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Abstract
The importance of acquiring and sharing real-time disruption information in the sup-
ply chain for proper deployment of disruption mitigation strategies is well-known in 
the literature. However, studies in this direction are limited in the domain of supply 
chain dynamics. In this paper, we investigate the effect of sharing real-time disrup-
tion and inventory information to mitigate supplier disruption through proper order 
allocation between the suppliers. We consider a three-echelon manufacturing supply 
chain network where a manufacturer and first-tier suppliers adopt dual sourcing. At 
the first-tier supplier level, the supply chain network is subjected to random disrup-
tion. Using control engineering modeling and simulation, we first evaluate the value 
of information sharing in disruption mitigation efforts, and further, we examine the 
effect of various control system design configurations of the manufacturer to maxi-
mize its dynamic performance in the information shared supply chain settings. The 
results show that, in the case of upstream supplier disruption, information transpar-
ency on the vulnerabilities among supply chain members improves the performance. 
Further, it is observed that for a given control structure, the selection of decision 
parameters affect the dynamic performance of the supply chain with proper order 
allocation strategy during the disruption. The findings of this research can provide 
the basis for managers to make informed decisions about using mitigation strategies 
with their supply chain partners.
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1 Introduction

The prompt detection of an impending disruption provides sufficient time for the 
firms to prepare and adopt appropriate mitigation strategies for disruption manage-
ment. In the case of a global supply chain, real-time information on suppliers disrup-
tion provides weeks for the execution of mitigation strategies (Sheffi 2015). Hav-
ing advanced information helps firms to take actions such as securing material from 
other suppliers and moving away inventory and assets from affected areas. Addition-
ally, the companies that are vigilant to identify disruptions early have a significant 
competitive advantage over others (Zsidisin and Smith 2005). For instance, Nokia’s 
prompt detection of the disruption of its sole supplier’s plant (Philips), enabled them 
to identify alternate suppliers whereas Ericsson, in a similar situation, could not. 
The strategy enabled Nokia to dominate the market later (Chopra and Sodhi 2012). 
In this paper, an attempt is made to evaluate the effect of real-time sharing of dis-
ruption information in a supply chain experiencing supplier disruption. Addition-
ally, with the help of control engineering modeling and simulation, a detailed system 
dynamic analysis is carried out to obtain an improved supply chain design from a 
system level control perspective.

There is a growing body of literature emphasizing the need to obtain real-time 
disruption information (Sheffi 2015; Ye et al. 2015; Sarkar and Kumar 2015; Black-
hurst et al. 2005; Hendricks and Singhal 2005). There are several ways of obtaining 
information on disruption. The most typical way is to obtain information directly 
from supply chain members, and the willingness to share the private information 
on disruption is usually driven by proper collaboration and coordination through 
contracts between channel partners (Wakolbinger and Cruz 2011; Tang 2006; Kou-
velis et  al. 2006). Some firms make public announcements of their disruptions 
(Hendricks and Singhal 2003, 2005). For example, in 2005, Airbus announced the 
issues it faced regarding the supply and installation of electrical parts in their new 
A 380 jumbo jet (Schmidt and Raman 2012). The legislation of some countries, 
make the public announcement of disruption mandatory (Sarkar and Kumar 2015). 
The availability of information on drivers of supply chain disruption is generally 
limited and expensive (Ye et al. 2015). Nevertheless, the information on economic 
performance could be readily available. Therefore, studies (Ye et al. 2015; Schmidt 
and Raman 2012; Hendricks and Singhal 2005) have proposed the use of statistical 
techniques on the economic data of firms to identify disruptions. Advanced informa-
tion technology also helps in the real-time identification of disruption. Nine data 
sources have been proposed by Sheffi (2015), for the early detection of disruption, 
which include weather, news, sensor, supply base monitoring information, and so 
on. Emerging technologies such as the electronic supply chain (e-SCM) (Lin 2014; 
Gonul Kochan et al. 2018), internet of things (IoT) (Townsend et al. 2018), cloud 
computing (Cao et  al. 2017; Yu et  al. 2017), cloud manufacturing (Xu 2012; Liu 
et al. 2018), and cyber-physical systems (Bogataj et al. 2017; Kusiak 2018), help in 
improved collaboration and acquisition of information whereas technologies such as 
big-data analytics (Barbosa et al. 2018) and predictive analytics (Gunasekaran et al. 
2017; van der Spoel et al. 2017), with the help of advanced computing and storage 
facilities, enable proper interpretation of information for the identification/prediction 
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of issues. For example, organizations can routinely check and obtain real-time infor-
mation on supply chain wide business operations, using RFID/IoT technology and a 
sensor network (Townsend et al. 2018).

In this paper, we attempt to evaluate the value of information sharing in a three-
echelon manufacturing supply chain network model in generic settings that are expe-
riencing disruption at the level of first-tier suppliers. The shared information includes 
real-time disruption information as well as on-hand inventory information with the 
suppliers. In addition to that, the following research questions are addressed:

1. What are the different control system designs for the manufacturer to improve the 
dynamic performance, during the disruption in information shared supply chain 
networks?

2. What is the effect of various control designs on the performance of information 
shared supply chain networks?

For the purpose of this research, control engineering modeling and simulation is 
adopted. We have employed benchmark models with additional considerations to 
represent various nodes of the supply chain. The extent of the backlog is used as 
a performance measure in the first part of the analysis, for evaluating the value of 
information sharing. In the second part of the analysis, a transient control engi-
neering performance measure is considered, as proposed by Spiegler et al. (2012).

