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Abstract  The need to refuel aircraft traveling long distances is important because 
fuel tank capacities limit the range of aircraft, and landing to refuel may not be prac-
tical or even possible. To overcome this difficulty, aerial refueling can be performed 
en route along the aircraft’s travel path to extend its range. This paper considers the 
problem of identifying the locations along an aircraft flight path at which to conduct 
aerial refueling, given a limited number of refueling stations. Due to the inherent 
uncertainty of real-world cases, the cost of refueling is considered as an interval 
number, and the problem is mathematically presented as an interval multi-objective 
zero-one integer programming model. To solve the model, a new version of the 
modified label-correcting method and a genetic algorithm are proposed. Moreover, 
the applicability and efficiency of the proposed solution approaches are examined 
and compared using some randomly generated test problems.
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1  Introduction

Vehicles have different fuel tank capacities, and these capacities limit their range. 
Thus, any vehicle can travel a limited distance even with a full fuel tank. Aerial 
refueling is necessary for aircraft traveling beyond their fuel tank range when 
landing to refuel is undesirable, impractical, or impossible. To perform refueling 
operations, the following initial information may be needed in advance.

•	 The number of required refuelings along a certain route to reach the destination;
•	 The proper locations for a set of refueling operations;
•	 The amount of fuel that the vehicle consumes while traveling along a route.

Refueling problems have attracted attention from researchers in areas such as 
ground transportation and aviation organization (Berman and Krass 1998; Kuby 
et al. 2009; Jin et al. 2006; Kaplan and Rabadi 2012).

In the ground transportation area, Kuby and Lim (2005) presented a flow refu-
eling location model (FRLM). The FRLM determines optimal locations for refu-
eling stations considering the limitation of vehicle ranges. To solve the FRLM, Lim 
and Kuby (2010) adopted three heuristic algorithms. However, their algorithms took 
a long time to solve problems in large-scale networks. To overcome this shortcom-
ing, Capar and Kuby (2011) presented a radically different mixed-integer program-
ming formulation. The proposed model solved the FRLM to optimality as fast as or 
faster than the aforementioned heuristic algorithms. Wang and Lin (2009) proposed 
a refueling-station-location model based on a mixed-integer programming problem. 
The major advantage of this model is that it does not require additional preproc-
essing for the model solutions, in contrast to the FRLM. A hybrid model with two 
objective functions was also investigated by Wang and Wang (2010). They used a 
mixed-integer programming model to locate the refueling stations serving inter-city 
and intra-city travel. MirHassani and Ebrazi (2013) reformulated a previously intro-
duced FRLM, and proposed a new mixed-integer linear programming problem. The 
computation time of the proposed model was also compared with that of Wang and 
Lin’s (2009) model. Other studies concerning the FRLM include the capacitated 
flow refueling location model (Upchurch et al. 2009), comparison of p-median and 
the FRLM (Upchurch and Kuby 2010), drivers’ deviations (Kim and Kuby 2012), 
heuristic approaches to solve the deviation flow refueling location (Kim and Kuby 
2013), and dispersion of candidate sites on arcs (Kuby and Lim 2007).

As mentioned above, refueling problems have also been investigated in aviation 
organizations. Sundar and Rathinam (2014) presented a mixed-integer linear pro-
gramming formulation for routing a small unmanned aerial vehicle by a series of 
targets and refueling depots. This formulation minimized the total required fuel such 
that all targets are visited. Moreover, Levy et al. (2014) considered a multiple depot, 
multiple unmanned vehicle routing problem such that all the specified targets should 
be visited and the total travel cost of the vehicles should be minimized.

Aerial refueling is one of the solutions used to refuel aircraft conducting oper-
ations over an extended duration. Transferring fuel from a tanker aircraft to a 
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receiver aircraft in the air is called aerial refueling. Tanker aircraft can carry a 
significant amount of fuel to meet the requirements of receiver aircraft using spe-
cial equipment and techniques during their flights. The first aerial refueling was 
performed in 1917 by the Russian-American Alexander de Seversky (Thomas 
et al. 2014). The key purpose of aerial refueling is to increase aircraft endurance. 
Due to its advantages, aerial refueling has been extensively investigated, devel-
oped, and employed in many aerial missions. Its first military application was in 
the Korean War (Thomas et al. 2014). A number of studies have been devoted to 
aerial refueling problems. In this context, Bush (2006) investigated the problem 
of routing an aircraft, locating a fixed number of aerial refueling points to be 
served by tanker aircraft based on predetermined locations, and minimizing the 
total fuel consumptions of both the receiver aircraft and the tanker aircraft. The 
problem of finding the least costly route for an aircraft between a fixed origin and 
destination locations while ensuring sufficient fuel is either on board or acquired 
en route via aerial refueling for the completion of the route was studied by Kan-
non et al. (2014). Kannon et al. also proved that this problem is NP-hard. Kan-
non et al. (2015) subsequently considered the aircraft routing problem with aerial 
refueling. To deal with this problem, they presented a multi-objective mixed-inte-
ger programming model.

Our main focus in this paper is the aerial refueling operation for an aircraft. An 
arbitrary route between a fixed origin and a specified destination from a network is 
considered. The aircraft should travel this route without running out of fuel. Obvi-
ously, if the amount of fuel that the aircraft needs to travel the route is greater than 
its range, one or more refueling operations are needed. Moreover, it is assumed 
that there are refueling tankers in some predetermined stations on the ground. We 
would like to determine the nodes at which aerial refueling should be performed 
and allocate the stations containing tanker aircraft to these nodes. As the alloca-
tion process and refueling operations involve some costs, it would be reasonable to 
seek appropriate solutions that minimize the total cost as well as the number of refu-
eling operations. To deal with the problem mathematically, parameters such as the 
costs of serving aerial refueling nodes by tanker aircraft and fuel consumption of 
the receiver aircraft should be available. In some of the real-world situations, the 
values of parameters cannot be determined exactly. For instance, the amount of fuel 
that an aircraft needs to travel a route depends on weather conditions, altitude, gross 
weight of the aircraft, etc. Any change in the values of these parameters affects the 
amount of fuel consumed. Uncertainty is an inherent aspect of measurements, and it 
would be more realistic to consider uncertain inputs for the parameters of the aerial 
refueling problem. Uncertainty may be interpreted as randomness or fuzziness (Wu 
2009). However, specifying distributions of random parameters and membership 
functions of fuzzy numbers is very questionable. Interval programming may provide 
an alternative choice for dealing with uncertain parameters (Oliveira and Antunes 
2009; Urli and Nadeau 1992; Rivaz and Yaghoobi 2015; Hladik 2016). In interval 
programming, uncertain parameters are modeled by closed intervals, which may be 
easier to handle.

To deal with the newly proposed aerial refueling problem, a multi-objective 
zero-one integer programming model with interval objective function coefficients is 



1916	 F. Ferdowsi et al.

1 3

proposed in this paper. The combination of multi-objective programming, interval 
programming, and refueling requirements of a receiver aircraft with limited range 
in this problem sets it apart from existing aerial refueling research. To handle the 
model, two new algorithms are developed based on the inherent multi-objective 
nature of the problem. Moreover, the performance of the algorithms is analyzed and 
compared through some examples.

