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Abstract
In real-life manufacturing systems, the presence of defective products in a lot is 
inevitable. While these products may be just scrapped in the food industry, in high-
tech industries where the final product is very expensive, they may be reworked at 
a cost. A common assumption in the literature is that the inspection time needed to 
identify defective items is completed when the production process ends. However, 
the assumption of continuous inspection during production complicates the analysis, 
making it impractical for most production systems, especially when the production 
rate is high, and the proportion of defective items is low, making continuous inspec-
tion during production very expensive. In addition, such factors as process deterio-
ration or other uncontrollable factors in the production process may interrupt the 
production of the lot. To address these practical issues, this paper integrates inspec-
tion time and the failure of production facilities into an imperfect production inven-
tory model with rework, where the production run time is a decision variable and 
an inspection process continues even after a production run; the paper demonstrates 
significant effects on the optimal solutions, with shortages not allowed. Under these 
assumptions, a mathematical model is derived, and the concavity of the expected 
total profit function is proved. Optimal policy is obtained by applying the analytic 
method. Special cases of the model are studied and a numerical example with sen-
sitivity analysis is provided to draw insights. Moreover, this numerical example is 
used to compare general and special cases.
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1  Introduction

Increasing the efficiency of production, meeting customers’ expectations, and mini-
mizing total costs are some of manufacturers’ principal targets. To meet these tar-
gets, each business adopts its own policy for inventory control, depending on its field 
of activity. The economic production quantity (EPQ) model is one of the commonly 
used inventory control techniques investigated and developed by many researchers. 
The classical EPQ model was developed under several assumptions, some of which 
are rarely met. This model is used when the production process operates perfectly 
during a production run; hence, the possibility of defective products or failure in the 
production facilities is excluded from the model. Delivering high-quality products 
and good customer service can always attract customers and ensure repeat business 
but, unfortunately, in most manufacturing systems, the production process is rarely 
perfect. In practice, the production process moves between ‘in-control’ (zero-defect) 
and ‘out-of-control’ states at random times, for various unpredictable reasons, such 
as inadequate maintenance, and ineffective production control, leading to creation 
of occasional defective products which need to be separated through an inspection 
process. Thus, for a realistic production model, it is necessary to consider what Tai 
(2013) refers to as ‘imperfect production’.

Recently, many researchers have investigated the effects of the presence of defec-
tive products on inventory models. The first model for defective products, devel-
oped by Shih (1980), included an additional issue of possible stock-out due to 
excess demands and defective products. Gupta and Chakraborty (1984) developed 
a production-inventory model to obtain the optimal batch quantity, in which recy-
cling takes place only from the last stage to the first stage. Porteus (1986) showed 
that a production process could go out-of-control with a given probability each time 
it produces defective items and investigated different options of investing in qual-
ity improvement and setup cost reduction. Zhang and Gerchak (1990) also studied 
the impact of inspection costs on the lot size in an EOQ model, in which a random 
proportion of items are defective. Rosenblatt and Lee (1986) analysed an imperfect 
production system in which the system deteriorates during the production process 
and produces some defective items. Having assumed an exponential process shift, 
they found that the optimal production quantity is smaller than that for the classical 
EPQ problem. Liu and Yang (1996) studied a lot-sizing problem in a single-stage 
imperfect production system. They assumed that the production system would gen-
erate two types of defective items; namely, reworkable products and non-reworkable 
products. They further assumed that each lot is subject to a fully automated inspec-
tion where inspection times are negligible. Other studies investigating optimal pro-
duction/ordering lot sizing with a random processing rate include Salameh and Jaber 
(2000), Chung and Hou (2003), Maddah et al. (2009) and Hsu and Hsu (2015). An 
excellent review of research areas was given by Khan et al. (2011). More recently, 
Mokhtari (2018) devised an EPQ model for determining the optimal duration of a 
production run and the most efficient lot size for a batch-produced item in an imper-
fect production system.
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Inspection is an essential tool for ensuring the quality of items ordered or produced. 
It is defined as ‘‘the process of measuring, examining, testing, or otherwise compar-
ing the unit to applicable requirements” (Suntag 1993). However, previous studies of 
imperfect production inventory usually assume that inspection takes place during pro-
duction (Chiu 2003; Li et  al. 2015). Such continuous inspection during production, 
however, is not achievable in most production systems, especially with a low propor-
tion of defective items and a high rate of production; in-production inspection in such 
circumstances would be very expensive. The decision to implement an inspection pro-
cedure and when to do so is a key part of any production process, together with the 
decision of how to deal with defective items—by reworking or discarding, for exam-
ple. All of these decisions affect inventory calculations, making it essential to under-
stand the interrelationship of production, inventory and inspection for the successful 
management of production and inventory systems (Lee and Rosenblatt 1987; Giri and 
Dohi 2006; Lin and Lin 2007; Chakraborty and Giri 2014; Wee et al. 2014).

Ma et al. (2010) suggested three models to handle decisions of whether and when to 
implement a screening process, assuming negligible restoration time and cost. They based 
their proposal on adapting the classical EMQ model to accommodate imperfect produc-
tion process. Their models considered three common inspection strategies; namely, no 
screening, after-production screening, and in-production screening. In the first model, no 
inspection is carried out. If any defective items are found, they are scrapped immediately. 
In the second model, all items are checked immediately after a production run, assuming 
that items can be screened faster than they are produced. Defective items are retained and 
scrapped together at the end of the screening process. In the third model, a full inspec-
tion is carried out during the production run time. Any defective items which are found 
are retained till the end of the run and then scrapped as a batch. From their numerical 
results, they deduced that the first model, i.e., with no screening, offered the lowest cost 
provided that the defective products were a small proportion of the lot. The second most 
cost-effective method was the in-production method, but with screening continuing after 
the completion of the run. These results show that continuous inspection during produc-
tion is not always the best approach to reduce the total cost.

Moussawi-Haidar et al. (2016) considered a manufacturing system with random 
supply process and an inspection process performed during and after a production 
run. The inspection process starts with the production and it continues after produc-
tion, as it is assumed that only good items meet the demand; in other words, the 
inspection rate in-production equals the demand rate. Furthermore, the after-produc-
tion inspection process must be shorter than the time required to consume good-
quality products: thus, the after-production inspection rate is always higher than the 
demand rate. Two production inventory models are developed for defective items. In 
the first model, defective items are salvaged at a discounted price at the end of the 
inspection process. In the second model, these defective items are reworked at a cost 
at the end of the inspection process. In line with the work of Ma et al. (2010), each 
inspection process was associated with a different unit inspection cost, on the basis 
that in-production inspection involves higher unit inspection costs. However, there 
was a flaw in the work of Moussawi-Haidar et al. (2016) in relation to their model 
with reworking of defective items; Öztürk (2017) corrected this flaw and identified 
the conditions needed for an optimal solution.
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The overwhelming majority of manufacturing companies face ever-increasing pres-
sures to produce high-quality products at low costs. Nevertheless, it is inevitable that 
defective items are occasionally produced, which need to be reworked, scrapped or 
offered for sale at reduced prices. In practice, these defective items can sometimes be 
reworked to become serviceable items instead of being scrapped for economic reasons, 
as is the case in the semiconductor, glass and steel industries, thereby reducing the over-
all production costs significantly. For example, Hayek and Salameh (2001) analysed the 
case where the production system deteriorates during production and produces a ran-
dom proportion of defective items; they considered reworking these defective items. The 
study by Chan et al. (2003) focused on providing a framework to integrate lower pricing, 
rework and reject situations into an EPQ model without shortages. Flapper et al. (2002) 
performed a review of the rework process in process industries. Flapper and Teunter 
(2004) considered a production system for a single product in which produced lots con-
tain non-defective, reworkable defective or non-reworkable defective items, and in which 
reworkable defective items deteriorate as they are stored to be reworked, which affects 
the rework time and the rework cost. Optimal production lot size in a single-stage pro-
duction inventory model is derived for two rework policies in the study of Jamal et al. 
(2004). Optimal batch size for a two-stage production system is determined in Inderfurth 
et al. (2006). The assumption in the first stage is that all items in a batch are produced, 
and good items populate the inventory to satisfy the demand, while, in the second stage, 
some of the defective items from the same batch are reworked. However, they deteriorate 
over time. Kontantaras et al. (2007) studied a production inventory system where each 
lot received contains some defective items. They investigated two options for the defec-
tive items: sell them to a secondary market as a single batch at a lower price or rework 
them at a cost to restore them to acceptable quality. Liu et al. (2009) developed math-
ematical models to determine the optimal number of production and rework setups in a 
cycle, and the optimal production quantity of each setup. Tsao et al. (2011) built on the 
classical EPQ model with the addition of reworking and trade credit assumptions. Wee 
et al. (2013) followed up the work of Cárdenas-Barrón (2009), replacing order size with 
production run time and backorder level with time to eliminate backorder as decision 
variables and analysing optimal policies under three conditions. Other studies investi-
gating optimal lot sizing with rework include Glock and Jaber (2013a, b), Sarkar et al. 
(2014), Taleizadeh et al. (2017) and Nobil et al. (2018).

