
Vol.:(0123456789)

Operational Research (2020) 20:2555–2581
https://doi.org/10.1007/s12351-018-0427-9

1 3

ORIGINAL PAPER

Weighted superposition attraction algorithm for binary
optimization problems

Adil Baykasoğlu1 · Fehmi Burcin Ozsoydan1 · M. Emre Senol1

Received: 27 March 2018 / Revised: 27 August 2018 / Accepted: 10 September 2018 /
Published online: 17 September 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Weighted superposition attraction algorithm (WSA) is a new generation population-
based metaheuristic algorithm, which has been recently proposed to solve vari-
ous optimization problems. Inspired by the superposition of particles principle in
physics, individuals of WSA generate a superposition, which leads other agents
(solution vectors). Alternatively, based on the quality of the generated superposition,
individuals occasionally tend to perform random walks. Although WSA is proven to
be successful in both real-valued and some dynamic optimization problems, the per-
formance of this new algorithm needs to be examined also in stationary binary opti-
mization problems, which is the main motivation of the present study. Accordingly,
WSA is first designed for stationary binary spaces. In this modification, WSA does
not require any transfer functions to convert real numbers to binary, whereas such
functions are commonly used in numerous approximation algorithms. Moreover, a
step sizing function, which encourages population diversity at earlier iterations while
intensifying the search towards the end, is adopted in the proposed WSA. Thus, pre-
mature convergence and local optima problems are attempted to be avoided. In this
context, the contribution of the present study is twofold: first, WSA is modified for
stationary binary optimization problems, secondarily, it is further enhanced by the
proposed step sizing function. The performance of the modified WSA is examined
by using three well-known binary optimization problems, including uncapacitated
facility location problem, 0–1 knapsack problem and a natural extension of it, the
set union knapsack problem. As demonstrated by the comprehensive experimental
study, results point out the efficiency of the proposed WSA modification in binary
optimization problems.

Keywords Weighted superposition attraction algorithm · Binary optimization ·
Uncapacitated facility location problem · 0–1 Knapsack problem · Set union
knapsack problem

 * Adil Baykasoğlu
 adil.baykasoglu@deu.edu.tr; baykasoglu@gmail.com
 http://web.deu.edu.tr/baykasoglu

Extended author information available on the last page of the article

http://orcid.org/0000-0002-4952-7239
http://crossmark.crossref.org/dialog/?doi=10.1007/s12351-018-0427-9&domain=pdf

2556 A. Baykasoğlu et al.

1 3

1 Introduction

As recently introduced by Baykasoğlu and Akpinar (2015, 2017), Weighted
Superposition Attraction algorithm (WSA) is a novel swarm intelligence-based
metaheuristic algorithm, proposed to solve real-valued constrained and uncon-
strained optimization problems. WSA draws inspiration from the superposition
of particles principle in physics. Solution vectors in WSA generate a superposi-
tion, which is followed by some of the agents (solution vectors), depending on the
quality of the generated superposition.

As mentioned by Baykasoğlu and Akpinar (2015, 2017), WSA differs from
other well-known methods including Genetic Algorithm (GA) (Holland 1975),
Differential Evolution Algorithm (DE) (Storn and Price 1997), Ant Colony Opti-
mization (ACO) (Dorigo et al. 1991), Particle Swarm Optimization (PSO) (Ken-
nedy and Eberhart 1995) and new generation metaheuristics such as Firefly Algo-
rithm (FA) (Yang 2008), Cuckoo Optimization Algorithm (Rajabioun 2011) and
Bat Algorithm (BA) (Yang 2010) in several ways. One of the most striking dif-
ferences of WSA is the utilization of anonymous intelligence of the agents. As to
be clarified later, WSA generates a target point (superposition) by making use of
the current population information. This target point is referred to as the super-
position, which directs the agents towards its coordinates based on the quality
(fitness) of the generated superposition. That is to say, superposition is an anony-
mous composition of the currently discovered points so far. Once the superposi-
tion is determined, agents explore the search space either by moving towards that
point or by performing random walks.

The related literature includes some studies of WSA for a variety of optimization
problems. In one of them, Baykasoğlu and Akpinar (2015) proposed making use
of this new generation metaheuristic in constrained design optimization problems.
In another work of the authors, Baykasoğlu and Akpinar (2017) employed WSA to
solve real-valued unconstrained optimization problems including well-known math-
ematical functions. Resource constrained scheduling problem, which is a challeng-
ing combinatorial optimization problem, is solved by Baykasoğlu and Şenol (2016a)
using WSA. A similar approach is applied to the Travelling Salesman Problem,
which is another well-known challenging problem (Baykasoğlu and Şenol 2016b).
The authors reported promising results, which are compared to the results of several
state-of-the-art algorithms. Özbakır and Turna (2017) examined the performance
of WSA in clustering problems. In the same study, the authors also introduced two
new modifications of WSA, where in the former one, contributions of lower quality
agents are eliminated and in the latter one, superposition is directly used as the best
individual of the population. According to the reported results, both modifications
of WSA and its canonical version show notable performance particularly in continu-
ous and categorical data. Finally, Baykasoğlu and Ozsoydan (2018) tested WSA in
dynamic optimization problems. According to the reported results, WSA is found
as a competitive and a promising algorithm also in dynamically changing problems.

Although WSA has been shown to be successful in various optimization prob-
lems (Baykasoğlu and Akpinar 2015, 2017; Baykasoğlu and Şenol, 2016a, b;

2557

1 3

Weighted superposition attraction algorithm for binary…

Özbakır and Turna 2017; Baykasoğlu and Ozsoydan 2018), the performance of
WSA needs to be examined also in fundamental binary optimization problems,
which is the main motivation of the present work.

In this respect, WSA is modified for binary spaces first. In the proposed modifica-
tion, WSA does not require any transfer functions to convert real numbers to binary,
whereas such functions are commonly used in approximation algorithms that are
adapted to binary problems. Moreover, by making use of this approach, any type of
variables can also be used along with binary variables. Additionally, a discrete step siz-
ing function, which encourages population diversity at earlier iterations while intensify-
ing the search towards the end, is adopted in the proposed WSA modification. Thus,
premature convergence and local optima problems are attempted to be avoided.

Finally, the performance of the proposed binary WSA (bWSA) is examined by
using some well-known binary optimization problems, including uncapacitated
facility location problem (UFLP), 0–1 knapsack problem (0–1 KP) and the set union
knapsack problem (SUKP). The obtained results are compared to the previously
published results taken from the related literature. Comprehensive experimental
study points out the superiority of bWSA in binary optimization problems.

The rest of the paper is organized as follows: benchmarking problems are for-
mally defined in Sect. 2, detailed explanations of WSA and bWSA are introduced
in Sect. 3. Finally, experimental study and concluding remarks are presented in
Sects. 4 and 5, respectively.

2 Benchmarking problems

2.1 Uncapacitated facility location problem

Location problems have attracted notable attention from researchers because they
have numerous applications in real world (Laporte et al. 2015). UFLP is a well-
known type of location problems, where each customer is served by exactly one
facility and facilities are assumed to have unlimited capacities (Cornuejols et al.
1990). Given a possible set of sites for establishing facilities and a set of custom-
ers at demand points, the aim here is to find the optimal locations for facilities to
meet all demand such that the sum of facility opening costs and occurred shipment
costs is minimized. UFLP can formally be formulated as given in the following
(Eqs. 1–5).

(1)minimize
∑

k∈K

∑

l∈L

cklzkl +
∑

k∈K

bkyk

(2)
s.t.∑

k∈K

zkl = 1, l ∈ L

(3)zkl ≤ yk, k ∈ K and l ∈ L.

2558 A. Baykasoğlu et al.

1 3

where K = {1, 2, …, n} is the possible locations for opening facilities,
L = {1, 2, …, m} is the set of customers (demand points), bk is the cost of establish-
ing a facility at the kth location,ckl is the shipment cost between the facility opened
at the kth location and the lth customer, zkl is a binary variable denoting whether the
demand of the lth customer is fulfilled by the kth facility location (zkl = 1 if the lth
customer is served by the facility opened at the kth location, zkl = 0 otherwise) and
yk is another binary variable representing the status of a facility location (yk = 1 if a
facility is opened at the kth location, yk = 0 otherwise). In this context, Eq. 1 repre-
sents the objective function to minimize the total cost. Equation 2 satisfies that each
customer can exactly be served by only one facility. Equation 3 provides that cus-
tomers can only be served by the opened facilities. Finally, Eqs. 4–5 impose restric-
tions on decision variables. An illustration for this problem is presented in Fig. 1.