The remainder of this paper is organized as follows. Some preliminaries are 
stated in Sect.   2. Section   3 describes the problem and proposes its mathemati-
cal programming model. In Sect. 4, two algorithms are presented to solve the pro-
posed model. Numerical examples and computational results are provided in Sect. 5. 
Finally, Sect. 6 is devoted to the conclusion.

2 � Preliminaries

In this section, some initial concepts and definitions that will be used later are 
reviewed.

A closed interval in ℝ is defined as

where al and au denote the lower and upper bounds of the interval, respectively. 
An interval with equal lower and upper bounds identifies a real number, i.e., 
a = [a, a], a ∈ ℝ.

Let A = [al, au] and B = [bl, bu] be two closed intervals in ℝ . Then, by definition, 
their sum is

Different order relations have been proposed on closed intervals (Zapata et al. 2013; 
Wu 2009). The strong order, “ ⩽I ” , will be applied in this paper. A is strongly less 
than or equal to B (written as A ⩽I B ) if and only if au ≤ bl . In fact, A ⩽I B indi-
cates that any value from the interval A = [al, au] is smaller than or equal to any 
value from the interval B = [bl, bu] . The strong order is the common and by far most 
prominent sense of interval order (Zapata et al. 2013). It is not difficult to say that 
“ ⩽I ” is a partial order on the set of all closed intervals in ℝ . The word “partial” in 
the name “partial order” is used as an indication that not every pair of intervals need 
be comparable. Intervals are frequently partially ordered and cannot be compared. 
When we are forced to compare many intervals, many incomparable intervals may 
exist (Okada and Gen 1993). To select the smaller interval of a set of incompara-
ble intervals, some studies suggest converting them to crisp values (Sengupta et al. 
2001). An important deficiency of this approach is that a considerable portion of 
the information of the data of the problem may be ignored during the conversion. 
Therefore, to overcome this deficiency in comparisons, we retain all incomparable 
intervals for further consideration. For more details on interval analysis, the studies 
of Okada and Gen (1993) and Moore et al. (2009) are suggested.

In the following, a traditional multi-objective integer programming problem is 
defined as

[
al, au

]
=
{
t ∈ ℝ|al ≤ t ≤ au

}
,

A + B = {a + b|a ∈ A, b ∈ B} =
[
al + bl, au + bu

]
.
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where

•	 X ⊆ ℤn is a finite feasible set (here ℤ denotes the set of all integers).
•	 �i� =

∑n

j=1
cijxj for i = 1,… , p and cij, i = 1,… , p , j = 1,… , n are real numbers.

More explicitly, X = {� ∈ ℤn|A� = �, � ≥ 0} , A ∈ ℝm×n, � ∈ ℝm . Many multi-objec-
tive integer programs will actually have X ⊆ {0, 1}n.

In multi-objective optimization problems, it is rarely possible to find a solution that 
optimizes all objective functions simultaneously. Hence, the concept of an efficient 
solution is used instead of the optimal solution. In the efficient solution set, no improve-
ment in any objective function is possible without sacrificing at least one of the other 
objective functions. To present the definition of efficiency, an order relation in ℝp is 
needed. Let � = (a1,… , ap)

t and � = (b1,… , bp)
t be two vectors in ℝp . Then � ≼ � if 

ai ≤ bi for i = 1,… , p and there is also at least one 1 ≤ q ≤ p with aq < bq.

Definition 1  A feasible solution �0 of Problem (1) is efficient if there is no � ∈ X 
such that C� ≼ C�0.

The above definition can be found in many references, such as Steuer (1986) and 
Ehrgott (2005).

A multi-objective integer programming problem with interval objective function 
coefficients is as follows:

where � is a set of p × n matrices with each row in the form of �i , with elements 
cij = [cl

ij
, cu

ij
] and i = 1,… , p , j = 1,… , n.

For every � ∈ X , Z(�) = ([zl
1
(�), zu

1
(�)],… , [zl

p
(�), zu

p
(�)]) =

([
∑n

j=1
cl
1j
xj,

∑n

j=1
cu
1j
xj],… , [

∑n

j=1
cl
pj
xj,

∑n

j=1
cu
pj
xj]) , is an interval-valued vector. 

Therefore, Problem (2) could also be written as

(1)
min ∶ �� = (�1�,… , �p�)

s.t. � ∈ X,

(2)
min ∶ Z(�) = ��

s.t. � ∈ X,

� ∈ � ,

(3)
min ∶ zi(�) =

n∑
j=1

[
cl
ij
, cu

ij

]
xj, i = 1,… , p,

s.t. � ∈ X.
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It is clear that if coefficients [cl
ij
, cu

ij
] , i = 1,… , p , j = 1,… , n are degenerated to real 

numbers, then Problem (2) is reduced to Problem (1). For simplicity, (2) is called an 
interval multi-objective integer (IMOI) programming problem.

By [al, au] <I [b
l, bu] , we mean au < bl , and hence the following order on inter-

val-valued vectors is stated. Let  and  be two interval-valued vectors as

and

By  ≼IV  , we mean [al
i
, au

i
] ⩽I [b

l
i
, bu

i
], i = 1,… , p , and there exists at least one 

1 ≤ j ≤ p such that [al
j
, au

j
] <I [b

l
j
, bu

j
] . Now, considering the above-mentioned order 

on interval vectors, the concepts of efficiency, nondominance, and dominance are 
introduced for the IMOI Problem (2).

Definition 2  A feasible solution �0 of Problem (2) is IV-efficient if there exists 
no � ∈ X such that C� ≼IV C�0 . If �0 is IV-efficient, C�0 is called a nondominated 
interval-valued vector. If �1, �2 ∈ X and C�1 ≼IV C�2 , C�1 dominates C�2.

3 � Problem statement

Let � be the shortest path from s� to t� with the set of nodes N� (which also contains 
s� and t� ) and the set of arcs E� . Now, consider an aircraft that is traveling from the 
origin, s� , to the destination, t� , along the path � . It is assumed that the aircraft has 
a full tank of fuel at the origin and may not refuel at the destination node (Kannon 
et al. 2015). Due to the limited range of the aircraft, it may run out of fuel before 
reaching the destination; therefore, aerial refueling is necessary. It is assumed that 
the nodes with no possibility of refueling are removed from the path at the begin-
ning. Hence, there is the possibility of refueling on all nodes of the path. To perform 
aerial refuelings, all valid combinations of refueling nodes are found (Kuby and Lim 
2005). Each valid combination is a subset of N� , which contains the possible aerial 
refueling nodes.

Undoubtedly, the range of the aircraft, R, and the amount of fuel that is con-
sumed by the aircraft to travel a subpath between any two nodes i and j on path � , 
f�(i, j) , play essential roles in determining the valid combinations. The amount of 
fuel that the aircraft consumes to travel a subpath may change depending on dif-
ferent factors such as weather, airspeed, altitude and gross weight (Kannon et al. 
2015). Hence, it would be more meaningful to consider the amount of 

 =

([
al
1
, au

1

]
,
[
al
2
, au

2

]
,… ,

[
al
p
, au

p

])

 =

([
bl
1
, bu

1

]
,
[
bl
2
, bu

2

]
,… ,

[
bl
p
, bu

p

])
.