The classical EPQ problem has been investigated in recent years, and an increas-
ing number of researchers analyse the effect of machine breakdowns on production 
inventory problems. In real industry, to minimize the negative effects of issues such 
as raw material shortages, quality defects or productivity losses on production line 
reliability, companies are strongly incentivized to invest in high-quality machines, 
highly skilled workers, and advanced maintenance technologies. Consequently, 
assumptions of reworking and disposal may be highly disruptive in a highly auto-
mated system. With this in mind, Bielecki and Kumar (1988) examined the con-
ditions under which a zero-inventory policy is actually optimal for an unreliable 
manufacturing system. Although the machine’s operating time and repair time 
were random and had exponential distributions, they had different means. A similar 
manufacturing system in which the production operates under an (s, S) policy was 
explored by Sharafali (1984).
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Groenevelt et al. (1992) investigated the effects of machine breakdowns and cor-
rective maintenance on economic lot sizing decisions, and derived total cost func-
tion expressions for both a general failure distribution and the common case of 
exponential failures. Two production inventory control policies were proposed to 
deal with machine breakdown. The first of these assumes depletion of the on-hand 
inventory before the next cycle, instead of continued production of interrupted lots 
in case of a breakdown. This assumption was called ‘no-resumption (NR)’ policy. 
The second policy assumes immediate resumption of the production of interrupted 
lots in case of an on-hand inventory level below a specified threshold: this assump-
tion was called ‘abort/resume (AR)’ policy. Note that these models did not consider 
setup and corrective maintenance as time-consuming operations.

Berg et al. (1994) studied a production system in which a number of machines 
needed to be repaired to become operational and which were prone to failure. 
Although the producing machines operated continuously, the production was 
stopped due to various factors, including costs, maintenance procedures, inventory 
capacity limit. Chung (1997) derived the upper and lower bounds for production lot 
size in the EPQ model proposed by Groenevelt et al. (1992).

Moinzadeh and Aggarwal (1997) studied an inventory system for an unreliable 
production setup subject to random disruptions, with constant production and demand 
rates. They assumed constant restoration times, exponential time between break-
downs, and allowed shortages. Abboud (1997) examined the ways machine break-
downs affect the classical EPQ model. The number of failures per production run 
is assumed to be Poisson distributed, while repair times are random, and shortages 
are not allowed. Liu and Cao (1999) considered a single-product production inven-
tory system in which demand has a Poisson distribution and machine breakdown is 
possible. The model discussed in their paper was a type of fluid flow model. Boone 
et al. (2000) investigated the interaction between lot-sizing and imperfections in the 
production process, which involves process deterioration and a breakdown of the pro-
duction process. Abboud (2001) analyzed an inventory model for a single machine 
that produces a single item, with production and demand rates that are known and 
constant. The machine is susceptible to random failures in operation, and repair times 
are also random. Chung (2003) showed that the average cost function per unit of time 
in the long-run, for exponential failure in the EPQ model with machine breakdown, is 
unimodal and that it is neither concave nor convex. They also derived a better lower 
bound for the optimal production lot size and the optimal safety stocks than those 
obtained in Chung (1997). Lin and Kroll (2006) investigated the effect of an imper-
fect production process subject to random breakdowns on the classical EPQ model. It 
is assumed that the elapsed time until breakdown is a random variable with exponen-
tial distribution. Chiu et al. (2007) determined the optimal production run time based 
on an EPQ model subject to stochastic machine breakdown with scrap and rework. It 
is assumed that a percentage of defective items are scrap, while the others are rework-
able. The total cost functions were derived for both EPQ models with breakdown and 
without breakdown. Glock (2013) urged the researchers to assess their models more 
comprehensively instead of misleading operators with very restrictive assumptions 
designed for the model; and suggested an economically rational approach instead of 
using limited concepts of technical effectiveness.
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In the case of machine failures during production, several works exist in the lit-
erature, including Chiu et al. (2011), Widyadana and Wee (2011), Chiu et al. (2013), 
Taleizadeh et al. (2014), and Chiu et al. (2015). Wee and Widyadana (2013) devised 
a production model covering deteriorating items, assuming stochastic preventive 
maintenance time and reworking defective items under first-in-first-out (FIFO) 
rule. Two case examples are applied, using uniform and exponential distribution of 
preventive maintenance time. Liao (2016) developed an EPQ model to determine 
optimal production run times, also investigating the effect of maintenance activi-
ties, such as restoration and occasional imperfect preventive maintenance, on a 
production system whose condition is deteriorating. The numerical analysis shows 
that enhancing maintenance and production capability increases product reliability, 
thus reducing the costs of production and warranties. The EPQ problem studied by 
Huang et al. (2017) concerned a production process subject to shifting states, pro-
ducing defective goods at random intervals, and with a low production rate after 
state-shifting. They made the assumption that expected shifting time is a variable 
that can be controlled by investment in assets and technology. They investigated 
three scenarios for the mathematical model: no shift; shift with no shortages; shift 
with shortages. They also investigated product deterioration and its effect on the 
optimal policy, assuming that, because interruption of the production process leads 
to deterioration costs, repairing time is negligible and the production process cannot 
be stopped for repair or restoration during a production run.

Table 1 lists some key papers on the topic of inventory problems, together with 
their assumptions regarding machine breakdown, production policy, and inspec-
tion time. Whereas these previous models assume an imperfect process and random 
machine breakdowns, our model assumes scrappage of a percentage of defective 
items, uniform distribution of the time to machine breakdown, and a planned inspec-
tion policy in-production and post-production. We evaluate an Abort/Resume (AR) 
inventory control policy which permits the development of closed-form solutions. 
What is the basis for deciding to scrap items? Usually, when an inspection deter-
mines that the cost of repair is below a set threshold, the item is repaired; if the 
repair cost exceeds the threshold, it is scrapped. Nowadays, manufacturers extract 
value from scrap. If the scrap is metal, it is sold by the ton; if it is a product, it can be 
dismantled to obtain value from any functional components that can be reused in the 
production process.

