• We perform a comparison between five of the MODM solution methods at 
various levels of ⍴ to determine their best ones to solve the tri-objective robust 
model.

• We propose a novel solution to find dominant and dominated objectives in multi-
objective models for determined weights of objective functions based on the 
uncertainty level of the model.
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The tri-objective model is solved after converting the model into the robust 
model, using five MODM solution methods as follows:

• LP–metrics method
• Maxi–min method
• Goal–programming method
• Goal–attainment method
• Utility function method

Then, a comparison is drawn between these methods based on the values of the 
objective functions and CPU times, and the best MODM solution method for solv-
ing the problem is introduced.

The present paper is organized as follows: Sect. 2 provides problem characteriza-
tion and assumptions. In Sect. 3, we discuss the problem and the modeling approach 
and introduce the tri-objective MILP mathematical model. In Sect. 4, we convert the 
mathematical model proposed in Sect. 3 to the robust mathematical model. In Sect. 5, 
we present the solution methods. Section 6 provides the instants characterization. In 
Sect. 7, the numerical results are reported and a novel solution is presented to find 
dominant and dominated objectives in multi-objective models under uncertainty. 
Ultimately, Sect. 8 presents research findings and suggestions for future studies.

2  Problem characterization

In this research, a multi-period, five-echelon SCN including I suppliers, J manufac-
turing plants, A assemblers, D distribution centers, M customers, P primary pieces, 
K semi-finished products, and one type of final product is considered. The network 
is demonstrated in Fig. 1.

In the real world, transportation of commodities between the SCN facilities is 
conducted by different vehicles. In this research, the potential transportation capac-
ity of vehicles is considered equal to the batch sizes. Batch sizes cannot exceed vol-
ume capacity of the vehicles. In this regard, transportation of pieces from suppliers 
to manufacturing plants in the SCN is considered with due attention to batch sizes. 
These batches form a queuing system in each manufacturing plant after delivery by 
suppliers. In any queuing system, computing the commodities waiting times and ser-
vice times is highly important to make more accurate decisions.

The main reason to utilize the BTP approaches is that the value of batch size 
can contribute to computing the parameters of the formed queuing system in SCN 
producers. Different parameters of the queuing system are computed based on batch 
sizes in this research. Afterwards, the pieces in the batches are directed to the servers 
to process them. The above-mentioned processes are repeated in the assemblers for 
semi-finished products, too. The manufacturing plants produce different semi-fin-
ished products and send them to the assemblers, where the final product is produced. 
Transportation of semi-finished products from manufacturing plants to assemblers in 
the SCN is considered with due attention to batch size. These semi-finished products 
form a queuing system in each assembler. Following that, the assemblers dispatch 
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the final product to the distribution centers, where the final product is delivered to 
the customers. It is worth noting that all the input commodities at any SCN enti-
ties are equal to the output commodities and in none of them inventory is allowed. 
Meanwhile, we define a penalty for unsatisfied demand in the problem modeling to 
minimize the shortage cost.

2.1  Model assumptions

• Each supplier can supply a number of the required pieces of the final product.
• The supply capacity of any piece is limited by each supplier.
• Each manufacturing plant can produce all the required semi-finished products of 

the final product (In the proposed model, the manufacturing plants are selected 
from among the potential ones).

• The production capacity of each manufacturing plant from any type of semi-fin-
ished products is limited.

• The production capacity of each assembler is limited.
• The distribution capacity of each distribution center is limited.
• One type of the final product is assembled.
• Transportation of the pieces from suppliers to manufacturing plants in the SCN 

is addressed with a specific transportation size (potential transportation capacity 
of vehicles) for each piece and facility, which is known as batch size.

• Transportation of semi-finished products from manufacturing plants to assem-
blers in the SCN is considered with a specific transportation size (potential trans-

i=1,2,…,I        j=1,2,…,J          a=1,2,…,A                        d=1,2,…,D     m=1,2,…,M

t=1,2,3,…,T Periods

Suppliers AssemblersManufacturing plants Distributers Customers

Fig. 1  A multi-period, five-echelon supply chain network configuration
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portation capacity of vehicles) for each semi-finished product and facility, which 
is referred to as batch size.

• The consumption coefficient of each piece in each semi-finished product is equal 
to one unit.

• The consumption coefficient of each semi-finished product in the final product is 
equal to one unit.

2.2  Assumptions and problem characterizations aspects

In this research, it is assumed that the suppliers are deterministic and cannot supply 
all of the required pieces of the final product. Therefore, the supplier selection prob-
lem has not been defined. However, the manufacturing plants can produce all the 
required semi-finished products of the final product and should be selected among 
potential centers. Assemblers also like the suppliers are deterministic. Distribution 
centers like the manufacturing plants should be selected among potential locations. 
Supply, processing, assembling and distributing capacity of facilities are considered 
limited, since in the real world, a facility cannot have unlimited capacity. In the real 
world, the transportation of commodities between SCN facilities is performed by 
vehicles with a specific transportation size (batch size) that we apply it in the supply 
chain problem modeling.

3  Problem modeling

In this section, the notations, problem definition, and the proposed tri-objective 
MILP mathematical model are explained.

3.1  Notations

The notations consisting of indices, parameters, and decision variables are as 
follows:

3.1.1  Indices

i  Index that is used for a supplier, i = 1, 2,… , I

j  Index that is used for a potential manufacturing plant, j = 1, 2,… , J

a  Index that is used for an assembler, a = 1, 2,… ,A

d  Index that is used for a potential distribution center, d = 1, 2,… ,D

m  Index that is used for a customer, m = 1, 2,… ,M

p  Index that is used for a piece supplied by suppliers, p = 1, 2,… ,P

k  Index that is used for a semi-finished product produced by manufacturing 
Plants, k = 1, 2,… ,K

t  Index that is used for a period with a fixed length of τ, t = 1, 2,… , T
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3.1.2  Parameters

C
p

it
  Unit supplying cost of piece p by supplier i in period t

Ck
jt
  Unit processing cost of semi-finished product k by manufacturing plant j 

in period t
Cat  Unit assembling cost of final product by assembler a in period t
PC

p

jt
  Unit processing cost of piece p by manufacturing plant in period t

PCk
at

  Unit processing cost of semi-finished product k by assembler a in period t
PT

p

jt
  Processing time of one unit of piece p by manufacturing plant j in period t (h/

unit)
PTk

at
  Processing time of one unit of semi-finished product k by assembler a in 

period t (h/unit)
TC

p

ijt
  Unit transportation cost of piece p from supplier i to manufacturing plant j 

in period t
TCk

jat
  Unit transportation cost of semi-finished product k from manufacturing 

plant j to assembler a in period t
TCadt  Unit transportation cost of the final product from assembler a to distribu-

tion center d in period t
TCdmt  Unit transportation cost of the final product from distribution center d to 

customer m in period t
T
p

i
  Supply time needed by supplier i to supply one unit of piece p per period 

(h/unit)
Tk
j
  Production time needed by manufacturing plant j to produce one unit of 

semi-finished product k per period (h/unit)
Ta  Assemblage time needed by assembler a to assemble one unit of the final 

product per period (h/unit)
Vp  Volume of one unit of piece p  (m3)
Vk  Volume of one unit of semi-finished product k  (m3)
V   Volume of one unit of the final product  (m3)
TASTit  Total available supply time for supplier i to supply piec in period t
TAPTjt  Total available production time for manufacturing plant j to produce semi-

finished products in period t
TAATat  Total available assemblage time for assembler a to assemble final product 

in period t
Si  Storage capacity available for supplier i to store pieces in a period  (m3)
Sj  Storage capacity available for manufacturing plant j to store commodities 

(pieces and semi-finished products) in a period  (m3)
Sa  Storage capacity available for assembler a to store commodities (semi-fin-

ished products and the final products) in a period  (m3)
Sd  Storage capacity available for distribution center d to store the final prod-

uct in a period  (m3)
DDmt  Deterministic demand of the final product by customer m in period t
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�it  The parameter of an exponential distribution used for failure rate of sup-
plier i in period t

�jt  The parameter of an exponential distribution used for failure rate of manu-
facturing plant j in period t

�at  The parameter of an exponential distribution used for failure rate of assem-
bler a in period t

�dt  The parameter of an exponential distribution used for failure rate of distri-
bution center d in period t

SUCk
j
  The set-up cost of processing semi-finished product k by manufacturing 

plant j per period
SCmt  Unit shortage cost of the final product in supplying the demand of cus-

tomer m in period t
SUTk

j
  The set-up time of processing semi-finished product k by manufacturing 

plant j per period
TTCA

p

i
  Total transportation capacity available for supplier i to dispatch piece p in 

a period
TTCAk

j
  Total transportation capacity available for manufacturing plant j to dis-

patch semi-finished product k in a period
TTCAa  Total transportation capacity available for assembler a to dispatch the final 

product in a period
TTCAd  Total transportation capacity available for distribution center d to dispatch 

the final product in a period
Fd  Fixed cost of selecting a center to establish distribution center d
Fj  Fixed cost of selecting a center to establish manufacturing plant j
B
p

ijt
  Batch size of piece p transported from supplier i to manufacturing plant j 

in period t (potential transportation capacity of the vehicle from supplier i 
to manufacturing plant j)

Bk
jat

  Batch size of semi-finished product k transported from plant j to assembler 
a in period t (potential transportation capacity of the vehicle from plant j 
to assembler a)

3.1.3  Decision variables

X
p

ijt
  Quantity of piece p dispatched by supplier i to manufacturing plant j in period t

Xk
jat

  Quantity of semi-finished product k dispatched by manufacturing plant j to 
assembler a in period t

Xadt  Quantity of the final product dispatched by assembler a to distribution center 
d in period t

Xdmt  Quantity of the final product dispatched by distribution center d to customer 
m in period t

Yd  1 if distribution center d is established, otherwise 0
Yj  1 if manufacturing plant j is established, otherwise 0
W

p

it
  1 if piece p is supplied by supplier i in period t , otherwise 0

X
p

it
  Quantity of piece p supplied by supplier i in period t
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Xk
jt
  Quantity of semi-finished product k produced by manufacturing plant j in period t

Xat  Quantity of the final product assembled by assembler a in period t
Bmt  Shortage quantity of final product for customer m demand in period t
N

p

ijt
  Quantity of batches of piece p dispatched from supplier i to manufacturing 

plant j in period t
Nk
jat

  Quantity of batches of semi-finished product k dispatched from manufactur-
ing plant j to assembler a in period t

3.2  Problem definition

I suppliers supply P pieces required to produce the final product and then send the 
pieces to J potential manufacturing plants. Input pieces usually form a queuing system 
in the selected manufacturing plants.

As it was mentioned previously, to compute some parameters of the queuing system 
such as waiting times, service times and processing cost of pieces the transportation of 
commodities from suppliers to manufacturing plants in the SCN is considered with a 
specific transportation size (potential transportation capacity of vehicles) specified for 
each piece and facility, which is named batch size.