Our study differs from previous studies in the following ways. Studies on supply 
chain dynamics, using control engineering methods, usually employ two-echelon 
models (Spiegler et al. 2012, 2015; Yang and Fan 2016) whereas we have considered 
three-echelon converging supply chain network models. Previous studies have consid-
ered downstream disturbance using a step function; however, to study the dynamics 
of the supply chain to derive supply chain risk mitigation strategies, we have con-
sidered upstream supplier disruptions and modeled them, thereby explicitly charac-
terizing phases of maximum impact and recovery. Previous studies have considered 
information sharing in the domain of supply chain dynamics to study topics such as 
supply chain uncertainty (Yang et  al. 2011), order variability (Dejonckheere et  al. 
2004; Cannella et al. 2011), coordination (Cannella et al. 2015b) and collaboration 
(Disney and Towill 2003; Disney et al. 2003; Xie and Ma 2014), our work examines 
real-time information sharing to devise disruption mitigation strategies. Additionally, 
the present study considers the sharing of real-time disruption information.

The contribution of this research towards the extant body of knowledge is two-
fold. This paper investigates the influence of real-time information sharing on sup-
plier risk mitigation in a dynamic setting, an area that has not received much atten-
tion in the literature. Secondly, our study provides insights on how dual sourcing 
strategy, a well-established strategy for risk mitigation, can be implemented more 
effectively with the help of real-time information sharing and a dynamic procure-
ment policy to reduce the impact of upstream supplier disruption.

The remaining parts of the paper are organized as follows. Section 2 presents a 
review of the relevant literature on information sharing in the supply chain, and on 
information sharing strategies within the context of supply chain disruption manage-
ment. Section 3 explains the manufacturing supply chain network model considered 
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in this study. Section 4 describes the order allocation strategies of downstream mem-
bers of the supply chain between their suppliers with and without information shar-
ing scenarios. Section 5 presents a numerical study of supplier disruption and the 
results obtained on performance variations. Section 6 presents the effects of various 
control structures of the manufacturer on its dynamic performance. Section 7 con-
cludes by reflecting on the managerial implications of the study.

2  Literature survey

For several decades, the topic of information sharing has been widely addressed in 
the literature (Forrester 1958; Sterman 1989; Lee et al. 1997a). Broadly classified, 
the relevant literature falls into two categories: studies on improvement of supply 
chain dynamics by reducing the bullwhip effect, as well as supply chain coordina-
tion and collaboration studies to prevent the occurrence of the double marginali-
zation effect. The bullwhip effect or amplification of demand variability across the 
upstream side of the supply chain was first observed by Forrester (1958), and later, 
the term was proposed by Lee et al. (1997b). Giard and Sali (2013) and Huang et al. 
(2003) have given a detailed review of the impact of information sharing between 
supply chain partners with a focus on the dynamic performance of the supply chain. 
A comprehensive review of supply chain coordination and information sharing on 
supply chain can be found in the studies of Cachon and Lariviere (2001), Chen 
(2003), and Montoya-Torres and Ortiz-Vargas (2014).

Table 1 presents a representative list of various information sharing studies and 
the shared information mentioned in the studies.

Using mathematical programming, studies have investigated in greater details the 
value of having advanced disruption information in mitigating disruption. Most of 

Table 1  Studies on shared information mentioned in literature

Literature Shared information

Huang and Wang (2017), Gu et al. (2017), Ha et al. (2017), Muzaffar 
et al. (2017), Costantino et al. (2014), Wang and Zhang (2010)

Demand

Cachon and Lariviere (2001) Demand, forecast
Cachon and Fisher (2000), Gavirneni et al. (1999), Chen (1998) Demand, order
Lv (2017), Srivathsan and Kamath (2017) Inventory
Choudhary et al. (2016), Choudhary and Shankar (2015), Datta and 

Christopher (2011)
Inventory, demand

Chen (1999) Inventory, order
Lau et al. (2002) Production information
Li et al. (2016) Inventory, capacity
Tao et al. (2016) Inventory, capacity
Banerjee and Golhar (2017) Product design information
Esmaeili et al. (2017) Lead-time, service level
Zhang et al. (2006) Shipment quantity
Li et al. (2006) Demand, inventory, shipment
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these studies assumed that firms are aware of the exact disruption process and con-
sidered a distribution for the disruption process. Snyder and Tomlin (2008) studied 
inventory strategies to mitigate disruption, when advanced warning of disruption 
is available about a defaulting supplier. Song and Zipkin (1996) and Lewis et  al. 
(2013) employed the Markov process for model building when disruption informa-
tion is unavailable, as a result of the lack of historical data or unwillingness of the 
firms to share private information. To obtain accurate disruption information, math-
ematical modeling approaches either resort to a forecasting-based method (Tomlin 
2009) or deploy an incentive mechanism that would reveal private disruption infor-
mation (Yang et al. 2008). Although these studies provide insights into the impact 
of disruption and mitigation strategies, they cannot provide complete information on 
the dynamic impact of the disruption risks (Yang and Fan 2016).

Considering the practical difficulties involved in full information sharing (Fawcett 
et al. 2011; Spekman and Davis 2016), there is a growing stream of literature on the 
partial information sharing scenario. Using a mathematical modelling approach, Lau 
et al. (2004) investigated the impact of various degrees of partial information sharing on 
the inventory replenishment process of the members of a three-stage divergent supply 
chain. Huang and Iravani (2005) studied a partial information sharing scenario where a 
manufacturer receives demand and inventory information from any of their two retail-
ers and investigated the optimal production policy of the manufacturer based on the 
shared information. Ganesh et al. (2014a) considered partial information sharing at both 
the upstream and downstream levels and investigated the value of information sharing 
for the members of a multi-echelon supply chain. Ganesh et al. (2014b) investigated 
how product and demand characteristics influence the value of information sharing 
in a multi-echelon supply chain with upstream and downstream levels of information 
sharing. Shnaiderman and Ouardighi (2014) explored the case of partial information 
sharing between a retailer and a manufacturer, where the retailer reveals the demand 
information within an interval. Shang et al. (2015) derived the conditions under which 
a common retailer shares information to upstream manufacturers of two competing sup-
ply chains through which the manufacturers sell their products. Cannella et al. (2015a) 
conducted a discrete event simulation study to examine how the interaction between 
various levels of information sharing between supply chain partners and choice of 
inventory control policies affect the supply chain performance. Using the multi-agent 
modeling approach, Dominguez et al. (2018a, b) examined the partial demand informa-
tion sharing structures between four heterogeneous retailers and a single wholesaler in 
a four-echelon supply chain model. In contrast, our work considers real-time sharing of 
full information between the upstream and the downstream members with the aim of 
improving operational performance under supplier disruption risks.