In many real-world manufacturing processes, it is inevitable that products will be 
manufactured with imperfect quality. Often, however, defective items include valu-
able materials and there are, therefore, economic incentives to rework them. The 
decision whether to rework or scrap such substandard products is a recurring issue 
in different industries. Clearly, it is important to set a suitable inspection policy for 
products and/or machines in order to minimize the cost created by producing defec-
tive products. However, it is important to note that, in many industries, continuous 
inspection during production is impossible, or unrealistically expensive. Further-
more, most inventory models previously developed by researchers recommend that 
continuous inspection should be performed during every production run in every 
cycle.
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Our key objections to previous literature are shown in Table 1. As the table shows, 
no study addressed the problem of EPQ inventory where scrap, rework, machine 
breakdown and inspection policy are all considered, with the inspection process per-
formed during production and continuing at the end of runtime. Thus, this paper 
examines the optimal policy on replenishment for the EPQ model, incorporating 
scrap, rework, random machine failures and both in-production and after-produc-
tion inspection. Our study is motivated by this gap in the literature. Since there are 
two stages of the inspection process, the proposed model permits the in-production 
inspection cost to be lower than the after-production inspection cost. Three condi-
tions are analyzed for the optimal policy. Our objective is to optimize the production 
run time variable in order to maximize the total expected profit per unit time.

This paper adds to the study by Moussawi-Haidar et al. (2016) in two ways. The 
first is the assumption of random breakdowns in the production system. This is 
accomplished by a random variable (time-to-breakdown) following a uniform prob-
ability distribution, representing elapsed time until breakdown. An AR inventory 
control policy is adopted, with production being resumed after each machine break-
down. Corrective maintenance is performed following a breakdown in the course of 
a production run. This extension brings the model closer to real-world conditions, 
although it increases the mathematical complexity. The other extension of Mous-
sawi-Haidar et al.’s work is the assumption that the defective items include a per-
centage that cannot be reworked or repaired, and must, therefore, be scrapped at an 
additional cost. In addition, we will analyse different examples of in-production and 
after-production inspection costs. Under these assumptions, a mathematical model is 
derived, and the concavity of the expected total profit function is proved. This study 
provides a numerical example to illustrate the application of the proposed model, 
followed by sensitivity analyses performed on optimal solutions with respect to the 
demand rate, the production rate, the rework rate and the proportions of defective 
items and scrap items.

This study is organized as follows. The introduction explains the motivation for 
the study and reviews existing literature. Section 2 offers a description of the produc-
tion inventory system and the assumptions and notations involved. Section 3 focuses 
on the mathematical model developed for the inventory problem. Section 4 presents 
the numerical solution of the developed model and gives managerial insights on 
optimal decisions. Finally, a summary of the paper and some concluding remarks 
are given in Sect. 5.

2 � Problem definition

We consider a production process that produces one type of product. During the 
production process, a proportion q of defective items is produced at a rate d . Let 
d be the production rate of defective items during the regular production process; 
then, it can be expressed as the product of the production rate P and the proportion 
of defective items q . That is d = Pq . The proportion q of defective items is a ran-
dom variable with a known probability density function. Since demand is only met 
from good items, it requires the inspection of units produced before they are sold to 
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customers. During this process, if an item is found to be defective, it is replaced with 
a good item. All items produced are tested to see whether they meet certain qual-
ity requirements, and different inspection costs are considered for in-production, d1 , 
and after-production, d2 , where d1 > d2 . Such a relationship has an implication for 
the analysis of two different situations with regards to the inspection costs, namely, 
d1 = d2 and d1 < d2 . The effects of the conditions in question on the optimal solu-
tion will be further explored using numerical analysis. The inspection test results are 
100% reliable, i.e. no Type I or Type II inspection errors occur. Moreover, when the 
regular production process ends, inspection of the remaining units of the produced 
lot is performed at a rate per unit time of x , x > D . Further, it is assumed that the 
defective items consist of scrap and reworkable items. While a random proportion � 
of the defective items is just subtracted from inventory with unit cost Cs at the end of 
the inspection process, the others with the proportion of 1 − � are reworked with unit 
cost CR and a constant rework rate P1 , P1 > D . Futhermore, among the other realistic 
assumptions, a machine breakdown may occur randomly, and an AR inventory con-
trol policy is adopted.

Considering the situation when a breakdown occurs during a production run 
time, the machine is repaired immediately, with a constant repair time tr and fixed 
repairing cost M , and the interrupted lot will be resumed as soon as the machine 
is repaired or restored. However, any breakdown during the rework process is not 
considered. The assumption of constant repair/restoration time aligns with the 
repair process for modern manufacturing equipment, which often features a modular 
design, so that the repair process simply involves replacing the faulty unit or module 
with a new one. Flexible production systems often permit repair of a failed unit “off 
line”, without affecting production.

This model assumes a constant repair time and uniform distribution of the time 
to breakdown. Examples of situations which have constant repair times and distribu-
tion times with uniform probability of breakdown can be found in Moinzadeh and 
Aggarwal (1997), Lin and Gong (2006), and Widyadana and Wee (2012).

The following notations are used in this study to develop the mathematical model:

P	� The production rate in units per unit time.
P1	� The rework rate in units per unit time.
Q	� Production lot size per cycle.
D	� The demand rate in units per unit time, where demand is constant 

and continuous.
d	� The production rate of defective items in units per unit time.
x	� Inspection rate in units per unit time.
d1	� The inspection cost during the production.
d2	� The inspection cost after the production.
q	� The proportion of defective items produced, a random variable.
�	� The proportion of scrap items in defective items, a random variable.
T 	� The cycle length when a breakdown occurs.
T ′	� The cycle length when a breakdown does not occur.
T	� The cycle length whether a breakdown occurs or not.
T1	� The production run time, i.e. the production uptime.
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t	� The time-to-breakdown, a random variable.
tr	� The constant repair/restoration time.
t2	� The time required to inspect the items produced.
t3	� The time required to rework the reworkable items.
t4	� The time required to consume all on-hand inventory.
TC1

(
T1
)
	� The total cost per cycle where a breakdown occurs in the production 

run time.
TC2

(
T1
)
	� The total cost per cycle where a breakdown does not occur in the 

production run time.
TP1

(
T1
)
	� The total profit per cycle where a breakdown occurs in the produc-

tion run time.
TP2

(
T1
)
	� The total profit per cycle where a breakdown does not occur in the 

production run time.
E
(
TPU

(
T1
))

	� The expected total profit per unit time whether machine breakdowns 
occur or not.

f1(.)	� The probability density function of q.
f2(.)	� The probability density function of �.
f3(.)	� The probability density function of t.
S	� Unit selling price of a good item.
K	� The setup cost for each production.
M	� Fixed machine repair cost.
C	� The production cost per unit ($/unit).
CS	� The disposal cost per unit of scrap items ($/unit).
CR	� The reworking cost for each reworkable items ($/unit).
h	� The holding cost per unit per unit time ($/unit/unit time).
h1	� The holding cost for each reworkable items per unit time ($/unit/unit 

time).
∗	� The superscript representing optimal value.

3 � Mathematical model

Briefly, this paper aims to determine the optimal production run time to maximize 
the overall total expected profit. An EPQ model with defective items, rework and 
random machine breakdowns is constructed. A random proportion of defective 
items is assumed to be scrap, while the remainder are assumed to be reworkable, and 
these items are reworked at a cost at the end of the inspection process. Production is 
carried out during time period T1 . t represents time-to-breakdown during a produc-
tion run. A breakdown may occur in two possible scenarios. First, the breakdown 
may occur during the production run time, i.e., t ∈

[
0, T1

]
 . Alternatively, the break-

down may occur after the run time, i.e., t ∈
[
T1,∞

]
 . In the latter scenario, the repair 

is completed before the production cycle ends. Further, repair activity has a fixed 
duration, tr , i.e., tr = g , and is not included in the production run time T1 ; however, it 
is included in the production cycle time T .

