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Abstract
In the present study, a multi-period multi-product aggregate production planning 
model is developed under uncertainty, considering some important aspects of real-
world production systems. In order to apply environmental concerns and control the 
pollution arising from machines, environmental improvement planning is included 
as a periodic decision variable. Also, the pollution caused by the production is 
restricted to an allowable level. A light robust optimization approach is employed 
in which demands and processing times of operations are uncertain parameters. 
An illustrative example is presented to demonstrate the model validity and some 
test problems are designed to analyze the impact of uncertainty on the objective 
function. Several sensitivity analyses are carried out to provide useful managerial 
insights.
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1 Introduction

Aggregate production planning (APP) is a capacity planning often conducted in 
a medium-term horizon of 2–18-months to meet the fluctuating demand. APP is 
focused on determining the optimal quantity of raw material, production, work-
force and inventory levels for each considered planning period with limited 
resources capacities (Wang and Fang 2001; Gomes da Silva et al. 2006).

Several challenges exist in production planning of manufacturing systems. First, 
in practice, the demand and processing times of manufacturing operations are often 
uncertain. Second, production processes are sources of air pollution and greenhouse 
gas emissions (GHG). In addition, inefficient scheduling of manufacturing processes 
in different shifts and the usage of older equipment, tools, and machines result in 
considerable environmental pollution. In response to this issue, it is necessary to 
consider a specific budget in each period of time for machines’ improvement in 
terms of the environmental protection level, technology upgrade, or even machines’ 
replacement. To overcome these problems, we proposed a light robust APP model 
under uncertainty with the aim of improving the environmental protection level in 
facilities. To the best of our knowledge, it is the first model that addresses the deci-
sion on the environmental investment in a medium-term uncertain aggregate produc-
tion planning to provide greener facilities under the concept of “green production”.

The rest of the paper is organized as follows: In Sect. 2, a literature review is 
provided. In Sect. 3, a multi-period, multi-product aggregate production planning 
model is proposed. Also, the robust optimization model based on light robust 
approach is demonstrated in this section. Computational results are highlighted 
in Sect. 4. A numerical example is provided and several analyses are conducted 
for the robust optimization model. Finally, Sect.  5 draws some conclusions and 
discusses future studies.

2  Literature review

Since the introduction of the first aggregate production planning model by Holt 
et al. (1955), various models have been developed to solve APP problems of dif-
fering complexity degrees. Many studies on APP problems have been performed 
over the past two decades (David 1974; Lim et al. 2005; Masud and Hwang 2007; 
Kazemi et al. 2009; Orcun et al. 2009; Xue et al. 2011; Zhang et al. 2012). Nam 
and Logendran (1992) provided a comprehensive review of a wide range of APP 
models from 14 books and 140 journal papers. To name a few, Gholamian et al. 
(2015) and Chakrabortty et  al. (2015) developed a possibilistic Environment-
based Particle Swarm optimization (PE-PSO) approach that includes escalating 
factors for all imprecise parameters. Escalating factors for various operational 
costs were also taken into consideration in their research.

As production operations result into lots of pollution sources, recently 
researchers have focused on improving production systems by considering the 
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environmental factors. For example, Entezaminia et al. (2016) provided a multi-
objective model for multi-product, multi-site aggregate production planning in a 
green supply chain by considering collection and recycling centers. In the pro-
posed model, products are scored in terms of environmental criteria such as recy-
clability, biodegradability, energy consumption and product risk, using analytical 
hierarchy process (AHP). Some other green indicators, including waste manage-
ment, greenhouse gas emissions arising from production methods and transporta-
tion are embedded in the model. The limited number of potential collection and 
recycling centers can be opened in order to produce the second-class goods.

Wang et al. (2011) proposed a multi-objective optimization model that relied on 
the facility location. They presented a strategic planning model for green chain net-
work design. Their study had a different perspective on the “greenness.” They con-
sidered the environmental investment decision making in the network design phase 
and stressed taking precautions against environmental pollution. They believed that 
an initial investment in environmental protection equipment or techniques should be 
determined in the design phase. This investment can impact on the environmental 
indicators in the operations phase. Jayaraman et  al. (2017) developed a stochastic 
goal programming model for strategic planning decisions and investment allocations 
to fulfill sustainable developmental goals.

Fang et  al. (2016) presented an integer linear programming model for optimal 
production planning in a hybrid manufacturing and recovering system with green 
principles. They considered recovering and disposal decisions to enhance the envi-
ronmental protection. Their proposed model considers three recovery options, sev-
eral levels of returns and, the value deterioration during the processing time period. 
Their model tries to enhance the environmental protection level and avoid defiance 
of relevant legislation. Choi and Xirouchakis (2015) presented a model for a holistic 
production planning in a reconfigurable manufacturing system by focusing on envi-
ronmental impacts and energy consumption. Their suggested production planning 
model evaluates dynamically the environmental effects performance in terms of dif-
ferent holistic measures such as energy consumption at different planning horizon. 
Bournaris et al. (2015) developed a mathematical programming model for the sup-
port of irrigation water use and eco-friendly decision process in agricultural produc-
tion planning. They considered different environmental measures such as different 
levels of chemicals or water consumption per crop. Their model can help a decision 
maker get alternative production plans and agricultural land uses considering the 
social, economic and environmental impact of different policies.

As mentioned above, another challenge in real-world planning problems is the 
point that operational data are often imprecise, incomplete, and uncertain. Accord-
ing to Al-e-Hashem et al. (2011a), four primary approaches have been developed to 
consider uncertainty of one form or another in production planning: (1) stochastic 
programming approach (Leung et al. 2006; Zanjani et al. 2013; Al-e-hashem et al. 
2013), (2) stochastic dynamic programming approach (Li et al. 2009), (3) fuzzy pro-
gramming approach (Iris and Cevikcan 2014; Tien-Fu Liang et al. 2011; Gholamian 
et al. 2016), and (4) robust optimization approach (Al-e-hashem et al. 2011a; Rahm-
ani et  al. 2013; Niknamfar et  al. 2014). In the stochastic approach, input data are 
considered as random variables with related known probability density functions. In 
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the fuzzy approach, some variables are quantified as fuzzy numbers. For example, 
da Silva and Marins (2014) presented a Fuzzy Goal Programming (FGP) model for 
aggregate production planning under uncertainty in sugar and ethanol milling indus-
tries. The proposed model provides reliable and precise outputs, taking into account 
technical and economic perspectives. Jamalnia and Soukhakian (2009) developed a 
hybrid fuzzy multi-objective nonlinear programming (H-FMONLP) model with dif-
ferent goal priorities for the multi-product multi-period aggregate production plan-
ning. Hybrid means that the model included quantitative and qualitative objectives.