There are several exact solution techniques proposed for UFLP including a
dual-based procedure (Erlenkotter 1978), a Lagrange relaxation (Barcelo et al.
1990), and a branch-and-bound method (Holmberg 1999). However, UFLP is
shown to be an NP-hard problem and hence the solution time grows exponentially
with the problem size. Therefore, making use of such exact solution approaches
is limited only for small sized instances. In this regard, although exact solution
methods guarantee optimality, they unfortunately have such limitations. On the
other hand, metaheuristic algorithms do not guarantee optimality, however, they
are easy to implement to any size of problem.

(4)zkl ∈ {0, 1}, k ∈ K and l ∈ L

(5)yk ∈ {0, 1}, k ∈ K

Fig. 1 An illustration for UFLP

Candidate locations with an opened facility

Empty candidate locations

Demand points

Fullfilment connection

2559

1 3

Weighted superposition attraction algorithm for binary…

In the related literature, there are numerous publications focusing on location
problems. Reporting them all is out of the scope of the present paper. Therefore,
only the closely related ones and some state-of-the-art are mentioned here. In one
of them, Jaramillo et al. (2002) employed GAs on several location problems. Tabu
Search is another well-known method for solving UFLP (Al-Sultan and Al-Fawzan
1999; Sun 2006). Wang et al. (2008) introduced a multi-population-based parallel
PSO that divides whole population into sub-populations for UFLP. Literature also
includes other PSO implementations for this problem (Sevkli and Guner 2006;
Guner and Sevkli 2008). In a more recent work, an Artificial Bee Colony (ABC)
optimization algorithm was proposed by Kiran (2015). Tsuya et al. (2017) employed
FA to solve UFLP. de Armas et al. (2017) and Della Croce et al. (2017a, b) reported
deterministic and stochastic versions of UFLP. Hale and Moberg (2003) and Şahin
and Süral (2007) presented comprehensive surveys for the related problem.

2.2 0–1 Knapsack problem (0–1 KP)

0–1 KP (Lin 2008) is the second benchmark problem used in the present study. 0–1
KP has many practical real world applications such as cargo loading, project funding
selection, budget management, cutting stock, etc., (Kellerer et al. 2004). The aim in
0–1 KP is to maximize the knapsack profit such that the capacity of the knapsack is
not exceeded. 0–1 KP can be formulated as in Eqs. 6–8.

where R = {1, 2, …, z} is the set of items, pr represents the profit the rth item, wr is
the resource consumption of the rth item in the knapsack, C is the capacity of the
knapsack, xr is a binary variable denoting whether the rth item is assigned to the
knapsack (xr = 1 if the rth item is assigned, xr = 0, otherwise). In this regard, Eq. 6
is the objective function to maximize the profit of the knapsack. Equation 7 rep-
resents the capacity constraint. Finally, Eq. 8 imposes restrictions on the decision
variables.

0–1 KP is shown to be an NP-hard problem (Kellerer et al. 2004). Although there
exist some exact solution methodologies for 0–1 KP (Della Croce et al. 2017a, b),
heuristic approaches are more commonly preferred due to similar reasons with those
of UFLP’s. Shi (2006) proposed an improved modification of ACO for 0–1 KP.
Shah-Hosseini (2008) employed an intelligent water drops algorithm to solve and
extension of the 0–1 KP. Drake et al. (2014) used a genetic programming based on

(6)maximize
∑

r∈R

prxr

(7)
s.t.∑

r∈R

wrxr ≤ C

(8)xr ∈ {0, 1}, r ∈ R

2560 A. Baykasoğlu et al.

1 3

a hyper-heuristic for the same problem. A schema-guiding evolutionary algorithm
was proposed by Liu and Liu (2009). A binary modification of PSO was employed
by Li and Li (2009). Several bio-inspired algorithms were proposed to solve 0–1
KP (Bhattacharjee and Sarmah 2014; Feng et al. 2017). Zhou et al. (2016) used a
complex-valued encoding in a metaheuristic algorithm. The same procedure was
also adopted by Zhou et al. (2017) within another approximation algorithm, namely,
Wind Driven Optimization algorithm. Bhattacharjee and Sarmah (2017) reported a
survey focusing on swarm-based algorithms for knapsack problems.

2.3 Set union knapsack problem (SUKP)

SUKP is an extension of 0–1 KP (Goldschmidt et al. 1994; Kellerer et al. 2004;
Arulselvan 2014). It comprises of a set of elements U = {1, …, n} and a set of items
ℵ = {1,… ,m} , where each item in set ℵ (i = 1, …, m) corresponds to a subset of
elements, represented by Si, with a non-negative profit denoted by p ∶ ℵ → ℝ

+ .
Each of the elements has non-negative weight w ∶ U → ℝ

+ in SUKP. For an arbi-
trary subset A ⊆ ℵ , total weight of the union of subset A is defined as
W(A) =

∑
e∈∪

i∈ASi
we and profit of A is denoted by P(A) =

∑
i∈A pi . The aim is to find

a subset of items ℵ∗ ⊆ ℵ such that the total profit P(ℵ∗) is maximized and W(ℵ∗)
does not exceed knapsack capacity. The problem is formally given by Eqs. 9–10,
where we is the weight of the eth element in the union set of the selected items, pi is
the profit of ith item in the subset A and C is the knapsack capacity.

An illustration for the SUKP is depicted in Fig. 2. As one can see from this fig-
ure, there exist three items each with three elements. The item-1 contains the ele-
ment-1 and the element-3, while the item-2 contains only the element-2. Finally, the
item-3 contains the element-2 and the element-3. If the item-1 and the item-2 are
included in the knapsack, the weights of all elements should be taken into account

(9)maximizeP(A) =
∑

i∈A

pi

(10)
s.t.

W(A) =
∑

e∈∪
i∈ASi

we ≤ C,A ⊆ ℵ

Fig. 2 An illustration for set union knapsack problem

2561

1 3

Weighted superposition attraction algorithm for binary…

while evaluating the capacity constraint. Similarly, if the item-2 and the item-3 are
assigned to the knapsack, only the element-2 and the element-3 should be consid-
ered, because, their union set is comprised of only these elements.

SKUP has many practical applications including financial decision-making, data-
base partitioning, data stream compression etc. (He et al. 2018). Although there
are some SKUP-related publications in the literature, this problem deserves further
research. Goldschmidt et al. (1994) proposed a dynamic programming procedure
for SUKP. Lister et al. (2010) addressed dynamic character caching as SKUP. An
important note, which is related to boundaries and a special case of SUKP, was pre-
sented by Arulselvan (2014). Riondato and Vandin (2014) solved SUKP in order to
obtain an upper bound for frequent itemsets, which is closely related to data min-
ing issues. Several approximation schemes for SUKP and related problems were
presented by Taylor (2016). Su and Zhou (2016) presented a reduced modification
of this problem. Diallo et al. (2017) modeled virtual machine selection problem in
cloud computing systems as a SUKP. Finally, He et al. (2018) presented detailed
discussions about this problem.

3 Weighted superposition attraction algorithm

Before introducing the proposed bWSA, canonical WSA (Baykasoğlu and Akpinar
2015, 2017) is first summarized.

3.1 Canonical WSA

WSA is initialized with a predefined number of solutions. These solution vectors
are referred to as artificial agents in WSA. Each artificial agent has its own position
(coordinates) and an objective function value, representing the quality of the corre-
sponding solution vector.

3.1.1 Initialization of WSA

This step consists of determining the values of the parameters used in WSA. The
symbols of these parameters and related definitions are given below in Table 1. This
nomenclature is used in the rest of the paper.

3.1.2 Generating neighborhood solutions in WSA

The artificial agents in WSA move according to the guidance of the superposition vec-
tor. Therefore, the first step in neighborhood solution generation is to generate a super-
position by making use of the current population information. Accordingly, WSA algo-
rithm calculates the coordinates of the superposition as the weighted sum of the agents’
positions. In this respect, first, artificial agents are sorted according to their fitness val-
ues. The first rank is the fittest agent here. Next, weights of each agent are evaluated
based on these ranks. Finally, weighted sum for each dimension is calculated as given

2562 A. Baykasoğlu et al.

1 3

in Algorithm 1. In this procedure, effects of the sorted agents on the generated super-
position are exponentially decreased as their ranks increase. While the fittest individual
has the greatest effect, lower quality solutions have minor effects. It should be noted
here that effects the artificial agents on the generated superposition can be controlled by
the user-supplied parameter τ.

Subsequent to generating the target vector (superposition), its fitness is evaluated
and search directions of agents are determined as presented in Algorithm 2. It should
be mentioned that this procedure is given for a minimization problem. According to
this procedure, agents of which the fitness values are worse than that of the superpo-
sition’s, get attracted by the superposition vector. Additionally, if an agent is better
than the superposition, then that agent might also move towards the coordinates of the
supposition by a probability defined by ef (i)−f

(
��⃗tar

)

 . Otherwise, that agent performs a
random walk. Finally, the positions of the agents for the next iteration are determined
in regard to the formulation given in Eq. 11, where ||x⃗(i, j)

t|| represents the absolute
value of the position vector of the ith artificial agent on dimension j at iteration t, and
���������⃗direct(i, j)t ∈ {−1, 0, 1} . The mentioned procedure is formally given in Algorithm 3,
where the parameter sl is also adaptively tuned. Updating of the sl for the next iteration
is formulated in Eq. 12.