Today’s global supply chains are usually multi-echelon networks with each eche-
lon spread across different geographical regions. Various members or echelons need 
not be simultaneously affected by a single disruption. Using a case study approach, 
Scheibe and Blackhurst (2018) was able to study the drivers of supply chain disrup-
tion propagation and emphasized the need to consider the structure of supply chain 
and managerial policies in addressing this issue. Using discrete event simulation 
methodology, Ivanov (2017) examined the ripple effect of disruption in a four ech-
elon supply chain in the case of less frequent/high impact disruption and observed 
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that simulation studies can provide insights into ripple effect with respect to the 
disruption characteristics. Macdonald et  al. (2018) developed a methodology for 
exploring the factors affecting supply chain performance through disruption propa-
gation with the help of discrete event simulation approach. Considering the infor-
mation sharing aspect as well, Schmitt et al. (2017) investigated the ripple effect of 
disruption in a multi-echelon supply chain. Their study was focused on revealing 
the adverse effects of information availability and flexibility that can trigger adverse 
consequences such as the bullwhip effect. Ivanov and Rozhkov (2017) studied coor-
dination issues in the ordering and production of control activities of a fast moving 
consumer product industry. They adopted a combined multi-agent based modeling 
and discrete event simulation methodology that modifies the order allocation algo-
rithm, to avoid redundant order allocation during a disruption.

One supply chain simulation study, which explicitly considered real-time dis-
ruption information sharing, is the work of Sarkar and Kumar (2015). The study 
explored a behavioral aspect of policy making in a multi-echelon supply chain of 
beer distribution facing disruption. Their study showed that, in the context of a well-
known supply chain simulation game on beer distribution, it is always advantageous 
to communicate upstream disruption information with downstream members.

Most of the works on supply chain dynamics focused on reducing uncertainty and 
order variability in a bullwhip-like situation. However, researchers have now begun 
to focus on disruption management in the supply chains. Highlighting on system 
dynamics in the face of a disruption, Spiegler et al. (2012) focused on the improve-
ment of supply chain resilience, using control engineering modeling and simulation. 
Their study proposed a control engineering metric to quantify the resilience of the 
supply chain system. Spiegler et al. (2015) extended the same methodology and used 
nonlinear control theory to study the performance improvement of the distribution 
system of the UK grocery industry. Yang and Fan (2016) used control engineering 
methodology to examine the effect of information management strategies on supply 
chain disruption mitigation. Their study considered the bullwhip metric to measure 
the operational risk and found a balance between operational and disruption risks. 
Although these studies provide in-depth analysis on the dynamic performance of the 
system experiencing disruption, they restrict the size of the supply chains to a maxi-
mum of two echelons and only consider demand side disruption. On the contrary, 
our study considers three echelons and models the supply side disruption process.

Dynamic modeling studies on supply chain disruption usually adopt Forrester’s 
(1961) system dynamics modeling and simulation approach. Bueno-Solano and 
Cedillo-Campos (2014) used system dynamics to study disruption and its propaga-
tion effect in a global supply chain. Similarly, Cedillo-Campos et al. (2014) inves-
tigated the issues of logistical activities of a global supply chain, resulting from 
disruptions and delays at international borders. Gu and Gao (2017) examined pro-
duction disruption in a manufacturing supply chain with integrated remanufacturing 
activities. None of these system dynamics studies have considered the information 
sharing aspect in disruption management.

However, there are system dynamics studies that considered information sharing to 
mitigate supply chain disruption (Wilson 2007; Tao et al. 2016; Li et al. 2016). Wilson 
(2007) examined the consequences of logistic disruption on supply chain performance. 
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The study considered a comparison between traditional supply chain settings and a ven-
dor managed inventory (VMI) system, to examine improvement in disruption mitiga-
tion in the VMI setting. In the VMI model, customers’ demand information are shared 
with a first-tier supplier. Tao et al. (2016) investigated the effect of information shar-
ing to mitigate supply disruption through proper order allocation between the suppliers. 
The study considered a two-echelon supply chain consisting of a retailer and two sup-
pliers. They considered three scenarios: (1) no information sharing, (2) partial infor-
mation sharing and (3) multiple information sharing. The shared information includes 
supplier’s inventory level and production capacity. Their results showed improvement 
in disruption mitigation through accurate and timely response as the shared information 
level increases. In an extended model, Li et al. (2016) examined the same problem in a 
three-echelon supply chain network to improve supply chain resilience. The resilience 
is quantified based on back order, recovery time and inventory level. They showed that 
considering backlog and cumulative inventory as two objectives, a multi-objective 
optimization problem can be obtained with target inventory as a decision variable. Our 
work follows a similar framework and network structure. However, the difference is that 
control engineering modeling and simulation are adopted and the focus is on the effect 
of real-time disruption information sharing in disruption management through proper 
order allocation. Moreover, we conducted further analysis to obtain the best possible 
control structure for the information shared supply chain setting.

