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Abstract
In this paper, we consider a single-vendor single-buyer integrated inventory model 
in which the replenishment lead time is assumed to be a linear function of batch 
size, setup time, and transportation time. Both the vendor and the buyer are inter-
ested to invest in reducing the ordering cost. Shortages, if occur in buyer’s inventory, 
are partially backlogged with a certain limit of backorder price discount. The objec-
tive of the study is to derive the optimal decisions and the best investment policy by 
minimizing the expected annual total cost of the integrated system. The existence 
and uniqueness of the optimal solution are investigated and an efficient algorithm is 
designed to find the optimal solution of the proposed model numerically. We dem-
onstrate the aids of reducing order-processing cost through numerical examples and 
show that it has significant effect on lot sizing decisions. It is also observed that 
transportation delay forces the buyer to stock more in order to defend the stock-out 
situation.

Keywords Inventory · Vendor–buyer model · Variable lead time · Investment · 
Uncertain market demand

1 Introduction

In inventory management, lead time has always been an important factor to consider 
(Naddor 1966; Das 1975; Magson 1979; Foote et  al. 1988). Lead time is defined 
as the duration of time between placing an order and receiving it. It has significant 
influence on logistics and supply chain management. Almost all integrated inven-
tory models are developed based on the assumption that replenishment lead time is 
either zero or constant (Wee and Widyadana 2013; Das 2018) or a stochastic vari-
able (Sajadieh and Jokar 2009; Zhou et al. 2012; Hossain et al. 2017) which is not 
subjected to control.
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In many practical situations, however, lead time is controllable; that is, lead time 
can be shortened at the expense of an additional cost. Liao and Shyu (1991) were 
the first researchers to introduce variable lead time in stochastic inventory model. In 
their model, they assumed that the lead time can be decomposed into several compo-
nents having different crashing costs for reducing to a specified minimum duration. 
Thereafter, a number of researchers have contributed significantly in controllable 
lead time literature (Dey and Giri 2014; Sarkar et al. 2015; Mandal and Giri 2015).

Although constant or deterministic lead time assumption follows JIT (just-in-
time) philosophy, but it is not fitted in most of the modern complex setups where 
overseas, containerized, and air-freight transportation are involved. According to 
Tersine (1982), lead time involves order preparation time, order shipment/delivery 
time, set-up time, etc. Recognizing that manufacturing lead time is highly depend-
ent on lot-size, Kim and Benton (1995) questioned on the assumption of fixed lead 
time and established a relationship between lot-size and lead time. They showed that 
significant savings can be occurred by considering the interrelationships between lot 
size and safety stock decisions. Hariga (1999) revisited Kim and Benton’s (1995) 
model to rectify the expression of the annual backorder cost, and proposed another 
relation for the revised lot-size. However, the above two models were considered 
only from buyer’s/manufacturer’s perspective. Ben-Daya and Hariga (2004) were 
the first researchers to consider lot-size dependent lead time in a vendor–buyer inte-
grated supply chain model with stochastic demand. However, they assumed that the 
reorder points for all replenishment cycles are same. Hsiao (2008) improved this 
model by assuming that there are two different reorder points and service levels.

In reality, due to various reasons such as labor strike, bad weather, unavailability 
of raw materials, machine failure, human errors in counting, transcribing, etc., it is 
quite difficult for the vendor to deliver items timely to the buyer. As a result, the 
buyer faces the stock-out situation, in which case, customers’ demand is not fulfilled 
resulting in a financial loss for him/her. A stock-out situation not only disappoints 
customers but also makes doubt in customer’s mind about the storage capacity of 
the buyer. The unsatisfied customers may not turn up next time to meet their demand 
from the same buyer. Therefore, the buyer in this case loses the opportunity to earn 
some more profit. However, for fashionable goods such as certain brand gum shoes, 
hi-fi equipment, cosmetics and clothes, some customers may wait up to a certain 
period for backorder and some may not wait at all (Montgomery et al. 1973; Rosen-
berg 1979; Park 1982; Sarkar and Sarkar 2013; Aslani et al. 2017). Therefore, moti-
vating the customers for backorder becomes a challenging problem for the buyers. 
Price discount on backordered items is a well-known policy which can motivate the 
customers for backorder as well as increase the rate of backorder (see Pan and Hsiao 
2001; Lin 2010; Priyan and Uthayakumar 2014; Kurdhi et al. 2015).

Ordering cost reduction has become a key to business success and attracted 
considerable research attention recently. Ordering quantity, service level, and busi-
ness competitiveness can be shown to possibly be influenced directly or indirectly 
via ordering cost control. Integrated vendor–buyer inventory models are generally 
developed considering constant ordering cost. However, in some practical situa-
tions, ordering cost can be controlled and reduced in various ways. It can be attained 
through worker training, procedural changes, specialized equipment acquisition, etc. 
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Porteus (1985) first developed a framework for investing in reducing setup cost in an 
EOQ model. Subsequently, Affisco et al. (2002) investigated the investment in setup 
cost reduction and quality improvement for a joint supplier–customer system which 
produces defects at a known constant rate. Later, some researchers (Kim et al. 1992; 
Coates et al. 1996; Annadurai and Uthayakumar 2010; Lou and Wang 2013) devel-
oped setup/order cost reduction inventory models under various assumptions.