Afterwards, the pieces are directed to the servers so as to be processed. It is worth 
mentioning that after receiving the first batch of each piece, the batches continue to 
enter the manufacturing plants until the total number of pieces in each manufacturing 
plant does not exceed from its volume capacity. Queuing system formation in the man-
ufacturing plant j is presented in Fig. 2.

As it is clear in Fig. 2, the total quantity of batches of piece p dispatched from sup-
plier i to manufacturing plant j in period t is equal to:

(1)N
p

ijt
=

X
p

ijt

B
p

ijt

; ∀p, i, j, t

Fig. 2  Queuing system formation in the manufacturing plant j
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When the first batch of piece p required to produce the semi-finished products in 
manufacturing plant j in period t is received, the processing of the first input piece p is 
started. The time required to do this process is equal to PTp

jt
 . The second input piece 

waits until the processing of the first piece p is finished, and then the processing of the 
second piece p begins immediately. This indicates that the service time, i.e. waiting 
time + processing time, of second piece p is equal to 2PTp

jt
 and it continues until the 

time required to service the last piece in the batch is equal to Bp

ijt
.PT

p

jt
 . Therefore, the 

total time needed to service all the pieces of a batch of piece p dispatched from supplier 
i to manufacturing plant j in period t is equal to:

Owing to the fact that the total number of dispatched batches of piece p from sup-
plier i to manufacturing plant j in period t is equal to Np

ijt
 , according to Relation (1), the 

total service time for all batches of piece p dispatched from supplier i to manufacturing 
plant j in period t is equal to:

In addition, the total time required to service all the batches of pieces dispatched 
from all suppliers to all manufacturing plants in all periods is equal to:

Accordingly, Total processing cost of all batches of pieces dispatched from all sup-
pliers to all manufacturing plants in all periods can be calculated as follows:

The above-mentioned concepts can be applied to the assemblers as well. Queuing 
system formation in the assembler a is presented in Fig. 3.

Based on the mathematical formulation obtained for the formed queuing system in 
the manufacturing plants, the following final relations for formed queuing systems in 
the assemblers can be defined.

(2)
PT

p

jt
+ 2PT

p

jt
+⋯ + B

p

ijt
PT

p

jt
=
(
1 + 2 +⋯ + B

p

ijt

)
PT

p

jt
=

B
p

ijt

(
B
p

ijt
+ 1

)

2
PT

p

jt
; ∀p, i, j, t

(3)
N

p

ijt

B
p

ijt

(
B
p

ijt
+ 1

)

2
PT

p

jt
=

X
p

ijt
B
p

ijt

(
B
p

ijt
+ 1

)

2B
p

ijt

PT
p

jt

=
X
p

ijt

(
B
p

ijt
+ 1

)

2
PT

p

jt
; ∀p, i, j, t

(4)Total service time =

P∑
p=1

I∑
i=1

J∑
j=1

T∑
t=1

X
p

ijt

(
B
p

ijt
+ 1

)

2
PT

p

jt
;

(5)Total processing cost =

P∑
p=1

I∑
i=1

J∑
j=1

T∑
t=1

N
p

ijt
B
p

ijt
PC

p

jt
;
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As noted previously, such probable unforeseen events as adverse weather conditions, 
delay in delivery by suppliers, sudden increase in prices of raw materials, terrorist 
attacks, and changes in owners could explain why all produced commodities in facility 
q do not reach the next echelon (Pasandideh and Akhavan Niaki 2014). These unantici-
pated events (disruption risks) in facility q in period t follow a Poisson distribution with 
a mean of 1

�qt
 . Therefore, the time between two consecutive unforeseen events follows 

an exponential distribution with a mean of �qt . When the interval time between two 
unforeseen events is represented by Tq and the length of the period is considered con-
stant and equal to τ, the reliability of facility q ( Rq) in sending the commodities to the 
next echelon in a period is equal to the probability of (Pasandideh and Akhavan Niaki 
2014):

(6)Nk
jat

=
Xk
jat

Bk
jat

; ∀k, j, a, t

(7)Total service time =

K∑
k=1

J∑
j=1

A∑
a=1

T∑
t=1

Xk
jat

(
Bk
jat

+ 1
)

2
PTk

at
;

(8)Total processing cost =

K∑
k=1

J∑
j=1

A∑
a=1

T∑
t=1

Nk
jat
Bk
jat
PCk

at
;

(9)Rq = p
(
Tq > 𝜏

)
= e−𝜆qt𝜏 ; ∀q = 1, 2,…

Fig. 3  Queuing system formation in the assembler a 
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This means that the reliability of a facility at a time period is equal to the proba-
bility of the event that the interval time between two consecutive disruptions exceed 
the length of the period. In other words, these events do not occur during the period. 
Thus, the average total number of the products dispatched from a facility of the SCN 
to the next echelon is obtained through multiplication of this probability in the quan-
tity of the products dispatched from the facility to the next echelon. As a result,

The average quantity of piece p dispatched from supplier i to manufacturing plant 
j in period t is equal to e−�it�Xp

ijt
.

The average quantity of semi-finished product k dispatched from manufacturing 
plant j to assembler a in period t is equal to e−�jt�Xk

jat
.

The average quantity of the final product dispatched from assembler a to distribu-
tion center d in period t is equal to e−�at�Xadt.

The average quantity of the final product dispatched from distribution center d to 
customer m in period t is equal to e−�dt�Xdmt.

3.3  The proposed tri‑objective MILP mathematical model

Based on the above-mentioned relations, the tri-objective MILP mathematical 
model can be formulated as follows:

(10)

Min Z
1
=

D∑
d=1

FdYd +

J∑
j=1

FjYj +

P∑
p=1

I∑
i=1

J∑
j=1

T∑
t=1

TC
p

ijt
X
p

ijt
+

K∑
k=1

J∑
j=1

A∑
a=1

T∑
t=1

TCk
jat
Xk
jat

+

A∑
a=1

D∑
d=1

T∑
t=1

TCadtXadt +

D∑
d=1

M∑
m=1

T∑
t=1

TCdmtXdmt +

P∑
p=1

I∑
i=1

T∑
t=1

C
p

it
X
p

it

+

K∑
k=1

J∑
j=1

T∑
t=1

Ck
jt
Xk
jt
+

A∑
a=1

T∑
t=1

CatXat +

K∑
k=1

J∑
j=1

SUCk
j
Yj +

M∑
m=1

T∑
t=1

SCmtBmt

+

P∑
p=1

I∑
i=1

J∑
j=1

T∑
t=1

N
p

ijt
B
p

ijt
PC

p

jt
+

K∑
k=1

J∑
j=1

A∑
a=1

T∑
t=1

Nk
jat
Bk
jat
PCk

at

(11)

Min Z
2
=

P∑
p=1

I∑
i=1

T∑
t=1

T
p

i
X
p

it
+

K∑
k=1

J∑
j=1

T∑
t=1

Tk
j
Xk
jt
+

A∑
a=1

T∑
t=1

TaXat

+

P∑
p=1

I∑
i=1

J∑
j=1

T∑
t=1

X
p

ijt

(
B
p

ijt
+ 1

)

2
PT

p

jt
+

K∑
k=1

J∑
j=1

SUTk
j
Yj

+

K∑
k=1

J∑
j=1

A∑
a=1

T∑
t=1

Xk
jat

(
Bk
jat

+ 1

)

2
PTk

at
;
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S. t.:
Batch constraints

Available time constraints

Flow balance constraints

(12)

Max Z
3
=

P∑
p=1

I∑
i=1

J∑
j=1

T∑
t=1

e−�it�X
p

ijt
+

K∑
k=1

J∑
j=1

A∑
a=1

T∑
t=1

e−�jt�Xk
jat

+

A∑
a=1

D∑
d=1

T∑
t=1

e−�at�Xadt +

D∑
d=1

M∑
m=1

T∑
t=1

e−�dt�Xdmt;

(13)N
p

ijt
=

X
p

ijt

B
p

ijt

; ∀p, i, j, t

(14)Nk
jat

=
Xk
jat

Bk
jat

; ∀k, j, a, t

(15)
P∑

p=1

T
p

i
X
p

it
≤ TASTit; ∀i, t

(16)
K∑
k=1

Tk
j
Xk
jt
+

K∑
k=1

SUTk
j
Yj ≤ TAPTjtYj; ∀j, t

(17)TaXat ≤ TAATat; ∀a, t

(18)
I∑

i=1

X
p

ijt
≥

A∑
a=1

Xk
jat
; ∀p, k, j, t

(19)
J∑
j=1

Xk
jat

≥

D∑
d=1

Xadt; ∀k, a, t

(20)
A∑

a=1

Xadt ≥

M∑
m=1

Xdmt; ∀d, t

(21)

D∑
d=1

Xdmt ≥ DDmt; ∀m, t
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Storage capacity constraints

Transportation capacity constraints

(22)
I∑

i=1

J∑
j=1

T∑
t=1

X1
ijt
=

I∑
i=1

J∑
j=1

T∑
t=1

X2
ijt
= … =

I∑
i=1

J∑
j=1

T∑
t=1

X
p

ijt
=

A∑
a=1

D∑
d=1

T∑
t=1

Xadt;

(23)
P∑

p=1

I∑
i=1

VpX
p

ijt
≤ SjYj; ∀j, t

(24)
P∑

p=1

VpX
p

it
≤ Si; ∀i, t

(25)
K∑
k=1

VkXk
jt
≤ SjYj; ∀j, t

(26)
K∑
k=1

J∑
j=1

VkXk
jat

≤ Sa; ∀a, t

(27)
A∑

a=1

VXadt ≤ SdYd; ∀d, t

(28)VXat ≤ Sa; ∀a, t

(29)
J∑
j=1

X
p

ijt
≤ TTCA

p

i
W

p

it
; ∀p, i, t

(30)
A∑

a=1

Xk
jat

≤ TTCAk
j
Yj; ∀k, j, t

(31)
D∑
d=1

Xadt ≤ TTCAa; ∀a, t

(32)
M∑

m=1

Xdmt ≤ TTCAdYd; ∀d, t
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Shortage constraint

Binary and non-negative variables

We attempt to minimize the following costs in the first objective function (rela-
tion  10): the total fixed construction cost of distribution centers, the total fixed 
construction cost of manufacturing plants, the total transportation cost of pieces 
dispatched from suppliers to manufacturing plants, the total transportation cost of 
semi-finished products dispatched from manufacturing plants to assemblers, the total 
transportation cost of the final product dispatched from assemblers to distribution 
centers, the total transportation cost of the final product dispatched from distribution 
centers to customers, the total supply cost of pieces by suppliers, the Total process-
ing cost of semi-finished products by manufacturing plants, the total assembling cost 
of final product by assemblers, the total set-up cost of manufacturing plants servers, 
the total shortage cost of the final product for customers’ demands, and the Total 
processing cost in manufacturing plants and assemblers.

We attempt to minimize the following times in the second objective function 
(relation  11): the total time required to supply pieces by suppliers, the total time 
required to produce semi-finished products by manufacturing plants, the total time 
required to assemble the final product by assemblers, the total time required to pro-
cess all batches of pieces in manufacturing plants, the total time required to process 
all batches of semi- finished products in assemblers, and the total set-up time of 
servers in manufacturing plants.