In the stochastic dynamic approach, random variables can be used in dynamic 
programming to formulate the uncertainty in the multi-stage decision making. 
Finally, the robust optimization is a strong methodology to find a robust solution and 
to manage the risks arising from noisy data (Al-e-hashem et al. 2011b).

Among the above-discussed approach, robust optimization models have been pro-
posed in the literature to handle uncertainty. A scenario-based robust optimization 
approach is proposed by Mulvey et al. (1995). Leung and Wu (2004) focused on a 
robust optimization model for APP problem including uncertain parameters. Leung 
et al. (2007) considered a robust model for multi-site APP problem. Zanjani et al. 
(2010) studied the robust optimization method to deal with multi-period, multi-
product production planning problem for a manufacturing environment with random 
yield. Al-e-hashem et al. (2011a, b) proposed a multi-objective robust optimization 
model for multi-site APP problem under uncertainty. Other robust approaches for 
linear quadratic problems and conic quadratic problems are developed by Ben-Tal 
and Nemirovski (1998, 2002, 2004). A linear robust optimization approach in con-
tinuous spaces for interval uncertain parameters is also addressed by Bertsimas and 
Sim (2003). The limitation of the previous studies was that these robust optimization 
approaches lead to very conservative solutions. To overcome this limitation, Fis-
chetti and Monaci (2009) investigated a new way to model the uncertainty, leading 
to a modeling framework titled ‘Light Robustness’. This approach creates a balance 
between the feasibility due to uncertain parameters (the robustness of solutions) and 
the quality of the solution. They proposed two different models for the light robust 
approach, where their first model mainly relies on Bertsimas and Sim’s definition of 
robustness.

2.1  The Bertsimas and Sim approach

Consider the following generic linear programming (LP) model:

(1)min
∑

j∈N

cjxj

(2)
∑

j∈N

ãijxj ≤ bi i ∈ M

(3)xj ≥ 0 j ∈ N
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Soyster (1973) made the first attempt to deal with the uncertainty of parameters in 
mathematical models. The formula for considering uncertainty is as follows:

where Kj are convex sets related to “column-wise” uncertainty. Assuming that the ãij 
is the uncertain coefficient, it may take any value in [aij − âij, aij + âij] range. In this 
definition, aij is the nominal value and âij is the maximum deviation from the nom-
inal value. In the Soyster approach, all uncertain parameters are considered to be 
fixed at the worst-case value. This, in turn, results in less optimal solutions as well 
as over-conservative models. To overcome this limitation, Ben-Tal and Nemirovski 
(1999, 2000, 2002) developed less conservative models to allow a tradeoff between 
performance and robustness. As shown by Bertsimas and Sim (2003, 2004), in a 
real situation, it is unlikely that all uncertain parameters take their worst-case value. 
Bertsimas and Sim (2003) introduced a parameter as the robust optimization coef-
ficient called �i (Budget of uncertainty), which shows the level of risk aversion for 
each constraint. This parameter is not necessarily integer and may take any value 
in the 

[
0, ||Ji||

]
 range in which ||Ji|| is the total number of uncertain parameters in con-

straint i. To define the robust counterpart of the main model, each row i ∈ M is 
replaced with the new constraint as follows:

where �
(
x,�i

)
 is the protection function that can be defined as follows:

The input parameter �i is used to control the robustness of the solution: �i = n cor-
responds to Soyster’s formulation as a worst-case approach, whereas �i = 0 shows the 
nominal case in which the robustness is not considered. Furthermore, linear program-
ming duality is used to reformulate the robust model as follows:

(4)min

{
∑

j∈N

cjxj|
∑

j∈N

ãijxj ≤ bi,∀ãij ∈ Kj, j ∈ N

}

(5)
∑

j∈N

aijxj + �
(
x,�i

)
≤ bi

(6)𝛽
(
x,𝛤i

)
= max

S⊆N∶|S|≤𝛤i

∑

j∈S

âijxj

(7)min
∑

j∈N

cjxj

(8)
∑

j∈N

aijxj + �izi +
∑

j∈N

pij ≤ bi i ∈ M

(9)−âijxj + zi + pij ≥ 0 i ∈ M, j ∈ N

(10)zi ≥ 0 i ∈ M

(11)pij ≥ 0 i ∈ M, j ∈ N
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Variables zi and pij are necessary dual variables in this approach. The solutions 
provided by Bertsimas and Sim (BS) approach are feasible on condition that more 
than �i coefficients are allowed to take the worst-case.

2.2  The basic light robustness approach

A closer look at the BS definition indicates that with regard to the objective function 
value, the optimal solution related to the BS approach can be worse than the nomi-
nal optimal solution. It should be noted that the definition of Light Robustness (LR) 
is focused on balancing the quality of the solution with the objective function and 
the robustness of the solution with the uncertainty of coefficients. This LR approach, 
as a new modeling framework, produces the most robust solution among those solu-
tions which are not too far in terms of optimality for the nominal problem. The LR 
counterpart of (1)–(3) can be indicated as:

Objective function (13) is used to minimize the weighted sum of slack variables 
�i acting as second-storage resource variables. When it comes to the uncertainty of 
parameters, each variable �i demonstrates the robustness level of the solution in row 
i ∈ M . Particularly, �i takes a positive value on the condition that the - robust con-
straint i is violated. The input parameter � is defined to balance the feasibility and 
the optimality of the solution. � = ∞ means that the nominal objective function fails 
to be taken into account at all, and � = 0 denotes the nominal problem. Using con-
straint (16), a maximum deviation of the value of the objective function is imposed 
with regard to the optimal objective value of the nominal problem.