Table 1 Nomenclature for WSA
maxiter Allowed maximum number of iterations

(termination criterion)
t Iteration index
AA Number of artificial agents (population size)
D Number of dimensions
τ User-supplied parameter
λ User-supplied parameter
φ User-supplied parameter
UB Upper bound of the dimensions
LB Lower bound of the dimensions
f(i) Fitness of agent i
f(tar) Fitness of the target point (superposition)
weight Weight of the current position of an agent
x⃗ Current position vector of an agent
����⃗tar Coordinates of the superposition (target point)
�����⃗gap Vector combining an agent to target point
���������⃗direct Search direction vector of an agent

sign() Signum function
sl Step length
rand() Random uniform number ∈ [0, 1]

2563

1 3

Weighted superposition attraction algorithm for binary…

2564 A. Baykasoğlu et al.

1 3

Putting things together, subsequent to initialization of WSA algorithm, an itera-
tion here is comprised of first, determination of the superposition and next, move-
ment of all artificial agents in guidance of this generated superposition vector.
Finally, at the end of an iteration, the best-found solution is updated if necessary. It
is worth stressing that, although an adaptive step length is proposed in the canonical
version of WSA, it not necessarily required in implementation. One can simply use
a fixed step length that remains stationary throughout the search or any other step
length controlling method can optionally replace this method.

3.2 The binary WSA

As mentioned above, a superposition in canonical WSA is generated by the weighted
sum of the solution vectors for each dimension. However, in a binary space, this pro-
cedure is not practical. Therefore, in the present work, a recent method (Baykasoğlu
and Şenol 2016a; Baykasoglu and Ozsoydan 2018), which is clarified in the follow-
ing subsection, is adopted.

3.2.1 Generating binary superposition

In bWSA, agents are first sorted in regard to their fitness values (1st rank is the fit-
test) and weights are evaluated as in canonical WSA (Algorithm 1). Next, uniform

(11)x⃗(i, j)t+1 = x⃗(i, j)t + slt × ���������⃗direct(i, j)t × ||x⃗(i, j)
t||

(12)slt+1 =

{
slt − e−t∕(t+1) × 𝜑 × slt if rand() ≤ 𝜆

slt + e−t∕(t+1) × 𝜑 × slt if rand() > 𝜆

2565

1 3

Weighted superposition attraction algorithm for binary…

random numbers rand() ∊ [0,1] are generated for each dimension. These random
numbers are used as threshold values to determine the candidate agents that undergo
roulette wheel selection. Thus, agents, whose weights are equal to or greater than
these thresholds undergo roulette wheel procedure. Finally, the bit of the winner
agent is chosen as the corresponding bit of the superposition vector. This procedure
is followed for each of the dimensions. For a better understanding, an example with
different weights for different τ values is presented in Table 2.

Let’s assume that τ is fixed to 0.7 and generated random numbers for each of
the corresponding dimensions are 0.6, 0.3, 0.35, 0.4 and 0.9, respectively. Thus,
for the first dimension, the first two agents undergo a roulette wheel, because, their
weights are greater than or equal to 0.6. The bit of the winner agent (underlined and
highlighted in bold) of this roulette wheel is transferred to the superposition vec-
tor (which is currently empty). The same procedure is performed for the remaining
dimensions except for the last dimension. Since at least two candidates are required
to perform a roulette wheel, the bit of the first agent for the last dimension is directly
transferred to the superposition vector. Finally, the generated superposition is given
in the last row of Table 2.

It should be stressed that the first agent is always a candidate for the roulette
wheel procedure. It is also clear that transfer functions are not required here. Thus,
one can directly use a binary population. Moreover, in parallel with WSA, behavior
of bWSA can also be controlled via different values of τ. Lower values of τ encour-
ages diversity, on the contrary, greater values of τ yield to a more elitist behavior.

3.2.2 Solution representation and generating neighbors in bWSA

A solution is represented by binary variables in bWSA. It is clear that the 1s in a
solution string represent the opened facilities at the corresponding locations in
UFLP. Therefore, the length of a solution string for UFLP is equal to the number
of possible locations at which a facility can be established. Similarly, length of a
solution string for 0–1 KP and SUKP is equal to the number of items that can be
assigned to the knapsack. In parallel, 1s in a solution string for 0–1 KP and SUKP
represent the included items in the knapsack.

Table 2 A sample population for bWSA
weight (1,i)=

ranks dimension = 0.1 = 0.3 = 0.5 = 0.7 = 0.9

1 0 1 1 0 1 1.000 1.000 1.000 1.000 1.000
2 1 1 0 0 1 0.933 0.812 0.707 0.615 0.535
3 0 1 0 1 1 0.895 0.719 0.577 0.463 0.372
4 1 1 1 0 0 0.870 0.659 0.500 0.378 0.287
5 1 0 0 1 1 0.851 0.617 0.447 0.324 0.234
6 0 0 1 1 0 0.835 0.584 0.408 0.285 0.199
7 1 0 1 0 1 0.823 0.557 0.377 0.256 0.173
8 1 1 0 1 0 0.812 0.535 0.353 0.233 0.153

random numbers 0.6 0.3 0.35 0.4 0.9
superposition 1 1 1 0 1

Gray shades are used for determininig the candidates that will undergo roulette wheel procedure

2566 A. Baykasoğlu et al.

1 3

In canonical WSA, agents move via ���������⃗direct and �����⃗gap vectors. The parameters sl and
φ control the speed of movements. However, since these vectors and parameters are
not usable in binary spaces with their current forms, movements of agents are modi-
fied by making use of uniform-based crossover and bit-flipping procedures.

It should be recalled that artificial agents either move towards the coordinates of
the superposition or they perform random walks. Let us first consider the random
walks. In order to detect promising regions quickly, it is clear that a more diversi-
fied search is required at the beginning of the search. Additionally, it is known that
an approximation algorithm should intensify to achieve better results. Therefore, the
exponentially decreasing step length (Baykasoglu 2012; Baykasoğlu and Ozsoy-
dan 2015) given in Eq. 12 is modified here for binary spaces. In this extension, the
parameter slt ∈ [0, 1] is decreased for the next iteration by using the formula given in
Eq. 13. Next, it is multiplied by the length of the solution string (dimension) and the
obtained value is rounded up to obtain the total number of bits to flip, which shown
by int_slt+1 (Eq. 14). Finally, randomly selected int_slt+1 bits of an agent are flipped.

Differently from canonical WSA, it is assumed here that initial step length is
bounded by sl1 ∈ [0, 1] . For example, if sl1 is set to 0.50, an agent performing a
random walk flips 50% of its bits at the first iteration. An illustration for sl1 = 1.00
and for D = 50 with different φ values is presented in Fig. 3. As one can see from
Fig. 3.a, greater values of φ give rise to steeper decrements in the continuous step
length. Accordingly, randomly walking agents flip only a few bits throughout the
second half of the search. On the other hand, φ = 0.01 yields to a late intensification.
Therefore, a precise balance should be established to use this procedure efficiently.

While moving an agent towards the superposition, a uniform-based crossover
is employed in bWSA. In this procedure, uniform-based crossover rate (puxo) is
defined first. This parameter represents the probability of taking a gene from the
superposition vector. Accordingly, random numbers rand()∊ [0, 1] are generated

(13)slt+1 = slt − e−t∕(t+1) ∗ � ∗ slt

(14)int_slt+1 = ⌈slt+1 × D⌉

Fig. 3 Exponentially decreasing a continuous step length and b corresponding integer step length for dif-
ferent values of φ

2567

1 3

Weighted superposition attraction algorithm for binary…

for each dimension separately. If the generated random number for the corre-
sponding bit is less than or equal to puxo, that dimension takes the value of the
superposition’s. Otherwise, it is not changed. Thus, greater values of puxo induce
faster movements towards the superposition. In the present study, puxo is assumed
to remain stationary until the end of the run. The artificial agent movements in
bWSA with respect to a minimization problem are presented in Algorithm 4.
Finally, putting things together, bWSA is provided in Algorithm 5.

3.2.3 Handling infeasibilities

The first binary problem solved by bWSA is indeed obtained by excluding the
capacity constraints from facility location problems. In other words, demands of
all customers can be fulfilled by only a single opened facility in UFLP. It is also
mentioned in the previous subsection that the number of the opened facilities is
controlled by solution representations in bWSA. Therefore, this problem can be
considered as an unconstrained binary optimization problem. Additionally, as
mentioned by Kiran (2015), demand of a customer is always entirely fulfilled by
the nearest opened facility.