In the third objective function (relation 12), we attempt to maximize the average 
total number of commodities dispatched from any echelon of the SCN to the next 
echelon to deal with disruption risk.

The relation in Eq.  (13) is used to compute the optimal number of batches 
of piece p dispatched from supplier i to manufacturing plant j in period t. The 
relation in Eq.  (14) is also used to compute the optimal number of batches of 
semi-finished product k dispatched from manufacturing plant j to assembler a in 
period t. Constraints (15)˗(17) indicate the available times in a period. Constraint 
(15) states that the total time required to supply the pieces by a supplier in a 
period cannot exceed the total available supply time in the period. The constraint 
(16) states that the total time required to produce the semi-finished products and 
the total time required to set up the servers of a manufacturing plant in a period 
cannot exceed the total available production time in the period. Constraint (17) 
states that the total time required to assemble the final product by an assembler 
in a period cannot exceed the total available assemblage time in the period. Con-
straints (18)–(21) show the flow balance constraints. Constraint (22) indicates 

(33)Bmt = Bmt−1 + DDmt −

D∑
d=1

Xdmt; ∀m, t

(34)Yd, Yj,W
p

it
∈ {0, 1} ;

(35)X
p

ijt
,Xk

jat
,Xadt,Xdmt,X

p

it
,Xk

jt
,Xat,Bmt,N

p

ijt
,Nk

jat
≥ 0;
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that the consumption coefficient of each piece in the final product is equal to one 
unit.

Constraints (23)–(28) state the storage capacity constraints. Constraint (23) dem-
onstrates that if a manufacturing plant is constructed, the total volume of all pieces 
dispatched from all suppliers to the manufacturing plant in a period cannot exceed 
its storage capacity. Constraint (24) declares that the total volume of all pieces sup-
plied by a supplier in a period cannot exceed its storage capacity. Constraint (25) 
demonstrates that if a manufacturing plant is constructed, the total volume of all 
semi-finished products produced by the manufacturing plant cannot exceed its stor-
age capacity. Constraint (26) states that the total volume of all semi-finished prod-
ucts dispatched from the all manufacturing plants to an assembler in a period can-
not exceed its storage capacity. Constraint (27) states that if a distribution center is 
constructed, the total volume of all final products dispatched from all assemblers 
to the distribution center in a period cannot exceed its storage capacity. Constraint 
(28) states that the total volume of all final products produced by an assembler in a 
period cannot exceed its storage capacity.

Constraints (29)–(32) indicate the total available transportation capacity con-
straints. Constraint (29) states that if a piece is supplied by a supplier in a period, 
the total pieces dispatched by the supplier to all of the manufacturing plants in the 
period cannot exceed its total available transportation capacity. Constraint (30) dem-
onstrates that if a manufacturing plant is constructed, the total semi-finished prod-
ucts dispatched by the manufacturing plant to all of the assemblers in a period can-
not exceed its total available transportation capacity. Constraint (31) states that the 
total final products dispatched by an assembler to all of the distribution centers in 
a period cannot exceed its total available transportation capacity. Constraint (32) 
states that if a distribution center is constructed, the total final products dispatched 
by the distribution center to all of the customers in a period cannot exceed its total 
available transportation capacity.

Equation  (33) demonstrates the balance equation for shortages of customers’ 
demands. Constraints (34) and (35) represent the binary and non-negative variables, 
respectively.

As the suggested model clearly shows, the proposed tri-objective MILP model 
creates a competition between the third objective function and the two other objec-
tive functions. As the average total number of commodities dispatched from any 
echelon of SCN to the next echelon (third objective function) increases, the total 
cost (first objective function) and the total time (second objective function) also 
increase, while in this model, they are from minimization type. Therefore, it is inter-
esting to find which group will dominate the other one in the competition.

In this paper, a solution is proposed to determine the dominant and dominated 
objective functions based on the uncertainty level (⍴) in multi-objective models 
(competitive condition). In the following, first, the proposed tri-objective MILP 
model is converted to the robust model. Then, the trade-off between objective func-
tions, optimal Pareto front and a solution to determine the dominant and dominated 
objective functions in the multi-objective model is presented.
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4  Robust counterpart mathematical model

To explain the ρ-Robust method, the following basic deterministic MILP model is 
defined.

The related uncertain problem can be defined according to Ben-Tal and Nemi-
rovski (1998, 2000) as follows:

The parameters c, S, and A in the above model vary in a given uncertainty set U. 
It is worth noting that a vector x is a robust feasible solution to the basic problem if 
it satisfies all realizations of the constraints from the uncertainty set U. The robust 
counterpart of basic problem can be defined according to Ben-Tal and Nemirovski 
(1999) as follows:

Thus, we can mention that an optimal solution to the problem (43) is the optimal 
robust solution of the basic problem. In other words, a solution satisfies the con-
straints for all possible realizations of the data and guarantees an optimal objective 
function value not worse than ĉ(x) . It should be mentioned that all binary decision 
variables are included in the vector y, and all continuous decision variables are 
included in the vector x.

We consider each of these uncertain parameters to vary in a specified closed 
bounded box (Ben-Tal et al., 2009); (Pishvaee et al., 2011). The general form of this 
box is stated as follows:

(36)minfy + cx

(37)s.t ∶ Tx ≥ S

(38)Nx = 0

(39)Mx ≤ 0

(40)Bx ≤ Ay

(41)y ∈ {0, 1}, x ∈ R+

minfy + cx

s.t ∶ Tx ≥ S

Nx = 0

Mx ≤ 0

Bx ≤ Ay

y ∈ {0, 1}, x ∈ R+

(42)c, S,A ∈ U

(43)min
{
ĉ(x) = sup

[
fy + cx

]
∶ Relations (37) to (41) ∀c, S,A ∈ U

}



1986 V. Nazari-Ghanbarloo, A. Ghodratnama 

1 3

Where �̄�t is the nominal value of the �t and tth parameter of vector � , the posi-
tive numbers Gt represent ‘‘uncertainty scale’’, and 𝜌 > 0 is the ‘‘uncertainty level”. 
A particular case of interest is Gt = �̄�t , which corresponds to a simple case where 
the box contains �t whose relative deviation from the nominal data has a size up to � 
(Pishvaee et al., 2011).

As a result, the robust counterpart of the basic model can be formulated as 
follows:

Ben-Tal et  al. (2005) prove that in this case (closed bounded box), the robust 
counterpart problem can be converted to a tractable equivalent model where Ubox is 
replaced with a finite set Uext consisting of the extreme points of Ubox . To represent 
the tractable form of the robust basic model, Eqs. (46)–(48) should be converted to 
their equivalent tractable ones. For Eq. (46), we have:

The left-hand side of inequality (49) contains the vector of uncertain parameters, 
while all parameters of the right-hand side are certain. Thus, the tractable form of 
the above semi-infinite inequality can be written as follows:

In fact, �t is the maximum value of the allowed change in the uncertain term of 
the objective function due to the uncertainty that should be minimized. Similarly, for 
inequality (47), we have:

(44)uBox = {𝜓 ∈ Rn ∶ ||𝜓t − �̄�t
|| ≤ 𝜌Gt, t = 1, 2,… , n}

(45)minz

(46)s.t ∶ fy + cx ≤ z, ∀c ∈ uc
Box

(47)Tx ≥ S ∀S ∈ uS
Box

Nx = 0

Mx ≤ 0

(48)Bx ≤ Ay ∀A ∈ uA
Box

y ∈ {0, 1}, x ∈ R+

(49)
cx ≤ z − fy, ∀c ∈ uc

Box
||ucBox = {c ∈ Rnc ∶ ||ct − c̄t

|| ≤ 𝜌cG
c
t
, t = 1, 2,… , nc}

(50)
∑
t

(
c̄txt + 𝜂t

)
≤ z − fy,

(51)�cG
c
t
xt ≤ �t, ∀t ∈

{
1, 2,… , nc

}

(52)�cG
c
t
xt ≥ −�t, ∀t ∈

{
1, 2,… , nc

}

(53)
Tx ≥ S

i
, ∀i ∈

{
1, 2,… , n

S

}
, ∀S ∈ u

S

Box

|||u
S

Box
= {S ∈ R

n ∶

||Si − S̄
i
|| ≤ 𝜌

S
G

S

i
, i = 1, 2,… , n

S
}
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Therefore, it can be rewritten as follows:

As mentioned previously, a particular case of interest is GS
i
= Si . Therefore the 

relation (54) can be rewritten as follows:

Also, for inequality (48) we have:

Thus, it can be rewritten as follows:

As mentioned previously, a particular case of interest is GA
j
= Aj . Therefore the 

relation (57) can be rewritten as follows:

Finally, with respect to (50)–(52), (55) and (58) the final form of the robust model 
can be formulated as follows:

(54)Tx ≥ Si + �SG
S
i
, ∀i ∈

{
1, 2,… , nS

}

(55)Tx ≥ Si
(
1 + �S

)

(56)
Bx ≤ A

j
y, ∀j ∈

{
1, 2,… , n

A

}
, ∀A ∈ u

A

Box

|||u
A

Box
= {A ∈ R

n ∶

|||Aj
− A

j

||| ≤ �
A
G

A

j
, j = 1, 2,… , n

A
}

(57)Bx ≤
(
Aj − �jG

A
j

)
y

(58)Bx ≤ Aj

(
1 − �A

)
y

min z

s.t ∶
∑
t

(
c̄txt + 𝜂t

)
≤ z − fy

�cG
c
t
xt ≤ �t, ∀t ∈

{
1, 2,… , nc

}

�cG
c
t
xt ≥ −�t, ∀t ∈

{
1, 2,… , nc

}

Tx ≥ Si
(
1 + �S

)
, ∀i ∈

{
1, 2,… , nS

}

Nx = 0

Mx ≤ 0



1988 V. Nazari-Ghanbarloo, A. Ghodratnama 

1 3

To tackle the operational risk of the model, the model proposed in the previous sec-
tion is converted to the robust model by using ⍴-robustness method. To convert the pro-
posed tri-objective MILP mathematical model into the tri-objective MILP robust math-
ematical model, the following costs and times are considered as uncertain parameters: 
fixed construction costs of manufacturing plants and distribution centers, transportation 
costs, supplying costs of the pieces, processing costs of semi-finished products, assem-
bling costs of the final product, set-up costs, shortage costs, processing costs, supplying 
times of the pieces, processing times of semi-finished products, assembling times of the 
final product, processing times, set-up times, total available supply times, total available 
processing times, total available assemblage times, storage capacities, and total avail-
able transportation capacities. According to the above descriptions, the proposed tri-
objective MILP robust mathematical model is as follows:

Robust objective functions

Bx ≤ Aj

(
1 − �A

)
y, ∀j ∈

{
1, 2,… , nA

}

y ∈ {0, 1}, x, �t ∈ R+

(59)Min Z1;

(60)Min Z2;