2.1  APVIOBPCS modeling

APVIOBPCS stands for ‘Automatic Pipeline Variable Inventory and Order Based Pro-
duction Control System’, which is an extension of the APIOBPCS archetype developed 
by John et al. (1994), using classical control engineering techniques. These models are 
derived from the original IOBPCS archetype—a well-established framework for pro-
duction planning and inventory control—introduced by Towill (1982). The archetypes 
are collectively called the IOBPCS family of models (Lin et al. 2016; Sarimveis et al. 
2008; Lalwani et  al. 2006). The derivative APVIOBPCS has been proven to be the 
most representative of the order-up-to (OUT) policy (Wikner et al. 2017; Dejonckheere 
et al. 2003). Using this ordering rule, Dejonckheere et al. (2004) studied the impact of 
information sharing in a supply chain to reduce the bullwhip effect. Wang et al. (2012) 
examined the stability of the constrained inventory systems of the APVIOBPCS arche-
type, and the study has been further extended to incorporate the oscillatory behavior 
of the system (Wang et al. 2014). White and Censlive (2013) employed the archetype 
to optimize the profit of the production inventory control system with various con-
trol strategies. In our work, the archetype is selected with additional considerations to 
model each node of the supply chain network model used in the study.

3  Supply chain model

In this study, we consider a three-echelon supply chain model consisting of a manu-
facturer (i = 0), two first-tier suppliers (i = 1, j = 1, 2) and four second-tier suppliers 
(i = 2, j = 1, 2… 4). In this single product supply chain, the manufacturer and first-tier 
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suppliers adopt a dual sourcing strategy. It is assumed that both upstream suppliers 
are identical in terms of the products manufactured and the production cost. Each 
supplier/manufacturer ships a product upon receiving an order from the downstream 
player, after a delay of manufacturing or processing lead time. Once the product is 
dispatched from the supplier, it reaches the corresponding manufacturer or supplier 
after a transportation delay which is assumed to be a pure delay. The demand of the 
manufacturer is assumed to be normally distributed, and the manufacturer and the 
primary suppliers place an order based on the information available regarding inven-
tory or possible disruption. Both the primary and secondary suppliers are subjected 
to ‘random disruption’ (Du et al. 2016; Giri and Sarker 2016), which is beyond the 
control of supply chain managers. The cause of such a disruption can be attributed 
to exogenous incidents such as a natural disaster, political turmoil, strikes, etc. Dur-
ing the disruption, at the initial stage, the material flow from the supplier will be 
nil for a certain period of time and thereafter, during the recovery stage, material 
flow from the supplier slowly increases until it reaches the level that was existing 
just before the disruption. The manufacturer and the  1st tier supplier adopt the dual 
sourcing strategy to mitigate disruption, under the assumption that two suppliers 
will not fail simultaneously.

Figure  1 presents the supply chain network under study. Table  2 presents the 
nomenclature used in our model.

i=1i=2

Manufacturer

1st tier suppliers

2nd  tier suppliers

Information flow

Material flow

Fig. 1  Supply chain network considered for the study
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3.1  Simulation model

Each firm in the supply chain network is modeled using the standard APVIOB-
PCS (Dejonckheere et al. 2004; Lin et al. 2016; Wang et al. 2012) model struc-
ture with additional considerations of production capacity, back-order and raw 
material availability constraints. The APVIOPBCS system modifies the produc-
tion quantity or order refill considering the discrepancy between the OUT level 
and the current position of the inventory. The inventory level is the sum of on-
hand inventory (IN) and work-in-process inventory (WP). The model consists of 
two balancing or negative feedback loops: one is for accounting inventory dis-
crepancy while the other is for correcting work-in-process inventory discrepancy. 
The corresponding control parameters (or gains) associated with the feedback 
loops are: (1/Ti), which is the fractional rate with which the  finished inventory 

Table 2  Nomenclature used in 
the study �

i
j

Smoothing constant for demand forecast

ARi
j,t

Total available raw material

AINi
j,t

Adjustment for finished goods inventory

AWIPi
j,t

Adjustment for work in process inventory

BOi
j,t

Backorder quantity
dn Duration of maximum impact of disruption
Di

j,t
End customer demand

Dn Total duration of disruption
DINi

j,t
Desired inventory

DSLi
j,t

Desired sales rate

INi
j,t

Finished product inventory

osi
j,k,t

Order splitting ratio

PCi
j,t

Production completion rate

POi
j,t

Production order

RMi
j,t

Raw material order rate

SDi
j,t

Smoothed demand (demand forecast)

SRi
j,t

Sales rate

Tai
j

Exponential smoothing parameter

Tdi
j,t

Transportation delay

Tii
j

Time to adjust inventory

TINi
j,t

Target inventory

Tpi
j

Production lead-time

Twi
j

Time to adjust WIP

TWIPi
j,t

Target WIP inventory

WPi
j,t

Work in process inventory
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is to be adjusted and (1/Tw), which is the fractional rate of adjustment of the WP 
inventory.

According to the APVIOPBCS ordering algorithm, the production or order 
processing quantity is given by:

which is the sum of smoothed demand, inventory discrepancy error plus work-in-
process inventory discrepancy.

Demand smoothing is done using the exponential smoothing method with the 
parameter (1/Ta), which is another control parameter. Unlike the original model, 
the target inventory is calculated by adding backorders as well as the multiple 
forecasted demands. The production order is further processed based on produc-
tion capacity and raw-material availability. The manufacturing or order process-
ing activity is represented using exponential delay with a control parameter Tp 
which is the manufacturing lead-time. Complete model equations are presented in 
“Appendix”.