1919

1 3

Air refueling tanker allocation based on a multi‑objective…

consumable fuel needed to travel a subpath as an uncertain value. In this sense, it 
can be interpreted as an interval number, i.e. f�(i, j) = [f l

�ij
, f u
�ij
] . Here, R could also 

be considered as an interval number with equal lower and upper bounds.
In what follows, to find valid combinations of aerial refueling nodes on path 

� , a network denoted by � = �( �, �) is constructed (MirHassani and Ebrazi 
2013). In this network,  � and � define the sets of nodes and arcs on path � . 
Before starting to construct � , the notation ord�(i) is defined as an ordering 
index of node i in the path sequence � . For instance, the ordering index of node 
C on path � ∶ s� − A − B − C − D − t� is ord�(C) = 4 . To construct � , each node 
i ∈ N� should be connected to any other node j ∈ N� if the ordering index of i is 
less than the ordering index of j in the path sequence � ( ord�(i) < ord�(j) ) and the 
aircraft is able to start from i with a full tank of fuel and can reach j without run-
ning out of fuel. In other words,

As stated before, “ ⩽I ” denotes the strong order between interval numbers. Since 
f�(i, j) ⩽I R means that any value from the interval f�(i, j) is smaller than or equal 
to any value from the interval R. Thus, the aircraft is guaranteed to never run out of 
fuel on the subpath between nodes i and j on path � . If in this process we encoun-
ter a node that could not be connected to any other nodes with a larger ordering 
index, then path � is infeasible, i.e., this path cannot be traveled along due to the fuel 
capacity restriction. In � , each arc corresponds to the consecutive feasible aerial 
refueling, and each directed path from s� to t� shows a feasible combination of aerial 
refuelings that can refuel path � . To further clarify, a simple example is given here.

Example 1  Consider a specified path � with six nodes, s� − A − B − C − D − t� , and 
an aircraft with R = [90,000, 90,000] = 90,000 (measured in pounds) that is going to 
fly from origin s� to destination t� . Moreover, suppose f�(s�,A) = [20,000, 25,000] , 
f�(A,B) = [38,000, 42,000] , f�(B,C) = [69,000, 73,000], f�(C,D) = [30,000, 32,000] 
and f�(D, t�) = [8000, 11,000] (measured in pounds). To find all valid combinations of 
aerial refueling nodes, the mentioned rules are applied. Obviously, ord�(s�) < ord�(A) 
and f�(s�,A) ⩽I R ; accordingly, � includes arc (s�,A) . Furthermore, ord�(s�) < ord�(B) 
and f�(s�,B) = f�(s

�,A) + f�(A,B) ⩽I R imply that � contains arc (s�,B) . By perform-
ing similar comparisons for all nodes, � is constructed (Fig. 1). According to Fig. 1, the 
four valid combinations of aerial refueling nodes are {A,B,C,D} , {B,C,D} , {A,B,C} , 
and {B,C}.

(ord�(i) < ord�(j))&(f�(i, j) ⩽I R) ⟹ (i, j) ∈ �, ∀i, j ∈ N�.

Fig. 1   Network � for Example 1
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There are several criteria for selecting one or more appropriate combinations for 
aerial refuelings among all valid combinations. In an aerial refueling operation, a 
tanker aircraft must fly from its specified station on the ground to an aerial refu-
eling node in the air. Obviously, each refueling operation includes some costs, which 
are affected by different factors, such as the distance that should be covered by the 
tanker aircraft and the fuel consumed by the tanker aircraft to reach the aerial refu-
eling node. Thus, it is reasonable to search for refueling operations with minimum 
cost. Furthermore, to avoid wasting time and cost, identifying the minimum number 
of necessary aerial refuelings to complete the aircraft mission is another criterion for 
selecting one or more valid combinations of aerial refueling nodes. Therefore, mini-
mizing the total cost of refueling and minimizing the number of refuelings are the 
two criteria considered in this paper. In addition, it is assumed that there sufficient 
fuel and tanker aircraft available at each station. Hence, there is no limitation on the 
frequency of use of the stations.

To find appropriate aerial refueling combinations among all valid combinations 
on the specified path � , according to the mentioned criteria, a bi-objective program-
ming model is presented. The following set, parameter, and decision variables are 
used in the proposed model.

1 � Set
K:	�  The set of possible stations.
1 � Parameter
[cl

kj
, cu

kj
]:	�  The interval cost of an aerial refueling operation at node j, which is 

served by a tanker aircraft from the k-th station.
1 � Decision variables
y
�

kj
:	� 1 if the aerial refueling at node j on path � is served by a tanker aircraft from 

the k-th station; otherwise 0.
x
�

ij
:	� 1 if arc (i, j) ∈ � is traveled along by the aircraft; otherwise 0.

The model is formulated as follows:

(4)
min ∶ Z1 =

∑
k∈K

∑
j ∈  �

j ≠ s�, t�

[
cl
kj
, cu

kj

]
y
�

kj
,

(5)
min ∶ Z2 =

∑
k∈K

∑
j ∈  �

j ≠ s�, t�

y
�

kj
,
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The objective function (4) minimizes the sum of all aerial refueling operation costs. 
Furthermore, in the objective function (5), the number of aerial refuelings is mini-
mized. Constraints (6) demonstrate that the aircraft must start flying from node s� 
and end its flight at node t� . Moreover, they show that when the aircraft enters an 
intermediate node, it must also exit that node. Constraints (7) ensure that when the 
aircraft enters a node, it is refueled by a tanker aircraft. To prevent allocating more 
than one tanker aircraft to an aerial refueling node, Constraints (8) are applied. Con-
straints (9) and (10) are required as all variables are binary.

In most real-world problems, aircraft refuelings on different paths should be 
investigated. To extend the proposed problem, it is sufficient to first consider all 
paths as a network, G(N, E) , where N and E contain the nodes and arcs of all paths, 
respectively. Then, the network, ( , ) , corresponding to G(N, E) can be easily 
obtained simply by using the previously mentioned rules on each path. Finally, the 
proposed model is applied to each path in ( , ) . Any O − D pairs could be con-
sidered as a path. In fact, each node can play the role of an origin or destination.

4 � Solution methodology

Before starting to solve the proposed model, its computational complexity is 
investigated. Here, we attempt to show the computational complexity of the pro-
posed formulation by empirical evidence. For this purpose, the proposed model 
was solved exactly by considering each objective function separately in non-
interval form. Some network instances were generated, and the single objective 
models were solved by the CPLEX solver of GAMS software. The computational 
times of the optimal solution obtained for each objective function are presented 
in Table  1. The network with 50 nodes needs more than 70,000  s of running 

(6)s.t.
�

{j�(i,j)∈�}

x
�

ij
−

�
{j�(j,i)∈�}

x
�

ji
=

⎧
⎪⎨⎪⎩

1 if i = s�,

0 if i ≠ s�, t�,

− 1 if i = t�,

∀i ∈  �,

(7)
∑
k∈K

y
�

kj
≥

∑
{i|(i,j)∈�}

x
�

ij
, ∀j ∈  �, j ≠ s�, t�,

(8)

∑
k∈K

y
�

kj
≤ 1, ∀j ∈  �, j ≠ s�, t�,

(9)x
�

ij
∈ {0, 1}, ∀(i, j) ∈ �,

(10)y
�

kj
∈ {0, 1}, ∀j ∈  �, j ≠ s�, t�,∀k ∈ K.
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time to be solved optimally. The phenomenon of combinatorial explosion can 
be observed here. Exponential functions for the first and second objectives are 
fit to the CPU times of GAMS with R2 = 0.8914 and R2 = 0.8892 , respectively 
(Figs. 2, 3).