2568 A. Baykasoğlu et al.

1 3

On the other hand, 0–1 KP has a knapsack capacity constraint. In this regard, the
penalizing function of Zou et al. (2011) (Eq. 15) is adopted for 0–1 KP. In this
method, first, the maximization function of 0–1 KP (Eq. 6) is transformed into a
minimization function by multiplying it by −1. Next, the penalty term � ×max(0, g)
is appended to the objective function, where g =

∑
r∈R

wrxr − C and ω is a scalar that

is fixed to 1020 in Eq. 15.

Finally, in SUKP, the repairing method presented by He et al. (2018) is employed.
In this method, first, a quick sorting algorithm is used to sort the items in regard to
their profit/weight ratios, taking the frequencies of elements separately for each item
into account. Next, violating item(s) is (are) found by using this sorted list. After
discarding them, a posterior procedure is peformed to detect any fitting item(s) to
the remaining capacity. This procedure is presented in detail by He et al. (2018).

4 Experimental study

4.1 Fine tuning of the parameters in bWSA

bWSA has several parameters to tune. Allowed maximum number of iterations
(maxiter) and population size (AA), which determine the number of consumed func-
tion evaluations (FEs), are two of these parameters. In order to perform fair compar-
isons with the literature and to keep FEs at an acceptable level, a balance between
the parameters maxiter and AA is established. In this respect, performed preliminary

(15)minimize

(
−
∑

r∈R

prxr + � ×max(0, g)

)

2569

1 3

Weighted superposition attraction algorithm for binary…

trial tests show that higher quality solutions can be obtained, when maxiter and AA
are fixed to 1000 and 20, respectively.

Another parameter that is denoted by τ ∊ [0,1] defines the search characteristic of
bWSA. Therefore, a set of different values for τ ({0.1, 0.2, 0.3, …, 0.9}) is tested in
preliminary work to observe the effects of this parameter. The preliminary empirical
tests that have been performed based on medium-scaled instances show that bWSA
achieves better results, when τ is fixed to 0.80.

The parameters φ and slt ∈ [0,1] have critical effects on random walks. It is fur-
ther clear that the value of sl1 affects the succeeding step lengths. Therefore, one
needs to define the initial step length sl1 and the speed of decrement (φ) to control
the random walks in bWSA. According to the results of the preliminary tests, sl1 and
φ are fixed to 0.4 and 0.008, respectively. Thus, while the agents flip 40% of their
bits in the first generation, they flip only a single bit towards the end of the run.

The final parameter to tune in bWSA is the crossover rate (puxo ∊ [0,1]) that is
used in uniform-based crossover while moving an agent towards the coordinates of
the superposition. A set of different levels for puxo ({0.1, 0.2, 0.3, …, 0.9}) is tested.
According to the same preliminary tests, puxo is fixed to 0.8.

4.2 Computational results

4.2.1 Results for UFLP

The performance of the bWSA in UFLP is tested in benchmarking instances taken
from OR-Lib (http://peopl e.brune l.ac.uk/~mastj jb/jeb/orlib /files /), for which the
optimal solution is known. The attributes of these problems are presented in Table 3.
Obtained results for UFLP are presented in Table 4. Columns of this table (best,
worst, std. dev., hit) represent the best-found solution, the worst-found solution,
standard deviance of the found solutions over 30 runs and the number of runs for
which the optimum is found, respectively.

Table 3 Attributes of the used
UFLP instances

problem ID Size (facilities ×
customers)

Optimum solution value

cap71 16 × 50 932,615.750
cap72 16 × 50 977,799.400
cap73 16 × 50 1,010,641.450
cap74 16 × 50 1,034,976.975
cap101 25 × 50 796,648.437
cap102 25 × 50 854,704.200
cap103 25 × 50 893,782.112
cap104 25 × 50 928,941.750
cap131 50 × 50 793,439.562
cap132 50 × 50 851,495.325
cap133 50 × 50 893,076.712
cap134 50 × 50 928,941.750

http://people.brunel.ac.uk/%7emastjjb/jeb/orlib/files/

2570 A. Baykasoğlu et al.

1 3

Ta
bl

e
4

 C
om

pu
ta

tio
na

l r
es

ul
ts

 fo
r U

FL
P

*V
al

ue
s i

n
th

es
e

co
lu

m
ns

 a
re

 a
do

pt
ed

 fr
om

 K
ira

n
(2

01
5)

pr
ob

le
m

 ID
C

PS
O

 (S
ev

kl
i a

nd
 G

un
er

 2
00

6)
A
B
C
b
in

 (K
ira

n
20

15
)

bW
SA

be
st

*
wo

rs
t*

st
d.

 d
ev

*
hi

t*
be

st
wo

rs
t

st
d.

 d
ev

hi
t

be
st

wo
rs

t
st

d.
 d

ev
hi

t

ca
p7

1
93

2,
61

5.
75

93
4,

19
9.

14
56

2.
23

25
93

2,
61

5.
75

93
2,

61
5.

75
0.

00
30

93
2,
61
5.
75
0

93
2,
61

5.
75
0

0.
00
0

30
ca

p7
2

97
7,

79
9.

40
98

3,
71

3.
81

13
24

.3
0

25
97

7,
79

9.
40

97
7,

79
9.

40
0.

00
30

97
7,
79
9.
40
0

97
7,
79
9.
40
0

0.
00
0

30
ca

p7
3

1,
01

0,
64

1.
45

1,
01

2,
64

3.
69

70
2.

13
22

1,
01

0,
64

1.
45

1,
01

0,
64

1.
45

0.
00

30
1,
01
0,
64
1.
45
0

1,
01
0,
64
1.
45
0

0.
00
0

30
ca

p7
4

1,
03

4,
97

6.
98

1,
04

5,
34

2.
23

21
24

.5
4

0
1,

03
4,

97
6.

98
1,

03
4,

97
6.

98
0.

00
30

1,
03
4,
97
6.
97
5

1,
03
4,
97
6.
97
5

0.
00
0

30
ca

p1
01

79
6,

64
8.

44
80

2,
45

7.
23

14
80

.7
2

0
79

6,
64

8.
44

79
6,

64
8.

44
0.

00
30

79
6,

64
8.

43
7

79
7,

50
8.

72
5

38
0.

43
4

22
ca

p1
02

85
4,

70
4.

20
85

7,
38

0.
85

10
15

.6
4

10
85

4,
70

4.
20

85
4,

70
4.

20
0.

00
30

85
4,
70
4.
20
0

85
4,
70
4.
20
0

0.
00
0

30
ca

p1
03

89
3,

78
2.

11
89

9,
42

4.
91

16
95

.7
9

0
89

3,
78

2.
11

89
4,

00
8.

14
85

.6
7

25
89

3,
78

2.
11

2
89

5,
02

7.
18

8
47

0.
95

1
10

ca
p1

04
92

8,
94

1.
75

94
4,

39
4.

83
38

42
.6

4
18

92
8,

94
1.

75
92

8,
94

1.
75

0.
00

30
92
8,
94
1.
75
0

92
8,
94
1.
75
0

0.
00
0

30
ca

p1
31

79
5,

29
1.

86
80

4,
54

9.
64

24
29

.5
4

0
79

3,
43

9.
56

79
4,

91
0.

64
10

65
.7

3
6

79
3,
43
9.
56
2

79
8,
44
9.
03
8

10
25
.7
86

6
ca

p1
32

85
1,

49
5.

33
86

5,
66

7.
16

42
97

.0
7

0
85

1,
49

5.
33

85
1,

63
6.

70
21

3.
28

14
85
1,
49
5.
32
5

85
2,
25
7.
97
5

25
1.
65
4

23
ca

p1
33

89
3,

07
6.

71
90

9,
90

8.
70

42
10

.9
3

0
89

3,
07

6.
71

89
5,

40
7.

93
56

1.
34

5
89
3,
07
6.
71
2

89
4,
80

1.
16
3

50
1.
91
2

7
ca

p1
34

92
8,

94
1.

75
95

1,
80

3.
25

66
19

.0
5

7
92

8,
94

1.
75

92
8,

94
1.

75
0.

00
30

92
8,

94
1.

75
0

93
4,

58
6.

97
5

10
16

.1
44

26

2571

1 3

Weighted superposition attraction algorithm for binary…

Results of bWSA are compared to the previously published results of the algo-
rithms based on PSO and ABC. As one can see from Table 4, bWSA is capable of
finding optimum solutions in all instances. Additionally, the highlighted results in
Table 4 represent the instances, for which the hit numbers are greater than or equal
to the hit numbers of other algorithms. In this respect, bWSA clearly outperforms
CPSO of Sevkli and Guner (2006). Moreover, it can be concluded that the proposed
algorithm is competitive considering the results of ABC, recently reported by Kiran
(2015).