(61)Max Z3;

(62)

Min

D∑
d=1

(
F̄dYd + 𝜂F

d

)
+

J∑
j=1

(
F̄jYj + 𝜂F

j

)
+

P∑
p=1

I∑
i=1

J∑
j=1

T∑
t=1

(
TC

p

ijt
X
p

ijt
+ 𝜂

pTC

ijt

)

+

K∑
k=1

J∑
j=1

A∑
a=1

T∑
t=1

(
TC

k

jat
Xk
jat

+ 𝜂k
TC

jat

)
+

A∑
a=1

D∑
d=1

T∑
t=1

(
TCadtXadt + 𝜂TC

adt

)

+

D∑
d=1

M∑
m=1

T∑
t=1

(
TCdmtXdmt + 𝜂TC

dmt

)
+

P∑
p=1

I∑
i=1

T∑
t=1

(
C̄
p

it
X
p

it
+ 𝜂

pC

it

)

+

K∑
k=1

J∑
j=1

T∑
t=1

(
C̄k
jt
Xk
jt
+ 𝜂k

C

jt

)
+

A∑
a=1

T∑
t=1

(
C̄atXat + 𝜂C

at

)

+

K∑
k=1

J∑
j=1

(
SUC

k

j
Yj + 𝜂k

SUC

j

)
+

M∑
m=1

T∑
t=1

(
SCmtBmt + 𝜂SC

mt

)

+

P∑
p=1

I∑
i=1

J∑
j=1

T∑
t=1

(
N

p

ijt
B
p

ijt
PC

p

jt
+ 𝜂

pPC

jt

)
+

K∑
k=1

J∑
j=1

A∑
a=1

T∑
t=1

(
Nk
jat
Bk
jat
PC

k

at
+ 𝜂k

PC

at

)
≤ Z1;
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Constraints related to uncertain parameters in objective functions

(63)

Min

P�
p=1

I�
i=1

T�
t=1

�
T̄
p

i
X
p

it
+ 𝜂

pT

i

�
+

K�
k=1

J�
j=1

T�
t=1

�
T̄k
j
Xk
jt
+ 𝜂k

T

j

�

+

A�
a=1

T�
t=1

�
T̄aXat + 𝜂T

a

�
+

P�
p=1

I�
i=1

J�
j=1

T�
t=1

⎛⎜⎜⎜⎝

X
p

ijt

�
B
p

ijt
+ 1

�

2
PT

p

jt
+ 𝜂

pPT

jt

⎞⎟⎟⎟⎠

+

K�
k=1

J�
j=1

A�
a=1

T�
t=1

⎛
⎜⎜⎜⎝

Xk
jat

�
Bk
jat

+ 1
�

2
PT

k

at
+ 𝜂k

PT

at

⎞
⎟⎟⎟⎠
+

K�
k=1

J�
j=1

�
SUT

k

j
Yj + 𝜂k

SUT

j

�
≤ Z2;

(64)

Max

P∑
p=1

I∑
i=1

J∑
j=1

T∑
t=1

e−�it�X
p

ijt
+

K∑
k=1

J∑
j=1

A∑
a=1

T∑
t=1

e−�jt�Xk
jat

+

A∑
a=1

D∑
d=1

T∑
t=1

e−�at�Xadt +

D∑
d=1

M∑
m=1

T∑
t=1

e−�dt�Xdmt ≥ Z3;

(65)�Fd
GF

d
Yd ≤ �F

d
; ∀d

(66)�Fd
GF

d
Yd ≥ −�F

d
; ∀d

(67)�Fj
GF

j
Yj ≤ �F

j
; ∀j

(68)�Fj
GF

j
Yj ≥ −�F

j
; ∀j

(69)�TCp

ijt
G

pTC

ijt
X
p

ijt
≤ �

pTC

ijt
; ∀p, i, j, t

(70)�TCp

ijt
G

pTC

ijt
X
p

ijt
≥ −�

pTC

ijt
; ∀p, i, j, t

(71)�TCk
jat
GkTC

jat
Xk
jat

≤ �k
TC

jat
; ∀k, j, a, t

(72)�TCk
jat
GkTC

jat
Xk
jat

≥ −�k
TC

jat
; ∀k, j, a, t
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(73)�TCadt
GTC

adt
Xadt ≤ �TC

adt
; ∀a, d, t

(74)�TCadt
GTC

adt
Xadt ≥ −�TC

adt
; ∀a, d, t

(75)�TCdmt
GTC

dmt
Xdmt ≤ �TC

dmt
; ∀d,m, t

(76)�TCdmt
GTC

dmt
Xdmt ≥ −�TC

dmt
; ∀d,m, t

(77)�Cp

it
G

pC

it
X
p

it
≤ �

pC

it
; ∀p, i, t

(78)�Cp

it
G

pC

it
X
p

it
≥ −�

pC

it
; ∀p, i, t

(79)�Ck
jt
GkC

jt
Xk
jt
≤ �k

C

jt
; ∀k, j, t

(80)�Ck
jt
GkC

jt
Xk
jt
≥ −�k

C

jt
; ∀k, j, t

(81)�Cat
GC

at
Xat ≤ �C

at
; ∀a, t

(82)�Cat
GC

at
Xat ≥ −�C

at
; ∀a, t

(83)�SUCG
kSUC

j
Yj ≤ �k

SUC

j
; ∀k, j

(84)�SUCG
kSUC

j
Yj ≥ −�k

SUC

j
; ∀k, j

(85)�SCG
SC
mt
Bmt ≤ �SC

mt
; ∀m, t

(86)�SCG
SC
mt
Bmt ≥ −�SC

mt
; ∀m, t

(87)�PCp

jt
G

pPC

jt
N

p

ijt
B
p

ijt
≤ �

pPC

jt
; ∀p, i, j, t

(88)�PCp

jt
G

pPC

jt
N

p

ijt
B
p

ijt
≥ −�

pPC

jt
; ∀p, i, j, t
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(89)�PCk
at
GkPC

at
Nk
jat
Bk
jat

≤ �k
PC

at
; ∀k, j, a, t

(90)�PCk
at
GkPC

at
Nk
jat
Bk
jat

≥ −�k
PC

at
; ∀k, j, a, t

(91)
�PTp

jt
G

pPT

jt

X
p

ijt

(
B
p

ijt
+ 1

)

2
≤ �

pPT

jt
; ∀p, i, j, t

(92)
�PTp

jt
G

pPT

jt

X
p

ijt

(
B
p

ijt
+ 1

)

2
≥ −�

pPT

jt
; ∀p, i, j, t.

(93)
�PTk

at
GkPT

at

Xk
jat

(
Bk
jat

+ 1
)

2
≤ �k

PT

at
; ∀k, j, a, t

(94)
�PTk

at
GkPT

at

Xk
jat

(
Bk
jat

+ 1
)

2
≥ −�k

PT

at
; ∀k, j, a, t

(95)�Tp

i
G

pT

i
X
p

it
≤ �

pT

i
; ∀p, i, t

(96)�Tp

i
G

pT

i
X
p

it
≥ −�

pT

i
; ∀p, i, t

(97)�Tk
j
GkT

j
Xk
jt
≤ �k

T

j
; ∀k, j, t

(98)�Tk
j
GkT

j
Xk
jt
≥ −�k

T

j
; ∀k, j, t

(99)�TaG
T
a
Xat ≤ �T

a
; ∀a, t

(100)�TaG
T
a
Xat ≥ −�T

a
; ∀a, t

(101)�SUTG
kSUT

j
Yj ≤ �k

SUT

j
; ∀k, j

(102)�SUTG
kSUT

j
Yj ≥ −�k

SUT

j
; ∀k, j
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Available time constraints

Storage capacity constraints

Transportation capacity constraints

(103)
P∑

p=1

T̄
p

i

(
1 + 𝜌Tp

i

)
X
p

it
≤ TASTit

(
1 − 𝜌TAST

)
; ∀i, t

(104)

K∑
k=1

T̄k
j

(
1 + 𝜌Tk

j

)
Xk
jt
+

K∑
k=1

SUT
k

j

(
1 + 𝜌SUT

)
Yj ≤ TAPTjt(1 − 𝜌TAPT )Yj; ∀j, t

(105)T̄a(1 + 𝜌Ta)Xat ≤ TAATat

(
1 − 𝜌TAAT

)
; ∀a, t

(106)
P∑

p=1

I∑
i=1

VpX
p

ijt
≤ S̄j

(
1 − 𝜌Sj

)
Yj; ∀j, t

(107)
P∑

p=1

VpX
p

it
≤ S̄i

(
1 − 𝜌Si

)
; ∀i, t

(108)
K∑
k=1

VkXk
jt
≤ S̄j

(
1 − 𝜌Sj

)
Yj; ∀j, t

(109)
K∑
k=1

J∑
j=1

VkXk
jat

≤ S̄a
(
1 − 𝜌Sa

)
; ∀a, t

(110)
A∑

a=1

VXadt ≤ S̄d
(
1 − 𝜌Sd

)
Yd; ∀d, t

(111)VXat ≤ S̄a
(
1 − 𝜌Sa

)
; ∀a, t

(112)
J∑
j=1

X
p

ijt
≤ TTCA

p

i

(
1 − �TTCAp

i

)
W

p

it
; ∀p, i, t
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Binary and non-negative variables

Unchanged constraints
Constraints (13); (14); (18)–(22); (33).

5  Solution methods

As Sect. 4 indicates, there is a tri-objective MILP robust mathematical model. The 
ideal solution for the proposed tri-objective robust model should optimize all the 
objective functions simultaneously considering satisfaction of all constraints. In 
the real-world environments, there are usually many problems involving conflicting 
objectives. As a result, a feasible solution cannot optimize all objective functions 
simultaneously. Therefore, decision-makers should select an effective and preferable 
solution (Pasandideh and Akhavan Niaki 2014).

Since choosing the appropriate solution method is important for us, five well-
known MODM solution methods in the CPLEX solver of GAMS software have 
been applied to solve the proposed tri-objective MILP robust model. These methods 
consist of the LP-metrics, maxi-min, goal attainment, goal programming and utility 
function methods.

To employ the LP-metrics and maxi-min methods, first, the optimal value of each 
objective function should be obtained separately using the individual optimization 
method. To employ the goal attainment and goal programming methods, decision-
makers should determine a goal value for each objective function. In this research, 
the mentioned goal values are considered to be equal to the optimal values obtained 
by individual optimization method. The utility function method does not need any 
pre-defined goal value.