Figure 1 depicts the on-hand inventory level of non-defective items when a ran-
dom breakdown occurs during the production uptime, and reworkable items are 
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reworked at a rate P1 after the inspection of all items. The total cost per cycle com-
prises the production setup cost, the machine repair cost, the production cost, the 
inspection cost during and after production, the disposal cost, the reworking cost 
and the holding cost. The time duration of a cycle, T  , is the sum of the production 
run time, the inspection time, the reworking time, the production downtime and the 
machine repair time. That is,

It is assumed that the production rate is higher than the rate of demand and that good 
quality items are manufactured during production run time. In case of a machine 
breakdown, on the other hand, it can be assumed that the time required for repair/
restoration activities is negligible. Thus, good quality products may be used to 
meet the demand accumulated during the production run time and repair time. This 
approach carries the implication that all the defective items cannot be found until 
the end of the production run time. Since in-production demand and the demand 
during machine repair time can only be satisfied with good items, it is assumed that 
some items are inspected in the pre-sales period and that such inspection is com-
pleted before the inventory is depleted. Once the defective product is discovered, it 
is replaced with a good product and the defective product is stored until the stocks 
are depleted. In order to be able to meet the demand solely with good items, the 
number of items to be inspected must be more than the demand. That is, the number 
of products screened at the time, T1 , must be higher than the demand, DT1 , and the 
number of products screened at the time tr , must be higher than the demand, Dtr . 

(1)T = T1 + t2 + t3 + t4 + tr.

Fig. 1   On-hand inventory level of non-defective items
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In other words, the number of products screened must be more than the demand, in 
order to obtain good quality products to meet the repair time demand under the fol-
lowing conditions: the production process is imperfect, a number of defective prod-
ucts are manufactured, demand can only be satisfied with good quality products, and 
a decision is made about these products at the end of the inspection time.

Rezaei (2016) calculated the total number of returned products using a geomet-
ric series in an inventory problem with a constant percentage of defective products 
in a batch delivered to the customer, with these defective products returned to the 
supplier and replaced with the same quantity of products, also including the same 
percentage of defective products.

For 0 < q < 1 , the number of items inspected during the production run time, T1 , 
can be calculated as

Inside the bracket is the sum of a geometric series (Wazwaz 2011), for which we 
have

This means that

and the number of items inspected during the machine repair time tr can be calcu-
lated as

Then, the total number of items inspected at the end of production is

where tr = g.
The number of defective items identified at the end of T1 is the total number of 

items inspected during the production and machine repair time, as given by Eq. (6), 
less the demand during these periods. That is

(2)
Number of items inspected during the production run time T1 =

(
D + Dq + Dq2 +⋯

)
T1

D + Dq + Dq2 +⋯ = lim
n→∞

(
D + Dq + Dq2 +⋯Dqn

)
=

D

1 − q

(3)Number of items inspected during the production run time T1 =
DT1

1 − q

(4)
Number of items inspected during the machine repair time tr

=
(
D + Dq + Dq2 +⋯

)
tr =

Dtr

1 − q

(5)
DT1

1 − q
+

Dtr

1 − q
=

DT1 + Dg

1 − q
,

(6)
DT1 + Dg

1 − q
−
(
DT1 + Dg

)
=

(
DT1 + Dg

)
q

1 − q
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The on-hand inventory not inspected at the end of T1 is equal to the maximum 
inventory level, (P − D)T1 − Dg , less the number of defective items identified at the 
end of production, as given by Eq. (7). That is

Then, the time t2 needed to inspect the on-hand inventory not inspected at the end 
of T1 is

According to Fig. 1, the time required to rework the reworkable items, t3 , the time 
to deplete the on-hand inventory of good items after the rework, t4 , the level of on-
hand inventory when machine breakdown occurs, H1 , the level of inventory when 
the machine is repaired, H2 , and the production run time T1 are shown in the follow-
ing equations:

The maximum inventory level of good items at the end of the production process, 
H3 , is found as follows

The inventory level of good items at the end of the inspection process, H4 , is 
found as follows

(7)(P − D)T1 − Dg −

(
DT1 + Dg

)
q

1 − q
= PT1 −

DT1 + Dg

1 − q
.

(8)t2 =
PT1 −

DT1+Dg

1−q

x
=

T1

x

(
P −

D

(1 − q)

)
−

Dg

(1 − q)x
.

(9)t3 =
(1 − �)qQ

P1

=
(1 − �)qPT1

P1

,

(10)t4 =
H5

D
,

(11)H1 = (P − d − D)t,

(12)H2 = H1 − Dtr = (P − d − D)t − Dg,

(13)T1 =
Q

P
; ∴Q = PT1.

(14)

H3 = H2 + (P − d − D)
(
T1 − t

)

= (P − d − D)t − Dg + (P − d − D)
(
T1 − t

)

= (P − d − D)T1 − Dg.
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The inventory level of good items at the end of the rework process, H5 , is found 
as follows

Referring to Figs.  2 and 3, the total number of defective items produced dur-
ing the regular production run time, and the number of imperfect quality items 
to be reworked in the time duration of t3 are computed as in Eqs.  (17) and (18), 
respectively:

From the above equations, the time duration of a cycle, T  , can be calculated as

As a result, the total inventory cost function can be expressed as

(15)

H4 = H3 − Dt2

= (P − d − D)T1 − Dg − Dt2

=
(
(P − d − D)T1 − Dg

)
− D

(
T1

x

(
P −

D

1 − q

)
−

Dg

(1 − q)x

)
.

(16)

H5 = H4 +
(
P1 − D

)
t3 =

(
(P − d − D)T1 − Dg

)

− D

(
T1

x

(
P −

D

1 − q

)
−

Dg

(1 − q)x

)
+

(
P1 − D

)
PT1(1 − �)q

P1

.

(17)dT1 = qPT1 = qQ,

(18)P1t3 = (1 − �)
(
dT1

)
= (1 − �)qPT1.

(19)T =
(1 − �q)PT1

D
.

Fig. 2   On-hand inventory level of defective items
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According to “Appendix”, the above equation can be simplified as

(20)

TC
1

(
T
1

)
= K +M + C

(
PT

1

)
+ Cs�

(
qPT

1

)
+ d

1

(
DT

1
+ Dg

1 − q

)

+ d
2

(
PT

1
−

DT
1
+ Dg

1 − q

)
+ CR(1 − �)

(
qPT

1

)

+ h

(
H

1(t)

2
+

(
H

1
+ H

2

)(
tr
)

2
+

(
H

2
+ H

3

)(
T
1
− t

)
2

+

(
H

3
+ H

4

)(
t
2

)
2

+

(
H

4
+ H

5

)(
t
3

)
2

+
H

5

(
t
4

)
2

)

+ h

(
(dt)(t)

2
+ (dt)

(
tr
)
+

(
dt + dT

1

)(
T
1
− t

)
2

+
(
dT

1

)(
t
2

))
+ h

1

((
(1 − �)dT1

)(
t
3

)
2

)
.

(21)

TC1

�
T1
�
= K +M +

�
C + d2

�
PT1 + CsPT1(�q) + +CRPT1(1 − �)q

+
�
d1 − d2

�
DT1

�
1

1 − q

�
+
�
d1 − d2

�
Dg

�
1

1 − q

�

+ h

⎧⎪⎨⎪⎩
P2T2

1

⎛
⎜⎜⎜⎝

(1 − �)q
�
1 − q −

D

P

�

D
+

�q

x

�
1 −

D

(1 − q)P

�
+

�
P1 − D

�
(1 − �)2q2

2DP1

+
q

2P
+

(1 − q)
�
1 − q −

D

P

�

2D

⎞
⎟⎟⎟⎠

+PgT1

�
�q − 1 −

D�

x

�
q

1 − q

���
+ hPgt +

h1P
2T2

1
(1 − �)2q2

2P1

.