3.2  Modeling of disruption

Firms undergoing disruption will go through a series of stages which affect the per-
formance of the supply chain. The most common way of modeling supply chain dis-
ruption (Snyder et  al. 2016) is by assuming that the supply chain could be either 
completely operational (up state) or not at all operational (down state). For analyti-
cal models, the above-mentioned approximation could be sufficient. However, from 
a supply chain dynamics view, the response to a disruptive event will usually result 
in a deviation of performance from the equilibrium position, preceded by a gradual 
recovery (Munoz and Dunbar 2015; Melnyk et  al. 2014). Sheffi (2005) proposed 
eight phases of a typical disruption profile depending on the nature of disruption and 
dynamics of response. In this work, a two-phase disruption profile is considered: the 
phase of maximum impact and the phase of recovery as shown in Fig. 2.

In a related study, Tao et  al. (2016) considered both the up and down disrup-
tion scenarios as well as disruption with gradual recovery while modeling supplier 
capacity disruption. In their system dynamics simulation study, a series of step func-
tions were employed to model gradual recovery from the disruption. Also, a similar 
modeling approach can be found in the studies of Li et al. (2016). Compared to these 
studies, the recovery phase is modeled in this paper by using a ramp function to 
reduce the possible disturbances in the dynamics which could arise with the use of a 
series of step functions. In addition, we have characterized the recovery phase by the 
time it takes to revert back to the initial state of operation. The duration of maximum 
impact is represented by dn and the total duration of disruption is denoted by Dn. 

(1)POi
j,t
= SDi

j,(t−1)
+

EINi
j,(t−1)

Tii
j

+
EWPi

j,(t−1)

Twi
j
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The disruption profile is obtained by combining the shock and ramp function, so that 
at the aggregate level, the profile resembles a typical disruption profile.

4  Order allocation policies with respect to information sharing

The decision on order allocation highly depends on suppliers’ operational status 
including their risk of default. Nowadays, firms consider not only the cost of sup-
ply but also the ability of the supplier to provide materials without interruptions. 
Hence, companies will try to acquire information to get more insight into the sup-
pliers’ capability to provide products at the desired quantity and in a timely manner. 
This becomes more important when the supplier faces disruption and if the firms 
obtain real-time information regarding the disruption, they can manage disruption 
by timely diverting orders to other suppliers.

Our model employs a heuristic raw material ordering rule based on the local 
information available to the managers rather than an optimized one. A similar order-
ing rule is presented in the studies of Tao et  al. (2016) and Li et  al. (2016). The 
formulation of an ordering policy is consistent with the system dynamics modeling 
principle (Sterman 2000) which says that the formulation of the decision rule must 
be based on an understanding of the actual decision-making process, where the deci-
sion makers in practice are restricted by bounded rationality.

4.1  Ordering policy without information sharing (scenario 1)

In this scenario, it is considered that suppliers are not willing to share private retail 
information to their downstream retailers. Since the retailers are uninformed about 
the operational status of the upstream suppliers, they rely on the accumulated back 
order information of their respective suppliers. If there is no back order left with the 
two suppliers, the retailer will equally split the order between both suppliers. If both 

Dn

dn
Time

Performance 
metric

Dn = Total duration of disruption

dn = Duration of maximum impact

Fig. 2  Disruption profile
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suppliers have unfulfilled orders, the retailer will tend to order more from the sup-
plier having fewer backorders. Similarly, if one supplier is having backorders and the 
other is without backorders, the retailers will divert their entire order to the supplier 
having zero backorders. Table 3 presents the analytical representation of the order-
ing policy taking into account the above-mentioned considerations.

4.2  Ordering policy with information sharing (scenario 2)

In scenario 2, the retailer has more real-time information of the supplier’s opera-
tional status including information regarding supply failure. In addition to disruption 
information, the supplier shares information regarding the current inventory status 
with their downstream partner. Order allocation strategy will be adopted to give pri-
ority to the disruption information. If any of the suppliers defaults and is not in a 
position to deliver materials, the entire order will be diverted to the next supplier, 
irrespective of their production capacity or inventory status. Otherwise, if both are 
up or one of them is partially disrupted, the order allocation decision will be per-
formed as given in Table 4.

In the case of zero inventory level for both the suppliers, order allocation would 
be carried out based on back order information as explained in the previous section.

Table 3  Order allocation based on backlog

Order 
splitting 
ratio

Backlog levels of upstream suppliers

BOi+1
j,t

+ BOi+1
j+1,t

= 0 BOi+1
j,t

≥ 0, BOi+1
j+1,t

≥ 0 BOi+1
j,t

= 0, BOi+1
j+1,t

≥ 0 BOi+1
j,t

≥ 0, BOi+1
j+1,t

= 0

osi
j,1,t

0.5
=

BOi+1
j+1,t

BOi+1
j,t

+BOi+1
j+1,t

POi
j

0

osi
j,2,t

0.5
=

BOi+1
j,t

BOi+1
j,t

+BOi+1
j+1,t

0 POi
j

Table 4  Order allocation based 
on inventory

Order split-
ting ratio

Inventory levels of upstream suppliers

INi+1
j,t

+ INi+1
j+1,t

≥ 0 INi+1
j,t

+ INi+1
j+1,t

= 0

osi
j,1,t =

INi+1
j,t

INi+1
j,t

+INi+1
j+1,t

Based on back-order information

osi
j,2,t =

INi+1
j+1,t

INi+1
j,t

+INi+1
j+1,t

Based on back-order information
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5  Numerical study

The focus of the numerical study is twofold: first is to analyze the impact of real-
time information sharing in reducing the impact of first-tier supplier disruption 
with a stochastic customer demand. For this analysis, first-order performance met-
rics such as sales rate and back-order quantities are employed. The second focus is 
to examine how the various control parameters of the manufacturing system affect 
the dynamic performance of the system for the information shared setting. A range 
of parameter values is obtained in the numerical study which maximizes the per-
formance of the system by reducing the inherent fluctuations. The second analysis 
(referred to as dynamic analysis) provides a set of control design strategies for the 
resilient design of the manufacturing system to mitigate disruption.