(113)
A∑

a=1

Xk
jat

≤ TTCA
k

j

(
1 − �TTCAk

j

)
Yj; ∀k, j, t

(114)
D∑
d=1

Xadt ≤ TTCAa

(
1 − �TTCAa

)
; ∀a, t

(115)
M∑

m=1

Xdmt ≤ TTCAd

(
1 − �TTCAd

)
Yd; ∀d, t

(116)Yd, Yj,W
p

it
∈ {0, 1} ; ∀d, j, p, i, t

(117)

X
p

ijt
,Xk

jat
,Xadt,Xdmt,X

p

it
,Xk

jt
,Xat, ,Bmt,N

p

ijt
,Nk

jat
, �

pTC

ijt
, �

pPC

jt
, �k

PC

at
, �

pC

it
, �k

TC

jat
, �k

C

jt
, �TC

adt
, �C

at
, �TC

dmt
,

�k
SUC

j
, �F

d
, �F

j
, �SC

mt
, �

pPT

jt
, �k

PT

at
, �

pT

i
, �k

T

j
, �T

a
, �k

SUT

j
≥ 0; ∀i, j, a, d,m, p, k, t
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The individual optimization method optimizes each of the objective functions 
separately for all primary constraints as follows:

In the individual optimization method, the optimal solution obtained for each sin-
gle objective problem is an effective solution for the multi-objective problem and is 
represented by f ∗

i
(i = 1, 2,… k ) if we have k objective functions. An ideal overall 

solution is obtained when all the effective solutions are same in terms of all con-
straints (Pasandideh and Akhavan Niaki 2014).

Finally, using the filtering/displaced ideal solution (DIS) method, we draw a com-
parison between the five MODM solution methods based on the solution quality and 
the CPU time values in various levels of � . In all of these methods, all objective 
functions are considered from the perspective of maximization type. Minimization 
type objectives must be converted into a maximization type. These five MODM 
methods are described below.

5.1  LP‑metrics method

The LP-metrics method searches the closest solution to the optimal values of the 
objective functions (Pasandideh and Akhavan Niaki 2014). In this method, we 
attempt to minimize the total differences between the values of the objective func-
tions from their optimal values that are obtained by the individual optimization 
method. To convert the above-mentioned phrase to the scale-less phrase, these dif-
ferences are divided into the optimal value of each objective function. We indicate 
the weights of the objective functions by Wi in this method 

�∑k

i=1
Wi = 1

�
 . The 

mathematical formulation of the LP-metrics method is as follows:

where p is considered 1 in this research.

(118)

Max f1
Max f2

.

.

.

Max fk
s.t ∶

All constraints

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

Max f1
s.t ∶

All constraints

Max f2
s.t ∶

All constraints

…

Max fk
s.t ∶

All constraints

(119)
Min Z =

(
K∑
i=1

Wi

(
f ∗
i
− fi

f ∗
i

)p
)1∕p

s.t ∶

All constraints
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5.2  Maxi‑min method

The maxi-min method focuses on the weakest objective function (Pasandideh and 
Akhavan Niaki 2014). As a result, it neglects from the optimization of the other 
objective functions. This method is aimed at maximizing the minimum of the 
quantities obtained by dividing the values of the objective functions by their corre-
sponding optimal values obtained by the individual optimization method. We dem-
onstrate the weights of the objective functions by Wi(i = 1, 2,… , k) in this method 
( 
∑k

i=1
Wi = 1) . This method can be formulated by the following model:

5.3  Goal programming method

In this method, a goal is considered for each objective function, and the purpose is to 
achieve this goal. In this regard, for any objective function, a deviation variable from 
its goal value is considered, and the aim is to minimize this variable. We signify the 
positive and the negative deviations of the objective functions from their goals by d+ 
and d−, respectively. Both of these variables have positive values. In addition, we can 
consider different weights for deviations (hi) in accordance with the importance of the 
objective functions. The mathematical formulation of the goal programming method 
can be stated as follows:

In this research, the goal values (bi) are considered to be equal to the optimal values 
of each objective function (fi*) obtained by the individual optimization method. In this 
method, we have:

(120)
Max Z = Min

(
w1f1

f ∗
1

,
w2f2

f ∗
2

,… ,
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f ∗
k

)

s.t ∶

All constraints
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if fi is amaxmization objective function

d+
i
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otherwise
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5.4  Goal attainment method

The goal attainment method tries to find a solution that minimizes the highest weighted 
deviation (Z) between the individual and the overall objective function values (Pasan-
dideh and Akhavan Niaki 2014). Moreover, in this method the values of the ideal solu-
tions 

(
bi
)
 are considered equal to the optimal values of the objective functions 

(
f ∗
i

)
 

obtained by the individual optimization method. This method can be provided in the 
form of the following model:

In addition, in this method after solving the multi-objective model, we have:

The sum of weights Wi is equal to 1 in this method ( 
∑k

i=1
Wi = 1).

5.5  Utility function method

In this method, the objective functions are converted into a unique objective func-
tion, and to do this, there are several methods from which we apply the weighted 
sum method in this research. In this method, the constraints remain unchanged, and 
new constraints are not added.

Using weighted sum method:

Moreover, the sum of the weights of the objective functions is equal to 1 in this 
method. It is worth noting that in all of the above-mentioned five MODM solution 
methods, the new objective function Z, is none of the previous objective functions 
defined.

(122)

Min Z

s.t ∶

All constraints

fi + wiZ ≥ bi; ∀i = 1, 2,… , k

Z ∶ free

If Z∗ =

⎧⎪⎨⎪⎩

Positive The objective functions values are laged from the ideal solution values

Zero The objective functions values are equal to the ideal solution values

Negativ The objective functions values are exceeded from the ideal solution values

(123)
Max Z = u

(
f1, f2, f3,… , fk

)

s.t ∶

All constraints

(124)u
(
f1, f2, f3,… , fk

)
= w1f1 + w2f2 +⋯ + wkfk
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6  Instants characterization

In this section, we provide various test problems of different sizes. Then, based on 
the objective function values and CPU times, the above-mentioned MODM methods 
are compared with each other at various levels of uncertainty. To make the compari-
son between MODM solution methods more reliable, the proposed model should 
be solved for problems of different sizes. The sizes of test problems are indicated in 
Table 2.

In the above table the symbols are:

NOS  Number of suppliers
NOJ  Number of manufacturing plants
NOA  Number of assemblers
NOD  Number of distribution centers
NOC  Number of customers
NOP  Number of pieces
NOW  Number of semi-finished products
NOT  Number of periods

It should be noted that the above-mentioned test problems are defined randomly. 
In other words, there is no relationship between them. We just attempt to increase 
the size of the problems by increasing the test problem codes.

We generate the parameters of the proposed tri-objective MILP robust model in 
Sect. 4 randomly based on uniform distributions in pre-specified intervals demon-
strated in Table 3.

The weights of the objective functions are, W1 = 0.2,W2 = 0.2,W3 = 0.6 , and 
the weights of the deviation variables in the goal programming method are, h1 = 1 , 
h2 = 1, h3 = 10 . Our strategy is to give the greatest importance to maximizing the 
reliability (third objective function) to minimize the facilities disruption risk, since 
customer’s demand will not be met if the facilities disruption occurs. It is worth not-
ing that the value of  hi in the goal programming method should be a multiplier of 
10. In the other MODM solution methods, the sum of the weights of the objective 
functions  (wi) should be equal to 1.

Table 2  Test problems

Problem code NOS NOJ NOA NOD NOC NOP NOW NOT

1 3 3 2 4 6 5 4 3
2 4 2 4 2 5 25 25 4
3 8 2 6 3 7 20 27 2
4 2 8 3 12 14 25 30 3
5 3 2 4 2 5 40 40 5
6 12 9 3 12 14 45 30 2
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7  Numerical results

This section presents multi-objective results and the DIS method, sensitivity analy-
sis, and the proposed solution procedure to find the dominant and dominated objec-
tive functions in multi-objective models.

7.1  Multi‑objective results and the DIS method

We solve the tri-objective MILP robust mathematical model for various problems of 
different sizes, using the five MODM methods by the GAMS commercial software 
on a computer with core (M) i5-CPU 2.40 GH, RAM 6.00 GB. The values of the 
objective functions and CPU times are given in Table 4.

The CPU time of the individual optimization method is the sum of CPU times 
obtained from three times running the individual optimization problem for three dif-
ferent objective functions separately.

All values in Table 4 are summarized in Figs. 4, 5 and 6 for the different objective 
functions and MODM methods and various levels of �.

The figures above clearly illustrate that the maxi-min method is very sensitive 
to the objective function weights. Due to the fact that the third objective function 
values in this method are very close to the individual optimization method values 

Table 3  Pre-specified intervals 
to generate parameters based on 
uniform distributions

Parameter’s intervals

C
p

it
[40, 60] Ck

jt
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Cat [50, 60] PC
p

jt
[30, 45]

PCk
at

[20, 30] PT
p

jt
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PTk
at

[20, 25] TC
p

ijt
[10, 20]

TCk
jat

[15,30] TCadt [40,50]
TCdmt [30, 40] T

p

i
[4, 7]

Tk
j

[6, 10] Ta [1, 2]

Vp
[0.5, 1] Vk [2, 2.5]

V [8, 10] TASTit [19000, 23000]

TAPTjt [15000, 18000] TAATat [9000, 10000]

Si [15000, 25000] Sj [17000, 20000]

Sa [20000, 30000] Sd [80000, 90000]

DDmt [1, 10] �it [1, 2]

�jt [1, 3] �at [2, 4]

�dt [3, 4] SUCk
j

[100, 200]

SCmt [45, 65] SUTk
j

[2, 4]

TTCA
p

i
[18000, 30000] TTCAk

j
[41000, 50000]

TTCAa [10000, 12000] TTCAd [12000, 13000]

Fd [8000, 10000] Fj [15000, 20000]

B
p

ijt
[10, 30] Bk

jat
[10, 20]
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Table 4  The values of objective functions and CPU time for different MODM methods and various 
uncertainty levels (�)

Problem code MODMmethod � Z
1

Z
2

Z
3

CPU Time (S)

1 Individual optimization 0 113,230.1 85,601 163.4 0.383
LP-Metric (A) 131,610.2 105,070.4 109.1 0.253
Maxi-Min (B) 339,228.7 256,454.1 163.2 0.264
Goal attainment (C) 113,528.8 85,899.7 63.8 0.391
Goal programming (D) 113,426.6 85,962.4 62.3 0.430
Utility function (E) 115,956.9 86,174.5 71.2 0.252

1 Individual optimization 0.2 136,166.6 105,866.3 130.708 0.261
A 158,121.6 141,759.5 104.4 0.231
B 408,096.8 317,285.6 130.579 0.249
C 140,594.2 110,293.9 48 0.509
D 140,594.2 110,293.9 48 0.556
E 161,884.4 106,284.2 60.2 0.265

1 0.5 Infeasible Infeasible Infeasible
1 0.9 Infeasible Infeasible Infeasible
2 Individual optimization 0 600,480 892,167.5 43,056.4 1.752

A 608,957 896,891.5 509.2 1.994
B 36,563,500 48,185,700 41,599 2.334
C 727,070 1,018,760 859.7 2.427
D 607,249 895,735.5 395.9 3.292
E 607,311 895,582.5 385.3 1.571

2 Individual optimization 0.2 720,576 1,086,732.4 34,445.1 3.388
A 749,381. 4 1,093,690 463.2 4.781
B 36,959,900 71,027,200 33,226.6 8.379
C 822,372.1 1,188,530 513.1 6.275
D 741,036.2 1,090,200 457.8 9.772
E 752,012.6 1,090,080 457.8 3.292