Fig. 3   On-hand inventory level of scrap items
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The total profit per cycle is as follows

A similar approach can be used to derive the total cost per cycle in case t ≥ T1 . In 
this case, the total cost per cycle is expressed as:

The total profit per cycle is given by

The length of the cycle is the sum of the production run time, the inspection time, 
the production downtime and the reworking time. It can be expressed as

The expected total profit per cycle, with or without random breakdowns, is calcu-
lated from the probability distribution of the time of the breakdown as follows:

(22)

TP1

�
T1
�
= SPT1(1 − �q)

−

�
K +M +

�
C + d2

�
PT1 + CsPT1(�q) + CRPT1(1 − �)q +

�
d1 − d2

�
DT1

�
1

1 − q

�

+
�
d1 − d2

�
Dg

�
1

1 − q

��

− h

⎧⎪⎨⎪⎩
P2T2

1

⎛⎜⎜⎜⎝

(1 − �)q
�
1 − q −

D

P

�

D
+

�q

x

�
1 −

D

(1 − q)P

�
+

�
P
1 − D

�
(1 − �)2q2

2DP1

+
q

2P
+

(1 − q)
�
1 − q −

D

P

�

2D

⎞⎟⎟⎟⎠

+PgT1

�
�q − 1 −

D�

x

�
q

1 − q

���
− hPgt −

h1P
2T2

1
(1 − �)2q2

2P1

.

(23)

TC2

�
T1
�
= K +M +

�
C + d2

�
PT1 + CsPT1(�q) + +CRPT1(1 − �)q +

�
d1 − d2

�
DT1

�
1

1 − q

�

+ h

⎧⎪⎨⎪⎩
P2T2

1

⎛⎜⎜⎜⎝

(1 − �)q
�
1 − q −

D

P

�

D
+

�q

x

�
1 −

D

(1 − q)P

�
+

�
P
1 − D

�
(1 − �)2q2

2DP1

+
q

2P
+

(1 − q)
�
1 − q −

D

P

�

2D

⎞⎟⎟⎟⎠

⎫⎪⎬⎪⎭

+
h1P

2T2

1
(1 − �)2q2

2P1

.

(24)

TP2

�
T1
�
= SPT1(1 − �q) −

�
K +

�
C + d2

�
PT1 + CsPT1(�q) + +CRPT1(1 − �)q +

�
d1 − d2

�
DT1

�
1

1 − q

��

− h

⎧⎪⎨⎪⎩
P2T2

1

⎛⎜⎜⎜⎝

(1 − �)q
�
1 − q −

D

P

�

D
+

�q

x

�
1 −

D

(1 − q)P

�
+

�
P
1 − D

�
(1 − �)2q2

2DP1

+
q

2P
+

(1 − q)
�
1 − q −

D

P

�

2D

⎞⎟⎟⎟⎠

⎫⎪⎬⎪⎭

−
h1P

2T2

1
(1 − �)2q2

2P1

.

(25)T � = T1 + t2 + t3 + t4 =
(1 − �q)PT1

D
.
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where TP1

(
T1
)
 and TP2

(
T1
)
 are given by Eqs. (22) and (24), respectively.

Moreover, the expected cycle length E(T) , is given by

where T  and T ′ are given by Eqs. (19) and (25), respectively.
Finally, using the renewal reward theorem, the expected total profit per unit time 

E
(
TPU

(
T1
))

 , is

It is assumed that the proportion, q , of defective items, the proportion � of scrap 
items and the time to breakdown, t , are random variables with known probability 
density functions. These random variables may be correlated to or independent from 
each other. Following the studies of Lin and Kroll (2006), Yoo et al. (2009), Khan 
et al. (2011) and Hsu and Hsu (2013), it is assumed in this model that these vari-
ables are independent.

This model treats the time-to breakdown, t , as a random variable which is uni-
formly distributed across the interval 

[
0, aT1

]
 , where a > 1 . The probability density 

function f3(t) is given as:

To allow realistic practical conditions representing machine breakdown, produc-
tion run time, T1 , must be lower than aT1 ; if this is not the case, machine breakdown 
will not occur when production is finished. Without this condition, the problem 
would be only the same as the machine breakdown problem considered in studies by 
Chiu et al. (2007) and Ting et al. (2011).

Substituting the uniform probability density function into Eq. (28), we have

(26)E
�
TP

�
T1
��

= E

⎛
⎜⎜⎝

T1

∫
0

TP1

�
T1
�
f (t)dt +

∞

∫
T1

TP2

�
T1
�
f (t)dt

⎞
⎟⎟⎠
,

(27)E(T) = E

⎛
⎜⎜⎝

T1

∫
0

Tf (t)dt +

∞

∫
T1

T �f (t)dt

⎞
⎟⎟⎠
,

(28)

E
(
TPU

(
T1
))

=
E
(
TP

(
T1
))

E(T)
=

E
(∫ T1

0
TP1

(
T1
)
f (t)dt + ∫ ∞

T1
TP2

(
T1
)
f (t)dt

)

E
(∫ T1

0
Tf (t)dt + ∫ ∞

T1
T �f (t)dt

) .

(29)f3(t) =

{
1

aT1
, 0 ≤ t ≤ aT1

0, otherwise.
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After some manipulation, we have

Let E1 =
1

(1−E(�)E(q))
 , E2 =

E(�)E(q)

(1−E(�)E(q))
 , E3 =

(1−E(�))E(q)

(1−E(�)E(q))
 , E4 =

E
(

1

1−q

)

(1−E(�)E(q))
 , 

E5 =
E(q)

(
1−E(q)−D∕P

)
(1−E(�))

(1−E(�)E(q))
 , E6 =

E((1−�)2)E(q2)
(1−E(�)E(q))

 , E7 =
E(q)

(1−E(�)E(q))
 , 

E8 =
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1−E(q)−D∕P

)
(1−E(q))

(1−E(�)E(q))
 , E9 =

E(�)E
(

q

1−q

)

(1−E(�)E(q))
.

Then, Eq. (31) becomes

Note that the expected total profit per unit time function E
(
TPU

(
T1
))

 in Eq. (32) is 
strictly concave for all positive T1 . Hence, it follows that, to find the optimal production 
run time T∗

1
 , one can partially differentiate E

(
TPU

(
T1
))

 with respect to T1 , and then set 
the result equal to zero, i.e.:

The first-order derivative of E
(
TPU

(
T1
))

 is

(31)
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(32)
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and the second-order derivative of E
(
TPU

(
T1
))

 with respect to T1 is

Since the parameters K,D,P,M and g are positive, a > 1 , E1 > 0 and E4 > 0 , we 
have 𝜕

2E(TPU(T1))
𝜕T2

1

< 0 for all positive T1 , which implies that there exists a unique 

value T∗
1
 which is given as

From Eq. (35), the optimal production lot size Q∗ can be obtained as follows:

To avoid shortages, the following two assumptions are made:

1.	 The number of good items produced must always be equal to or greater than the 
demand during production and machine repair time, i.e.

2.	� The time required to inspect the on-hand inventory not inspected at the end of 

production, t2 , is finished before the end of the cycle. That is,

(33)

�E
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Special cases of machine breakdown, scrapped product ratio and uniform distri-
bution parameter will be considered to develop the expected total profit in the next 
section.