Many industries have been devoting efforts to improve customer service, control 
order frequencies and reduce costs with their business partners. In this regard, the 
following questions from managerial point of view may arise: What would be the 
optimal policy for an integrated vendor–buyer supply chain system if the lead time 
is dependent on production lot size, setup time and transportation time? What would 
be the appropriate price discount strategy, if adopted by the buyer during shortage 
period to secure customer demand, and what would be the right investment amount 
to reduce order processing cost? To find answers of these questions, in this paper, 
we model a continuous review inventory system. Unlike previous researches, we 
consider different replenishment lead times and reorder points for the shipments. We 
assume that the buyer offers backorder price discount to his customers with out-
standing orders during the shortage period to secure customer orders. The back-
order ratio is assumed to be a variable which is proportional to the backorder price 
discount offered by the buyer. We also assume that the order processing cost is a 
decreasing exponential function of capital expenditure. In this study, we assume that 
the long-term strategic partnership between the buyer and the vendor is well estab-
lished and, therefore, the buyer and the vendor cooperate and share information with 
each other. The objective is to determine the optimal ordered quantity, safety factor, 
backorder price discount, the investment amount in ordering cost reduction, and the 
number of shipments by minimizing the annual total cost of the integrated system. 
The rest of the paper is organized as follows: Sect. 2 reviews the relevant literature. 
Notation and assumptions are given in Sect.  3. In Sect.  4, the proposed model is 
formulated mathematically. Section 5 describes the solution procedure of the model. 
Numerical results and sensitivity analysis are given in Sect. 6. Finally the paper is 
concluded in Sect. 7.

2  Literature review

During the last few decades, the concept of integrated vendor–buyer inventory man-
agement has attracted considerable attention of many supply chain researchers. The 
cooperation among vendors and buyers for improving the performance of the sup-
ply chain has been the key point of their researches. One of the primary models 
dealing with single-supplier single-buyer integrated inventory system was developed 
by Goyal (1976). Banerjee (1986) generalized Goyal’s model and presented a joint 
economic lot size model where the vendor produces order on lot-for-lot basis to ful-
fill the buyer’s order quantity under deterministic condition. Further, Goyal (1988) 
relaxed the lot-for-lot policy of the vendor to generalize Banerjee’s model. Later, 
Ha and Kim (1997) generalized Goyal’s (1988) model and developed an integrated 
lot-splitting model facilitating multiple shipments in small lots. Since then a lot of 
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efforts have been made by the researchers (Cetinkaya et  al. 2008; Kang and Kim 
2010) to study the integrated vendor–buyer model under various assumptions. Yu 
and Dong (2014), and Braglia et al. (2016) made some advances in the integrated 
model under stochastic demand. Nouri et  al. (2018) developed a compensation-
based wholesale price contract to coordinate between retailer and seller in a two-
echelon periodic review inventory system under a stochastic promotional and inno-
vation efforts sensitive demand.

Most of the above mentioned works did not consider the issue of variable lead 
time and its relation to the production shipment schedule in terms of the number and 
the size of batches transferred from the vendor to the buyer. Liao and Shyu (1991) 
were the first researchers to introduce variable lead time in inventory model. In their 
model, they assumed that the lead time can be decomposed into several components 
having different crashing costs for reducing to a specified minimum duration. Ben-
Daya and Raouf (1994) reconsidered Liao and Shyu’s (1991) model and established 
a more general model by taking both order quantity and lead time as decision vari-
ables without consideration of shortages. Ouyang et al. (1996) extended Ben-Daya 
and Raouf’s (1994) model to consider shortages in the inventory system. Later, Yang 
and Pan (2004), Ouyang et  al. (2007), Li et  al. (2011), Arkan and Hejazi (2012), 
Jha and Shanker (2013) and Mandal and Giri (2015) considered controllable lead 
time in integrated supply chain model to maximize benefits for all the participating 
players.

Glock (2012) extended Hsiao’s (2008) model by assuming that lead time can be 
reduced by crashing the setup time and transportation time. Zikopoulos (2017) stud-
ied a remanufacturing system and examined the advisability taking into account the 
stochastic remanufacturing lead-time under different scenarios regarding returns’ 
quality and demand for remanufactured products. Heydari et al. (2016) provided a 
new coordination mechanism based on the lead time crashing between a seller and 
a buyer in order to convince the buyer to change his decision variables and hence 
increase the profitability of the supply chain. Kazemi et al. (2016) developed a fuzzy 
lot-sizing model in which the effect of human learning with cognitive and motor 
capabilities are investigated. In their model, both demand and lead-time during the 
planning period were considered as fuzzy parameters. Yang et al. (2017) developed 
a newsvendor model to investigate inventory competition in a dual-channel supply 
chain and explored the delivery lead time decision in the direct channel. Hossain 
et  al. (2017) developed a single-vendor single-buyer integrated inventory system 
with penalty cost for delivery lateness under generalized lead time distribution.

Some of the above works assumed that shortages, if occur, are either fully back-
logged or completely lost; the issue of partial backlogging or partial lost sale is 
overlooked. However, in practice, there are some items especially fashionable goods 
such as certain brand gum shoes, hi-fi equipment, cosmetics and clothes for which 
a fraction of customers, during the shortage period, can wait for backorder up to a 
certain period while the other fraction can not wait at all. Ouyang et al. (1996) gen-
eralized Ben-Daya and Raouf’s (1994) model by considering mixture of backorder 
and lost sales. Ouyang and Chuang (2001) considered backorder rate as a control 
variable to generalize Ouyang et al.’s (1996) model. Kazemi et al. (2015) extended 
an existing EOQ inventory model with backorders in which they fuzzified both the 
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demand and lead times. Cárdenas-Barrón et al. (2018) provided a correct mathemat-
ical formulation and solution of an inventory model with two backlog costs when 
the supplier offers a price discount to the buyer. Now-a-days, motivating the cus-
tomers to wait for backorder is a challenging task for the buyers. Discount policy 
on backordered items can influence the customers for backorder as well as increase 
the backorder rate (Pan and Hsiao 2001, 2005; Chuang et al. 2004; Lee et al. 2006). 
Sarkar et al. (2015) studied an inventory model with quality improvement and back-
order price discount under controllable lead time.