Finally, convergence graphs of bWSA for different instances are presented in
Fig. 4. Since each problem has different optimum, plotting them on the same graph
with an identical scale yields to disproportionality. Therefore, percentage gap values
(Eq. 16) for the corresponding iteration are plotted in these figures. Each data point
is the average over 30 runs.

It is clear from Fig. 4 that bWSA starts with greater gaps in larger-scaled
instances. This is an expected result due to the adopted step size function. However,
it is further clear from Fig. 4 that bWSA is capable of finding approximately same
gap % values after performing only 50–100 iterations regardless of the difficulty

(16)gap% =
(
(z∗ − opt)∕opt

)
× 100

Fig. 4 Gap % convergence graph of bWSA for instances a cap71–74, b 101–104 and c cap131–134

2572 A. Baykasoğlu et al.

1 3

of the problem. This demonstrates the convergence capability of the proposed
approach.

4.2.2 Results for 0–1 KP

The performance of bWSA in 0–1 KP is tested first by using the standard bench-
marks instances, which are denoted by fi(i = 1,… , 10) in Table 5. Next, the pro-
posed approach is tested in randomly generated larger-scaled instances. All printed
results are evaluated over 30 independent runs. The results of bWSA for the 10 com-
monly used benchmarks are presented in Table 5 of which the columns (f, opt., best,
mean, worst, std. dev., gap %, hit) denote the instance index, optimum value, the
best found solution, mean over 30 runs, the worst found solution, standard deviance,
percentage gap (Eq. 16) and the number of runs, for which the optimum is found,
respectively.

As one can see from Table 5, bWSA is capable of finding optimum solution for
each of the instances f1-10. Moreover, except for the instance f7, bWSA finds opti-
mum solutions in all runs. However, it is apparent that the proposed approach finds
sub-optimal results in a few runs of instance f7.

Secondarily, bWSA is tested in large-scaled 0–1 KP instances, which are gen-
erated according to the guidelines reported in Zou et al. (2011). Briefly, in this
technique, profit and resource consumption parameters of the items are randomly
generated as integer numbers according to some restrictions and the knapsack
capacity is assumed to be fixed. It is clear that, although the optimum solutions of
the instances f1-10 are known, an upper bound technique for the rest of the
instances f11-18 is required. In this respect, Dantzig upper bound (Pisinger and
Saidi 2017) is employed in the present study. In Dantzig upper bound, the mathe-
matical model is first relaxed. Thus, the LP-relaxed (fractional) 0–1 KP, where
0 ≤ xr ≤ 1 for all r = 1, 2, …, n. can be solved to optimality. Accordingly, items are
sorted in regard to non-increasing order of profit/weight (pr∕wr

) ratios. Next,

sorted items are assigned to the knapsack until an item s does not fit into the

Table 5 Standard instances for 0–1 KP (Zou et al. 2011; Bhattacharjee and Sarmah 2014)

f opt. best mean worst std. dev. gap % hit

f1 295 295 295 295 0.000 0.000 30
f2 1024 1024 1024 1024 0.000 0.000 30
f3. 35 35 35 35 0.000 0.000 30
f4 23 23 23 23 0.000 0.000 30
f5. 481.0694 481.0694 481.0694 481.0694 0.000 0.000 30
f6. 52 52 52 52 0.000 0.000 30
f7. 107 107 106.53 105 0.846 0.000 23
f8. 9767 9767 9767 9767 0.000 0.000 30
f9. 130 130 1 130 0.000 0.000 30
f10. 1025 1025 1025 1025 0.000 0.000 30

2573

1 3

Weighted superposition attraction algorithm for binary…

knapsack. Finally, the optimum value of the LP-relaxed 0–1 KP can be found via
Eq. 17. It is further known that if all profits are integers (as in the present case),
this value can be floored and the Dantzig upper bound can be obtained as
⌊z∗

LP_relaxed
⌋.

The results for the rest of the problems f11–18 are presented in Table 6, of which
the columns (f, number of items, Dantzig upper bound, best, mean, worst, std.
dev., gap %) represent instance index, problem size, upper bound, the best found
solution by the algorithm, mean over 30 runs, the worst found solution, standard
deviance and the percentage gap (Eq. 16), respectively.

It is clear in this case that ⌊z∗
LP_relaxed

⌋ replaces the opt in Eq. 16. As one can
see from Table 6, obtained percentage gap values vary between 0.32% and 7.25%
except for the instance f14. Particularly for extremely large-scaled instances with
1000–1500 items (f16-18), average gap appears to be approximately 4.09%, which
can be considered as a promising performance. On the other hand, bWSA obtains
lower quality solutions in f14. It is thought that this circumstance arises from the
structure of the generated data, which has severe effects on the tightness of the
instance. In such cases, occasionally the gap between the theoretical upper bound
the best-found solution might dramatically increase.

Convergence graphs for gap % values of the used instances (except for f14) are
presented in Fig. 5, where all plotted data points are the averages over 30 run. It is
clear from this figure that bWSA can still converge to 0.00% gap if the algorithm
is allowed to continue to search. This is due to the exponentially decreasing step
size procedure. However, more challenging conditions are employed here and the
algorithm is terminated when a fixed number of iterations is achieved. This cri-
terion is defined regardless of the problem size. It is apparent from the curves in
Fig. 5a (more horizontal looking) and Fig. 5b (more vertical looking).

(17)z∗
LP_relaxed

=

s−1∑

r=1

pr +

(
C −

s−1∑

r=1

wr

)
×

pr

wr

Table 6 Results for randomly generated larger-scaled instances for 0–1 KP

f number of items Dantzig
upper bound

best mean worst std. dev. gap %

f11 100 6976 6954 6919.267 6874 17.699 0.315
f12 200 10,997 10,769 10,700.500 10,627 43.279 2.073
f13 300 14,042 13,606 13,429.667 13,296 71.275 3.105
f14 500 18,444 13,042 12,517.067 11,396 304.224 29.289
f15 800 38,908 36,088 35,711.233 35,210 219.376 7.248
f16 1000 66,641 63,395 62,899.600 62,172 273.846 4.871
f17 1200 87,308 85,346 84,437.433 83,193 388.231 2.247
f18 1500 10,2309 97,025 96,330.567 95,854 277.809 5.165

2574 A. Baykasoğlu et al.

1 3

4.2.3 Results for SUKP

In order to test the performance of bWSA in SUKP, all instances presented by
He et al. (2018) are used in the present work. The authors name those instances
in the form of m_n_�_� , where m is the number of items, n is the number of ele-
ments, α is the density of an element and � is a parameter to define the knapsack
capacity. Three groups of instances are provided by He et al. (2018), where it is
assumed that m > n , m = n , m < n for the first, for the second and for the third
group of instances, respectively. The rest of the parameters are used exactly the
same. All results, which are presented in Tables 7, 8, 9, are evaluated over 100
independent runs.

In Tables 7, 8, 9, the Instance columns represent the attributes of the instance.
The columns A-SUKP give the results obtained by the method proposed by Arul-
selvan (2014). Another column BABC is devoted to the results of the binary ABC
of He et al. (2018), which was inspired by the study of Ozturk et al. (2015). A
similar algorithm is denoted by ABCbin that is adopted from Kiran (2015). The
other columns, GA and binDE are devoted to the results of GA and a binary mod-
ification of DE. All of these results are adopted from He et al. (2018). Finally, the
columns bWSA are devoted to the results of the proposed approach.

As one can see from Tables 7, 8, 9, bWSA outperforms the rest of the algo-
rithms in most of the instances. It is apparent that there are some ties particularly
in smaller-scaled problems. However, it is further clear that the performance of
bWSA is better than the compared algorithms particularly in large-scaled prob-
lems. This indeed shows that the proposed approach mostly obtains better solu-
tions in SUKP regardless of the problem size. Additionally, it can be put forward
that although similar mean values are obtained by each of the compared algo-
rithms, generally speaking, standard deviance performance of bWSA is worse
than the other algorithms’. This can be considered as a drawback for the proposed
approach.

Putting things together, all conducted tests in the present work points out
the efficiency of the proposed modification of bWSA in binary optimization
problems.