Special cases:

If machine breakdown occurs only during production, then the uniform distribution 
parameter a is equal to 1. Thus, the expected total profit per unit time, E

(
TPU

(
T1
))

 , 
can be expressed, as follows:

The optimal production run time T∗
1
 , and the optimal production lot size Q∗ can be 

obtained as follows:

When the proposed model does not consider the assumptions of machine break-
downs and the presence of scrap items among the defective items, i.e. M = 0 , g = 0 , 
and � = 0 , then one can derive the same equation as obtained by Öztürk (2017), only if 
the following equation holds:

(38)
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Furthermore, in the case of a perfect production process, no defective items are pro-
duced, in which case we have q = 0 , d1 = d2 = 0 and P1 → ∞. Then, Eq. (33) reduces 
to the following equation, as given by the traditional EPQ model:

4 � Numerical example

In this section, as an illustration of the proposed model in this paper, we consider 
an inventory situation similar to those in Hayek and Salameh (2001), and Mous-
sawi-Haidar et  al. (2016): the demand rate D = 1200 units/year, the production rate 
P = 1600 units/year, the rework rate P1 = 1300 units/year, the selling price of good 
items S = $200/unit, the production setup cost K = $1500 , the disposal cost Cs = $6

/unit, the rework cost CR = $8/unit, the production cost C = $104/unit, the inspection 
rate x = 175,200 units/year, the inspection cost during production d1 = $0.6/unit, the 
inspection cost after production d2 = $0.5/unit, the holding cost h = $20/unit/year, the 
holding cost of reworkable items h1 = $22/unit/year.

The proportion q of defective items and the proportion � of scrap items are uniformly 
distributed over the intervals [0, 0.1] and [0, 0.2] , with the probability density functions 
f1(q) and f2(�) , respectively, as follows:

Moreover, the other related parameters are taken as follows: the repair cost for 
each breakdown M = $2000, the duration to repair the machine g = 0.018 years. 
The time-to breakdown, t , is a random variable with probability density function 
f3(t) . Unlike other studies (Chung 2003; Chiu et  al. 2007; Wee and Widyadana 
2013), the time of the breakdown t follows a uniform distribution. The probability 
density function is

Using the above probability density functions, one can compute the following 
expected value expressions:

(42)
(
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(
1 −

D

P

(
1

1 − q

))
.

(43)Q∗ =

√√√√ 2KD

h
(
1 −

D

P

) .

f1(q) =

{
10, 0 ≤ q ≤ 0.1

0, otherwise
and f2(�) =

{
20, 0 ≤ � ≤ 0.2,

0, otherwise
.

f3(t) =

{
1

1.1T1
, for 0 ≤ t ≤ 1.1T1

0, otherwise.
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E
1
=

1

(1−E(�)E(q))
= 1.005025 , E

2
=

E(�)E(q)

(1−E(�)E(q))
= 0.005025 , E

3
=

(1−E(�))E(q)

(1−E(�)E(q))
= 0.045226 ,  

E4 =
E
(

1

1−q

)

(1−E(�)E(q))
= 1.0589 , E5 =

E(q)

(
1−E(q)−D∕P

)
(1−E(�))

(1−E(�)E(q))
= 0.009045 , 

E6 =
E((1−�)2)E(q2)
(1−E(�)E(q))

= 0.002725 , E7 =
E(q)

(1−E(�)E(q))
= 0.050251 , 

E8 =

(
1−E(q)−D∕P

)
(1−E(q))

(1−E(�)E(q))
= 0.190955 and E9 =

E(�)E
(

q

1−q

)

(1−E(�)E(q))
= 0.005387.

Applying Eqs.  (35) and (36), one can obtain the optimal production run time 
T∗
1
= 0.791433 years; the optimal production lot size Q∗ = 1266.29 units; and the 

expected total profit per unit time is obtained as E
(
TPU

(
T∗
1

))
= $107,275.11 . 

Table 2 shows that the optimal production policy depends on the uniform distribu-
tion parameter a . The optimal production run time T∗

1
 decreases and the expected 

total profit E
(
TPU

(
T∗
1

))
 increases as a increases. Furthermore, Fig. 4 pictures the 

concavity of the expected total profit function for a = 1.1, 1.3, 1.5 values. For higher 
a values, the optimal value of the production run time slightly converges to the left, 
and the expected total profit slightly increases when a is increased. This results from 
the assumption that a > 1 . Changing this value causes the behaviour of the model to 
reverse. If the value of the uniform distribution parameter a is high, a breakdown is 
less likely to occur before the production run ends.

The results obtained for special cases using the proposed model are as follows:
Assuming that the uniform distribution parameter a equals 1, i.e., a = 1 , and 

using Eqs. (40), (41), and (39), the optimal production run time, T∗
1
 , the optimal 

production lot size, Q∗ , and the expected total profit per unit time, E
(
TPU

(
T∗
1

))
 , 

would give the following results: T∗
1
= 0.812838 years, Q∗ = 1300.54 units, and 

E
(
TPU

(
T∗
1

))
= $107,123.60 . This results in a 2.70% increase in the optimal 

production run time and − 0.14% decrease in the maximum total profit when 
compared to the optimal policy for the model when a = 1.1 . Thus, as might be 

Table 2   Effect of changes in the 
uniform distribution parameter a 
on optimal solution

a The optimal value

a T∗
1
 (years) Q∗ (units) E

(
TPU

(
T∗
1

))
 ($)

0.9 0.838257 1341.211 106,944.34
1.0 0.812838 1300.540 107,123.60
1.1 0.791433 1266.293 107,275.11a

1.2 0.773143 1237.029 107,404.98
1.3 0.757322 1211.715 107,517.63
1.4 0.743493 1189.589 107,616.33
1.5 0.731297 1170.075 107,703.56
1.6 0.720456 1152.729 107,781.24
1.7 0.710753 1137.204 107,850.87
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expected, a reduction in machine reliability, the optimal production run time 
increases to compensate for time lost as a result of machine breakdowns, and the 
maximum total profit falls accordingly.

When the proposed model does not allow the assumption of machine breakdown, 
one can obtain the optimal production run time T∗

1
= 0.531954 years, the optimal 

production lot size Q∗ = 851.13 units and E
(
TPU

(
T∗
1

))
= $109,153.25 . This results 

in a 48.79% increase in the optimal production run time and − 1.28% decrease in 
the expected total profit when compared to the optimal policy for the model without 
random breakdowns.

When all the defective items are reworkable, i.e. � = 0 , one can obtain the opti-
mal production run time T∗

1
= 0.787222 years, the optimal production lot size 

Q∗ = 1259.56 units and the expected total profit E
(
TPU

(
T∗
1

))
= $107,895.02.

When there is no machine breakdown and if all the defective items are rework-
able, i.e. M = 0 , g = 0 , and � = 0 , one can obtain the optimal production run 
time, T∗

1
= 0.529124 years, the optimal production lot size, Q∗ = 846.60 units, and 

E
(
TPU

(
T∗
1

))
= $109,772.86.

Fig. 4   The behaviour of total profit versus the production run time for different uniform distribution 
parameter values
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Table  3 shows the results obtained from the relevant special cases. As seen in 
Table 3, the proposed model gives a higher optimal production run time than the 
model which does not include random breakdowns. Groenevelt et al. (1992) demon-
strated the need for the optimal production lot to be greater than shown by the model 
without random breakdowns so as to compensate for lost production resulting from 
machine breakdowns; our results match the findings of Groenevelt et  al. (1992). 
However, our results are not consistent with those of Chakraborty et al. (2008), who 
determined that both the optimal production lot and production run time would be 
smaller than in the model without random breakdowns. From the results, it is also 
observed that the reworking of reworkable items decreases the optimal production 
run time, while increasing the total profit. In addition, one should decide whether 
these items are scrapped or reworked to increase the total profit.