Most of the existing inventory models assume that order processing cost is fixed. 
In practice, order processing cost can be controlled and reduced through vari-
ous efforts such as worker training, procedural changes and specialized equipment 
acquisition. In the literature, Porteus (1985) was the first author to introduce the 
concept of setup cost reduction. This development encouraged many researchers 
to examine setup/ordering cost reduction (see Keller and Noori 1988; Nasri et  al. 
1990; Kim et  al. 1992; Paknejad et  al. 1995). Chang et  al. (2006) considered an 
integrated vendor–buyer model with controllable lead-time and ordering cost reduc-
tion. Zhang et al. (2007) analyzed a two-echelon integrated vendor-managed inven-
tory system with ordering cost reduction. The capital investment in reducing buyer’s 
ordering cost is assumed to be a logarithmic function of the ordering cost. Huang 
(2010) developed an integrated inventory model to determine the optimal policy 
under conditions of order processing cost reduction and permissible delay in pay-
ments. Lou and Wang (2013) revisited Huang’s (2010) model to relax the dispen-
sable assumption that the buyer’s interest earned is always less than or equal to its 
interest charged. Huang et  al. (2010) developed a model to determine an optimal 
integrated vendor–buyer inventory policy under conditions of order processing time 
reduction and permissible delay in payments.

From the above literature review we found that many researchers focused on 
developing either setup cost or ordering cost reduction by assuming lead time as sto-
chastic or controllable. However, no attempt has been made to consider integrated 
vendor–buyer inventory model with controllable order processing cost under vari-
able lead time and backorder price discount. This paper intends to fill this gap in the 
literature. The position of the paper with respect to the existing literature is shown in 
Table 1.

3  Notation and assumptions

We use the following notation to develop the proposed model.
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3.1  Notation

Symbols Description

Decision variables
 Q Shipment size (units)
 k1 Safety factor of the first batch
 k2 Safety factor of the jth batch, j = 2,… ,m

 �x Backorder price discount, 0 ≤ �x ≤ �0

 W Annual expenditure for reducing order processing cost
 m Number of deliveries from the vendor to the buyer

Table 1  A comparison of the present model with some related works in the literature

Author(s) Model type Lead time Ordering cost Backorder 
price dis-
count

Safety factor

Annadurai and Uthayakumar 
(2010)

Buyer Controllable Fixed No Fixed

Arkan and Hejazi (2012) Integrated Controllable Variable No Variable
Ben-Daya and Hariga (2004) Integrated Variable Fixed No Fixed
Chaharsooghi and Heydari 

(2010)
Integrated Fixed Variable No Variable

Glock (2012) Integrated Variable Fixed No Variable
Heydari et al. (2016) Integrated Controllable Fixed No Variable
Ho and Hsiao (2012) Integrated Variable Fixed No Fixed
Hossain et al. (2017) Integrated Stochastic Fixed No –
Hsiao (2008) Integrated Variable Fixed No Variable
Huang (2010) Integrated – Variable No –
Huang et al. (2010) Integrated – Variable No –
Jha and Shanker (2013) Integrated Controllable Fixed No Variable
Kurdhi et al. (2015) Buyer Controllable Variable Yes Fixed
Liao and Shyu (1991) Buyer Controllable Fixed No Fixed
Li et al. (2011) Integrated Controllable Fixed No Fixed
Lin (2010) Integrated Controllable Fixed Yes Fixed
Lou and Wang (2013) Integrated – Variable – –
Mandal and Giri (2015) Integrate Controllable Fixed No Variable
Nematollahi et al. (2017) Integrated Fixed Fixed No Fixed
Nouri et al. (2018) Integrated Fixed Fixed No Fixed
Priyan and Uthayakumar 

(2014)
Integrated Controllable Variable Yes Fixed

Sajadieh and Jokar (2009) Integrated Stochastic Fixed No Fixed
Sarkar et al. (2015) Buyer Controllable Fixed Yes Variable
Zhou et al. (2012) Integrated Stochastic Fixed No Fixed
Our paper Integrated Variable Variable Yes Variable
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Symbols Description

Parameters
 D Annual demand at the buyer (units/year)
 P Production rate, where P = 1∕p

 S Vendor’s setup cost per setup ($∕setup)
 A0 Buyer’s original order processing cost per order ($∕order)
 Ts Setup time including transportation time
 Tt Transportation time
 � Fraction of transportation time Tt out of Ts , i.e, � = Tt∕Ts

 hb Unit holding cost at the buyer ( $/unit/year)
 hv Unit holding cost at the vendor ( $/unit/year)
 F Transportation costs per shipment ($∕shipment)
 �0 Buyer’s marginal profit ( $/unit)
 S1 Safety stock of the first batch
 S2 Safety stock of the jth batch, j = 2,… ,m

 r1 Reorder point of the first batch
 r2 Reorder point of the jth batch, j = 2,… ,m

 y1 Lead time demand of the first batch
 y2 Lead time demand of the jth batch, j = 2,… ,m

 g(y1) Probability density function of y1
 g(y2) Probability density function of y2
 � Standard deviation of the lead time demand
 �0 Upper bound of backorder ratio

Functions
 A(W) Buyer’s order processing cost as a function of capital expenditure W
 l(Q) Buyer’s replenishment lead time as a function of shipment size Q
 �(�x) Backorder rate as a function of backorder price discount �x
 EACb Expected annual cost for the buyer
 EACv Expected annual cost for the vendor
 JEAC Joint expected annual cost for the supply chain

 We make the following assumptions to develop the proposed model:

 (i) A single-vendor single-buyer inventory system is considered for trading a 
single type of product.

 (ii) The buyer places an order of size mQ which the vendor produces with a finite 
production rate P(> D) in a single setup but transfers the entire lot to the buyer 
over m deliveries of equal size.