Considering the computational results obtained from the aforementioned 
empirical evidence as well as the interval multi-objective nature of the proposed 
problem, for the case of large size instances, the presented model faces serious 
computational difficulties that must be solved. These difficulties motivated us to 
develop some algorithms to solve the problem. In this section, we attempt to pre-
sent effective algorithms for solving the proposed model. An attempt has been 
made to ensure that the algorithms preserve the interval multi-objective nature 
of the problem and have acceptable CPU times and reasonable computational 
efforts. In the rest of this section, two new algorithms based on the modified 
label-correcting algorithm (Ahuja et  al. 1993) and genetic algorithm (GA) are 
proposed, and their structures are discussed in detail.

Table 1   The results of 
computational complexity 
experiments

Network no. Nodes Time (s)

The first objective func-
tion

The second 
objective 
function

Z1 Z2

1 5 2.474 2.246
2 10 13.765 13.325
3 15 136.976 136.722
4 20 1073.845 1070.648
5 25 3038.706 3030.366
6 30 7683.889 7675.596
7 50 > 70,000 > 70,000

Fig. 2   The computational times 
of the optimal solution for the 
first objective function and an 
exponential function fit to them
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4.1 � Labeling algorithm

The node labeling algorithm as an applicable method was used by Kannon et  al. 
(2014, 2015) to solve the aircraft routing problem with refueling. A new version 
of the modified label-correcting method, called the labeling algorithm (LA), is pre-
sented in this paper. According to the proposed problem, additional entries are used 
in the node labels. Instead of using traditional methods for converting two objectives 
into a single objective function, the values of the two objectives are considered as 
the elements of a vector. This new algorithm is detailed below.

Generally, in LA, the label corresponding to each node of � is

The first component of L�(j) , i.e., ([wl
j
,wu

j
], nj) , is a vector including two elements. 

Moreover, the first element of this vector represents the total cost of the aerial refu-
eling operations from node s� to j, which is given by an interval number, where wl

j
 

and wu
j
 are lower and upper bounds, respectively. The second element in this vector 

shows the total number of aerial refueling operations from the origin s� to node j. 
The first component of the node label shows that the inherent multi-objective nature 
of the problem is preserved, which may be considered an advantage of LA. In this 
manner, both objective functions are investigated simultaneously. Moreover, pred(j) 
in the second and third components of L�(j) denotes the node immediately prior to 
node j on path � . The station from which a tanker aircraft is allocated to pred(j) is 
given by sta(pred(j)).

At the beginning of the algorithm, each node of path � is labeled as follows:

L�(j) =
(([

wl
j
,wu

j

]
, nj

)
, sta(pred(j)), pred(j)

)
.

L�(s�) = (([0, 0], 0),−,−),

L�(j) = (([∞,∞],∞),−,−) ∀j ∈  �, j ≠ s�.

Fig. 3   The computational times 
of the optimal solution for the 
second objective function and 
an exponential function fit to 
them
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A set �(j) of labels is associated with each node j ∈  � . Initially, this set contains 
the abovementioned labels. The set �(j) is updated during the algorithm in such a 
way that no first component of each element (each label) in �(j) is dominated by 
another first component of the labels in �(j) . We try to improve LA according to 
the inherent interval multi-objective nature of the proposed problem and to make 
it more applicable to real-world situations. To do so, the order “ ≼IV ” is used in 
the process of determining the dominant objectives, as explained in detail during 
the algorithm procedure. Another set that is required is SE. This set initially con-
tains s� (i.e., SE = {s�} ) and is updated during the algorithm. At first, the only mem-
ber of SE is removed, and all arcs (s�, j) emanating from node s� in � are found. 
Next, to create a new label for each node j on path � , where (s�, j) ∈ � , a label-
scanning process should be started. With regard to the label of s� and the fact that 
no refueling occurs at node s� , the new label of j will be L�(j) = (([0, 0], 0),−, s�) . 
Then, L�(j) is added to the set �(j) , and the first components of the two labels 
in �(j) are compared with each other according to the order “ ≼IV ” . Obviously, 
([0, 0], 0) ≼IV ([∞,∞],∞) , which indicates that the vector ([0, 0] , 0) dominates the 
vector ([∞,∞],∞) due to the minimization inherent in the objectives in the pro-
posed model. Hence, the label of j with the dominated first component is removed 
from �(j) . Accordingly, the set �(j) is updated. Since j ∉ SE , it is added to the set 
SE.

In the preceding discussion, the algorithm was described for the case in which 
the set SE contains only node s� , at which no refueling is performed. In the fol-
lowing descriptions, the algorithm is explained for the case in which SE contains 
nodes at which refueling may be performed.

In the rest of the algorithm, a member of SE, suppose i, is selected and 
removed from SE. Then, all arcs (i, j) ∈ � on path � are determined, and the 
label-scanning process is performed. Obviously, �(i) may contain some labels 
whose first components are incomparable, considering the order “ ≼IV ” . To find 
possible new labels for each node j, first the following vector is computed regard-
ing the first component of each member of �(i):

Then, the vectors obtained for all members of �(i) are compared with respect to the 
order “ ≼IV ” , and the nondominated ones are kept. The labels for these nondomi-
nated vectors are created and added to the set �(j) . Finally, the first components 
of all labels in the set �(j) are compared with each other, and all dominated ones 
are removed from �(j) . Now, the set �(j) is updated. Node j should be added to 
the set SE if the set does not include it. Once again a member of SE is selected, and 
the same process is executed while SE ≠ � . The route traveled by the aircraft and 
the allocations of tanker aircraft from stations to aerial refueling nodes, which may 
not be unique, can be determined via post-processing by backtracking through the 
predecessor labels. The proposed algorithm is shown by the pseudo-code in Fig. 4.

([
wl
i
,wu

i

]
, ni

)
+
([
cl
ki
, cu

ki

]
, 1
)
=
([
wl
i
+ cl

ki
,wu

i
+ cu

ki

]
, ni + 1

)
∀k ∈ K.
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4.2 � Genetic algorithm

Recently, genetic algorithms (GA) have been applied to many problems (Roy and 
Mula 2016; Spiliopoulou et  al. 2017; Marinakis et  al. 2009). GA is a stochastic 
search technique based on the mechanism of natural selection and natural genetics 
(Holland 1992). GA begins with a randomly selected population of chromosomes 
represented by strings. The chromosomes in the population represent potential solu-
tions to the problem of interest. Each chromosome in the population is evaluated 
using some measure of its fitness. By using some neighborhood operators, e.g., 
crossover and mutation, GA can find new solutions (named offspring) with char-
acteristics that may not already exist in the population and that differ from those of 
some of the selected solutions of the population (named parents). Afterward, the 
offspring are compared with the population (according to their fitness values) and 
substituted for the worst chromosomes in the population; thus, the next generation 
is created. This procedure continues until a termination condition is satisfied. In the 

Fig. 4   The pseudo-code of the labeling algorithm
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following paragraphs, the implementation details of GA according to our problem 
are explained.