In the objective function (13), weights �i are taken into account to contravene for 
various scales of constraints. Therefore, it is assumed that all constraints are given in 
a comparable unit and �i = 1 for all i. The LP counterpart of (1)–(3) can be shown 
as follows:

(12)xj ≥ 0 j ∈ N

(13)min
∑

i∈M

�i�i

(14)
∑

j∈N

aijxj + �(x,�i) − �i≤bi i ∈ M

(15)
∑

j∈N

aijxj ≤ bi i ∈ M

(16)
∑

j∈N

cjxj ≤ (1 + �)Z ∗

(17)xj ≥ 0 j ∈ N

(18)�i ≥ 0 i ∈ M
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It should be noted that LR is a modeling framework to achieve robustness, and is 
not a rigid technique. In this method, the robustness can be obtained by simultane-
ous consideration of optimality and possible infeasibility.

2.3  Research gaps and major contributions

Upon reviewing the recent literature, it seems that there are two important research 
gaps in production planning problems.

First, as de Oliveira Neto and Lucato (2016) stated, there are several initiatives 
in the literature to reduce the environmental impacts of production operations; nev-
ertheless, the use of production planning activities to achieve these goals has rarely 
been considered. In fact, most studies on aggregate production planning have over-
looked the environmental issues. In those few previous studies focusing on the envi-
ronmental issues, the only strategy was to limit the generated pollution to the maxi-
mum amount of total pollution, while including some constraints (Entezaminia et al. 
2016; Porkar et  al. 2018). As production planning is a periodic decision method, 
our proposed approach has a different viewpoint on green production planning. In 
fact, it is helpful to consider a specific budget in each period of time for improving 
machinery or even replacing them in terms of their environmental protection levels. 
The more improvement level in machinery, the less pollution is generated. Second, 
to present robust approaches, some researchers have tried to find a solution that is 
still feasible for worst-case scenario (Soyster 1973). This approach has presented 
a straightforward way to model uncertainty, but they can lead to overconservative 

(19)min
∑

i∈M

�i

(20)
∑

j∈N

aij xj + �izi +
∑

j∈N

pij − �i ≤ bi i ∈ M

(21)−âijxj + zi + pij ≥ 0 i ∈ M, j ∈ N

(22)zi ≥ 0 i ∈ M

(23)pij ≥ 0 i ∈ M, j ∈ N

(24)
∑

j∈N

aijxj ≤ bi i ∈ M

(25)
∑

j∈N

cjxj ≤ (1 + �)Z ∗

(26)xj ≥ 0 j ∈ N

(27)�i ≥ 0 j ∈ N
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solutions that are quite bad in terms of objective function (Indeed, a feasible solution 
may not exist at all). As Bertsimas and Sim (2003) have stated, it is unreal to assume 
that all coefficients take their worst-case value, at the same time, in real situations 
(Fischetti and Monaci 2009). In fact, the presented robust models in the literature 
sometimes lead to very conservative solutions that have little practical applications. 
These models often tend to lead to poor solutions in relation to optimality. To over-
come this matter, it is necessary using a less conservative approach such as a light 
robust approach (Fischetti and Monaci 2009). To the best of our knowledge, this is 
the first attempt at modeling the uncertain aggregate production planning via LR 
approach by focusing on improving the environmental level of machines. The major 
contributions of this paper can be summarized as follows:

• Developing a light robust optimization model for a multi-period, multi-product 
aggregate production planning with environmental concerns under uncertainty.

• Considering the environmental protection improvement in machinery to address 
green production planning.

• Considering escalating factors for cost parameters to make a more precise light 
robust production plan.

3  Model description

In this section, a multi-product and a multi-period aggregate production planning is 
developed over a given planning horizon. The model is designed to determine the 
optimal level of production at the regular time and overtime as well as a subcontract-
ing volume. The optimal level of inventories, workers, and backorders are also con-
sidered as decision variables. Moreover, escalating factors for different operational 
costs with rising trend are considered in the proposed model. As mentioned before, 
in addition to the production planning, the improvement of the environmental pro-
tection level in machinery is also included in the proposed model.

In each factory, different machines produce various amounts of pollution depend-
ing on their age (old or new), their level of depreciation, the level of applied tech-
nology, the energy consumption and other features. Therefore, deciding about the 
amount and timing of assignment of the budget for improving or replacing old 
machinery is an important strategic decision for production managers. In order to 
simplify the model, based on Wang et  al. (2011), the initial environmental level 
of machine j is assumed to be ILjo . Indeed, it is assumed that a machine produces 
a specific amount of  CO2 pollution based on its features such as age, technologi-
cal level, and energy consumption. This amount of pollution is divided into some 
intervals. For instance, if the pollution rate of machine j in period t is in a special 
interval, the machine will be considered to be in the protection level of ILjt . More 
increase in protection level of a machine through budget allocation, more reduction 
in amount of produced  CO2. In addition, based on standard rules defined by experts 
for  CO2 emissions, it is possible to determine the best level that a machine can be 
improved. We assume that a series of machines are selected to be improved based on 
the model choice in each period. This improvement level for each selected machine 
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is also considered to be a discrete number which occurs at the interval of 
[
ILjo,BLj

]
 . 

When the budget is unlimited, the best strategy to improve the environmental levels 
is the replacement of the old machinery with new advanced and eco-friendly ones. 
However, in most real situations, it is assumed that the amount of the budget speci-
fied for the improvement of machinery is limited. The allocated budget would be 
gradually available to the manager to assign. Hence, in each planning period, the 
managers need to select some machinery in order to be upgraded to a specific level 
or to be replaced.

Making simultaneous decisions about the production planning and improvements 
of environmental levels of machines, in an integrated model, brings potential ben-
efits. Determining the quantity of production at regular time and overtime merely 
based on resource capacities and the total cost may lead to an unallowable level of 
total pollution. Nonetheless, in an integrated model, the way in which production 
quantities are determined at the regular time and overtime results in keeping the 
amount of pollution in an allowable level. Hence, in the proposed model, selecting 
the most effective machinery and determining the best level of their improvement 
due to available budget generate better solutions. It reduces the pollution level as 
well as the total cost while satisfying the demands. The pollution level is inversely 
related to the protection level of machinery. The improvement of the environmen-
tal protection level in machinery leads to a reduction in the related pollution level. 
Actually, in each period of time, a tradeoff should be made between paying for 
machinery upgrade and pollution level reduction. On the other hand, the pollution 
arising from the factories and related to regular and overtime production is embed-
ded in the model. Section 3.1 describes the notations used in the proposed model 
including parameters and decision variables.