Fig. 5 Gap % convergence graph of bWSA for instances a f11–13 and b f14–18

2575

1 3

Weighted superposition attraction algorithm for binary…

Table 7 Computational results of the first type of instances for SUKP

Instance Results A-SUKP GA BABC ABCbin binDE bWSA

100_85_0.10_0.75 best 12,459 13,044 13,251 13,044 13,044 13,044
mean 12,459 12,956.4 13,028.5 12,818.5 12,991 12,915.67
std. dev. 0.00 130.66 92.63 153.06 75.95 185.45
worst – – – – – 12,244

100_85_0.15_0.85 best 11,119 12,066 12,238 12,238 12,274 12,238
mean 11,119 11,546 12,155 12,049.3 12,123.9 11,527.41
std. dev. 0.00 214.94 53.29 96.11 67.61 332.27
worst – – – – – 10,408

200_185_0.10_0.75 best 11,292 13,064 13,241 12,946 13,241 13,250
mean 11,292 12,492.5 13,064.4 11,861.5 12,940.7 12,657.65
std. dev. 0.00 320.03 99.57 324.65 205.70 319.58
worst – – – – – 11,951

200_185_0.15_0.85 best 12,262 13,671 13,829 13,671 13,671 13,858
mean 12,262 12,802.9 13,359.2 12,537 13,110 12,585.35
std. dev. 0.00 291.66 234.99 289.53 269.69 302.66
worst – – – – – 11,836

300_285_0.10_0.75 best 8941 10,553 10,428 9751 10,420 10,991
mean 8941 9980.87 9994.76 9339.3 9899.24 10,366.21
std. dev. 0.00 142.97 154.03 158.15 153.18 257.10
worst – – – – – 9802

300_285_0.15_0.85 best 9432 11,016 12012 10913 11,661 12,093
mean 9432 10,349.8 10,902.9 9957.85 10,499.4 10,901.59
std. dev. 0.00 215.13 449.45 276.90 403.95 508.79
worst – – – – – 9912

400_385_0.10_0.75 best 9076 10,083 10,766 9674 10,576 11,321
mean 9076 9641.85 10,065.2 9187.76 9681.46 10,785.74
std. dev. 0.00 168.94 241.45 167.08 275.05 361.45
worst – – – – – 9798

400_385_0.15_0.85 best 8514 9831 9649 8978 9649 10,435
mean 8514 9326.77 9135.98 8539.95 9020.87 9587.72
std. dev. 0.00 192.20 151.90 161.83 150.99 360.29
worst – – – – – 8695

500_485_0.10_0.75 best 9864 11031 10 784 10340 10,586 11,540
mean 9864 10,567.9 10,452.2 9910.32 10,363.8 10,921.58
std. dev. 0.00 123.15 114.35 120.82 93.39 351.69
worst – – – – – 10,293

500_485_0.15_0.85 best 8299 9472 9090 8759 9191 9681
mean 8299 8692.67 8857.89 8365.04 8783.99 9013.09
std. dev. 0.00 180.12 94.55 114.10 131.05 204.85
worst – – – – – 8479

2576 A. Baykasoğlu et al.

1 3

Table 8 Computational results of the second type of instances for SUKP

Instance Results A-SUKP GA BABC ABCbin binDE bWSA

100_100_0.10_0.75 best 13,634 14,044 13,860 13,860 13,814 14,044
mean 13634 13,806 13,734.9 13,547.2 13,675.9 13,492.71
std. dev. 0.00 144.91 70.76 119.11 119.53 325.34
worst – – – – – 12,625

100_100_0.15_0.85 best 11,325 13,145 13,508 13,498 13,407 13,407
mean 11,325 12,234.8 13,352.4 13,103.1 13,212.8 12,487.88
std. dev. 0.00 388.66 155.14 343.46 287.45 718.23
worst – – – – – 10987

200_200_0.10_0.75 best 10,328 11,656 11,846 11191 11,535 12,271
mean 10,328 10,888.7 11,194.3 10,424.1 10,969.4 11,430.23
std. dev. 0.00 237.85 249.58 197.88 302.52 403.33
worst – – – – – 10,622

200_200_0.15_0.85 best 9784 11,792 11,521 11,287 11,469 11,804
mean 9784 10,827.5 10,945 10,345.9 10,717.1 11,062.06
std. dev. 0.00 334.43 255.14 273.47 341.08 423.90
worst – – – – – 10,042

300_300_0.10_0.75 best 10208 12,055 12,186 11,494 12,304 12,644
mean 10208 11,755.1 11,945.8 10,922.3 11,864.4 12,227.56
std. dev. 0.00 144.45 127.80 182.63 160.42 308.11
worst – – – – – 11,365

300_300_0.15_0.85 best 9183 10,666 10,382 9633 10,382 11,113
mean 9183 10,099.2 9859.69 9186.87 9710.37 10,216.71
std. dev. 0.00 337.42 177.02 147.78 208.48 351.12
worst – – – – – 9520

400_400_0.10_0.75 best 9751 10570 10,626 10,160 10,462 11,199
mean 9751 10,112.4 10101.1 9549.04 9975.8 10,624.79
std. dev. 0.00 157.89 196.99 141.27 185.57 266.46
worst – – – – – 9818

400_400_0.15_0.85 best 8497 9235 9541 9033 9388 10,915
mean 8497 8793.76 9032.95 8365.62 8768.42 9580.64
std. dev. 0.00 169.52 194.18 153.40 212.24 411.83
worst – – – – – 8717

500_500_0.10_0.75 best 9615 10,460 10,755 10,071 10,546 10,827
mean 9615 10,185.4 10,328.5 9738.17 10,227.7 10,482.80
std. dev. 0.00 114.19 91.615 111.63 103.32 165.62
worst – – – – – 10147

500_500_0.15_0.85 best 7883 9496 9318 9262 9312 10,082
mean 7883 8882.88 9180.74 8617.91 9096.13 9478.71
std. dev. 0.00 158.21 84.91 141.32 145.45 262.44
worst – – – – – 8705

2577

1 3

Weighted superposition attraction algorithm for binary…

Table 9 Computational results of the third type of instances for SUKP

Instance Results A-SUKP GA BABC ABCbin binDE bWSA

85_100_0.10_0.75 best 10,231 11,454 11,664 11,206 11,352 11,947
mean 10,231 11,092.7 11,182.7 10,879.5 11,075 11,233.16
std. dev. 0.00 171.22 183.57 163.62 119.42 216.67
worst – – – – – 10,627

85_100_0.15_0.85 best 10,483 12,124 12,369 12,006 12,369 12,369
mean 10,483 11,326.3 12,081.6 11,485.3 11,875.9 11,342.70
std. dev. 0.00 417.00 193.79 248.33 336.94 474.76
worst – – – – – 9774

185_200_0.10_0.75 best 11,508 12,841 13,047 12,308 13,024 13,505
mean 11,508 12,236.6 12,522.8 11,667.9 12,277.5 12,689.09
std. dev. 0.00 198.18 201.35 177.14 234.24 336.51
worst – – – – – 11,820

185_200_0.15_0.85 best 8621 10,920 10,602 10,376 10,547 10,831
mean 8621 10,351.5 10,150.6 9684.33 10,085.4 10,228.07
std. dev. 0.00 208.08 152.91 184.84 160.60 286.92
worst – – – – – 9467

285_300_0.10_0.75 best 9961 10,994 11,158 10,269 11,152 11,538
mean 9961 10,640.1 10,775.9 9957.09 10,661.3 11,105.09
std. dev. 0.00 126.84 116.80 141.48 149.84 197.78
worst – – – – – 10,600

285_300_0.15_0.85 best 9618 11,093 10,528 10,051 10,528 11,377
mean 9618 10,190.3 9897.92 9424.15 9832.32 10,452.03
std. dev. 0.00 249.76 186.53 197.14 232.72 416.76
worst – – – – – 9519

385_400_0.10_0.75 best 8672 9799 10,085 9235 9883 10,414
mean 8672 9432.82 9537.5 8904.94 9314.57 9778.03
std. dev. 0.00 163.84 184.62 111.85 191.59 221.49
worst – – – – – 9378

385_400_0.15_0.85 best 8064 9173 9456 8932 9352 10,077
mean 8064 8703.66 9090.03 8407.06 8846.99 9203.52
std. dev. 0.00 154.15 156.69 148.52 210.91 303.12
worst – – – – – 8600

485_500_0.10_0.75 best 9559 10,311 10,823 10,357 10,728 10,835
mean 9559 9993.16 10,483.4 9615.37 10,159.4 10,607.21
std. dev. 0.00 117.73 228.34 151.41 198.49 191.86
worst – – – – – 10,024

485_500_0.15_0.85 best 8157 9329 9333 8799 9218 9603
mean 8157 8849.46 9085.57 8347.82 8919.64 9141.94
std. dev. 0.00 141.84 115.62 122.65 168.90 180.42
worst – – – – – 8562

2578 A. Baykasoğlu et al.

1 3

5 Concluding remarks

The present study examines the performance of a new generation metaheuristic
referred to as WSA in binary optimization problems. In this respect, WSA, which
is already shown to be efficient in a variety of optimization problems, is first modi-
fied for stationary binary spaces. A specialized roulette wheel procedure is used for
this modification. Additionally, uniform-based crossover and random bit flips are
employed while generating a new solution. Thus, any transfer functions for con-
verting real values to binary are not required in the proposed bWSA. Moreover, a
systematically controlled step sizing procedure to put control on the search speed
is adopted in bWSA. Step size, which is indeed the number of bits to be flipped,
is exponentially decreased throughout generations. Thus, while bWSA performs a
more diversified search at the initialization stage, it is encouraged for intensification
around the found promising regions towards the end of a run.