2 Individual optimization 0.5 903,360.8 1,359,734 20,950.2 3.477
A 945,279.2 1,364,340 459.6 4.475
B 28,452,100 58,207,700 20,298.6 5.870
C 964,585.2 1,420,960 542.1 10.878
D 933,789 1,361,400 457.564 13.082
E 947,361 1,361,400 457.558 3.716

2 Individual optimization 0.9 1,141,625. 8 1,723,736.2 4004.36 4.016
A 1,194,080 1,758,070 487.7 5.360
B 6,444,290 17,364,500 4002.48 4.944
C 1,169,630 1,751,740 458 14.615
D 1,180,340 1,726,440 457.52 14.971
E 1,197,760 1,726,440 457.56 3.923
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Table 4  (continued)

Problem code MODMmethod � Z
1

Z
2

Z
3

CPU Time (S)

3 Individual optimization 0 150,174 202,427.5 9605.8 2.176
A 172,494 204,026 118.9 1.157
B 9,773,390 11,376,100 10,015.1 1.885
C 178,339.5 230,593 217.3 1.498
D 154,222 207,447 161.5 2.358
E 172,239 203,980 104.5 0.962

3 Individual optimization 0.2 180,389.8 247,402.5 6402.7 1.684
A 211,781.4 249,824.9 109.7 2.219
B 8,477,480 19,389,100 6692.5 1.682
C 212,543.2 273,825.9 153.9 7.967
D 208,613.2 272,987.5 153.9 5.593
E 212,195.9 249,170 107.3 2.166

3 Individual optimization 0.5 225,713.5 309,253.1 3199.7 1.892
A 265,617.6 312,249.2 108.7 1.993
B 5,597,720 19,063,700 3359.9 2.602
C 261,049.3 344,588.9 108 10.393
D 279,588.5 310,422.8 107.3 6.914
E 266,010.5 311,434.8 107.3 2.439

3 0.9 Infeasible Infeasible Infeasible
4 Individual optimization 0 1,096,406 1,805,174 6328.1 20.120

A 1,164,280 1,822,480 1519.9 11.933
B 6,571,570 8,156,750 6325.8 25.035
C 1,111,510 1,820,280 1294.4 12.987
D 1,096,910 1,818,630 1116.5 33.935
E 1,150,170 1,816,270 597.3 6.981

4 Individual optimization 0.2 1,315,756.6 2,195,798.6 4214.564 16.673
A 1,462,680 2,713,310 1520.6 34.434
B 5,177,670 9,794,730 4213.669 11.656
C 1,439,120 2,319,160 847.4 846.587
D 1,516,770 2,199,940 851.660 376.351
E 1,555,380 2,200,300 851.774 18.696

4 Individual optimization 0.5 1,705,128 2,748,812.3 2099.733 19.396
A 2,168,170 4,169,910 1750.3 42.737
B 5,115,050 8,245,900 2099.562 13.554
C 1,846,310 2,889,990 809.9 342.801
D 1,907,060 2,748,970 851.841 101.809
E 1,956,860 2,749,540 851.774 20.310

4 0.9 Infeasible Infeasible Infeasible
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Table 4  (continued)

Problem code MODMmethod � Z
1

Z
2

Z
3

CPU Time (S)

5 Individual optimization 0 1,087,151.2 1,707,404.5 53,527.1 2.236
A 1,109,970 1,718,150 1381.8 2.790
B 42,294,600 59,503,800 50,542.9 19.255
C 1,243,250 1,863,500 1494 2.530
D 1,097,580 1,711,990 795.3 6.749
E 1,094,750 1,713,820 595.4 1.974

5 Individual optimization 0.2 1,304,581.4 2,063,709.3 42,152.5 7.096
A 1,351,700 2,078,110 873.1 17.784
B 41,285,600 77,723,700 39,465.6 23.548
C 1,386,930 2,186,720 1150.5 19.112
D 1,356,310 2,070,310 851.3632 39.078
E 1,356,230 2,070,400 851.363 5.041

5 Individual optimization 0.5 1,637,963.5 2,583,391 25,281 8.738
A 1,706,970 2,593,660 859.3 11.679
B 34,848,800 64,500,400 24,469.1 28.011
C 1,710,920 2,656,350 962.4 19.166
D 1,711,640 2,585,310 850.748 32.377
E 1,711,640 2,585,310 850.748 5.627

5 Individual optimization 0.9 2,067,883.7 3,285,246.6 4666.230 7.493
A 2,153,890 3,555,470 1027.3 29.329
B 7,482,370 19,876,900 4666.168 8.746
C 2,123,500 3,340,860 849.767 27.085
D 2,143,800 3,290,960 850.801 24.487
E 2,160,940 3,290,960 850.867 6.705

6 Individual optimization 0 1,004,773 1,560,245 31,339.109 21.460
A 1,069,710 1,591,030 1452 13.717
B 39,631,000 50,086,600 31,313.884 37.017
C 1,094,170 1,649,640 1540.8 18.068
D 1,035,650 1,580,720 1079.7 16.138
E 1,061,170 1,580,730 1024.2 5.412

6 Individual optimization 0.2 1,225,114.5 1,974,712.6 23,448 51.393
A 1,519,060 2,003,660 830.5 304.315
B 35,671,700 137,795,000 23,437.4 30.013
C 1,368,160 2,117,760 803.2 1023.345
D 1,438,250 2,013,990 766.9 880.530
E 1,526,270 1,979,220 742.2 125.565

6 Individual optimization 0.5 1,685,160.3 2,468,406.5 13,635.9 74.260
A 1,912,960 2,497,590 784.8 269.251
B 26,368,100 141,675,000 13,634.8 56.516
C 1,802,000 2,585,240 765.5 1049.575
D 1,880,700 2,472,120 742.7 689.380
E 1,919,530 2,472,250 742.8 167.835

6 0.9 Infeasible Infeasible Infeasible
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(ideal solution), the first and the second objective function values are very differ-
ent from those of the individual optimization method. On the other hand, Z1 and 
Z2 values of the other MODM methods are close to the values of the individual 
optimization method, while Z3 values are different from them. The CPU time val-
ues for different codes and MODM methods and various levels of � are summa-
rized in Fig. 7.
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Fig. 4  Z1 values for various levels of ρ and different problem codes and MODM methods

0.00E+00
2.00E+07
4.00E+07
6.00E+07
8.00E+07
1.00E+08
1.20E+08
1.40E+08
1.60E+08

ρ = 0.2

code1-z2 code2-z2 code3-z2

code4-z2 code5-z2 code6-z2

0.00E+00
5.00E+06
1.00E+07
1.50E+07
2.00E+07
2.50E+07

ρ = 0.9

code2-z2 code5-z2

0.00E+00
1.00E+07
2.00E+07
3.00E+07
4.00E+07
5.00E+07
6.00E+07
7.00E+07

ρ = 0

code1-z2 code2-z2 code3-z2

code4-z2 code5-z2 code6-z2

0.00E+00
2.00E+07
4.00E+07
6.00E+07
8.00E+07
1.00E+08
1.20E+08
1.40E+08
1.60E+08

ρ = 0.5

code2-z2 code3-z2 code4-z2 code5-z2 code6-z2

Fig. 5  Z2 values for various levels of ρ and different problem codes and MODM methods
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The figure above and Table 4 demonstrate that the maxi-min method is the fastest 
method with a minimum average time of 13.76 s, and the goal attainment method is 
the slowest method with a maximum average time of 157.756 s. The average values 
of Z1, Z2, and Z3 and CPU times of different problems code for various levels of � 
and different solution methods are summarized in Table 5 obtained from Table 4. In 
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Fig. 6  Z3 values for various levels of ρ and different problem codes and MODM methods
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other words, to obtain the average values of Table 5 for a specific solution method 
and a certain level of uncertainty, we calculate the average value of all various test 
problems in Table 4 for the same specific solution method and the same certain level 
of uncertainty. It means that Table 5 is extracted from Table 4.

According to Table 4, it is clear that no solution is ideal (the objective function 
values obtained by the individual optimization method have been considered as 
the ideal solution values) and none of them optimizes all of the objective functions 
simultaneously. As a result, all of them are effective solutions. In this respect, the 
displayed ideal solution (DIS) method is used to select the best MODM method to 

Table 5  The average values of objective functions and CPU time for different MODM methods and vari-
ous levels of �

Criterion ρ A B C D E

Average values 
of Z1

0 709,503.533 22,528,881.45 744,644.716 684,172.933 700,266.15

Average values 
of Z2

1,056,274.65 29,594,234.02 1,111,445.45 1,050,080.817 1,049,426.167

Average values 
of Z3

848.48 23,326.647 911.666 601.866 462.983

Average values of 
CPU Time

5.307 14.298 6.316 10.483 2.858

Average values 
of Z1

0.2 908,787.4 21,330,074.47 894,953.25 900,262.266 927,328.816

Average values 
of Z2

1,380,059.067 52,674,502.6 1,366,048.3 1,292,953.567 1,282,575.7

Average values 
of Z3

650.25 17,861.058 586.016 521.603 511.772

Average values of 
CPU Time

60.627 12.587 317.299 218.646 25.837

Average values 
of Z1

0.5 1,399,799.36 20,076,354 1,316,972.9 1,342,555.5 1,360,280.3

Average values 
of Z2

2,187,549.84 58,338,540 1,979,425.78 1,895,644.56 1,895,986.96

Average values 
of Z3

792.54 12,772.392 637.58 602.03 602.03

Average values of 
CPU Time

66.027 21.31 286.562 168.712 39.985

Average values 
of Z1

0.9 1,673,985 6,963,330 1,646,565 1,662,070 1,679,350

Average values 
of Z2

2,656,770 18,620,700 2,546,300 2,508,700 2,508,700

Average values 
of Z3

757.5 4334.324 653.883 654.16 654.213

Average values of 
CPU Time

17.344 6.845 20.85 19.729 5.314
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solve the tri-objective MILP robust mathematical model. In this method, a vector 
(Fi) of the solution is considered for each MODM method and is obtained based on 
the following four criteria presented in Table 5: the average value of the first objec-
tive function, the average value of the second objective function, the average value 
of the third objective function, and the average value of CPU times. The ideal solu-
tion (F*) is specified by determining the minimums in the three rows consisting of 
the average values of the first objective function and the second objective function 
and the CPU times as well as determining the maximum in the row consisting of the 
average of the third objective function value bolded in Table 5.

Following that, the values in Fi are normalized and the direct distance of each 
of them is computed in the following tables (Pasandideh and Akhavan Niaki 
2014). It is worth noting that the maximum differences between criterion values 
of the solution methods and the ideal solution are used to define the scale-less 
values of Tables 6, 7, 8 and 9.

Finally, a solution with a minimum direct distance is selected. The final results 
are indicated in Tables 6, 7, 8 and 9 for various levels of � , where the sixth row 
shows the direct distances of the MODM methods. It is worth noting that the 
minimum values of direct distances  are bolded in Tables 6, 7, 8 and 9.