3.1  Notations

3.1.1  Indices

i  Index of products {i = 1,2,…, I}
j  Index of machines {j = 1,2,…, J}
t  Index of time periods {t = 1,2,…, T}
lj  Index of environmental protection levels of machine j {lj = ILj0,… ,BLj}

3.2  Parameters

cpit  Regular time production cost of each unit of product i in period t
coit  Overtime production cost of each unit of product i in period t
ccit  Subcontracting cost of each unit of product i in time period t
crijt  Setup cost of machine j to manufacture each unit of product i in time 

period t
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Dit  Demand for product i in time period t
bit  Backorder cost of each unit of product i in time period t
hit  Inventory holding cost of each unit of product i in time period t
gi  Labor hours required to manufacture each unit of product i in regular time
g′
i
  Labor hours required to manufacture each unit of product i in overtime

aij  Machining time required for machine j to manufacture each unit of product 
i in regular time

a′
ij
  Machining time required for machine j to manufacture each unit of product 

i in overtime
cht  Hiring cost of each worker in period t
clt  Firing cost of each worker in period t
cwt  Labor cost of each worker in period t
Ii0  The initial inventory level for product i at the start of the planning horizon
W0  The initial workforce level
Wtmax  Maximum workforce level available in period t
Citmax  Maximum subcontracting volume of the product i in period t
Rjt  Regular time capacity available for machine j in period t
�jt  The fraction of regular time capacity for machine j available for overtime 

in period t
�t  The fraction of regular time workforce available for overtime in period t
f   The working hours for each worker in each period of time
ech  Escalating factor for hiring cost
el  Escalating factor for firing cost
ew  Escalating factor for labor cost
er  Escalating factor for setup cost
ec  Escalating factor for subcontracting cost
eo  Escalating factor for production cost in overtime
ep  Escalating factor for production cost in regular time
eb  Escalating factor for backorder cost
eh  Escalating factor for inventory cost
ILj0  Initial environmental protection level of machine j
BLj  The best environmental protection level of machine j
ICj  The cost of one level improvement in machine j
BUDt  The budget related to the improvement of the machinery in period t
AEt  Maximum allowable level of pollution arising from the factory in period t
WLjlj  The pollution level related to the machine j with environment protection 

level lj in order to produce one product unit
M  A large number

3.3  Decision variables

Pit  Quantity of regular time production of product i in time period t
Oit  Quantity of overtime production of product i in time period t
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Cit  Quantity of subcontracting for product i in time period t
Yit  Binary variable equals to 1 if the productI i is produced in period t, 0 otherwise
Wt  The workforce level in time period t.

3.4  Deterministic model

The green multi-period and multi-product aggregate production planning model for 
considering environmental protection can be formulated as follows:

(28)

Min Z =
∑

i

∑

t

[cpitPit(1 + ep)
t+coitOit(1 + eo)

t + ccitCit(1 + ec)
t]

+
∑

i

∑

j

∑

t

crijtYit(1 + er)
t +

∑

t

[cwtWt(1 + ew)
t+chtHHt(1 + ech)

t

+ cltLt(1 + el)
t] +

∑

i

∑

t

hitIit(1 + eh)
t +

∑

i

∑

t

bitBit(1 + eb)
t

Subject to:

(29)
∑

i

aijPit ≤ Rjt ∀j,∀t

(30)
∑

i

a�
ij
Oit ≤ �jtRjt ∀j,∀t

(31)Pit + Oit + Cit + Bit − Bit−1 + Iit−1 − Iit = Dit ∀j,∀t

(32)Pit + Oit ≤ M.Yit ∀j,∀t

(33)Wt = Wt−1 + HHt − Lt ∀t

(34)
∑

i

giPit ≤ fWt ∀t

(35)
∑

i

g�
i
Oit ≤ f�tWt ∀t

(36)Wt ≤ Wtmax

(37)Cit ≤ Citmax

(38)ILjt = ILj(t−1) + Xjt

(39)
∑

j

ICjXjt ≤ BUDt
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Objective function (28) shows the total nominal cost that should be minimized. 
The total cost consists of production cost, subcontracting cost, setup cost, labor cost, 
inventory cost as well as backorder cost. Constraints (29) and (30) indicate the lim-
ited capacity of machines in regular time and overtime. Constraint (31) is considered 
to satisfy the demand of products. Constraint (32) guarantees that if a product is not 
selected for production in period t, no quantities will be produced in regular time 
and overtime. Constraint (33) shows that the level of workforce in each period needs 
to be equal to the workforce level that exists in the previous period with respect to 
the number of hired and fired workers. The workforce capacity constraints in regular 
time and overtime at each period of time are respectively shown in Constraints (34) 
and (35).

Constraint (36) is related to the maximum capacity of the workforce and Con-
straint (37) is related to the maximum volume of the subcontracting. Constraint (38) 
implies that the environmental protection level of each machine at period t needs 
to be equal to the environmental protection level of each machine at period t − 1 in 
addition to the improvement level in that period. Constraint (39) implies that the 
cost required for the improvement level of machinery cannot exceed the available 
budget. Constraint (40) ensures that the amount of pollution arising from machinery 
in regular time and overtime is limited to an allowable level. This constraint pro-
vides an integration of decisions about determining the production levels in regular 
time as well as overtime and decisions about machine improvement with the aim 
of reducing the pollution level. In this constraint, it is assumed that all products are 
processed on all machines.

Constraint (41) restricts each machine to be in a specific environmental protection 
level at each period. Constraint (42) determines the environmental protection level 
of each machine in each period of time. Finally, the types of decision variables are 
indicated via Constraints (43) and (44).