In the first part of the analysis, we investigate how the characteristics of exog-
enous factors such as customer demand and disruption profile influence the perfor-
mance of the manufacturing system during disruption without and with information 
sharing settings. The characteristics of customer demand considered for the study 
include the mean value and the standard deviation of the demand. The disruption 
profile is characterized by the duration of maximum impact of disruption and the 
total duration of the disruption. Table 5 presents the control parameters of the model 
which are obtained based on a prior simulation experiment and guidelines from the 
literature. In the sensitivity analysis, we change the values of these control param-
eters of the manufacturer to study their effect on the dynamic performance of the 
system for the information shared scenario. For the dynamic analysis, a second 
order metric is employed which is adopted from the discipline of control engineer-
ing (explained in Sect. 6). The minimum value of the metric indicates the maximum 
performance, and hence, corresponding parameter values provide the best control 
design for the manufacturing system.

Table 6 provides the values of simulation settings common for both the analyses. 
The simulation run period is 300  weeks of time units. The nature of the disrup-
tion considered for the study is in the high-impact less-frequent category, wherefore 
it is assumed that each first-tier supplier is disrupted once, during the simulation 
period. As given in Table  6, the disruptions of the first and second suppliers are 

Table 5  Control parameter 
settings

Control parameters Manufacturer/suppliers

Forecasting (Ta) 4
Inventory (Ti) 2
Lead time (Tp) 2
WIP (Tw) 4
Variable inventory (a) 1
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introduced at time periods of 50 and 150, respectively. By this, the overlapping of 
disruptions of the two suppliers is disregarded, so that the principle of dual sourcing 
is not undermined.

The model is implemented and simulation experiments are carried out using Mat-
lab  Simulink® software. Since this platform offers flexibility by integrating with 
other Matlab environments, such as scripting, it is possible to have a detailed analy-
sis of a dynamic system. Figure 3 depicts the simulation model represented on the 
 Simulink® platform. It is also known as a block diagram representation which is a 
control engineering technique, where all time domain equations are converted into a 
Laplace domain.

Table 6  Simulation settings (common for both the analyses)

Characteristics Operating assumption

Simulation time 300 weeks
Warm-up period 30 weeks (omitted from analysis)
Data evaluated Week 31–300
Customer demand Weekly demand (integer units) generated from a normal distribution N (80, 

10) (as a nominal setting)
Initial inventory values 40 units for manufacturer and 30 units for all suppliers
Production capacity 120, 100, 150 integer units for the manufacturer, 1st tier suppliers, 2nd tier 

suppliers respectively
Initial backlog values 0 units for the manufacturer and 10 units for all suppliers
Number of disruptions 1 for each 1st tier supplier (total 2 disruptions)
Disruption traits Maximum impact of disruption (60 weeks), recovery time (20 weeks) for 

both the disruptions in nominal case
Initial point of disruption 50th week for the first supplier and 150th week for the second supplier

Fig. 3  Matlab  Simulink® representation of the simulation model
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5.1  Simulation result

Figures 4 and 5 represent the sale quantity variation during the 1st tier supplier dis-
ruption in the case of no information and information sharing scenarios, respectively.

The difference in sales quantity between the two cases is noticeable from the 
mean demand (80) and higher values. When the mean demand is 80, in scenario 1, 
both disruptions affect the sales quantity as shown in Fig. 4. However, for the same 
mean demand value, the sales rate is unaffected by the second primary supplier dis-
ruption. By information acquisition and subsequent ordering policy, the manufac-
turer manages to effectively overcome that disruption. In subsequent cases, as the 
mean demand increases, although the effect of the second disruption is visible in the 
scenario, the disruption is less when compared to the scenario without information 
and the recovery rate is fast.
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Fig. 4  Sales rate variation for scenario 1 (no information sharing)
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5.2  Performance variation with respect to stochastic demand parameters

The cumulated value of the unsatisfied customer demand or backlog over the simu-
lation run period is the major performance metric adopted in this study, to quantify 
the overall performance of the supply chain system. This performance measure is an 
indication of the customer service level and is also a measure of the opportunity cost 
due to disruption.

In the case of a scenario without information sharing, as shown in Fig. 6, there 
is an increase in the backlog level as the mean value and standard deviation (s) 
increases. The rate of increase is more as the mean value demand reaches production 
capacity. For the information sharing scenario as illustrated in Fig. 7, the variation 
with respect to the mean value of the demand and the standard deviation(s) value 
is almost stagnant, until the mean value of demand reaches 90 which is close to the 
maximum production capacity value. In both cases, there is also a significant differ-
ence in the values of backorders. The information sharing and dynamic adjustment 
of procurement ordering thereafter, not only improve the supply chain performance 
during the disruption but also positively influence the risk associated with demand 
variability under the upstream disruption risk.
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Fig. 5  Sales rate variation for scenario 2 (information sharing)
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5.3  Performance variation with respect to disruption profile characteristics (Dn 
and dn)

In this section, the analysis is performed to study the effect of disruption character-
istics on the performance in both scenarios. For this purpose, we set Dn = 60 and 
dn = 10 as base case settings and examined how the variation happens as a percent-
age of the backlog quantity of this setting. The backlog values of scenarios 1 and 2 
are 58,463 and 8661, respectively. As evident from these values, there is a signifi-
cant difference between the scenarios. Having said that, we aim to see the variation 
with respect to Dn and dn values as shown in Tables 7 and 8.