GA requires a genetic representation of the solution domain. An appropri-
ate chromosome representation is important for the successful application of GA. 
Therefore, according to the problem in this study, we consider each chromosome in 
a fixed-length multiple-string form (matrix form). Each chromosome represents a 
feasible solution in � . The first string represents the set of nodes  � . The locus of 
the chromosome in the first string shows a node on � . Each gene takes the value 1 if 
the receiver aircraft enters the corresponding node on path � and 0 otherwise . The 
genes of the first locus and the last locus are equal to one and always reserved for the 
source node, s� , and the destination node, t� , respectively. The length of the chromo-
some is equal to the total number of nodes on path � . Each of the remaining strings 
of the chromosome shows one refueling station. In fact, the number of strings in the 
chromosome is equal to the size of set K plus one. Each gene in the string of the k-th 
station takes the value 1 if the aerial refueling nodes in the first string are served by 
a tanker aircraft from the k-th station and 0 otherwise. An example of the chromo-
some encoding for aerial refueling nodes {B,C} on path � , s� − A − B − C − D − t� , 
in � , assuming two stations (node B is served by a tanker aircraft from the second 
station and node C is served by the first station) is shown in Fig. 5.

Once the chromosome representation is defined, GA proceeds to generate an ini-
tial population of solutions ( pop0 ). The initial population is generated randomly. 
The fitness function of each chromosome in the population is then calculated. In 
fact, the fitness function measures the quality of the chromosomes. In this study, the 
fitness function is considered as a vector-valued function including two elements. 
The first element is an interval that represents the total cost of aerial refuelings, and 
the second element is the total number of refuelings of the chromosome. Then, the 
fitness function is used as a criterion for selecting chromosomes for the crossover 
operation. In this regard, the fitness functions of chromosomes are compared using 
the order “ ≼IV ” , and two nondominated chromosomes are selected as parents for 
the crossover operation.

Now, the selected parents are ready for crossover to create new offspring. The 
chromosomes selected for crossover (parents) should have at least one gene (node) in 
common other than the source and destination nodes. If they do not have any nodes 

Fig. 5   An example of a chromosome representation
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in common, another pair of parents should be selected from the population. The 
node in common is a crossover site. If the parents have more than one node in com-
mon, one node is selected randomly as a cross site. To create offspring, the fitness 
function of the parents should be compared according to the order “ ≼IV ” in two 
steps. First, the fitness functions corresponding to the source node up to the crosso-
ver site of the parents are compared, and the nondominated part is preserved for the 
first part of the offspring. Then, the fitness functions corresponding to the crossover 
site up to the destination node of the parents are compared and, the nondominated 
part is preserved for the second part of the offspring. The offspring are thus created. 
If in each step of the comparison procedure the fitness functions are incomparable 
according to the order “ ≼IV ” , then both parts of the parents are preserved. As an 
example, the crossover operator of the parents in Fig. 6 can be referred to, where the 
interval costs of aerial refueling operations at nodes B, C and D, which are served by 
stations 1 and 2, are c1B = [3, 4], c2B = [5, 6], c1C = [2, 4] , and c2D = [3, 2].

Once the offspring are created, the mutation operator is applied to them. The pur-
pose of mutation is to preserve diversity. Mutation alters one gene of the offspring 
with a probability equal to the mutation rate pm . In this paper, bit-reverse type muta-
tion is adopted for one of the strings, except the first string of the offspring. In the end, 
each offspring is compared with all chromosomes of the population, and the worst 
chromosome is replaced by the offspring. If the offspring are incomparable with the 

Fig. 6   An example of a crossover operation
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chromosomes, they are added to the population, and the next generation is created. This 
procedure continues until a termination condition is satisfied, which can be stated in 
terms of either CPU time or the number of iterations.

5 � Numerical experiments

To tackle the problem introduced in Sect. 3, two algorithms were proposed in Sect. 4, 
and the performance of the algorithms is studied in this section. The required experi-
ments are performed in the following subsections. In Sect. 5.1, an example network 
with 11 nodes, which is sufficiently small to report the details of the obtained solutions, 
is presented. In Sect. 5.2, we test and compare the solution methods in 21 instances 
of networks in different cases, which will allow us to evaluate how well the algo-
rithms perform in large, real-world instances. The algorithms were coded in MATLAB 
8.1.0.604 (R2013a), and all experiments were performed on a laptop equipped with a 
Core i5 Processor (2.40 GHz) and 4.00 GB RAM.

5.1 � Network with 11 nodes

Consider an example network with 11 nodes and some arcs (Fig.  7). It is assumed 
that two predetermined stations containing tanker aircraft exist on the ground. The 
interval number, which is written on each arc, denotes the interval value for fuel con-
sumption for traveling that arc (measured in pounds). Furthermore, interval costs, ckj , 
k = 1, 2, j = 1, 2,… , 11 , for allocating stations to the nodes are specified as follows:

c11 = [3, 4] c12 = [12, 14] c13 = [21, 22] c14 = [4, 5] c15 = [2, 4]

c16 = [1, 2] c17 = [7, 8] c18 = [11, 13] c19 = [3, 4] c1,10 = [2, 3]

c1,11 = [9, 10] c21 = [7, 8] c22 = [20, 21] c23 = [19, 21] c24 = [7, 9]

c25 = [3, 4] c26 = [3, 4] c27 = [10, 11] c28 = [5, 7] c29 = [5, 6]

c2,10 = [4, 4] c2,11 = [11, 13].

Fig. 7   The 11-node network
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Moreover, two ranges are considered for receiver aircraft. One is R = 26,000 pounds, 
which was also used in the study by Kannon et al. (2015). They utilized R = 26,000 
based on the fuel capacity of a specified aircraft. Another range considered in this 
subsection is R = 22,000 pounds. The shortest path between each O − D pair is 
found. The results for the 11-node network obtained by using the labeling algorithm 
for the two ranges, R = 26,000 and R = 22,000 (measured in pounds), are presented 
in Table 2. Using LA, IV-efficient solutions and their corresponding objective func-
tion values for some specific O − D pairs are presented in this table. Here, the sym-
bol i[k] denotes that the aircraft is refueled at node i by a tanker aircraft from the 
k-th station. i[−] indicates that the aircraft is not refueled at node i. As an example, 
in Table 2, 2[−] ⟶ 4[1] ⟶ 6[−] is an IV-efficient solution between nodes 2 and 
6 when R = 26,000 . This solution implies that, for traveling through nodes 2 and 6, 
refueling at node 4 is necessary. In addition a tanker aircraft from the first station is 
allocated to node 4. Table 2 indicates that for R = 22,000 , three IV-efficient solutions 
are obtained along the route between nodes 2 and 6. All of these solutions specify 
the same path, 2 ⟶ 3 ⟶ 4 ⟶ 6 ; however, the allocations of the stations to nodes 
3 and 4 along this path, at which refueling should be performed, are not the same. 
The IV-efficient solutions for the O − D pair 1 − 11 considering R = 26,000 show 
that it is possible to have IV-efficient solutions with different numbers of refueling 
operations. In this sense, the solution 1[−] ⟶ 2[1] ⟶ 4[1] ⟶ 10[1] ⟶ 11[−] 
indicates that three refueling operations are necessary. However, the solution 
1[−] ⟶ 2[1] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] shows that four refueling 
operations are needed. In total, LA obtained 51 and 71 IV-efficient solutions for all 
O − D pairs in the 11-node network for ranges 26,000 and 22,000, respectively.