(40)
∑

i

(Pit + Oit) ≤ AEt

∑

j

BLj∑

lj=ILj0

YLjljt

WLjlj

(41)
BLj∑

lj=ILj0

YLjljt = 1

(42)ILjt =

BLj∑

lj=ILj0

lj.YLjljt

(43)Pit,Oit,Cit,Bit, Iit ≥ 0

(44)YLjljt, Yit = {0, 1 }; ILjt,Xjt, Lt,HHt,Wt ∈ Integer
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3.5  The proposed light robust model

Often, in production systems, demand and processing time of activities are uncer-
tain parameters. In this section, the light robust approach proposed by Fischetti 
and Monaci (2009) is implemented to cover uncertainties of these parameters. This 
approach provides a compromise between the robustness of the solution due to 
uncertain parameters and the quality of the solution (with respect to the objective 
function). LR is a flexible approach that can generate less conservative solutions in 
terms of the objective function, as compared with other interval robust approaches. 
The uncertain parameters included in the proposed model are as follows:

Dit  The nominal value of demand for product i in time period t
D̂it  The maximum deviation from the demand for product i in time period t
aij  The nominal machining time required for machine j to manufacture each unit 

of product i in regular time
a′
ij
  The nominal machining time required for machine j to manufacture each unit 

of product i in overtime
â
ij
  The maximum deviation from the machining time required for machine j to 

manufacture each unit of product i in regular time
â′
ij
  The maximum deviation from the machining time required for machine j to 

manufacture each unit of product i in overtime
�  Balancing factor in LR to control the maximum worsening of the optimal 

nominal solution
HHt  The number of hired workers in time period t
Lt  The number of fired workers in time period t
Bit  The backorder level of product i in time period t
Iit  The inventory level of product i in time period t
Xjt  The amount of level improvement in machine j in time period t
ILjt  The environment protection level in machine j in period t
YLjljt  Binary variable equals to 1 if the machine j is in the level lj of environmental 

protection in period t, 0 otherwise
Hit  The cost of the net inventory.

Assume that D̃it,ãit and ã′
it
 are uncertain demand and processing times that take 

value in the range of D̃it =
[
Dit − D̂it,Dit + D̂it

]
, ãit =

[
ait − âit, ait + âit

]
 , and 

ã�
it
=
[
a�
it
− â�

it
, a�

it
+ â�

it

]
 . Based on the definition of robust optimization provided in 

Sect. 2.1, �D
it

,� a
jt
 and � a′

jt
 are the budgets of uncertainty in the uncertain demand and 

uncertain processing times, where the maximum possible values for them are 
�D
it
∈ [0, ||JD||] , ||JD|| = |t| for each i and t, � a

jt
∈ [0, |Ja|] , |Ja| = N for each j and t 

and finally � a�

jt
∈ [0,

|||J
a� |||],

|||J
a� ||| = N for each j and t. Furthermore, Za

jt
,Pa

ijt
, Za′

jt
,Pa′

ijt
ZD
jt

 
and PD

i�t
 are new duality decision variables for developing the robust formulation (as 

discussed in Sect. 2.1). The slack variables �i and � ′
jt
 demonstrate the robustness levels 

of the solutions in the corresponding constraints and control the model infeasibility. 
The proposed LR model is as follows:
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(45)Min LROF =
∑

j

∑

t

(�jt + � �
jt
)

Subject to:

(46)

∑

i

∑

t

[cpitPit(1 + ep)
t+coitOit(1 + eo)

t + ccitCit(1 + ec)
t]

+
∑

i

∑

j

∑

t

crijtYit(1 + er)
t +

∑

t

[cwtWt(1 + ew)
t+chtHHt(1 + ech)

t

+ cltLt(1 + el)
t] +

∑

i

∑

t

Hit ≤ (1 + �)Z∗

(47)
∑

i

aijPit+�
a
jt
Za
jt
+
∑

i

Pa
ijt
− �jt ≤ Rjt ∀j,∀t

(48)
∑

i

a�
ij
Oit+�

a�

jt
Za�

jt
+
∑

i

Pa�

ijt
−� �

jt
≤ �jtRjt ∀j,∀t

(49)Za
jt
+ Pa

ijt
≥ âijPit ∀i,∀t,∀j

(50)Za�

jt
+ Pa�

ijt
≥ â�

ij
Oit ∀i,∀t,∀j

(51)Hit ≥ hit(1 + eh)
t(
∑

�≤t

(Pi� + Oi� + Ci� − Di�) + �D
it
ZD
it
+
∑

�≤t

PD
i�t
) ∀i,∀t

(52)

Hit ≥ bit(1 + eb)
t(−

∑

�≤t

(Pi� + Oi� + Ci� − Di�) + �D
it
ZD
it
+
∑

�≤t

PD
i�t
) ∀i,∀t

(53)ZD
it
+ PD

i𝜏t
≥ D̂i𝜏 ∀i,∀t,∀𝜏 ≤ t

(54)Pit + Oit ≤ M.Yit ∀i,∀t

(55)Wt = Wt−1 + HHt − Lt ∀t

(56)
∑

i

giPit ≤ fWt ∀t

(57)
∑

i

g�
i
Oit ≤ f�tWt ∀t

(58)Wt ≤ Wtmax ∀t
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Equation (45) represents the objective function. Reduction in �jt and � ′
jt
 leads to con-

trol the Constraints (47) and (48) and then the avoidance of increasing the production 
parameters Pit,Oit . In fact, in case that uncertain parameters ãit and ã′

it
 significantly 

deviate from the nominal values, Eq.  (45) avoids infeasibility. Hence, the objective 
function is formulated to decrease the infeasibility of the generated solutions under 
future fluctuations. Constraint (46) controls the quality of generated solutions. It 
ensures that the generated solutions have an acceptable deviation from the optimal 
solutions (optimal solution in the nominal model). Constraints (47) and (48) are related 
to the capacity of machines after applying the protection function and control 
variables.

Constraint (49) and (50) are relevant to the definition of the robust optimization 
model. It is worth noting that because of the uncertain condition of demand in balanc-
ing Constraint (31), it is impossible to satisfy all possible amounts. Therefore, using 
the approach proposed by José Alem and Morabito (2012), we defined a new variable 
called net inventory as I�

it
=
∑

�≤t (Pi� + Oi� + Ci� − Di�) . Furthermore, Hit shows the 
cost of the net inventory. If the value of I′

it
 is positive, we have inventory for product i 

in period t and Hit determines the inventory holding cost and if I′
it
 is negative, there is 

backorder and Hit shows the backorder cost. Finally, using Bertsimas and Sim’s robust 
optimization approach, Constraint (51) and (52) are generated. Constraint (51) indi-
cates the total inventory holding cost and Constraint (52) indicates the total backorder 

(59)Cit ≤ Citmax ∀i,∀t

(60)ILjt = ILj(t−1) + Xjt ∀j,∀t

(61)
∑

j

ICjXjt ≤ BUDt ∀t

(62)
∑

i

(Pit + Oit) ≤ AEt

∑

j

BLj∑

lj=ILj0

YLjljt

WLjlj

∀t

(63)
BLj∑

lj=ILj0

YLjljt = 1 ∀j,∀t

(64)ILjt =

BLj∑

lj=ILj0

lj.YLjljt ∀j,∀t

(65)Pit,Oit,Cit,Bit, Iit, Z
a
jt
,Pa

ijt
, Za�

jt
,Pa�

ijt
, �jt, �

�
jt
, ZD

jt
,PD

i�t
≥ 0 ∀i,∀t

(66)Yit = {0, 1 } , YLjljt = {0, 1 }, ILjt,Xjt, Lt,HHt,Wt ∈ Integer ∀i,∀t,∀l
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cost. Constraint (53) relates to the robust modeling approach. Constraints (54)–(66) are 
similar to the constraints of the deterministic model.