 (iii) The buyer reviews his inventory continuously and plans for a replenishment 
whenever the inventory level drops to the reorder point r which is defined 
by r = Dl(Q) + k�

√
l(Q) , where Dl(Q) = expected demand during lead time, 

k�
√
l(Q) = safety stock.

 (iv) Lead time for receiving the first batch is proportional to batch size and 
fixed delay time due to machine setup time, and transportation time, i.e., 
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l(Q) = Qp + Ts (Kim and Benton 1995; Karmarker 1987). For the rest of the 
batches, replenishment lead time depends only on the transportation time 
Tt , because there will be sufficient inventory at the vendor for the jth batch 
( j = 2,… ,m, ) (see Hsiao 2008).

 (v) Transportation time Tt is a fraction of Ts such that Tt = �Ts (Glock 2012).
 (vi) Shortage is not allowed at the vendor but backorder is permitted at the buyer.
 (vii) The buyer provides backorder price discount to customers. The backorder 

ratio � is considered as variable which is proportion to the backorder price dis-
count �x offered by the buyer, where 𝛿 = 𝛿0𝜋x∕𝜋0, 0 ≤ 𝛿0 < 1 and 0 ≤ �x ≤ �0 . 
Therefore, if the backorder price discount �x is greater than the marginal profit 
�0 then the buyer may decide against offering the price discount (see Pan and 
Hsiao 2005; Lin 2008).

 (viii) Order processing cost per shipment (A(W)) is assumed to be strictly decreas-
ing function of capital expenditure. We take A(W) = A0e

−aW , where A0 is 
original order processing cost per shipment and a is the parameter which can 
be estimated using previous data.

4  Mathematical model

An equal-sized m-shipment policy for a single-vendor single-buyer supply chain is 
considered here. The buyer reviews his/her inventory continuously and places an 
order of size mQ whenever the inventory level falls to the reorder point. The vendor 
produces the total quantity mQ at one go and delivers it to the buyer over m ship-
ments. The buyer receives the first batch after lead time l(Q) which is proportional 
to shipment size (Q), and delay time due to machine setup, and transportation time 
(ts) . However, for receiving the remaining (m − 1) batches, the replenishment lead 
time depends only on the transportation time Tt because there will be sufficient units 
of the product at the vendor’s inventory for rest of the batches (see Hsiao 2008).

4.1  Buyer’s model

The buyer’s reorder point is the sum of expected lead time demand and safety 
stock. Therefore, the reorder point for the first batch is r1 = Dl(Q) + S1 , and for the 
jth batch ( j = 2, 3,… m) is r2 = DTt + S2 , where Dl(Q) and DTt are the expected 
lead time demands for the first batch and jth batch ( j = 2, 3,… m), respectively, 
and S1 = k1�

√
l(Q) and S2 = k2�

√
Tt are the safety stocks for the first batch and jth 

batch ( j = 2, 3,… m), respectively. Then, the buyer’s expected holding cost per unit 
time is given by (Ouyang et al. 2004; Pan and Hsiao 2005; Hsiao 2008)

Hence, the buyer’s expected annual cost is

hb

[
Q

2
+

1

m
S1 +

m − 1

m
S2 + (1 − �)

{
1

m
E1 +

m − 1

m
E2

}]
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where

is the expected shortage in the first replenishment cycle, and

is the expected shortage in the jth replenishment cycle, j = 2,… ,m.

In Eq. (1), the first, second, third and fourth terms represent respectively the order 
processing and shipment cost, holding cost, stockout cost, and annual expenditure to 
reduce order processing cost.

4.2  Vendor’s model

The vendor’s total cost includes setup cost and inventory holding cost. The vendor’s 
cycle time is mQ

D
 and, therefore, setup cost per unit time is DS

mQ
.

The vendor’s inventory is calculated as the difference of the vendor’s accumulated 
inventory and the buyer’s accumulated inventory (see Fig. 1). Therefore, the vendor’s 
average inventory is given by (Hsiao 2008):

Therefore, the vendor’s holding cost per unit time is

Hence, the vendor’s total cost per unit time is

 

(1)

EACb =
D

mQ
[A(W) + mF] + hb

[
Q

2
+

1

m
S1 +

(
1 −

1

m

)
S2 +

(
1 − �

m

){
E1

+ (m − 1)E2

}]
+

D

mQ
[�x� + �0(1 − �)]

{
E1 + (m − 1)E2

}
+W

E1 =
∫

∞

r1

(y1 − r1)g(y1)dy1

E2 =
∫

∞

r2

(y2 − r2)g(y2)dy2

Q

2

[
m(1 − Dp) − 1 + 2Dp

]

hvQ

2

[
m(1 − Dp) − 1 + 2Dp

]

(2)EACv =
DS

mQ
+

hvQ

2

[
n(1 − Dp) − 1 + 2Dp

]
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4.3  Joint annual cost

The joint expected annual cost of the supply chain is the sum of the buyer’s expected 
annual cost given by (1) and the vendor’s annual cost given by (2), i.e.,

Time

Vendor’s inventory level

Time

Vendor's accumulated inventory 

Buyer’s inventory level

Fig. 1  Inventory level diagrams for the vendor and the buyer



501

1 3

A vendor–buyer integrated inventory system with variable lead…

Substituting A(W) = Aoe
−aW and � =

�0�x

�0

 , Eq. (3) becomes

Our objective is to minimize (4) subject to 0 < 𝜋x ≤ 𝜋0.