Table 7 shows, in scenario 1, an increasing trend in the percentage of varia-
tion in the backlog with increasing values of duration of maximum impact (dn) 
for every total disruption duration (Dn) except for some cases. A similar increas-
ing trend, as may be seen in Table 8, is absent in the information shared setting 
(scenario 2). Moreover, changes in percent variation in backlog values are less 
in scenario 2 in comparison with scenario 1. While the maximum increase is 
154% in scenario 2, the increase is as high as 300% in scenario 1. This shows 
the significant advantage of information sharing, even if there are changes in the 

0

400000

800000

1200000

1600000

2000000

60 70 80 90 100

B
ac

kl
og

 

Mean demand

No information sharing scenario

s=5 s=10 s=15

Fig. 6  Performance variation with demand in scenario 1

0
20000
40000
60000
80000

100000
120000
140000

60 70 80 90 100

B
ac

kl
og

 

Mean demand

Information sharing scenario

s=5 s=10 s=15

Fig. 7  Performance variation with demand in scenario 2



442 A. V. Thomas, B. Mahanty 

1 3

characteristics of the disruption profile. Table 8 also shows that, for a particular 
value of dn, the percentage change in backlog values exhibit a decreasing trend 
with increasing Dn values in scenario 2. This indicates that, even though the 
recovery time is moderately long, sharing of the current level of inventory infor-
mation during the recovery phase enables the manufacturer to choose an appro-
priate supplier, thereby increasing the performance.

6  Dynamic performance analysis

So far, analysis has been performed to evaluate the value of information sharing 
in mitigating supply chain disruption. In this section, we explore how to maxi-
mize the performance of the manufacturer in the information shared scenario. We 
study the effect of various control structures that are obtained by changing key 
parameter values of the manufacturing system. The performance metric used for 
dynamic performance evaluation is the integral time absolute error (ITAE). ITAE 
is a control engineering measure which indicates long-term error with fast settling 
time. Spiegler et al. (2012) showed that ITAE could be used to measure the resil-
ience of the supply chain system. This measure combines two aspects of disrup-
tions, namely: (1) recovery time and (2) variation in service level into one meas-
ure. Lower values of ITAE indicate the better dynamic performance of the system.

Table 8  Per cent variation of backlog for scenario 2

Duration of maxi-
mum impact (dn)

Total disruption duration (Dn)

Dn = 60 Dn = 70 Dn = 80 Dn = 90 Dn = 100 Dn = 110 Dn = 120

dn = 10 100 65 102 99 109 75 70
dn = 20 134 132 128 85 90 85 86
dn = 30 154 147 147 139 145 107 129
dn = 40 80 134 140 124 112 97 106
dn = 50 97 86 162 149 143 123 128

Table 7  Per cent variation of backlog for scenario 1

Duration of maxi-
mum impact (dn)

Total disruption duration (Dn)

Dn = 60 Dn = 70 Dn = 80 Dn = 90 Dn = 100 Dn = 110 Dn = 120

dn = 10 100 85 81 68 103 164 135
dn = 20 102 93 97 166 130 106 234
dn = 30 111 114 171 147 134 272 283
dn = 40 128 171 161 157 281 305 278
dn = 50 169 169 172 279 315 301 300



443

1 3

Dynamic assessment of control system designs of information…

where e(t) is the error in service level related measure and t is time.

6.1  The effect of a forecasting parameter (Ta)

The forecasting parameter comes in a feed forward loop of the control mechanism, 
and its impact on disruption mitigation is examined. The value of α ( = 1∕(1 + Ta) ) 
varies between 0 and 1, and the production lead time Tp is set at a nominal value of 
8, the inventory and WIP adjustment parameters Ti and Tw values are considered to 
be equal.

It is evident from Fig. 8 that the minimum value of ITAE is achieved when the 
α value approaches 0.1 from unity, and this minimum value of ITAE is the least 
value that can be achieved. That means a moderate level of smoothing is sufficient 
to achieve the maximum level of performance for the settings considered in this 
study. After that threshold level of smoothing, where α corresponds to 0.1, further 
smoothing drastically reduces the performance level. Maximum performance can be 
attained if the forecasting is not considered at all in the replenishment policy. Then, 
the supply chain follows the chase strategy to match the production capability with 
demand, resulting in a demand-driven supply chain. However, this strategy can lead 
to high variability in order, thereby resulting in increased production cost. These 
findings are, to a certain degree, consistent with the findings of Spiegler et al. (2012) 
on the resilience of a dyadic supply chain.
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6.2  Sensitivity analysis

Various combinations of control parameters represent a wide range of supply chain 
designs. Among these parameters, the production lead-time (Tp) is the particular 
parameter over which the supply chain designer has the least control. Therefore, nor-
mally, the supply chain design is carried out based on a known or given lead-time.

In this study, we consider a lead-time value of 8 as nominal setting and examine 
the impact of lead-time variation by ± 25% and ± 50% from the nominal setting. 
Figure 9 presents the assessment of dynamic performance with respect to lead-time 
changes.

As Fig. 9 demonstrates, when the lead-time increases, the area which represents 
the lowest value of ITAE, and hence, the area having a maximum dynamic perfor-
mance slightly decreases. Lead-time reduction provides less flexibility for changing 
inventory adjustment parameters. Therefore, decision-makers should be careful with 
the choice of parameter and take lead-time variability into account, so that the sys-
tem does not move out of the maximum performing area.

Table 9 shows the performance variation with respect to lead-time uncertainty. 
The least value of ITAE for each lead-time setting is found out and is compared with 
the nominal setting. As can be seen from the table, when the lead time decreases by 
25 and 50%, there is a significant improvement in the dynamic performance level. 
Also, it was found that an increase in the lead-time reduces the dynamic perfor-
mance. However, it is observed that the performance variation with respect to lead-
time uncertainty is less for higher values of the lead-time.

Table 10 summarizes the findings and managerial insights obtained from the sim-
ulation study.