The results for the 11-node network, obtained using GA with population sizes 
of 5, 10, and 15 for 100 generations with the same ranges as LA are presented in 
Tables 3, 4, and 5. The IV-efficient solutions and the corresponding objective func-
tions are obtained for the same O − D pairs that were selected for LA.

The results in Table  3 are obtained for pop0 = 5 . As shown in the table, for 
R = 26,000 , five IV-efficient solutions are found for traveling from node 1 to node 
11. All of these solutions are dominated by the solutions obtained by LA (Table 2) 
in the same condition. Similar results are obtained for O = 3 and D = 11 . For O = 2 
and D = 11 , considering R = 26,000 , GA yields two solutions. One, ([6, 8], 2), is 
the same as that obtained by LA. However, the other, ([7,  10],  3), is new and is 
incomparable with LA’s solutions. In fact, due to the characteristics of LA and the 
defined order “ ≼IV ” for comparison, LA misses this solution. The final O − D in 
R = 26,000 with O = 2 and D = 6 has the same solution as LA’s solution in Table 2. 
Consider the solutions in the case of R = 22,000 in Table 3. For O = 1 and D = 11 , 
GA can find only three of the nine solutions found by LA in Table 2. For the path 
from O = 3 to D = 11 , the vector ([11, 13], 3) in Table 3 is dominated by ([7, 10], 3) 
in Table 2. Furthermore, GA can find an extra solution, ([10, 14], 3), that is incom-
parable with all solutions obtained by LA. For O = 2 and D = 11 , GA finds two 
more solutions than LA. The solutions in Tables 2 and 3 are the same for the path 
from O = 2 to D = 6.
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To obtain the results in Tables 4 and 5, GA is run for pop0 = 10 and pop0 = 15 , 
respectively. With small population sizes such as 5 and 10, some of the solu-
tions generated by GA are dominated by the solutions obtained by LA. In the 
results obtained by GA when pop0 = 15 , all of LA’s solutions plus some extra 
solutions are obtained for some selected O − D pairs. In this case, as observed 
in Table  3, the extra solutions are incomparable with all of LA’s solutions. In 

Table 2   Results of 11-node network for LA

Range O − D IV-efficient solution Obj. functions

26,000 O = 1,D = 11 1[−] ⟶ 2[1] ⟶ 4[1] ⟶ 10[1] ⟶ 11[−] ([18, 22],3)
1[−] ⟶ 2[1] ⟶ 4[1] ⟶ 10[2] ⟶ 11[−] ([20, 23]),3)
1[−] ⟶ 2[1] ⟶ 4[2] ⟶ 10[1] ⟶ 11[−] ([21, 26],3)
1[−] ⟶ 2[1] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([19, 24],4)
1[−] ⟶ 2[1] ⟶ 4[1] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([21, 25],4)

O = 3,D = 11 3[−] ⟶ 4[1] ⟶ 10[1] ⟶ 11[−] ([6, 8],2)
3[−] ⟶ 4[1] ⟶ 10[2] ⟶ 11[−] ([8, 9],2)

O = 2,D = 11 2[−] ⟶ 4[1] ⟶ 10[1] ⟶ 11[−] ([6, 8],2)
2[−] ⟶ 4[1] ⟶ 10[2] ⟶ 11[−] ([8, 9],2)

O = 2,D = 6 2[−] ⟶ 4[1] ⟶ 6[−] ([4, 5],1)
22,000 O = 1,D = 11 1[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([28, 32],4)

1[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([30, 33],4)
1[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([30, 34],4)
1[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([26, 31],4)
1[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([28, 32],4)
1[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([28, 33],4)
1[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[2] ⟶ 10[2] ⟶ 11[−] ([30, 34],4)
1[−] ⟶ 3[2] ⟶ 4[2] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([29, 35],4)
1[−] ⟶ 3[2] ⟶ 4[2] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([31, 36],4)

O = 3,D = 11 3[−] ⟶ 4[1] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([9, 11],3)
3[−] ⟶ 4[1] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([9, 12],3)
3[−] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([7, 10],3)

O = 2,D = 11 2[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([28, 32],4)
2[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([30, 33],4)
2[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([30, 34],4)
2[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([26, 31],4)
2[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([28, 32],4)
2[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([28, 33],4)
2[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[2] ⟶ 10[2] ⟶ 11[−] ([30, 34],4)
2[−] ⟶ 3[2] ⟶ 4[2] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([29, 35],4)
2[−] ⟶ 3[2] ⟶ 4[2] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([31, 36],4)

O = 2,D = 6 2[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[−] ([25, 27],2)
2[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[−] ([23, 26],2)
2[−] ⟶ 3[2] ⟶ 4[2] ⟶ 6[−] ([26, 30],2)
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fact, GA’s results depend on the size of the initial population. Increasing the ini-
tial population size improves the solutions obtained by GA and helps GA obtain 
extra solutions that are incomparable with those of LA. In the 11-node network, 
GA with pop0 = 15 obtains 53 and 77 IV-efficient solutions for all O − D pairs 
for R = 26,000 and R = 22,000 , respectively. Obviously, the number of GA solu-
tions is larger than the number of LA solutions. However, in this case, the run-
ning time also increases. In fact, GA even requires a long time to obtain the same 
solutions obtained by LA. Computational times are not reported in these tables 

Table 3   Results of 11-node network for GA with pop0 = 5

Range O − D IV-efficient solution Obj. functions

26,000 O = 1,D = 11 1[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([26, 31],4)
1[−] ⟶ 3[1] ⟶ 4[1] ⟶ 10[2] ⟶ 11[−] ([29, 31],3)
1[−] ⟶ 3[2] ⟶ 4[2] ⟶ 10[1] ⟶ 11[−] ([28, 33],3)
1[−] ⟶ 3[2] ⟶ 4[1] ⟶ 10[2] ⟶ 11[−] ([27, 30],3)
1[−] ⟶ 3[2] ⟶ 4[2] ⟶ 10[2] ⟶ 11[−] ([30, 34],3)

O = 3,D = 11 3[−] ⟶ 4[2] ⟶ 10[2] ⟶ 11[−] ([11, 13],2)
3[−] ⟶ 4[2] ⟶ 10[1] ⟶ 11[−] ([9, 12],2)

O = 2,D = 11 2[−] ⟶ 4[1] ⟶ 10[1] ⟶ 11[−] ([6, 8],2)
2[−] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([7, 10],3)

O = 2,D = 6 2[−] ⟶ 4[1] ⟶ 6[−] ([4, 5],1)
22,000 O = 1,D = 11 1[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([26, 31],4)

1[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([30, 33],4)
1[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([28, 32],4)

O = 3,D = 11 3[−] ⟶ 4[2] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([10, 14],3)
3[−] ⟶ 4[1] ⟶ 6[2] ⟶ 10[2] ⟶ 11[−] ([11, 13],3)
3[−] ⟶ 4[1] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([9, 11],3)
3[−] ⟶ 4[1] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([9, 12],3)

O = 2,D = 11 2[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([28, 32],4)
2[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([28, 32],4)
2[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([30, 33],4)
2[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([30, 34],4)
2[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[2] ⟶ 10[2] ⟶ 11[−] ([30, 34],4)
2[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([26, 31],4)
2[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([28, 33],4)
2[−] ⟶ 3[2] ⟶ 4[2] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([29, 35],4)
2[−] ⟶ 3[1] ⟶ 4[2] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([31, 36],4)
2[−] ⟶ 3[2] ⟶ 4[2] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([31, 37],4)
2[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([31, 36],4)

O = 2,D = 6 2[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[−] ([25, 27],2)
2[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[−] ([23, 26],2)
2[−] ⟶ 3[2] ⟶ 4[2] ⟶ 6[−] ([26, 30],2)
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because the network is very small, but these times are discussed in detail in the 
next subsection.