The performance of bWSA is examined in some well-known binary optimization
problems, including uncapacitated facility location problem, 0–1 knapsack prob-
lem and set union knapsack problem, which have numerous applications in real-life.
Promising results point out the efficiency of the proposed bWSA. Extending the pro-
posed modification for other combinatorial problems is scheduled as future work.

References

Al-Sultan KS, Al-Fawzan MA (1999) A tabu search approach to the uncapacitated facility location prob-
lem. Ann Oper Res 86:91–103. https ://doi.org/10.1023/A:10189 56213 524

Arulselvan A (2014) A note on the set union knapsack problem. Discrete Appl Math 169:214–218. https
://doi.org/10.1016/j.dam.2013.12.015

Barcelo J, Hallefjord Å, Fernandez E, Jörnsten K (1990) Lagrangean relaxation and constraint generation
procedures for capacitated plant location problems with single sourcing. OR Spectrum 12(2):79–88.
https ://doi.org/10.1007/BF017 84983

Baykasoğlu A (2012) Design optimization with chaos embedded great deluge algorithm. Appl Soft Com-
put 12(3):1055–1067. https ://doi.org/10.1016/j.asoc.2011.11.018

Baykasoğlu A, Akpinar Ş (2015) Weighted superposition attraction (WSA): a swarm intelligence algo-
rithm for optimization problems—part 2: constrained optimization. Appl Soft Comput 37:396–415.
https ://doi.org/10.1016/j.asoc.2015.08.052

Baykasoğlu A, Akpinar Ş (2017) Weighted Superposition Attraction (WSA): a swarm intelligence algo-
rithm for optimization problems—part 1: unconstrained optimization. Appl Soft Comput 56:520–
540. https ://doi.org/10.1016/j.asoc.2015.10.036

Baykasoğlu A, Ozsoydan FB (2015) Adaptive firefly algorithm with chaos for mechanical design optimi-
zation problems. Appl Soft Comput 36:152–164. https ://doi.org/10.1016/j.asoc.2015.06.056

Baykasoğlu A, Ozsoydan FB (2018) Dynamic optimization in binary search spaces via weighted
superposition attraction algorithm. Expert Syst Appl 96:157–174. https ://doi.org/10.1016/j.
eswa.2017.11.048

Baykasoğlu A, Şenol ME (2016a) Combinatorial optimization via weighted superposition attraction. In:
International conference on operations research of the GOR, OR 2016, Hamburg

Baykasoğlu A, Şenol ME (2016b) Oppositon-based weighted superposition attraction algorithm for trav-
elling salesman problems. In: Lm-Scm 2016 Xiv. International Logistics and Supply Chain Con-
gress, Izmir, Turkey

Bhattacharjee KK, Sarmah SP (2014) Shuffled frog leaping algorithm and its application to 0/1 knapsack
problem. Appl Soft Comput 19:252–263. https ://doi.org/10.1016/j.asoc.2014.02.010

https://doi.org/10.1023/A:1018956213524
https://doi.org/10.1016/j.dam.2013.12.015
https://doi.org/10.1016/j.dam.2013.12.015
https://doi.org/10.1007/BF01784983
https://doi.org/10.1016/j.asoc.2011.11.018
https://doi.org/10.1016/j.asoc.2015.08.052
https://doi.org/10.1016/j.asoc.2015.10.036
https://doi.org/10.1016/j.asoc.2015.06.056
https://doi.org/10.1016/j.eswa.2017.11.048
https://doi.org/10.1016/j.eswa.2017.11.048
https://doi.org/10.1016/j.asoc.2014.02.010

2579

1 3

Weighted superposition attraction algorithm for binary…

Bhattacharjee KK, Sarmah SP (2017) Modified swarm intelligence based techniques for the knapsack
problem. Appl Intell 46(1):158–179. https ://doi.org/10.1007/s1048 9-016-0822-y

Cornuejols ML, Nemhauser GL, Wolsey LA (1990) The uncapacitated facility location problem. In:
Francis RL, Mirchandani P (eds) Discrete location theory. Wiley Interscience, New York

de Armas J, Juan AA, Marquès JM, Pedroso JP (2017) Solving the deterministic and stochastic unca-
pacitated facility location problem: from a heuristic to a simheuristic. J Oper Res Soc. https ://doi.
org/10.1057/s4127 4-016-0155-6

Della Croce F, Salassa F, Scatamacchia R (2017a) An exact approach for the 0–1 knapsack problem with
setups. Comput Oper Res 80:61–67. https ://doi.org/10.1016/j.cor.2016.11.015

Della Croce F, Salassa F, Scatamacchia R (2017b) A new exact approach for the 0–1 collapsing knapsack
problem. Eur J Oper Res 260(1):56–69. https ://doi.org/10.1016/j.ejor.2016.12.009

Diallo MH, August M, Hallman R, Kline M, Slayback SM, Graves C (2017) AutoMigrate: a framework
for developing intelligent, self-managing cloud services with maximum availability. Clust Comput
20(3):1995–2012. https ://doi.org/10.1007/s1058 6-017-0900-x

Dorigo M, Maniezzo V, Colorni A (1991) Positive feedback as a search strategy. Politecnico di Milano,
Italy, (Technical Report No: 91-016)

Drake JH, Hyde M, Ibrahim K, Ozcan E (2014) A genetic programming hyper-heuristic for the mul-
tidimensional knapsack problem. Kybernetes 43(9/10):1500–1511. https ://doi.org/10.110
8/K-09-2013-0201

Erlenkotter D (1978) A dual-based procedure for uncapacitated facility location. Oper Res 26(6):992–
1009. https ://doi.org/10.1287/opre.26.6.992

Feng Y, Wang GG, Deb S, Lu M, Zhao XJ (2017) Solving 0–1 knapsack problem by a novel binary mon-
arch butterfly optimization. Neural Comput Appl 28(7):1619–1634. https ://doi.org/10.1007/s0052
1-015-2135-1

Goldschmidt O, Nehme D, Yu G (1994) Note: on the set-union knapsack problem. Naval Res Log
41(6):833–842. https ://doi.org/10.1002/1520-6750(19941 0)41:6%3c833 :AID-NAV32 20410
611%3e3.0.CO;2-Q

Guner AR, Sevkli M (2008) A discrete particle swarm optimization algorithm for uncapacitated facility
location problem. J Artif Evol Appl. https ://doi.org/10.1155/2008/86151 2

Hale TS, Moberg CR (2003) Location science research: a review. Ann Oper Res 123(1):21–35. https ://
doi.org/10.1023/A:10261 10926 707

He Y, Xie H, Wong TL, Wang X (2018) A novel binary artificial bee colony algorithm for the set-
union knapsack problem. Future Gener Comput Syst 78:77–86. https ://doi.org/10.1016/j.futur
e.2017.05.044

Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann
Arbor

Holmberg K (1999) Exact solution methods for uncapacitated location problems with convex transporta-
tion costs. Eur J Oper Res 114(1):127–140. https ://doi.org/10.1016/S0377 -2217(98)00039 -3

Jaramillo JH, Bhadury J, Batta R (2002) On the use of genetic algorithms to solve location problems.
Comput Oper Res 29(6):761–779. https ://doi.org/10.1016/S0305 -0548(01)00021 -1

Kellerer H, Pferschy U, Pisinger D (2004) Knapsack problems. Springer, Berlin
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international

conference on neural networks, 4, 1942–1948, Perth, WA, Australia. https ://doi.org/10.1109/
icnn.1995.48896 8

Kiran MS (2015) The continuous artificial bee colony algorithm for binary optimization. Appl Soft Com-
put 33:15–23. https ://doi.org/10.1016/j.asoc.2015.04.007

Laporte G, Nickel S, da Gama FS (2015) Location science. Springer, Berlin
Li ZK, Li N (2009) A novel multi-mutation binary particle swarm optimization for 0/1 knapsack prob-

lem. In: Proceedings of IEEE control and decision conference, 3042–3047, Guilin, China. https ://
doi.org/10.1109/ccdc.2009.51928 38

Lin FT (2008) Solving the knapsack problem with imprecise weight coefficients using genetic algorithms.
Eur J Oper Res 185(1):133–145. https ://doi.org/10.1016/j.ejor.2006.12.046

Lister W, Laycock RG, Day AM (2010) A dynamic cache for real-time crowd rendering. In: Computer
graphics forum