Let R(m) = F +
S

m
> 0, and H(m) = hb + hv[m(1 − Dp) − 1 + 2Dp] > 0. Then the 

above problem takes the form

5  Solution methodology

Assuming that the lead time demand is normally distributed, the expected shortage 
quantity of the first shipment is given by

(3)

JEAC =
D

mQ
[A(W) + S + mF] +

{
hb(1 − �) +

D

Q
[�x� + �0(1 − �)]

}

1

m
{E1 + (m − 1)E2} + hb

(
Q

2
+

1

m
(S1 + (m − 1)S2)

)
+W

+
hvQ

2

[
n(1 − Dp) − 1 + 2Dp

]

(4)

JEAC =
D

mQ

[
Aoe

−aW + S + mF
]
+

{
D

Q

[
�x

(
�0�x

�0

)
+ �0

(
1 −

�0�x

�0

)]

+ hb

(
1 −

�0�x

�0

)}
1

m
{E1 + (m − 1)E2} + hb

(
Q

2
+

1

m
(S1 + (m − 1)S2)

)

+W +
hvQ

2

[
n(1 − Dp) − 1 + 2Dp

]

(5)

Minimize JEAC =
D

Q

[
Aoe

−aW

m
+ R(m)

]
+

QH(m)

2
+

hb

m
(S1 + (m − 1)S2)

+

[
hb

(
1 −

𝛿0𝜋x

𝜋0

)
+

D

Q

(
𝜋0 − 𝛿0𝜋x +

𝛿0𝜋
2
x

𝜋0

)]

1

m
{E1 + (m − 1)E2} +W

subject to 0 < 𝜋x ≤ 𝜋0.

(6)E1 =
∫

∞

r1

(y1 − r1)g(y1)dy1,
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where g(y1) =
1

�

√
2�
e
−

(y1−�)
2

2�2  for mean � and standard deviation �.

The expected shortage in the first replenishment cycle for a demand with mean 
Dl(Q) and standard deviation �

√
l(Q) during the lead time is given by

Taking z = y1−Dl(Q)

�

√
l(Q)

 and k1 =
r1−Dl(Q)

�

√
l(Q)

, Eq. (7) reduces to

where �(z) is the standard normal probability density function.
Again, taking Ψ(k1) = ∫

∞

k1
(z − k1)�(z)dz , Eq. (8) further takes the form

Proceeding in a similar fashion, the expected shortage for the jth replenishment 
cycle j = 2,… ,m, for a demand with mean DTt and standard deviation �

√
Tt during 

the lead time is given by

where Ψ(k2) = ∫
∞

k2
(z − k2)�(z)dz.

Using (9) and (10), problem (5) can be reformulated as

(7)E1 =
∫

∞

r1

(y1 − r1)√
2��

√
l(Q)

e
−

1

2

�
y1−Dl(Q)

�

√
l(Q)

�2

dy1.

(8)E1 = �

√
l(Q)

∫

∞

k1

(z − k1)�(z)dz,

(9)E1 = �

√
l(Q)Ψ(k1) = �

√
Qp + TsΨ(k1),

(10)E2 =
∫

∞

r1

(y2 − r2)g(y2)dy2 = �

√
TtΨ(k2),

(11)

Min JEAC(Q, k1, k2,𝜋x,W,m)

=
D

Q

�
Aoe

−aW

m
+ R(m)

�
+

QH(m)

2
+ hb

�
1

m
k1𝜎

√
Qp + Ts +

m − 1

m
k2𝜎

√
Tt

�

+

�
hb

�
1 −

𝛿0𝜋x

𝜋0

�
+

D

Q

�
𝜋0 − 𝛿0𝜋x +

𝛿0𝜋
2
x

𝜋0

��

× 𝜎

�
1

m

√
Qp + TsΨ(k1) +

m − 1

m

√
TtΨ(k2)

�
+W

subject to 0 < 𝜋x ≤ 𝜋0.



503

1 3

A vendor–buyer integrated inventory system with variable lead…

It is difficult to show that the cost function JEAC given in (11) is jointly convex with 
respect to the decision variables Q, k1, k2,�x,W, and m. In order to find the optimal 
values of these decision variables numerically, we would follow a sequential search 
algorithm in which we search for the optimal value of one variable at a time. Before 
we outline the algorithm, we derive the following lemmas:

Lemma 1 For fixed values of �x, k1, k2,W, and m,  the cost function JEAC is convex 
with respect to Q, and the optimal Q must satisfy �JEAC

�Q
= 0.

Proof Differentiating JEAC partially with respect to Q,  we get

In order to write (12) in compact form, we use the following notations:

(12)

�JEAC

�Q
=

H(m)

2
−

D

Q2

�
R(m) +

Aoe
−aW

m

�
+

�p

2m
√
Qp + Ts�

hbk1 + Ψ(k1)

�
hb

�
1 −

�0�x

�0

�
+

D

Q

�
�0 − �0�x +

�0�
2
x

�0

���

−
�D

�
�0 − �0�x +

�0�
2
x

�0

�

mQ2

�√
Qp + TsΨ(k1) + (m − 1)

√
TtΨ(k2)

�

=
H(m)

2
+

1√
Qp + Ts

�
�phb

2m

�
k1 + Ψ(k1)

�
1 −

�0�x

�0

��

−
�pΨ(k1)D

�
�0 − �0�x +

�0�
2
x

�0

�

2m

�
1

Q

�

− D

⎛⎜⎜⎜⎝
R(m) +

Aoe
−aW

m
+

(m − 1)�
�
�0 − �0�x +

�0�
2
x

�0

�√
TtΨ(k2)

m

⎞⎟⎟⎟⎠

�√
Qp + Ts

Q2

�

−
�D

�
�0 − �0�x +

�0�
2
x

�0

�
TsΨ(k1)

m

�
1

Q2

��

Δ1 =
𝜎phb

2m

�
k1 + Ψ(k1)