5.2 � Randomly generated networks

To generate an example network, n nodes were randomly generated in the square 
[0, 30,000] × [0, 30,000] . Then, according to the Euclidean distance between these 
nodes, each node was connected to at most m (an arbitrary natural number) near-
est adjacent nodes. It was assumed that the direction of the arc between nodes i 
and j was from i to j if i < j . The amount of fuel consumed for each arc (i,  j) was 
determined considering the Euclidean distance between nodes i and j. Moreover, we 
generated integer values for the lower and upper bounds of the fuel consumption 
interval for each arc (i,  j) by multiplying the specified Euclidean distance by the 
coefficients 0.95 and 1.05, respectively, and subsequently rounding (the values of 
the coefficients chosen to construct the interval were taken from the study by Kan-
non et al. (2015)). Then, the shortest path between each O − D pair was found. The 
network example was constructed using all of these shortest paths.

To investigate the efficiency of the proposed formulation and the algorithms in 
real-world conditions, seven random networks were generated by the above method. 
It was assumed that there were 10 predetermined stations on the ground, and the 
receiver’s range was set to R = 26,000.

Table 7 compares the solution times and the number of solutions of both LA and 
GA on 21 instances of networks in different cases. In this table, “No. of solutions” 

Table 4   Results of 11-node network for GA with pop0 = 10

Range O − D IV-efficient solution Obj. functions

26,000 O = 1,D = 11 1[−] ⟶ 2[2] ⟶ 4[2] ⟶ 10[1] ⟶ 11[−] ([29, 33]),3)
1[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([26, 31],4)
1[−] ⟶ 2[2] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([27, 31]),4)
1[−] ⟶ 2[2] ⟶ 4[1] ⟶ 10[1] ⟶ 11[−] ([26, 29]),3)
1[−] ⟶ 3[2] ⟶ 4[1] ⟶ 10[1] ⟶ 11[−] ([25, 29]),3)
1[−] ⟶ 3[1] ⟶ 4[1] ⟶ 10[1] ⟶ 11[−] ([27, 30]),3)
1[−] ⟶ 3[2] ⟶ 4[2] ⟶ 10[1] ⟶ 11[−] ([28, 33]),3)
1[−] ⟶ 2[2] ⟶ 4[1] ⟶ 10[2] ⟶ 11[−] ([28, 30]),3)
1[−] ⟶ 3[2] ⟶ 4[1] ⟶ 10[2] ⟶ 11[−] ([27, 30]),3)
1[−] ⟶ 3[1] ⟶ 4[1] ⟶ 10[2] ⟶ 11[−] ([29, 31]),3)
1[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([28, 32]),4)

O = 3,D = 11 3[−] ⟶ 4[1] ⟶ 10[1] ⟶ 11[−] ([6, 8],2)
3[−] ⟶ 4[1] ⟶ 10[2] ⟶ 11[−] ([8, 9],2)
2[−] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([7, 10],3)

O = 2,D = 11 2[−] ⟶ 4[1] ⟶ 10[1] ⟶ 11[−] ([6, 8],2)
2[−] ⟶ 4[1] ⟶ 10[2] ⟶ 11[−] ([8, 9],2)
2[−] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([7, 10],3)

O = 2,D = 6 2[−] ⟶ 4[1] ⟶ 6[−] ([4, 5],1)
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is the number of IV-efficient solutions obtained by the algorithms, and “Time” is 
the CPU time required to run the algorithms to obtain IV-efficient solutions for 
all O − D pairs. We used the results generated by LA as a guideline to determine 
whether good solutions were reached by GA. As mentioned previously, on the basis 
of the initial population, GA may find solutions that are dominated by the solu-
tions of LA that are not in common with those of GA. In Table  7, “No. of solu-
tions in common” shows the number of solutions that LA and GA have in common. 
To investigate the effect of the initial population size on the obtained solutions and 
the running time, GA was run with three initial population sizes, pop0 = 50, 100 , 
and 200, for 100 generations. We tested mutation rates of 0.0, 0.1, 0.2, 0.7, 0.8, and 
0.9 for only two random networks with 50 and 100 nodes and pop0 = 50 to deter-
mine how this rate affects the performance of GA (Table 6). In some cases, as the 
mutation rate incrased, the number of solutions obtained by GA and the number 

Table 4   (continued)

Range O − D IV-efficient solution Obj. functions

22,000 O = 1,D = 11 1[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([28, 32],4)
1[−] ⟶ 3[2] ⟶ 4[2] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([31, 37],4)
1[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([28, 32],4)
1[−] ⟶ 3[2] ⟶ 4[2] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([29, 35],4)
1[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([26, 31],4)
1[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([28, 33],4)
1[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([30, 34],4)
1[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[2] ⟶ 10[2] ⟶ 11[−] ([30, 34],4)
1[−] ⟶ 3[1] ⟶ 4[2] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([31, 36],4)

O = 3,D = 11 3[−] ⟶ 4[1] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([9, 11],3)
3[−] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([7, 10],3)
3[−] ⟶ 4[1] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([9, 12],3)
3[−] ⟶ 4[2] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([10, 14],3)

O = 2,D = 11 2[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([28, 32],4)
2[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([28, 32],4)
2[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([30, 33],4)
2[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([30, 34],4)
2[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[2] ⟶ 10[2] ⟶ 11[−] ([30, 34],4)
2[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([26, 31],4)
2[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([28, 33],4)
2[−] ⟶ 3[2] ⟶ 4[2] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([29, 35],4)
2[−] ⟶ 3[1] ⟶ 4[2] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([31, 36],4)
2[−] ⟶ 3[2] ⟶ 4[2] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([31, 37],4)
2[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([31, 36],4)

O = 2,D = 6 2[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[−] ([25, 27],2)
2[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[−] ([23, 26],2)
2[−] ⟶ 3[2] ⟶ 4[2] ⟶ 6[−] ([26, 30],2)
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Table 5   Results of 11-node network for GA with pop0 = 15

Range O − D IV-efficient solution Obj. functions

26,000 O = 1,D = 11 1[−] ⟶ 2[1] ⟶ 4[1] ⟶ 10[1] ⟶ 11[−] ([18, 22],3)
1[−] ⟶ 2[1] ⟶ 4[1] ⟶ 10[2] ⟶ 11[−] ([20, 23]),3)
1[−] ⟶ 2[1] ⟶ 4[2] ⟶ 10[1] ⟶ 11[−] ([21, 26],3)
1[−] ⟶ 2[1] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([19, 24],4)
1[−] ⟶ 2[1] ⟶ 4[1] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([21, 25],4)