Based on Table 6, the utility function method (E) with a minimum direct dis-
tance of 1.0007 is the best solution method for � = 0.

Based on Table 7, the utility function method (E) with a minimum direct dis-
tance of 1.04506 is the best solution method for � = 0.2

Based on Table 8, the utility function method (E) with a minimum direct dis-
tance of 1.0727 is the best solution method for � = 0.5.

Based on Table 9, the utility function method (E) with a minimum direct dis-
tance of 1.00607 is the best solution method for � = 0.9.

The results of the DIS method show that to determine the best MODM solution 
method, in various levels of � , the utility function method has the minimum direct 
distance from the optimal values (ideal solution) and is selected as the best MODM 
solution method to solve the tri-objective MILP robust problem. For instance, the 
proposed solution for test problem  1 at, � = 0.2 , which is obtained with applica-
tion of utility function method, is demonstrated in Tables 10 to 15, in detail. The 
results of solution reveal that among the three potential manufacturing plants and 
four potential distribution centers, manufacturing plants 1,2, and 3 and distribution 
center 3 are selected, respectively, to be established with Z1 value of 161,884.4, Z2 
value of 106,284.2, and Z3 value of 60.2. It is worth noting that as the results sug-
gest, all pieces can be supplied by all suppliers in this test problem. The value of 
CPU time is 0.265, and no shortage occurred for none of the customers.

Table  10 represents the optimal quantity of batches of five various pieces dis-
patched from three deterministic suppliers to three selected manufacturing plants 
in three time periods. Table 11 shows the optimal quantity of the batches of four 
various semi-finished products dispatched from three selected manufacturing plants 
to two deterministic assemblers in three time periods. Table 12 shows the optimal 
quantity of the dispatched final products from two deterministic assemblers to the 
selected distribution center 3 in three time periods. Finally, Table  13 represents 
the optimal quantity of the dispatched final products from the selected distribution 
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center 3 to six customers in three time periods. It should be noted that based on 
Table  13 all the customers demand are fulfilled by selected distribution center 3. 
Therefore, no gap exists in the context of the fulfillment of the customer’s demand.

The queuing system results (service time of commodities) is presented in 
Tables 14 and 15.

Table 6  Criterion scale-less 
values and direct distances of 
solution methods ρ = 0

Criterion A B C D E

Z
1
 Values 0.0011 1 0.0027 0 0.0007

Z
2
 Values 0.0002 1 0.0021 0.00002 0

Z
3
 Values 0.9831 0 0.9803 0.9939 1

CPU Time 0.214 1 0.3022 0.66652 0

Direct distance 1.1984 3 1.2873 1.66,044 1.0007

Table 7  Criterion scale-less 
values and direct distances of 
solution methods ρ = 0.2

Criterion A B C D E

Z
1
 Values 0.00067 1 0 0.00025 0.00158

Z
2
 Values 0.00189 1 0.00162 0.00020 0

Z
3
 Values 0.99201 0 0.99572 0.99943 1

CPU Time 0.15765 0 1 0.67624 0.04348

Direct distance 1.15222 2 1.99734 1.67612 1.04506

Table 8  Criterion scale-less 
values and direct distances of 
solution methods ρ = 0.5

Criterion A B C D E

Z
1
 Values 0.00441 1 0 0.00136 0.00230

Z
2
 Values 0.00517 1 0.00148 0 0.000006

Z
3
 Values 0.98434 0 0.99707 1 1

CPU Time 0.16858 0 1 0.55570 0.07040

Direct distance 1.1625 2 1.99855 1.55706 1.0727

Table 9  Criterion scale-less 
values and direct distances of 
solution methods ρ = 0.9

Criterion A B C D E

Z
3
 Values 0.00515 1 0 0.00291 0.00616

Z
2
 Values 0.00919 1 0.00233 0 0

Z
3
 Values 0.97184 0 1 0.99992 0.99991

CPU Time 0.77433 0.09854 1 0.92784 0

Direct distance 1.76051 2.09854 2.00233 1.93067 1.00607
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Table 10  Optimal quantity of 
batches of piece p dispatched 
from supplier i to manufacturing 
plant j in period t

Piece Supplier Plant Period

1 2 3

1 1 1 0.32 0.701 0.298
2 0.412 0.534 0.303
3 0.467 0.466 0.553

2 1 0 0.701 0.078
2 0.412 0 0
3 0 0.466 0

3 1 0.32 0 0
2 0 0.534 0
3 0.467 0 0.145

2 1 1 0.16 0.241 0
2 0.142 0.183 0.05
3 0 0.155 0.119

2 1 0.16 0.919 0
2 0 0.7 0.05
3 0.467 0.155 0.076

3 1 0 0 0.454
2 0.541 0 0.05
3 0.467 0.155 0.454

3 1 1 0.214 1.401 0.222
2 0.412 1.067 0.101
3 0.467 0.932 0.422

2 1 0.214 0 0.058
2 0 0 0.101
3 0.467 0 0.422

3 1 0.214 0 0.058
2 0.412 0 0.101
3 0 0 0

4 1 1 0 0 0
2 0 0 0.029
3 0 0 0

2 1 0 0.919 0.078
2 0.825 0.183 0.064
3 0 0.932 0.145

3 1 0.641 0.241 0.298
2 0 0.7 0.029
3 0.934 0 0.553
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Table  14 presents the service time values of the five various pieces dis-
patched from three deterministic suppliers to three selected manufacturing plants 
in three time periods. Table 15 shows the service time values of the four various 

Table 10  (continued) Piece Supplier Plant Period

1 2 3

5 1 1 0.107 0.35 0.078
2 0.142 0 0.052
3 0.119 0.233 0.145

2 1 0.107 0.35 0.298
2 0 0.7 0.199
3 0.119 0.233 0.553

3 1 0.107 0 0
2 0.541 0.183 0
3 0.456 0 0

Table 11  Optimal quantity of 
batches of semi-finished product 
k dispatched from plant j to 
assembler a in period t

Semi-finished 
product

Plant Assembler Period

1 2 3

1 1 1 0.641 0.215 0.454
2 0 0.97 0

2 1 0.168 0.823 0
2 0.245 0.245 0.303

3 1 0 0.215 0.454
2 0.934 0.251 0.389

2 1 1 0.244 1.105 0
2 0.076 0.148 0.454

2 1 0 0.289 0.303
2 0.825 0.244 0

3 1 0.244 0 0.605
2 0.223 0.932 0.119

3 1 1 0.077 0.842 0.062
2 0.564 0.279 0.329

2 1 0.261 0 0.135
2 0.564 1.067 0.017

3 1 0.319 0.842 0.514
2 0.148 0.045 0.329

4 1 1 0.101 0.949 0.303
2 0.219 0.452 0.076

2 1 0.387 0.119 0.303
2 0.219 0.83 0

3 1 0.387 0.249 0.303
2 0.547 0.217 0.541
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semi-finished products dispatched from three selected manufacturing plants to two 
deterministic assemblers.

Table 12  Optimal quantity of 
final products dispatched from 
assembler a to distribution 
center d in period t

Assembler Distribution 
center

Period

1 2 3

1 1 0 0 0
2 0 0 0
3 16.842 16.842 0
4 0 0 0

2 1 0 0 0
2 0 0 0
3 7.158 17.158 16
4 0 0 0

Table 13  Optimal quantity of 
final products dispatched from 
distribution center d to customer 
m in period t

Distribution 
center

Customer Period

1 2 3

1 1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0

2 1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0

3 1 2 6 5
2 3 2 1
3 2 9 3
4 2 7 2
5 9 4 2
6 6 6 3

4 1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
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Table 14  Service time of piece 
p dispatched from supplier i to 
manufacturing plant j in period t

Piece Supplier Plant Period

1 2 3

1 1 1 205.333 259.240 107.556
2 190.667 136.310 117.333
3 205.333 259.240 127.111

2 1 205.333 259.240 107.556
2 190.667 136.310 117.333
3 205.333 259.240 127.111

3 1 205.333 259.240 107.556
2 190.667 136.310 117.333
3 205.333 259.240 127.111

2 1 1 420.000 544.404 280.000
2 336.000 300.263 242.667
3 420.000 593.895 186.667

2 1 420.000 544.404 280.000
2 336.000 300.263 242.667
3 420.000 593.895 186.667

3 1 420.000 544.404 280.000
2 336.000 300.263 242.667
3 420.000 593.895 186.667

3 1 1 220.000 388.860 117.333
2 176.000 115.339 97.778
3 146.667 259.240 127.111

2 1 220.000 388.860 117.333
2 176.000 115.339 97.778
3 146.667 259.240 127.111

3 1 220.000 388.860 117.333
2 176.000 115.339 97.778
3 146.667 259.240 127.111

4 1 1 537.333 803.643 303.111
2 578.667 413.696 275.556
3 537.333 1022.819 303.111

2 1 537.333 803.643 303.111
2 578.667 413.696 275.556
3 537.333 1022.819 303.111

3 1 537.333 803.643 303.111
2 578.667 413.696 275.556
3 537.333 1022.819 303.111
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Table 14  (continued) Piece Supplier Plant Period

1 2 3

5 1 1 280.000 692.877 205.333
2 364.000 280.246 242.667
3 336.000 544.404 242.667

2 1 280.000 692.877 205.333
2 364.000 280.246 242.667
3 336.000 544.404 242.667

3 1 280.000 692.877 205.333
2 364.000 280.246 242.667
3 336.000 544.404 242.667

Table 15  Service time of semi-
finished product k dispatched 
from plant j to assembler a in 
period t

Semi-
finished 
product

Plant Assembler Period

1 2 3

1 1 1 555.789 943.158 0
2 501.053 656.526 952.000

2 1 555.789 943.158 0
2 501.053 8.105 952.000

3 1 555.789 943.158 0
2 501.053 656.526 952.000

2 1 1 1120.000 509.474 0
2 375.789 1201.053 293.333

2 1 1120.000 0 0
2 375.789 1201.053 293.333

3 1 1120.000 509.474 0
2 375.789 1201.053 293.333

3 1 1 339.649 602.105 0
2 236.211 1080.947 557.333

2 1 339.649 0 0
2 236.211 1080.947 557.333

3 1 339.649 602.105 0
2 236.211 1080.947 557.333

4 1 1 1178.947 741.053 0
2 275.579 629.123 1120.000

2 1 1178.947 0 0
2 275.579 629.123 1120.000

3 1 1178.947 741.053 0
2 275.579 629.123 1120.000
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7.2  Sensitivity analysis

To learn more regarding the relationship between Z1 value (i.e. total cost) and Z2 
value (i.e. total time), the trade-off between total cost and total time is presented in 
Fig. 8 for test problem 1 at � = 0.2 , which is obtained by applying utility function 
method. It is worth noting that the weights of objective functions have been con-
sidered to be: {(1,0,0), (0.9,0.1,0), (0.8,0.2,0), …, (0.1,0.9,0), (0,1,0)}. Some of the 
weights also reach the solutions very close or even equal to each other.