Liu Y, Liu C (2009) A schema-guiding evolutionary algorithm for 0–1 knapsack problem. In: Proceed-
ings of IEEE computer science and information technology—spring conference, 160–164, Singa-
pore, Singapore. https ://doi.org/10.1109/iacsi t-sc.2009.31

https://doi.org/10.1007/s10489-016-0822-y
https://doi.org/10.1057/s41274-016-0155-6
https://doi.org/10.1057/s41274-016-0155-6
https://doi.org/10.1016/j.cor.2016.11.015
https://doi.org/10.1016/j.ejor.2016.12.009
https://doi.org/10.1007/s10586-017-0900-x
https://doi.org/10.1108/K-09-2013-0201
https://doi.org/10.1108/K-09-2013-0201
https://doi.org/10.1287/opre.26.6.992
https://doi.org/10.1007/s00521-015-2135-1
https://doi.org/10.1007/s00521-015-2135-1
https://doi.org/10.1002/1520-6750(199410)41:6%3c833:AID-NAV3220410611%3e3.0.CO;2-Q
https://doi.org/10.1002/1520-6750(199410)41:6%3c833:AID-NAV3220410611%3e3.0.CO;2-Q
https://doi.org/10.1155/2008/861512
https://doi.org/10.1023/A:1026110926707
https://doi.org/10.1023/A:1026110926707
https://doi.org/10.1016/j.future.2017.05.044
https://doi.org/10.1016/j.future.2017.05.044
https://doi.org/10.1016/S0377-2217(98)00039-3
https://doi.org/10.1016/S0305-0548(01)00021-1
https://doi.org/10.1109/icnn.1995.488968
https://doi.org/10.1109/icnn.1995.488968
https://doi.org/10.1016/j.asoc.2015.04.007
https://doi.org/10.1109/ccdc.2009.5192838
https://doi.org/10.1109/ccdc.2009.5192838
https://doi.org/10.1016/j.ejor.2006.12.046
https://doi.org/10.1109/iacsit-sc.2009.31

2580 A. Baykasoğlu et al.

1 3

Özbakır L, Turna F (2017) Clustering performance comparison of new generation meta-heuristic algo-
rithms. Knowl-Based Syst 130(2017):1–16. https ://doi.org/10.1016/j.knosy s.2017.05.023

Ozturk C, Hancer E, Karaboga D (2015) A novel binary artificial bee colony algorithm based on genetic
operators. Inf Sci 297:154–170. https ://doi.org/10.1016/j.ins.2014.10.060

Pisinger D, Saidi A (2017) Tolerance analysis for 0–1 knapsack problems. Eur J Oper Res 258(3):866–
876. https ://doi.org/10.1016/j.ejor.2016.10.054

Rajabioun R (2011) Cuckoo optimization algorithm. Appl Soft Comput 11(8):5508–5518. https ://doi.
org/10.1016/j.asoc.2011.05.008

Riondato M, Vandin F (2014) Finding the true frequent itemsets. In: Proceedings of the 2014 SIAM
international conference on data mining (pp 497–505). Society for Industrial and Applied Math-
ematics. https ://doi.org/10.1137/1.97816 11973 440.57

Şahin G, Süral H (2007) A review of hierarchical facility location models. Comput Oper Res 34(8):2310–
2331. https ://doi.org/10.1016/j.cor.2005.09.005

Sevkli M, Guner A (2006) A continuous particle swarm optimization algorithm for uncapacitated facil-
ity location problem. In: Ant colony optimization and swarm intelligence, 316–323. https ://doi.
org/10.1007/11839 088_28

Shah-Hosseini H (2008) Intelligent water drops algorithm: a new optimization method for solving the
multiple knapsack problem. Int J Intell Comput Cybern 1(2):193–212. https ://doi.org/10.1108/17563
78081 08747 17

Shi H (2006). Solution to 0/1 knapsack problem based on improved ant colony algorithm. In: Proceedings
of IEEE international conference on information acquisition, 1062–1066, Weihai, China. https ://doi.
org/10.1109/icia.2006.30588 7

Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization
over continuous spaces. J Glob Optim 11(4):341–359. https ://doi.org/10.1023/A:10082 02821 328

Su L, Zhou Y (2016) Tolerating correlated failures in massively parallel stream processing engines. In:
Proceedings of IEEE conference in data engineering (ICDE), 517–528, Helsinki, Finland. https ://
doi.org/10.1109/icde.2016.74982 67

Sun M (2006) Solving the uncapacitated facility location problem using tabu search. Comput Oper Res
33(9):2563–2589. https ://doi.org/10.1016/j.cor.2005.07.014

Taylor R (2016) Approximations of the densest k-subhypergraph and set union knapsack problems. arXiv
:1610.04935

Tsuya K, Takaya M, Yamamura A (2017) Application of the firefly algorithm to the uncapacitated facility
location problem. J Intell Fuzzy Syst 32(4):3201–3208. https ://doi.org/10.3233/JIFS-16926 3

Wang D, Wu CH, Ip A, Wang D, Yan Y (2008) Parallel multi-population particle swarm optimiza-
tion algorithm for the uncapacitated facility location problem using openMP. In: Proceedings of
IEEE world congress on computational intelligence, 1214–1218, Hong Kong, China. https ://doi.
org/10.1109/cec.2008.46309 51

Yang XS (2008) Nature-inspired metaheuristic algorithms. Luniver Press
Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: González J, Pelta D, Cruz C, Terrazas

G, Krasnogor N (eds) Nature inspired cooperative strategies for optimization. Springer, Berlin. pp
65–74. https ://doi.org/10.1007/978-3-642-12538 -6_6

Zhou Y, Li L, Ma M (2016) A complex-valued encoding bat algorithm for solving 0–1 knapsack prob-
lem. Neural Process Lett 44(2):407–430. https ://doi.org/10.1007/s1106 3-015-9465-y

Zhou Y, Bao Z, Luo Q, Zhang S (2017) A complex-valued encoding wind driven optimization for the 0–1
knapsack problem. Appl Intell 46(3):684–702. https ://doi.org/10.1007/s1048 9-016-0855-2

Zou D, Gao L, Li S, Wu J (2011) Solving 0–1 knapsack problem by a novel global harmony search algo-
rithm. Appl Soft Comput 11(2):1556–1564. https ://doi.org/10.1016/j.asoc.2010.07.019

https://doi.org/10.1016/j.knosys.2017.05.023
https://doi.org/10.1016/j.ins.2014.10.060
https://doi.org/10.1016/j.ejor.2016.10.054
https://doi.org/10.1016/j.asoc.2011.05.008
https://doi.org/10.1016/j.asoc.2011.05.008
https://doi.org/10.1137/1.9781611973440.57
https://doi.org/10.1016/j.cor.2005.09.005
https://doi.org/10.1007/11839088_28
https://doi.org/10.1007/11839088_28
https://doi.org/10.1108/17563780810874717
https://doi.org/10.1108/17563780810874717
https://doi.org/10.1109/icia.2006.305887
https://doi.org/10.1109/icia.2006.305887
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1109/icde.2016.7498267
https://doi.org/10.1109/icde.2016.7498267
https://doi.org/10.1016/j.cor.2005.07.014
http://arxiv.org/abs/1610.04935
http://arxiv.org/abs/1610.04935
https://doi.org/10.3233/JIFS-169263
https://doi.org/10.1109/cec.2008.4630951
https://doi.org/10.1109/cec.2008.4630951
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1007/s11063-015-9465-y
https://doi.org/10.1007/s10489-016-0855-2
https://doi.org/10.1016/j.asoc.2010.07.019

2581

1 3

Weighted superposition attraction algorithm for binary…

Affiliations

Adil Baykasoğlu1 · Fehmi Burcin Ozsoydan1 · M. Emre Senol1

 Fehmi Burcin Ozsoydan
 burcin.ozsoydan@deu.edu.tr

 M. Emre Senol
 emre.senol@deu.edu.tr

1 Department of Industrial Engineering, Faculty of Engineering, Dokuz Eylül University,
Tinaztepe Campus, 35397 Buca, Izmir, Turkey

http://orcid.org/0000-0002-4952-7239

	Weighted superposition attraction algorithm for binary optimization problems
	Abstract
	1 Introduction
	2 Benchmarking problems
	2.1 Uncapacitated facility location problem
	2.2 0–1 Knapsack problem (0–1 KP)
	2.3 Set union knapsack problem (SUKP)

	3 Weighted superposition attraction algorithm
	3.1 Canonical WSA
	3.1.1 Initialization of WSA
	3.1.2 Generating neighborhood solutions in WSA

	3.2 The binary WSA
	3.2.1 Generating binary superposition
	3.2.2 Solution representation and generating neighbors in bWSA
	3.2.3 Handling infeasibilities

	4 Experimental study
	4.1 Fine tuning of the parameters in bWSA
	4.2 Computational results
	4.2.1 Results for UFLP
	4.2.2 Results for 0–1 KP
	4.2.3 Results for SUKP

	5 Concluding remarks
	References