�
1 −

𝛿0𝜋x

𝜋0

��
> 0, Δ2 =

𝜎pΨ(k1)D
�
𝜋0 − 𝛿0𝜋x +

𝛿0𝜋
2
x

𝜋0

�

2m
> 0,

Δ3 = D

⎛⎜⎜⎜⎝
R(m) +

Aoe
−aW

m
+

(m − 1)𝜎
�
𝜋0 − 𝛿0𝜋x +

𝛿0𝜋
2
x

𝜋0

�√
TtΨ(k2)

m

⎞
⎟⎟⎟⎠
> 0,

Δ4 =
𝜎D

�
𝜋0 − 𝛿0𝜋x +

𝛿0𝜋
2
x

𝜋0

�
TsΨ(k1)

m
> 0.
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Equation (12) then takes the form

Let

Then we have

One can see that u2(Q) is an increasing function of Q for Q > 0.

an unique value of Q(= Q0a) exists which satisfies u2(Q0a) = 0 and U(Q0a) = 0.

It is easy to see that u1(Q) is a decreasing function of Q for Q > 0 and u1(Q) > 0.

For any Q1 ∈ (0,Q0a),Q2 ∈ (0,Q0a) and Q1 < Q2, we have

and

Hence,

i.e., U(Q1) < U(Q2) < 0 , which indicates that U(Q) is an increasing function of Q 
on the interval (0,Q0a).

(13)
�JEAC

�Q
=

H(m)

2
+ (Qp + Ts)

−
1

2

�
Δ1 −

Δ2

Q
− Δ3

�√
Qp + Ts

Q2

�
−

Δ4

Q2

�

U(Q) = u1(Q)u2(Q), where

u1(Q) = (Qp + Ts)
−

1

2

u2(Q) = Δ1 −
Δ2

Q
− Δ3

�√
Qp + Ts

Q2

�
−

Δ4

Q2

�JEAC

�Q
=

H(m)

2
+ u1(Q)u2Q

Since lim
Q→0+

u2(Q) → −∞ and lim
Q→+∞

u2(Q) → Δ1 > 0,

u1(Q1) > u1(Q2) > 0

0 > u2(Q1) > u2(Q2)

u1(Q1)u2(Q1) < u1(Q2)u2(Q2) < 0,
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Thus, �JEAC
�Q

=
H(m)

2
+ U(Q) is also an increasing function of Q on the interval 

(0,Q0a).

and �JEAC
�Q

 is an increasing function of Q on the interval (0,Q0a) , there exists a unique 

solution to the equation �JEAC
�Q

= 0 on the interval (0,Q0a).

Let us suppose that the equation �JEAC
�Q

= 0 has a solution Q0b on the interval (0,Q0b).

We know that

 (i) 𝜕JEAC

𝜕Q
< 0 for 0 < Q < Qob.

 (ii) 𝜕JEAC

𝜕Q
> 0 for Qob < Q < Qoa.

 (iii) 𝜕JEAC

𝜕Q
> 0 for Q > Q0a . This is because u1(Q) > 0, u2(Q) > 0 . Hence, 

U(Q) = u1(Q)u2(Q) > 0 and 𝜕JEAC
𝜕Q

=
H(m)

2
+ U(Q) > 0.

This means that 𝜕JEAC
𝜕Q

< 0 for 0 < Q < Q0b and 𝜕JEAC
𝜕Q

> 0 for Q > Q0b.

Thus, JEAC is convex in Q and the minimum value of JEAC occurs at the unique 
value Q0b.

Equating �JEAC
�Q

 equal to 0 and solving it, we have

where G(�x) =
(
�0 − �0�x +

�0�
2
x

�0

)
, J(�x) =

(
1 −

�0�x

�0

)
.

Hence, Lemma 1 is proved.   □

Lemma 2 For fixed value of Q,�x, k2,W, and m,  the cost function JEAC is convex 
with respect to safety factor k1 and the optimal k1 must satisfy �JEAC

�k1
= 0.

Proof Differentiating JEAC partially with respect to k1 , we get

Since lim
Q→0+

𝜕JEAC

𝜕Q
= −∞,

𝜕JEAC

𝜕Q

||||Q=Q0a

=
H(m)

2
> 0

(14)

Q =

������2D

R(m) +
1

m

�
Aoe

−aW + �G(�x)
�√

Qp + TsΨ(k1) + (m − 1)
√
TtΨ(k2)

��

H(m) +
�p

m
√
Ts+Qp

�
hbk1 + Ψ(k1)

�
hbJ(�x) +

D

Q
G(�x)

��
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Clearly, 𝜕
2JEAC

𝜕k2
1

> 0 . Hence the cost function in (11) is convex with respect to k1(> 0).

Setting �JEAC
�k1

= 0 and solving for k1 , we obtain

Hence Lemma 2 is proved.   □

Lemma 3 For fixed value of Q,�x, k1,W, and m,  the cost function JEAC is convex 
with respect to safety factor k2 and the optimal k2 must satisfy �JEAC

�k2
= 0.

Proof Proof is is similar to that of Lemma 2. Solving the first order optimality con-
dition for k2 , we obtain

Hence Lemma 3 is proved.   □

Lemma 4 For fixed value of Q, k1, k2,W, and m,   the cost function JEAC is convex 
with respect to �x and the optimal �x must satisfy �JEAC

��x

= 0.