As Fig. 8 shows, the two objective functions are incompatible as an increase in 
the value of the total cost leads to a decrease in the value of the total time. In the 
real-world, this rule holds true whenever more costs are spent on the SCNs, the 
required products are delivered to customers faster. For example, as the transporta-
tion costs increase, faster and more vehicles can be utilized and consequently, the 
required products are delivered to customers faster.

To demonstrate the relationship between Z1 value (i.e. total cost) and Z3 value 
(i.e. average total number of commodities dispatched from any echelon of the 
SCN to the next echelon), the trade-off between total cost and average total num-
ber of commodities dispatched from any echelon of the SCN to the next echelon 
is presented in Fig. 9 for test problem 1 at � = 0.2 , which is obtained by apply-
ing utility function method. It is worth noting that the weights of objective func-
tions have been considered to be: {(1,0,0), (0.9,0,0.1), (0.8,0,0.2), …, (0.1,0,0.9), 
(0,0,1)}. Some of the weights also obtain the solutions very close or equal to each 
other.

Fig. 8  Trade-off between total cost and total time performed by utility function method
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As Fig. 9 depicts, two objective functions are compatible as an increase in the 
value of the total cost leads to an increase in the value of the average total number 
of commodities dispatched from any echelon of the SCN to the next echelon. In the 
real-world, this rule is also true as more costs (such as costs of transportation and 
inventory holding) are spent on the SCNs, the average total number of commodities 
dispatched from any echelon of the SCN to the next echelon increases highly.

To clarify the relationship between Z2 value and Z3 value, the trade-off between 
total time and average total number of commodities dispatched from any ech-
elon of the SCN to the next echelon is presented in Fig.  10 for test problem  1 
at � = 0.2 , which is obtained by using utility function method. It is worth not-
ing that the weights of objective functions have been considered to be: {(0,1,0), 
(0,0.9,0.1), (0,0.8,0.2), …, (0,0.1,0.9), (0,0,1)}. Some of the weights also obtain 
the solutions very close or equal to each other.

Based on Fig. 10, it can be inferred that the two objective functions are compat-
ible since Fig. 10 shows that an increase in the value of the total time leads to an 
increase in the value of the average total number of commodities dispatched from 
any echelon of the SCN to the next echelon. This holds true in the real world, since 
the more time (such as total available supply, production and assembling times) is 
spent on the SCNs, the average total number of commodities dispatched from any 
echelon of the SCN to the next echelon increases highly.

Finally, Fig. 11 presents the optimal Pareto front solution for test problem 1 at 
= 0.2 , which is obtained via utility function method. It is worth noting that the 
weights of objective functions have been considered to be: {(1,0,0), (0.8,0.1,0.1), 
(0.6,0.2,0.2), …. (0.2,0.4,0.4), (0,0.5,0.5), (0,1,0), (0.1,0.8,0.1), (0.2,0.6,0.2), 

Fig. 9  Trade-off between total cost and average total number of commodities dispatched from any ech-
elon of the SCN to the next echelon performed by utility function method
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…. (0.4,0.2,0.4), (0.5,0,0.5), (0,0,1), (0.1,0.1,0.8), (0.2,0.2,0.6),…, (0.4,0.4,0.2), 
(0.5,0.5,0)}. Some of weights also obtain the solutions very close or equal to each 
other. It is worth noting that all of the above-mentioned MODM solution methods 
only obtain one solution (non-dominated if the optimality is reached) in every time 
solved. Therefore, to obtain the Pareto front, we should change the weights of the 
objective functions and resolve the problem.

As it was mentioned previously, in the proposed tri-objective MILP robust model, 
a competition exists between the number of commodities dispatched from each ech-
elon of the SCN to the next echelon (third objective function) and the total cost (first 
objective function) and total time (second objective function). Since increasing the 
third objective function leads to increasing the total cost and time while the first 
and second objective functions are from minimization type. Therefore, the first and 
second objective functions act against the third objective function. Hence, knowing 
which group will dominate the other one is of great significance. In other words, we 
should determine either of the set of first and second objective functions or the third 
objective function dominates the other.

To answer this question, a solution is proposed to find the dominant and domi-
nated objective functions based on uncertainty level (⍴) in multi-objective models in 
the following.

Fig. 10  Trade-off between total time and average total number of commodities dispatched from any ech-
elon of the SCN to the next echelon performed by utility function method
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7.3  Proposed solution procedure to find the dominant and dominated objective 
functions in multi‑objective models for determined weights of objective 
functions based on the uncertainty level (⍴) of the model

In this section, we present a three-stage solution procedure as follows:

1. Obtain the trend (treatment) of each objective function by increasing the levels 
of ρ in a non-competitive condition (Individual optimization method) separately. 
Certainly, there is a general rule for this stage: by increasing the ⍴ value, maxi-
mization objective functions have a descending trend and minimization objective 
functions have an ascending trend. Because by increasing the � values, the feasible 
region of the problem’s solution space decreases and no better solution can be 
found by the solution method.

2. Obtain the trend of each objective function by increasing the levels of ρ in a 
competitive condition (for example, MODM solution methods).

3. Compare the results (objective function trends by increasing the ⍴ value) obtained 
by the two previous stages in competitive and non-competitive conditions. Any 
objective function with different trends in the competitive and non-competitive 
conditions is dominated and controlled by the competitor objective functions.

Accordingly, first, the treatment of Z1, Z2, Z3 values of individual optimization 
method was obtained by increasing the levels of ρ for different problem codes, while 
the weights of the objective functions are W1 = 0.2,W2 = 0.2,W3 = 0.6 , as pre-
sented in Fig. 12 (derived from Table 4).

Based on Fig. 12 it is clear that for a specific code, by increasing the uncertainty 
level (ρ), the objective functions values of the individual optimization method do not 
improve. In other words, according to Fig. 12, it is concluded that by increasing the 

1
1.5

2
2.5

3

x 10
5

1

1.5

2

2.5

x 10
5

40

60

80

100

120

140

1st objective2nd objective

3r
d 

ob
je

ct
iv

e

Fig. 11  Pareto front obtained by using utility function method



2016 V. Nazari-Ghanbarloo, A. Ghodratnama 

1 3

� values, the Z1 and Z2 values will not decrease and the Z3 value will not increase. 
Because by increasing the � values, the feasible region of the problem’s  solu-
tion space decreases.

Currently, the treatments of three objective functions should be obtained in a 
competitive condition by the utility function method at various levels of ⍴. Then, two 
treatments obtained by the individual optimization method and the utility function 
method are compared. Since by considering the treatments of objective functions in 
the non-competitive condition, the deviations in the treatments of the objective func-
tions in the competitive condition will be obtained. Each group with a deviation in 
the competitive condition rather than in non-competitive condition is dominated by 
the other group, since the dominated group is controlled by the dominant group in 
terms of attainment of the ideal solutions.

Hence, treatments of Z1, Z2, Z3 values of utility function method by increas-
ing the levels of ρ for different problem codes, while the weights of the objective 
functions are W1 = 0.2,W2 = 0.2,W3 = 0.6 are presented in Fig. 13 (derived from 
Table 4).

The comparison of the results obtained from two methods indicates that the 
first and second objective functions have equal treatments in the non-competitive 
(individual optimization method) and the competitive (utility function method) 
conditions (please compare Figs.  12 and 13 to each other) and have ascending 
trends. However, the third objective function treatment is different in competitive 
and non-competitive conditions. Since in code 2, code 3, code 4, code 5 and code 
6, it is expected that as in non-competitive condition, the charts have descend-
ing trends, while they have ascending trends (code 1 is infeasible in ⍴ = 0.5 and 
⍴ = 0.9). In other words, in these test problems for the third objective function, 
it is expected that by increasing the uncertainty level (⍴), the obtained solutions 
are not improved, since by increasing the ⍴ value, the feasible region of the prob-
lem’s solution space decreases and no better solution can be found.

Therefore, the first and second objective functions dominate the third objective 
function and control the obtained solutions by utility function method, although 
the weight distributions are W1 = 0.2,W2 = 0.2,W3 = 0.6 . Because, in the pro-
posed tri-objective robust model, a small increase in the third objective function 
value leads to a large increase in the first and second objective function values 
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while they are from minimization type. However, it is important to note that these 
results are valid for utility function method. For example, if the maxi-min method 
is applied, the obtained results will be completely inverse. In other words, the 
third objective function dominates the two other objective functions (please refer 
to the maxi-min method in Table 4), since, as it was mentioned previously, the 
maxi-min method is concentrated on the weakest objective function. This impor-
tant note indicates the significance of comparing the MODM solution methods.

8  Conclusions and suggestions for future research

In this research, we attempt to propose a realistic model for SCN optimization. In 
this regard, we concentrate on the formation of the queuing system in the producers 
of the SCN and BTP approaches, as well as the operational and disruption risks. We 
maximize the reliability of facilities in sending the commodities in the third objec-
tive function to manage the disruption risk and use the ⍴-robust method in order to 
deal with the operational risk in the proposed tri-objective model. In the present 
study, a novel tri-objective MILP robust mathematical model was introduced to opti-
mize total cost, total time, and the average total number of commodities dispatched 
from any echelon of the SCN to the next echelon on a five-echelon multi-period 
SCN.

The BTP approaches are beneficial to compute the parameters of formed queuing 
system in the producers of the SCN. It is also useful to compute the optimal quantity 
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of batches transferred from suppliers to producers that can be used in transportation 
planning.

We compare five of the MODM solution methods at various levels of ⍴ to deter-
mine their best ones to solve the proposed tri-objective robust model. Based on 
the average values of Z1, Z2, and Z3 and CPU time, the utility function method was 
selected as the best MODM method to solve the proposed mathematical model at 
various levels of uncertainty.

In fact, the proposed robust tri-objective model leads to a competition between 
the average total number of commodities dispatched from any echelon of the SCN 
to the next echelon and total cost and total time. Hence, we propose a novel solu-
tion to find dominant and dominated objectives in multi-objective models for deter-
mined weights of objective functions based on the uncertainty level of the model. 
The proposed solution based on uncertainty level and objective functions trends for 
determined weights of objective functions indicate that the third objective function 
is dominated by two other objective functions when the model is solved by the util-
ity function method.

Our research is highly beneficial to all companies in the competitive market, since 
it helps to reduce the total cost and total time of processing the final product and as 
a result it reduces the prices and delivery times which in turn leads to attracting 
more customers. Maximizing the facilities reliability is also beneficial for customer 
satisfaction.

In future studies, other queuing system models such as M/M(x)/1 model or batch 
arrival model can be also studied in problem modeling. Furthermore, meta-heuristic 
algorithms such as NSGA - II and MOPSO can be employed to find Pareto fronts. 
Some of the model parameters can be also considered as fuzzy parameters. Moreo-
ver, instead of the exponential distribution which is assumed to model the reliability 
of facilities, other probability distributions such as Erlang or Weibull can be consid-
ered (Pasandideh and Akhavan Niaki 2014).
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