The aim of this study was to analyse the effects of both machine breakdown and 
inspection time on the results of the optimal solution. In this context, one of the 
most important assumptions made in the inventory question at hand was that the 
inspection continues even after the production is completed. This, in turn, makes it 
possible for different inspection costs to be used for in-production and after-produc-
tion inspection processes. Therefore, it becomes necessary to analyse the effect of 
inspection cost on the results of the optimal solution.

For this purpose, let’s assume that the in-production inspection cost equals the 
after-production inspection cost, i.e. d1 = d2 = 0.5 . The results of the solution 
obtained are as follows: The optimal production run time, T∗

1
= 0.791186 years, 

the optimal production lot size, Q∗ = 1265.90 units, and the expected total profit 
per unit time, E

(
TPU

(
T∗
1

))
= $107,372.38 . Now, let’s assume that the in-produc-

tion inspection cost is lower than that of the after-production inspection cost, i.e., 
d1 < d2 = 0.7 . This solution produces results as follows: The optimal production run 
time, T∗

1
= 0.79094 years, the optimal production lot size, Q∗ = 1265.50 units, and 

the expected total profit per unit time, E
(
TPU

(
T∗
1

))
= $107,228.44.

These results, with the assumption that inspection continues after production, 
imply that the total profit is best when the inspection costs are equal to each other. 
Figure 5 pictures a graphical illustration of the change in the expected total profit 
and optimal run time with respect to inspection costs.

We also investigated the effects of differences in the expected percentage of 
defective items on the optimal production run time and on total profit, includ-
ing the above-mentioned screening costs, i.e., d1 > d2 , d1 = d2 , d1 < d2 . The first 
case ( d1 > d2 ) represents an in-production inspection cost which is higher than the 

Table 3   The results for special cases

Model T∗
1
 (years) Q∗ (units) E

(
TPU

(
T∗
1

))
 ($)

With breakdown, a = 1 0.812838 1300.54 107,123.60
With breakdown, � = 0 0.787222 1259.56 107,895.02
Without breakdown 0.531954 851.13 109,153.25
Without breakdown, � = 0 0.529124 846.60 109,772.86
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after-production inspection cost, as was assumed by Moussawi-Haidar et al. (2016). 
In the second case ( d1 = d2 ), the costs of inspection in-production and after-pro-
duction are the same. The third case ( d1 < d2 ) shows in-production inspection costs 
lower than after-production inspection costs. This indicates whether there is any 
benefit in conducting in-production inspection rather than after-production inspec-
tion. Graphical representations for different values of the expected percentage of 
defective items are shown in Figs.  6 and 7. All other parameters are unchanged. 
Increasing values of E(q) imply production of more defective items, thus more items 
to inspect, meaning higher inspection cost and lower total profit.

One can see from the results shown in Fig. 6 that a bigger expected defective rate 
E(q) leads to greater differences between the three conditions. It is also evident from 
the same figure that higher expected proportions of defective items make the second 
case ( d1 = d2 = 0.5 ) increasingly advantageous in terms of profit. Furthermore, in 
the case of increasing numbers of defective products, though it varies with costs, 
the third case becomes more profitable than the first, indicating that after-production 
inspection is less costly than in-production inspection.

Figure  7 shows the optimal production run time for different values of the 
expected defective rate E(q) . The three curves shown on Fig.  7 illustrate the 
results for three different combinations of inspection costs. Other parameters are 

Fig. 5   The behaviour of total profit versus the production run time for different inspection cost values
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Fig. 6   Total profit in relation to the expected proportion of defective items E(q)

Fig. 7   The production run time in relation to the expected proportion of defective items E(q)
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unchanged. It can be observed that the optimal production run time decreases as the 
expected defective rate E(q) rises. Also, with higher in-production inspection costs, 
the optimal production run time is reduced.

Now, sensitivity analysis of the model is conducted to study the effects of changes 
in the different parameters D,P and P1 on the optimal values of the production run 
time T∗

1
 and total profit E

(
TPU

(
T∗
1

))
 by changing each of the parameters in the 

range −50% to +50%, focusing on one parameter at a time and keeping the remain-
ing parameters unchanged. It may be interesting to explore the effects of rework 
rates higher and lower than the rate of demand on the optimal solution.

The results are presented in Table 4. Note that, it is important to verify that the 
conditions in Eqs.  (37) and (38) are satisfied. The table gives the right-hand side 
(RHS) of Eqs. (37) and (38), calculated for eleven percentage changes in parameters 
D,P and P1 . It is interesting to note that, if D is increased from 40 to 50%, and P is 
increased from − 50 to − 30%, this numerical example cannot be solved optimally. 
The reason behind this is the fact that the assumptions made about the parameters of 
D and P would not satisfy (P > D), which will make it impossible to obtain the opti-
mal production run time, T∗

1
 ; therefore, the conditions of Eqs. (37) and (38) cannot 

be explored. The following observations can be made:
The optimal production run time is highly sensitive to changes in the demand rate 

and the production rate, and slightly sensitive to change in the rework rate. The opti-
mal production run time increases with the increase in the value of the parameters 
D and P1 , and decreases in the value of the parameter P . This is because of the fact 
that, the higher the demand, the longer the production run time required. This would 
require reworking of a higher number of defective items during a production run.

The total profit is significantly affected by the demand rate, moderately affected 
by the production rate, and slightly affected by the rework rate. The total profit 
decreases when the production rate increases, and increases when the demand rate 
and the rework rate increase. The results indicate that, if there is no constraint on the 
production run time, the higher the rework rates, the higher the total profit.

Table  5 shows the effects of expected defective rate, E(q) , and expected scrap 
rate, E(�) , on the optimal solution, as revealed using sensitivity analyses. The RHS 
of Eqs. (37) and (38) are calculated for eleven different values of the expected pro-
portion of defective items E(q) and the expected proportion of scrap items E(�) . The 
following observations can be made:

The optimal production run time T∗
1
 is moderately sensitive to changes in the 

expected defective rate E(q) , and slightly sensitive to change in the expected 
scrap rate E(�) . The optimal production run time decreases when E(q) increases, 
and increases when E(�) increases. By reducing the production run time, one 
can cut the total number of defective items and minimize rework cost. This is 
because the reworked items are used to satisfy demand, which in turn allows for 
a decrease in the production run time. Producing a higher proportion of defective 
items increases production run times, as well as the optimal production lot size, 
to compensate for the cost of scrap items that are not used to satisfy demand.
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Table 4   Effect of percentage parameter changes in demand rate, production rate and rework rate on opti-
mal solution

Nf not feasible

Parameter Change (%) Optimal Solution RHS of Eq. (37) RHS of Eq. (38)

Production 
run time T∗

1

Total profit 
E
(
TPU

(
T∗
1

)) 1 −
D

P

(
1 −

g

T
1

)
2

(
T1

(
P−

D

1−q

)
−DgE

(
1

1−q

))

T1

(
(1−E(�)E(q))P

D
−1

)
−g

D − 50 0.354336 49,762.74 0.644050 1167.805
− 40 0.413739 60,925.65 0.569578 1384.716
− 30 0.480819 72,253.97 0.494654 1589.737
− 20 0.560036 83,745.70 0.419284 1775.907
− 10 0.658812 95,410.77 0.343442 1929.558