O = 3,D = 11 3[−] ⟶ 4[1] ⟶ 10[1] ⟶ 11[−] ([6, 8],2)
3[−] ⟶ 4[1] ⟶ 10[2] ⟶ 11[−] ([8, 9],2)
3[−] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([7, 10],3)

O = 2,D = 11 2[−] ⟶ 4[1] ⟶ 10[1] ⟶ 11[−] ([6, 8],2)
2[−] ⟶ 4[1] ⟶ 10[2] ⟶ 11[−] ([8, 9],2)
2[−] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([7, 10],3)

O = 2,D = 6 2[−] ⟶ 4[1] ⟶ 6[−] ([4, 5],1)
22,000 O = 1,D = 11 1[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([28, 32],4)

1[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([30, 33],4)
1[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([30, 34],4)
1[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([26, 31],4)
1[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([28, 32],4)
1[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([28, 33],4)
1[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[2] ⟶ 10[2] ⟶ 11[−] ([30, 34],4)
1[−] ⟶ 3[2] ⟶ 4[2] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([29, 35],4)
1[−] ⟶ 3[2] ⟶ 4[2] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([31, 36],4)
1[−] ⟶ 3[1] ⟶ 4[2] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([31, 36],4)
1[−] ⟶ 3[2] ⟶ 4[2] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([31, 37],4)

O = 3, D = 11 3[−] ⟶ 4[1] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([9, 11],3)
3[−] ⟶ 4[1] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([9, 12],3)
3[−] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([7, 10],3)
3[−] ⟶ 4[2] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([10, 14],3)

O = 2,D = 11 2[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([28, 32],4)
2[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([30, 33],4)
2[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([30, 34],4)
2[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([26, 31],4)
2[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([28, 32],4)
2[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([28, 33],4)
2[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[2] ⟶ 10[2] ⟶ 11[−] ([30, 34],4)
2[−] ⟶ 3[2] ⟶ 4[2] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([29, 35],4)
2[−] ⟶ 3[2] ⟶ 4[2] ⟶ 6[1] ⟶ 10[2] ⟶ 11[−] ([31, 36],4)
2[−] ⟶ 3[1] ⟶ 4[2] ⟶ 6[1] ⟶ 10[1] ⟶ 11[−] ([31, 36],4)
2[−] ⟶ 3[2] ⟶ 4[2] ⟶ 6[2] ⟶ 10[1] ⟶ 11[−] ([31, 37],4)

O = 2,D = 6 2[−] ⟶ 3[1] ⟶ 4[1] ⟶ 6[−] ([25, 27],2)
2[−] ⟶ 3[2] ⟶ 4[1] ⟶ 6[−] ([23, 26],2)
2[−] ⟶ 3[2] ⟶ 4[2] ⟶ 6[−] ([26, 30],2)
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of solutions in common increased, and the running time decreased. Therefore, we 
assumed pm = 0.8 in Table 7.

The results in Table  7 show that GA can find a smaller or equal number of 
solutions compared with LA. Moreover, GA requires too much time to obtain 
these solutions. Despite the long time, GA is still unable to find all of LA’s solu-
tions in cases in which “No. of solutions in common” is smaller than “No. of 
solutions” in LA. In such cases (where GA is unable to find all of LA’s solutions), 
the solutions obtained by GA that are not in common with those found by LA 
may be dominated by those solutions of LA that are not in common with the solu-
tions of GA. For example, in the network with 50 nodes and pop0 = 50 , LA takes 
only 183.25 seconds to yield 3118 IV-efficient solutions. GA reports 1952 solu-
tions in a time equivalent to almost seven times longer than the running time for 
LA. Moreover, GA finds only 1562 of LA’s solutions. Thus, 390 of the solutions 
( 1952 − 1562 = 390 ) obtained by GA may be dominated by the 1556 solutions 
( 3118 − 1562 = 1556 ) obtained by LA that are not in common with those of GA.

The results show that an increase in the initial population size leads not only 
to an increase in the number of GA solutions but also to an increase in the run-
ning time. In large-scale networks, such as networks with 200, 300, 400, and 500 
nodes, as the population increases, the running time increases exponentially. As 
an example, in the network with 200 nodes and pop0 = 200 , GA requires more 
than 12 hours of running time. Therefore, we terminate GA within 7200 s (i.e., 
2 hrs). In contrast to the long running time required by GA, LA can obtain IV-
efficient solutions in large-scale networks in a very short running time (less than 
3 minutes). Generally, we can conclude that the performance of LA is better than 
that of GA.

6 � Conclusion

In this paper, an aerial refueling problem was investigated. Due to the limited 
range of receiver aircraft, aerial refueling is necessary. In this context, valid 
combinations of aerial refueling nodes were determined. To select suitable valid 

Table 6   Results of using different mutation rates for GA

Mutation rate Nodes = 50 Nodes = 100

No. of GA 
solutions

No. of solutions 
in common

Time (s) No. of GA 
solutions

No. of solutions 
in common

Time (s)

0.0 1660 1296 1424.68 1494 1463 2644.10
0.1 1947 1555 1604.81 1532 1522 3779.55
0.2 1932 1546 1444.49 1533 1522 3777.75
0.7 1933 1548 1235.44 1532 1519 2787.05
0.8 1952 1562 1248.77 1528 1514 2662.90
0.9 1933 1533 1192.62 1531 1518 2634.51
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combinations, two criteria, minimization of the total cost of tanker aircraft allo-
cations to aerial refueling nodes and minimization of the number of aerial refu-
eling operations, were considered. Furthermore, due to the inherent uncertainty 
of real-world applications, the main problem of this paper was modeled as an 
interval multi-objective zero-one integer programming problem. Two new algo-
rithms, namely, customized variants of labeling and genetic algorithms, respec-
tively, were design to solve this model. Comparisons of the performance of the 
algorithms showed that the labeling algorithm obtains solutions in a short run-
ning time. However, as population size increases, the genetic algorithm tends to 
generate more nondominated solutions than the labeling algorithm at the expense 
of a much longer running time. As a result, it can be concluded that the perfor-
mance of LA is better than that of GA.

Because a large set of IV-efficient solutions may be possible, compromise solu-
tions may be desirable. Filtering methods would be suitable for this problem and 
could be considered as a topic for further research.

Table 7   Comparison of LA and GA with different population sizes

Network no. Nodes LA GA No. of 
solutions in 
commonNo. of solutions Time (s) pop0 No. of solutions Time (s)

1 20 111 0.26 50 111 73.61 111
100 111 41.04 111
200 111 18.63 111

2 50 3118 183.25 50 1952 1248.77 1562
100 2149 1037.90 1670
200 2237 1446.91 1725

3 100 1577 4.94 50 1528 2662.90 1514
100 1567 2481.83 1566
200 1575 3534.46 1575

4 200 3655 12.87 50 3466 7167.16 3435
100 3628 6876.95 3615
200 2579 7200 2579

5 300 7086 40.32 50 4322 7200 3752
100 4651 7200 4052
200 3998 7200 3340

6 400 8258 37.48 50 4115 7200 3843
100 2606 7200 2413
200 1215 7200 1207

7 500 15,816 91.04 50 2578 7200 2469
100 2248 7200 2168
200 992 7200 962
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