Proof Differentiating JEAC partially with respect to �x , we get

(15)

�JEAC

�k1
=
�
√
Ts + Qp

m

�
hb −

�
hb

�
1 −

�0�x

�0

�
+

D

Q

�
�0 − �0�x +

�0�
2
x

�0

��
Φ(k1)

�

(16)
�
2JEAC

�k2
1

=�

�
hb

�
1 −

�0�x

�0

�
+

D

Q

�
�0 − �0�x +

�0�
2
x

�0

��
�(k1)

√
Qp + Ts

(17)Φ(k1) =
hbQ

hbQ
(
1 −

�0�x

�0

)
+ D

(
�0 − �0�x +

�0�
2
x

�0

)

(18)Φ(k2) =
hbQ

hbQ
(
1 −

�0�x

�0

)
+ D

(
�0 − �0�x +

�0�
2
x

�0

)

(19)
�JEAC

��x

=

�
D

Q

�
2�0�x

�0

− �0

�
−

hb�0

�0

�
�Ψ(k)

√
Qp + Ts

(20)
𝜕
2JEAC

𝜕𝜋2
x

=
2D𝛿0

Q𝜋0
𝜎Ψ(k)

√
Qp + Ts > 0
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Hence the cost function JEAC is convex with respect to �x(≥ 0).
Setting �JEAC

��x

= 0 and solving for �x , we obtain

Hence Lemma 4 is proved.   □

Lemma 5 For fixed value of Q, k1, k2,�x,W, and m,  the cost function JEAC is con-
vex with respect to W and the optimal W must satisfy �JEAC

�W
= 0.

Proof The proof is straightforward as it easy to see that

Setting �JEAC
�W

= 0 and solving for W, we obtain

Hence Lemma 5 is proved.   □

It is obvious from expressions given in (17), (18), (21), and (23) that k1, k2,�x 
and W are not independent of each other; all are dependent on Q. To find the solu-
tion of the model, we adopt the solution algorithm proposed by Ben-Daya and 
Hariga (2004). First, the algorithm is initiated by setting �x = �0 and W = 0. Next, 
an initial value of Q is calculated by setting the stochastic parameter equal to 
zero in (14). These initial values are used to determine the corresponding values 
of k1, k2,�x and W using (17), (18), (21), and (23). This process is followed till a 
suitably stable solution is reached. It is to be noted here that if the updated value 
of �x is found to be greater than the initial value �0 , then the solution is not fea-
sible. In this case, the updated value is rejected (see Pan and Hsiao 2005; Sarkar 

(21)�x =
1

2

(
hbQ

D
+ �0

)

(22)𝜕
2JEAC

𝜕W2
=
a2DAoe

−aW

mQ
> 0

(23)W =
1

a
log

(
aDAo

mQ

)

Table 2  Parameter-values

Parameter Value Parameter Value Parameter Value

D 600 units/year P 2000 units/year S $1500/setup
A0 $400/order hb $25/unit/year hv $20/unit/year
�0 $150/unit/year F $35/shipment tset 0.4
a 0.01 � 7 � 0.5
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et al. 2015). The solution procedure can, therefore, be stated as given in the fol-
lowing algorithm:

5.1  Solution algorithm

Step 1  Set JEAC∗ = ∞,m = 1 and 𝜖 > 0 (a small positive number).
Step 2  Set �x = �0, k1 = 0, k2 = 0,W = 0 and compute Q0 from Eq. (14)
Step 2  Compute k1 and k2 from (17) and (18) using Q0,�x, and 

Ψ(k1) = ∫
∞

k1
(z − k1)�(z)dz and Ψ(k2) = ∫

∞

k2
(z − k2)�(z)dz.

Step 3  Compute �x from (21) using Q. If �x ≥ �0, set �x = �0.

Step 4  Compute W from (23) using Q.
Step 5  Compute Q from (14) using �x, k1, k2, and W.

Table 3  Optimal results for different values of �0
�0 Model with investment Model without investment % Sav-

ings
Q∗ k∗

1
k∗
2

�
∗
x

�
∗ A(�∗) m∗ JEAC Q∗ k∗

1
k∗
2

�
∗
x

m∗ JEAC

0.0 52 2.19 2.19 – 188 61 7 6367 57 2.16 2.16 – 7 6713 5.15
0.5 52 2.14 2.14 76 188 61 7 6363 57 2.10 2.10 76 7 6709 5.16
1.0 52 2.07 2.07 76 188 61 7 6358 57 2.04 2.04 76 7 6704 5.16
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Fig. 2  Impact of transportation cost on shipment size and number of shipments a F versus Q, b F versus 
m 
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  If |Q − Q0| ≤ �, compute JEAC(Q, k1, k2,�x,W,m) using (11) and go to 
Step 6. Else, set Q0 = Q and go to Step 3.

Step 6  If JEAC∗ ≥ JEAC(Q, k1,�x,W,m), set JEAC∗ = JEAC(Q, k1,�x,W,m),

Q∗ = Q,�∗
x
= �x, k

∗
1
= k1, k

∗
2
= k2,W

∗ = W, m∗ = m + 1 and go to Step 2. 
Else, m∗ = m − 1 and stop. The corresponding values of the control param-
eters for m∗ = m − 1 give the optimal solution.

6  Numerical results and sensitivity analysis

In this section, we demonstrate the proposed model using a numerical example. 
Table  2 provides the parameter-values which are used to illustrate the solution 
procedure of the developed model. Following the suggested algorithm, we obtain 
the results for the case when lead time demand follows normal distribution and 
backorder rate � takes values 0.0,  0.5,   and 1. To demonstrate the impacts of 
investment in ordering cost reduction, we provide the optimal results in Table 3 
for the models with and without investments. From Table 3, we see that the pro-
posed model reduces the joint expected annual cost upto 5.16% . Thus the pro-
posed model is more efficient than the fixed ordering cost model. Furthermore, 
for fully lost sale case ( �0 = 0 ), the joint expected annual cost is maximum, and 
for fully backlogged case ( �0 = 1) , it is minimum for both the models. On the 
other hand, from Table  3, it is also observed that a higher value of the upper 
bound of backorder ratio �0 decreases the safety factor and the joint expected 
annual cost without affecting the number of shipments.