0 0.791433 107,275.11 0.267058 2019.712
+ 10 0.991252 119,394.19 0.189981 1958.328
+ 20 1.366595 131,900.87 0.111854 1360.082
+ 30 2.801516 145,319.19 0.031264 − 7692.440
+ 40 Nf Nf Unsatisfied Unsatisfied
+ 50 Nf Nf Unsatisfied Unsatisfied

P − 50 Nf Nf Unsatisfied Unsatisfied
− 40 Nf Nf Unsatisfied Unsatisfied
− 30 Nf Nf Unsatisfied Unsatisfied
− 20 1.967241 110,395.29 0.071078 157.345
− 10 1.075967 108,420.11 0.180608 1743.352

0 0.791433 107,275.11 0.267058 2019.712
+ 10 0.638018 106,476.22 0.337418 2133.991
+ 20 0.538848 105,874.57 0.395878 2196.364
+ 30 0.468353 105,400.63 0.445250 2235.629
+ 40 0.415193 105,015.67 0.487511 2262.613
+ 50 0.373445 104,695.81 0.524100 2282.296

P
1

− 50 0.791035 107,271.92 0.267066 2019.693
− 40 0.791167 107,272.98 0.267063 2019.699
− 30 0.791262 107,273.74 0.267061 2019.704
− 20 0.791333 107,274.31 0.267060 2019.707
− 10 0.791389 107,274.75 0.267059 2019.710

0 0.791433 107,275.11 0.267058 2019.712
+ 10 0.791469 107,275.40 0.267057 2019.713
+ 20 0.791499 107,275.64 0.267056 2019.715
+ 30 0.791525 107,275.84 0.267056 2019.716
+ 40 0.791547 107,276.02 0.267055 2019.717
+ 50 0.791566 107,276.17 0.267055 2019.718
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The total profit is significantly affected by the expected defective rate E(q) , 
and slightly affected by the expected scrap rate E(�) . The total profit decreases 
when the expected defective rate E(q) and the expected scrap rate E(�) increase. 
Increasing the value of E(q) involves higher rework cost and reduces total profit. 
Thus, rework cost can be reduced by decreasing defective items. Figures 8 and 9 
illustrate these changes graphically.

Table 5   Effect of changes in the expected defective rate and the expected scrap rate on optimal solution

Parameter Change Optimal solution RHS of Eq. (37) RHS of Eq. (38)

Production 
run time T∗

1

Total profit 
E
(
TPU

(
T∗
1

)) 1 −
D

P

(
1 −

g

T
1

)
2

(
T1

(
P−

D

1−q

)
−DgE

(
1

1−q

))

T1

(
(1−E(�)E(q))P

D
−1

)
−g

E(q) 0.005 0.789382 108,284.03 0.267102 2365.288
0.025 0.790596 107,839.24 0.267076 2219.383
0.050 0.791433 107,275.11 0.267058 2019.712
0.075 0.791509 106,701.83 0.267056 1798.327
0.100 0.790824 104,683.07 0.267071 1552.050
0.125 0.789383 105,527.46 0.267102 1277.043
0.150 0.787201 104,926.22 0.267149 968.629
0.175 0.784296 104,315.51 0.267213 621.027
0.200 0.780692 103,695.28 0.267292 226.999
0.225 0.776421 103,065.45 0.267387 − 222.677
0.250 0.771518 102,425.96 0.267498 − 739.981
0.275 0.766020 101,776.73 0.267624 − 1340.830
0.300 0.759972 101,117.61 0.267764 − 2047.010

E(�) 0.005 0.787435 107,864.20 0.267144 1978.278
0.025 0.788283 107,740.72 0.267126 1986.863
0.050 0.789338 107,585.97 0.267103 1997.696
0.075 0.790388 107,430.77 0.267080 2008.645
0.100 0.791433 107,275.11 0.267058 2019.712
0.125 0.792472 107,118.99 0.267035 2030.898
0.150 0.793505 106,962.41 0.267013 2042.205
0.175 0.794533 106,805.37 0.266991 2053.636
0.200 0.795555 106,647.86 0.266969 2065.192
0.225 0.796571 106,489.89 0.266948 2076.876
0.250 0.797581 106,331.46 0.266926 2088.690
0.275 0.798585 106,172.55 0.266905 2100.635
0.300 0.799583 106,013.17 0.266884 2112.715
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Fig. 8   Sensitivity analysis of the production run time

Fig. 9   Sensitivity analysis of the total profit
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5 � Conclusion

This paper investigated the effects of an imperfect production process, subject 
to random breakdowns and inspection policy, on a production inventory system 
with rework. It was designed to give a more realistic analysis than the traditional 
EPQ model, by allowing for defective products, both for rework and for scrap. 
The time to machine breakdowns is assumed to follow a uniform distribution; 
repair or maintenance time of machinery is held constant; and the unit inspec-
tion costs for in-production and after-production inspections are different. Total 
cost functions have options to allow for and not allow for machine breakdown. 
The total profit per unit time is then calculated. The concavity of the expected 
total profit function is proved, and optimal policies are obtained. Optimal policy 
was found with the assumption of in-production inspection cost being higher than 
after-production inspection cost. However, analyses also incorporated the cases 
where both costs are equal and in-production inspection cost is lower than the 
after-production inspection cost.

Results of the numerical analysis showed that the total profit is the highest 
when in-production inspection cost equals the after-production inspection cost. 
The results also showed that the model with random breakdowns has higher pro-
duction run times when compared to the model without random breakdowns, and 
the expected total profit is lower than in the model without random breakdowns. 
Groenevelt et al. (1992) demonstrated the need for the optimal production lot to 
be greater than shown by the model without random breakdowns so as to com-
pensate for lost production resulting from machine breakdowns; our results match 
the findings of Groenevelt et al. (1992). However, our results are not consistent 
with those of Chakraborty et  al. (2008), who determined that both the optimal 
production lot and production run time would be smaller than in the model with-
out random breakdowns. Furthermore, the optimal production run time and the 
expected total profit are highly sensitive to changes in the values of the produc-
tion rate and demand rate, with the demand rate being the parameter with the 
highest sensitivity to the maximum total profit. This study contributes to the lit-
erature by exploring scenarios such as in-production and after-production inspec-
tion, reworking or repairing defective items after inspection, different unit costs 
for inspection at different stages, and production machinery failure, all of which 
play an important role in managerial decisions.

The model developed in this study can be extended in a number of ways. In this 
study, it was assumed that only a percentage of the defective items are scrapped. 
On the other hand, a more realistic approach would be to assume that a percent-
age of reworked items are also scrapped before being introduced to the market. 
Another approach could be to explore this model as a preventive maintenance 
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problem (Taleizadeh et al. 2014) for multiple items with backordering, in which 
the production process is interrupted more than one time in a production run time 
in order to restore the process to an in-control state. A failed machine may not 
be operational for a random period of time, which may result in shortages. The 
analysis of the model proposed in this study within the framework of an inventory 
control policy where exponentially distributed time-to-breakdown, exponentially 
and/or uniformly distributed repair/restoration time, and lost sales and backorder 
cases are considered, will also be a significant contribution in the future.

Acknowledgements  The author expresses sincere appreciation to the editor and anonymous reviewers for 
their efforts to improve the quality of this paper.

Appendix: Derivation of the mathematical equations

The total cost per cycle in (20) includes the production setup cost, the production 
cost, machine repair cost, inspection cost during and after production, disposal cost, 
reworking cost and holding cost, which is given as: 

Then the first, second, third, fourth, fifth and sixth parts of the eighth term of 
TC1

(
T1
)
 become the following equations, respectively:
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In addition, the ninth and tenth terms of TC
(
T1
)
 become the following equations, 

respectively:

Substituting these equations in (44), we have total inventory cost per cycle as
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