4  Computational results

In this section, first, a numerical example of a small factory is simulated to validate the 
deterministic nominal model. Second, some examples are simulated in larger scales to 
further analyze the characteristics of the proposed model. The models are solved using 
GAMS 23.5/CPLEX 12.2 on a computer equipped with an i5 2.7 GHz processor and 
4GBs of RAM.

4.1  Numerical example

In order to show the efficiency of the proposed model, a numerical example is gener-
ated similar to the production line of a refrigerator factory located in Hamadan, Iran. 
The initial data is collected based on the production process in this factory. How-
ever, due to unavailability of all the required data and simplification of the example, 
the required parameters are simulated based on a range of available data from this 
factory (Table 1). In this case, the machines of this factory were old with a low tech-
nological level; thus, a huge amount of  CO2 was generated in the factory. Like foam 
injection, the machines can be a source of harmful pollution. Hence, in this factory, 
producing GHG emissions, particularly  CO2, via manufacturing machines are con-
sidered. It should be noted that this model can be applied to any factory where man-
ufacturing machines produce  CO2 gas. Thus, according to the managers’ opinions 
and due the presence of aging machines, the initial environmental protection levels 
of machines are assumed to be 1 ( ILj0 = 1 ) and the maximum improvement level is 
equal to 10 ( BLj = 10).

Table 1  Parameter design Parameter Setting (unit)

cpit Uniform [15, 25] ($/unit)
coit Uniform [40, 60] ($/unit)
crijt Uniform [50, 80] ($/unit)
ccit Uniform [200, 250] ($/unit)
bit Uniform [1400, 1500] ($/unit)
hit Uniform [4, 6] ($/unit)
ICj Uniform [5, 10] (100$/improvement level)
aij Uniform [2, 4] (min)
a′
ij

Uniform [2, 4] (min)
Dit Uniform [1000, 3000] (unit)
�j Uniform [20, 30] (kg  CO2e/unit)
AEt Uniform [200,000, 300,000] (kg  CO2e)
BUDt Uniform [200, 300] (100$)
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The production line manufactures two product types using two types of 
machines. The initial inventory of products is considered to be zero (units) and 
the initial level of the workforce is equal to 10 (man-hour). The working hours on 
each day equals to 400 min. Moreover, it is shown that �t = 0.4 . Maximum work-
force level is 20 (man-hour) and the escalating factor for all cost parameters is 
considered to be 0.01. The times required to produce each unit of product i at 
regular time and overtime are gi = g�

i
= 1(man-hour/unit). Costs related to the 

workforce in each period of time are cwt = 100 ($/man-hour), cht = 40 ($/man-
hour) and clt = 50 ($/man-hour). To generate the pollution level related to each 
machine, we defined a formula as WLjlj =

�j

2
lj−a

 (kg  CO2e/unit) which is based on 
Wang et al. (2011). In the equation defined by Wang et al. (2011), the value of the 
numerator is generated uniformly in the range of 48–72 due to their considered 
machines. This range is not necessarily matched with any machines in different 
industrial environments. Therefore, in this paper, the parameter �j is defined in 
order to match Wang et al.’s (2011) equation with different machines. This param-
eter is determined based on the machine type and other features including age, 
technological level, energy consumption level and experts’ opinions. Thus, con-
sidering types of machines and experts’ experience, it is possible to determine the 
value of �j . On the other hand, in the proposed equation by Wang et al. (2011), 
the pollution amount has an inverse relationship with the environmental protec-
tion level. This relationship is defined by 2lj−a with a = 1 in the denominator of 
the equation. In this paper, given the assumption that the machines do not show a 
high pollution level when they are at the initial environmental protection level, 
we set a equal to zero. It should be mentioned that, in different real case studies, 
the pollution level can be determined by setting fitting values for �j and a. The 
subcontracting volume in each period of time is limited and can be calculated as 
Citmax = 0.2

�∑
t Dit

T

�
 (units) for all products in each period.

Table 2  Aggregate production plan obtained from solving the proposed model for numerical example

Product 
(i)

Period (t)

1 2 3 4 5 6

Regular time produc-
tion (minutes)

1 1729.228 1162.573 1144.33 1750.467 1494.864 1162.573
2 1973.2 2437.427 2452.373 1955.8 2165.2 2437.427

Overtime production 
(minutes)

1 719.641 719.641 719.641 719.641 719.641 719.641
2 0 0 0 0 0 0

Subcontracting prod-
ucts (units)

1 216.4392 500.1333 500.1333 500.1333 271.4945 253.7863
2 558.8 558.8 558.8 558.8 558.8 548.5727

Inventory (units) 1 1329.308 1910.655 1197.759 0 0 0
2 0 5.227337 347.4 0 0 0

Backorder (units) 1 0 0 0 0 0 0
2 0 0 0 0 0 0
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Table 2 represents the production plan of this factory for both product types 
in each time period. Workforce planning and the schedule of each period can be 
observed in Table  3. The improvement level in machines and the required hir-
ing and firing level are also presented. As shown in Table 3, the second machine 
has no improvement, since the budget is only sufficient for improving the first 
machine.  

As can be seen from Table  2, the total production capacity in overtime is 
assigned to the Product 1. Hence, Product 2 is not produced in overtime and the 
remained demand is met by the subcontracting. None of the products are back-
logged because the back order cost is high. On the other hand, the demand can 
be satisfied by subcontracting and keeping inventory in each period. Machine 2 is 
selected to be improved in all periods and this indicates that the budget was not 
sufficient to improve both machines. It should be noted that at the end of Period 
6, Machine 1 reaches its best possible level. So, in the next periods, Machine 2 
will be definitely chosen to be improved.