Fig. 9  Assessment of dynamic performance with respect to lead-time changes
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7  Conclusion

The value of information sharing is widely addressed in the context of supply chain 
collaboration and improvement in supply chain dynamics, by reducing variability in 
supply chain parameters. However, most of these studies have contributed to supply 
chain operational risk management efforts. On the contrary, the contribution of our 
study, lies in the management of supply chain disruption by acquiring and sharing 
information on supplier disruption with the help of a proper control system design. 
Dynamic modeling is used to evaluate the value of information sharing in executing 
the disruption mitigation strategy through proper order allocation between suppliers. 

Table 9  Performance analysis 
with respect to lead-time 
uncertainty

Tp ITAE Performance 
change (%)

4 0.62 37.65
6 0.79 20.07
8 1.00 0.00
10 1.22 − 22.80
12 1.00 − 28.30

Table 10  Findings and managerial insights obtained from the simulation study

Findings Managerial insights

Information sharing setting improves the 
sales performance during disruptions

Managers need to implement strategies to timely acquire 
the information regarding the performance of the sup-
plier and update ordering policies dynamically based 
on the information. Moreover, the awareness about the 
benefits of information sharing put managers in a supe-
rior position in their negotiations efforts to implement 
real-time information sharing channels

Increase in backlog with respect to demand 
volatility during disruption is compara-
tively less for information shared scenario

Increase in backlog can overload production capacity and 
transportation facility causing an increase in costs associ-
ated with it. Therefore, dynamic ordering policy based 
on timely available information is a plausible mitigation 
strategy when a supply chain with volatile customer 
demand experiences upstream supplier disruption

Characteristics of disruption profile influ-
ence the performance of the supply chain. 
For information shared setting, duration 
of maximum impact has significantly 
more impact compared to the maximum 
duration of the disruption

Efforts have to be made to reduce the duration of maxi-
mum impact of disruption and bring back the supplier 
into recovery mode. Once the supplier reaches the 
recovery mode, though it cannot deliver up to its nominal 
capacity level, the manufacturer can manage the produc-
tion level with the help of dual sourcing strategy

The lower level of demand smoothing for 
production order determination improves 
dynamic performance of the manufacturer

It is desirable that the production ordering process should 
follow chase strategy. Therefore, flexibility in production 
capacity is required

The lower values of manufacturing lead-
time, lead-time uncertainty affects the 
dynamic performance

The design strategy of the production system with lower 
lead-time has to focus on reducing lead-time uncertainty 
to be more resilient during the disruption
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In the case of upstream supplier disruption, it is observed that information transpar-
ency on the vulnerabilities among supply chain members improves the performance. 
The findings of this research can provide the basis for managers to make informed 
decisions about deploying mitigation strategies with their supply chain partners.

In reference to the first research question, dynamic modeling and simulation 
methodology are adopted using a standard benchmark modeling approach with the 
help of control engineering techniques. The set of values of key parameters corre-
sponding to major elements of the model such as on-hand and pipeline inventory 
control, forecasting mechanism and production process represent a supply chain 
control design. The dynamic performance of the system for each design is evalu-
ated using a transient performance measure adopted from control engineering disci-
pline. The analysis indicates that the dynamic behavior, which is driven by various 
managerial control policies, underlying system structure and delays happening in the 
feedback information, assumes a significant role in supply chain performance during 
the disruption. Hence, the supply chain design, which is obtained by proper selec-
tion control parameters, can also be considered as mitigation strategy which will 
finetune the information sharing strategy deployment.

To answer the second research question, we obtained various control designs by 
changing the value of key control parameters. The results show that, for a speci-
fied control structure, the selection of decision parameter affects the dynamic per-
formance of the supply chain experiencing disruption. Concerning demand policy, 
it has been observed that the effect of a forecasting parameter is very little, in the 
dynamic performance of the supply chain. The demand-driven production ordering 
policy, which means ordering rule based on customer demand and inventory dis-
crepancy, favors a better performance. However, one must be careful with this set-
ting because it may create a lot of oscillation in the production order which will 
result in increased ‘production on-cost’—the cost incurred as a result of frequent 
ramping up and down of the production capacity. The sensitivity analysis consider-
ing production lead-time and inventory adjustment parameter showed that lead-time 
uncertainty affects the performance, if the firm has a lower lead-time value. The 
results show that manufacturers such as personal computer assembling units, having 
lower lead-time values, will have better dynamic performance. However, they need 
to be careful with the lead-time uncertainty. Industries such as the steel industry 
having longer lead-time, will have difficulty in achieving maximum dynamic per-
formance, but lead-time uncertainty will not change the performance considerably.

This paper is restricted to evaluating the value of disruption information shar-
ing and dynamic analysis of the supply chain. The study can be further extended 
with the inclusion of cost analysis, especially the production-on cost. The research 
can also be extended to examine how the disruption mitigation strategy, suggested 
in this study, influences the well-known bull-whip phenomenon across the sup-
ply chain members. The research work can also be extended by considering par-
tial information sharing, instead of full information sharing, as is considered in this 
paper. The disruption considered in this study is exogenous in nature, that means the 
disruptive event is independent of the decisions of the firms. In certain situations, 
disruption can be endogenous, for example, labor strike against managerial policies. 
The consideration of such disruptions is also a promising future research area.
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Appendix: Model equations

See Table 11.

Table 11  Model equations

Variables Equations

Production order
POi

j,t
= Min

(
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j,t
, SDi

j,t
+
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j,(t−1)

Tii
j

+
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j,(t−1)

Twi
j

)
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j,t
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)
+ SRi+1

j+1,(t−Ti+1
dj+1

)
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j,(t−Tpi
j
)
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]
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)
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+ (POi
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)

Error in WIP inventory EWPi
j,t
= DWPi

j,t
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j,t

Target WIP inventory DWPi
j,t
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j,t

Error in on-hand inventory EINi
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Target on-hand inventory DINi
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