In the following, we investigate the sensitivity of key model-parameters on the 
optimal results:
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vs. vs. vs. (a) (b) (c)

Fig. 3  Impact of lead time variability on optimal decisions a ts versus r, b ts versus S, c ts versus JEAC 
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•  Effect of transportation cost

When the transportation cost varies from 20 to 640,  the optimal values of ship-
ment size and number of shipments for both the models are shown in Fig. 2a, b. 
From Fig. 2a, b, the following observations are made:

 (i) The optimal shipment size for both the models gradually increases for increas-
ing value of the transportation cost. However, the shipment size of the pro-
posed model is always lower than that of fixed ordering cost model.

 (ii) The number of shipments decreases as the transportation cost increases.

The above two observations are not unexpected because, in practice, once the trans-
portation cost increases then the buyer tries to reduce number of shipments by 
increasing the batch size.

•  Effect of lead time variability

Figure 3a, b exhibits the effects of lead time variability on the optimal reorder point 
and safety stock. One can notice that there is a linear relationship between trans-
portation delay and lead time. When the value of ts varies from 0.1 to 0.9, Fig. 3a, 
b shows that reorder point and safety stock increase almost linearly with increase in 
setup and transportation delay. Since the reorder point displays the level of inven-
tory, it has a significant effect on the total cost. A higher reorder point indicates 
higher holding cost which results in an increase in the expected annual cost of the 
supply chain (see Fig. 3c).

In
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t (

W
)

%
 sa
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ng

s

Fig. 4  Impact of ordering cost reduction parameter � on optimal investment and savings
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•  Effect of ordering cost reduction parameter

Figure 4 exhibits the effect of exponential ordering cost reduction parameter a on 
the optimal results. From Fig. 4, we see that ordering cost reduction investment W 
tends to increase for a ∈ [0.002, 0.005] and decrease for a ∈ [0.006, 0.2] . However, 
the savings rate increases for a ∈ [0.002, 0.2] because the parameter a characterizes 
the ordering cost improvement rate of the related investment.

  6.1  Managerial insights

In the business world, it is quite impossible to predict customers’ demand in 
advance. Therefore, the consideration of uncertain demand is appropriate across all 
industries. Additionally, when the demand is uncertain, lead time plays an important 
role. Because of economic uncertainty, companies are searching for alternative ways 
to stay competitive. Many industries would like to spend more money in order to 
improve customer service. In general, a buyer could offer a price discount on the 
stock-out item to secure more backorders; it may make the customers more willing 
to stay for the desired items. Through controlling price discount, a higher customer 
loyalty can be generated. In view of that, numerous companies such as Procter & 
Gamble, South west Airlines, Nike, Disney, Nordstrom, McDonald’s, Wal-Mart, 
Marriott Hotels, and several Japanese companies such as Canon, Sony, Toyota, and 
European companies such as Bang & Olufsen, IKEA, Club Med, Electrolux, Lego, 
Nokia, Tesco, focus on customers and are organized to respond effectively to chang-
ing customer needs. Certainly, these companies attempt to produce high customer 
loyalty so that, by price discount, they can raise the customer’s motivation to stay 
for backorder. Another important technique used along with the economic order 
quantity is the reorder point and safety stock. According to Chen (1998), the reorder 
point quantity reflects the level of inventory that triggers the placement of an order 
for additional units whereas the quantity associated with safety stock protects the 
company from stock-outs or backorders.

The following managerial implications of the proposed model can be derived 
based on the numerical results and effects of model-parameters on the optimal 
solution.

• An increased value of lead time demand deviation � increases the market 
demand uncertainty as well as out of stock probability. Therefore, when the lead 
time demand deviation is high, it is advisable to the supply chain manager to 
consider more safety stock. This safety stock will protect the system from the 
risk of stock-out when the lead time demand is high.

• If transportation delay starts to increase, the total cost of the supply chain will 
shoot rapidly. So, an operations manager must monitor for this condition. In 
practice, in order to minimize the transportation delay and ultimately the cost, 
WalMart has invested significantly on its distribution network.

• For higher transportation cost, it is advisable to the supply chain manager to 
reduce the number of shipments by increasing the shipment size.
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• When the buyer’s holding cost is high, it is preferable to hold lesser safety stock.
• The ordering cost reduction investment will be beneficial especially to inventory 

systems where the buyer faces high ordering cost originally.

7  Conclusions

In this paper, a single-buyer single-vendor integrated model is developed for a single 
type of product. It extends the existing literature by including some realistic assump-
tions such as stochastic lead time demand, investment to reduce buyer’s ordering 
cost, and backorder price discount. Most of the existing works on integrated model 
assumes that lead time is constant or stochastic. However, in reality, lead time may 
not be constant as it depends on many factors such as setup time, transportation 
time, production time, etc. In this paper, we have considered lead time as a func-
tion of batch size, setup time, and transportation time. Further, we have tried to 
reduce the total supply chain cost by reducing the order processing cost. A numeri-
cal experiment is performed to examine the effects of variable lead time, backorder 
price discount, and reduction in ordering cost together on the optimal decisions of 
the integrated model.

Additionally, a sensitivity analysis is carried out to investigate the effect of major 
parameters on the optimal results. Our numerical study indicates that a high value of 
transportation cost increases the batch size but decreases the number of shipments 
in order to save the transportation cost. A higher transportation delay increases the 
buyer’s reorder point and safety stock to protect against shortages. We have shown 
graphically that the supply chain savings increases for increasing value of the param-
eter of exponential ordering cost reduction function. This indicates that the model 
with ordering cost reduction is superior to the model with fixed ordering cost.

There are several scopes of further research, e.g., one can consider imperfect pro-
duction system at the vendor’s end. Also, it would be interesting to consider the pre-
sent model with trade-credit financing.
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