4.2  Analysis of the robust optimization model

In this section, first, some examples are generated to show the performance of the 
model. Table 4 summarizes the number of products, machines, and periods to generate 
differently sized problems. The rest of parameters are generated based on the uniform 
distributions listed in Table 1.

According to the definition in the robust approach, it is obvious that �D
it
∈ [0, t] for 

each i and � a
jt
∈ [0,N] for every j. These values are defined as �D

it
= � t and � a

jt
= �N , 

Table 3  Workforce and machine 
plan obtained from solving the 
proposed model for numerical 
example

Period (t)

1 2 3 4 5 6

Labor (man-hour)
 Hiring level (man-hour) 0 0 0 1 0 0
 Layoff level (man-hour) 0 1 0 0 0 1
 Workforce level (man-hour) 10 9 9 10 10 9

Environmental protection level
 Machine 1 2 4 5 7 9 10
 Machine 2 1 1 1 1 1 1

Improvement level
 Machine 1 1 2 1 2 2 1
 Machine 2 0 0 0 0 0 0

Table 4  Size of the problem for 
instance generation

Number of Products Number of machines Number of periods

5, 10, 30 5, 8, 10, 30 6, 10
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where 0 ≤ � ≤ 1 . On the other hand, to simulate the uncertain range of parameters, it 
is assumed that D̂it = 𝜃Dit, â

�
ij
= 𝜃a�

ij
 and â

ij
= 𝜃aij in which 0 ≤ � ≤ 1.

The left-hand side of Constraint (46) is labeled as LRZ. The LRZ is the actual total 
cost determined by the solution of the light robust model and is as follows:

Moreover, Z∗ is the optimal value of the deterministic model and LROF is the objec-
tive function value of the light robust model (45).

First, two examples (Example 1 with five products, ten machines, and six time 
periods and Example 2 with ten products, eight machines, and six time periods) 
were generated to represent the impacts of the model parameters in details. The 
effects of changes in � and � , as the degree of uncertainty and conservatism, on 
LRZ and LROF of Example 1 are shown in Table 5.

In these experiments, the maximum worsening of the optimal robust solution 
(with respect to the optimal nominal solution) is considered at the fixed level 
( � = 0.2 ). In order to do the sensitivity analysis, the value of parameter � is con-
sidered to be between 0 and 1. The zero value shows the problem without uncer-
tainty. The worst value of the problem occurs when � = 1 . This value indicates 
the model behavior at the highest level of uncertainty. Moreover, in Table 5, the 
value of θ is considered to be up to 40%. In this paper, five values are selected as 
the samples to analyze the model behavior. Figure 1 illustrates the effect of uncer-
tainty and the degree of conservatism on the robust objective function.

The third column in Table  5 ( � = 0 ) indicates the lack of consideration 
in terms of uncertainty, where LRZ becomes equal to Z* (the value of Z* is 
6,536,666). In other columns, LRZ is equal to an upper limit of constraint (46) 

LRZ =
∑

i

∑

t

[cpitPit(1 + ep)
t+coitOit(1 + eo)

t + ccitCit(1 + ec)
t] +

∑

i

∑

j

∑

t

crijtYit(1 + er)
t

+
∑

t

[cwtWt(1 + ew)
t+chtHHt(1 + ech)

t + cltLt(1 + el)
t] +

∑

i

∑

t

Hit

Table 5  The effect of uncertainty in Example 1

� Functions �

0 0.2 0.4 0.6 0.8 1

5% LRZ 6,536,666 7,844,000 7,844,000 7,844,000 7,844,000 7,844,000
LROF 0 21773.43 45398.91 64736.51 80176.36 91600.81

10% LRZ 6,536,666 7,844,000 7,844,000 7,844,000 7,844,000 7,844,000
LROF 0 129094.6 195,138 248615.8 295859.5 331881.4

20% LRZ 6,536,666 7,844,000 7,844,000 7,844,000 7,844,000 7,844,000
LROF 0 435491.5 613698.5 769882.2 903327.5 1001620

30% LRZ 6,536,666 7,844,000 7,844,000 7,844,000 7,844,000 7,844,000
LROF 0 787799.7 1,107,465 1,383,526 1,603,543 1,765,943

40% LRZ 6,536,666 7,844,000 7,844,000 7,844,000 7,844,000 7,844,000
LROF 0 1,164,326 1,655,226 2,056,386 2,375,089 2,610,000
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Fig. 1  The combined effect of uncertainty and conservatism degree of Example 1

Table 6  The effect of regret for Example 1

� Functions �

0 0.2 0.4 0.6 0.8 1

0.1 LRZ 6,536,666 7,190,333 7,190,333 7,190,333 7,190,333 7,190,333
LROF 0 862709.2 1216459 1494649 1,715,921 1,879,434

0.2 LRZ 6,536,666 7,844,000 7,844,000 7,844,000 7,844,000 7,844,000
LROF 0 787799.7 1107465 1383526 1603543 1765943

0.3 LRZ 6,536,666 8,497,666 8,497,666 8,497,666 8497666 8,497,666
LROF 0 771886.8 1,061,432 1,293,652 1,494,280 1,655,289

0.4 LRZ 6,536,666 9,151,333 9,151,333 9,151,333 9,151,333 9,151,333
LROF 0 756243.7 1,045,676 1,271,922 1,451,248 1,585,001

Fig. 2  The combined effect of the maximum deviation from optimality and the uncertainty for Example1
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i.e. (1 + �)Z ∗ . Increasing the value of � , as the range of uncertainty (considering 
a fixed value for � ), leads to an increase in the LROF value. In each row, increas-
ing the value of � , as the conservatism degree, leads to an increase in the LROF 
value. Due to the fixed value of � in this table, whenever LROF takes positive val-
ues, LRZ would be equal to (1 + �)Z ∗ . If LROF = 0, then LRZ would take values 
between Z∗ and (1 + �)Z ∗.

The effects of changing the value of � and � for � = 30% on LRZ and LROF in 
Example 1 are given in Table 6.

In Table 6, for an optional θ, different values of 10–40% are considered for � . 
Since there is no limitation to select ρ, it is possible to choose any other values. 
These numbers are just selected to analyze the system behavior. Figure 2 illus-
trates the simultaneous effects of the budget of uncertainty, as the degree of con-
servatism, and different values of maximum worsening of optimal solution on the 
robust objective function.

Table 7  The effect of uncertainty for Example 2

� Functions �

0 0.2 0.4 0.6 0.8 1

5% LRZ 12,378,945 14,854,735 14,854,735 14,854,735 14,854,735 14,854,735
LROF 0 43977.23 88868.78 131926.6 167,509 195188.8

10% LRZ 12,378,945 14,854,735 14,854,735 14,854,735 14,854,735 14,854,735
LROF 0 239184.2 358102.9 458950.1 543498.7 702538.4

20% LRZ 12,378,945 14,854,735 14,854,735 14,854,735 14,854,735 14,854,735
LROF 0 709722.6 1,010,930 1,499,693 1,960,838 2,395,863

30% LRZ 12,378,945 14,854,735 14,854,735 14,854,735 Infeasible Infeasible
LROF 0 1,263,239 2,043,673 2,896,973

40% LRZ 12,378,945 14,854,735 14,854,735 Infeasible Infeasible Infeasible
LROF 0 1,906,269 3,212,802

Table 8  The effect of regret for Example 2

� Functions �

0 0.2 0.4 0.6 0.8 1

0.1 LRZ 12,378,945 13,616,840 13,616,840 13,616,840 Infeasible Infeasible
LROF 0 1,411,963 2,226,178 3,114,323

0.2 LRZ 12,378,945 14,854,735 14,854,735 14,854,735 Infeasible Infeasible
LROF 0 1,263,239 2,043,673 2,896,973

0.3 LRZ 12,378,945 16,092,629 16,092,629 16,092,629 16,092,629 Infeasible
LROF 0 1,217,910 1,868,610 2,699,086 3,521,625

0.4 LRZ 12,378,945 17,330,524 17,330,524 17,330,524 17,330,524 Infeasible
LROF 0 1,191,832 1,711,817 2,511,612 3,294,193
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Due to the limited resource capacities (regular time, overtime and the capac-
ity of the workforce) and the optimality regret constraint, i.e. Constraint (46), 
it is expected that increasing the uncertainty leads to the model infeasibility. In 
fact, while the light robust approach reduces the risk of infeasibility, however, 
the increasing amount of uncertainty and reducing the maximum worsening can 
cause infeasibility. Table 7 reveals that either increasing the uncertainty range � 
or increasing the value of the budget of uncertainty � leads to model infeasibility 
in Example 2.

Table 8 shows that decreasing the value of � for a fixed � leads to infeasibil-
ity in Example 2. On the other hand, decreasing the value of � and increasing 
the value of � simultaneously results in infeasibility as well. These results show 
the feasible area of Example 2 for different levels of uncertainty. The results can 
be used to choose the appropriate budget of uncertainty to have a feasible and 
acceptable under-optimality solution.

In each column of Table 8, increasing the value of � and applying greater opti-
mality worsening to the reliability constraint (considering a fixed value for uncer-
tainty percentage) leads to a decrease in the value of LROF. Increasing both the 
value of � and the uncertainty percentage leads to an increase in LROF.

The performance of the model with different levels in terms of the number of 
products and periods is investigated in nine large size problems. The results are 
shown in Table 9.

In order to examine the performance of the proposed model in terms of the com-
plexity and computational time, problems in different sizes were generated. It should 
be noted that in all generated problems,� = 0.2 , � = 0.3 and � = 0.3 . The results 
are provided in Table 9. The solution times reported in this table are the sum of the 
solution times for both deterministic and robust models of each problem. It can be 
concluded from Table 9 that an increase in the number of periods has more impacts 
on the solution time and complexity of the problem. However, compared with the 
two other factors, an increase in the number of machines has less influence on the 
model complexity.

Table 9  The performance of the model in different size problems

Problem ID Number of 
products

Number of 
machines

Number of 
periods

LRZ LROF Time (s)

1 5 5 6 6232036.8 273072.1 3.4
2 5 5 10 14207899.5 567473.3 12.1
3 10 5 6 17717172.3 565562.9 9.3
4 10 5 10 31693058.6 1109127.7 28.5
5 10 10 10 25779856.1 2118027.5 44.2
6 30 5 6 972728848.4 320490.0 49.8
7 30 10 6 814981498.4 21174.4 111.2
8 30 10 10 2542541164.5 240661.6 364.3
9 30 30 10 1809293402.2 622290.8 592.7
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5  Conclusion

A multi-period multi-product aggregate production planning model was introduced 
in a single production facility under uncertainty. Green principles were applied 
to control the production pollution associated with the machinery. The pollution 
related to regular time and overtime production in the factory is considered to be 
restricted. The improvement of the environmental protection level in machines was 
considered in the proposed model. The most important factor which separates this 
paper from other studies in the literature is its focus on the necessity of making man-
agement decisions about the improvement of manufacturing machines along with 
the production planning. To deal with the uncertainties in terms of demands and 
processing times, a light robust optimization approach was implemented. Through 
an illustrative example and other generated experiments, we demonstrated how the 
proposed model can be used to determine the production plan and the environmental 
improvement decisions.

The proposed model can introduce some significant managerial insights. First, 
the presented model helps production managers determine the production plan of 
the factory based on not only the costs and demands but also environmental impacts. 
Actually, if the environmental rules and regulations specify the standard limitations 
for producing GHG emissions in each factory, based on this model, managers can 
plan the production in such a way that the total pollution does not exceed the permit-
ted limit. Secondly, this model helps managers achieve a specific plan for machines’ 
improvement and pollution reduction. It helps a manager to decide to what extent 
the budget should be allocated to each machine. Thirdly, as the uncertainty in the 
manufacturing environments leads to difficulties in the planning process, the pro-
posed robust model helps each manager recognize a feasible plan for the future 
based on the level of conservatism. Indeed, the results of the proposed model can be 
used by decision-makers to identify feasible areas of the problem for different levels 
of uncertainty. This matter helps them choose the appropriate budget of uncertainty 
in order to make acceptable production plans and decisions in improving green lev-
els of machines.

Further studies can concentrate on enhancing the applicability of the proposed 
model to real-world situations and using real data to investigate the proposed model 
in other application domains. In addition, new solution methods are needed to solve 
the proposed model.
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