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Abstract In this paper, the job shop scheduling problem (JSP) with a makespan

minimization criterion is investigated. Various approximate algorithms exist that

can solve moderate JSP instances within a reasonable time limit. However, only a

few exact algorithms are known in the literature. We have developed an exact

algorithm by means of a bounded dynamic programming (BDP) approach. This

approach combines elements of a dynamic programming with elements of a branch

and bound method. In addition, a generalization is investigated: the JSP with

sequence dependent setup times (SDST-JSP). The BDP algorithm is adapted for this

problem. To the best of our knowledge, the dynamic programming approach has

never been applied to the SDST-JSP before. The BDP algorithm can directly be

used as a heuristic. Computational results show that the proposed algorithm can

solve benchmark instances up to 20 jobs and 15 machines for the JSP. For the

SDST-JSP, the proposed algorithm outperforms all the state-of-the-art exact algo-

rithms and the best-known lower bounds are improved for 5 benchmark instances.

Keywords Job shop scheduling � Makespan � Sequence dependent

setup times � Dynamic programming

1 Introduction

The job shop scheduling problem (JSP) is an important scheduling problem, which

is NP-hard. Since the JSP has applications in several areas, the problem and its

generalizations have been extensively studied.
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Several approximate algorithms have been proposed to tackle the JSP within a

reasonable amount of time. Adams et al. (1988) proposed the shifting bottleneck

procedure. The tabu search technique has been applied by several researchers,

e.g. Nowicki and Smutnicki (1996), Nowicki and Smutnicki (2005), Zhang et al.

(2008). The genetic approach has been investigated by Della Croce et al. (1995)

and Kurdi (2015). Gonçalves and Resende (2014) presented the biased random-key

algorithm. Recently, Peng et al. (2015) presented a powerful hybrid search/path

relinking algorithm.

Only a few exact algorithms are known for the JSP. One such algorithm is the

branch and bound method (B&B). This method is proposed by several authors

(Carlier and Pinson 1989; Brucker et al. 1994; Martin and Shmoys 1996). Carlier

and Pinson (1989) proposed the B&B model combined with the concept of

immediate selection, which is based on branching on disjunctions. It was the first

exact method that solved Fisher and Thompson (1963) 10 � 10 benchmark

instance. Brucker et al. (1994) proposed the B&B based on the disjunctive graph

model. The basic scheduling decision is to fix precedence relations between the

operations on the same machine. A block approach was used. Gromicho et al.

(2012) a corrigendum on this paper by van Hoorn et al. 2016) proposed a dynamic

programming (DP) algorithm with the complexity proven to be exponentially lower

than exhaustive enumeration. However, computation results show that only 10 � 5

type benchmark instances were solved by the proposed algorithm. Recently, van

Hoorn (2016) provided the bounded dynamic programming algorithm. Thus, the

computational time of the previously proposed DP algorithm was drastically

decreased for solving benchmark instances. However, the proposed algorithm was

able to solve still limited size benchmark instances up to 10 machines and 10 jobs.

Consider now the job shop scheduling problem with sequence dependent setup

times (SDST-JSP). This problem is a generalization of the JSP in which setup times

occurs when the machine switches between two jobs. This feature significantly

changes the nature of the problem. Thus, the problem becomes harder to solve.

Within the current literature, the typical approach is to extend the methods that were

applied to the classical JSP. We will highlight only the most important papers.

Based on the work proposed by Brucker et al. (1994) and Brucker and Thiele

(1996) extended the B&B for the general shop problem where SDST-JSP is a

special case. They also provided new benchmark instances (denoted by BT96 and

named t2-ps01 to t2-ps15). Cheung and Zhou (2001) used a hybrid algorithm that is

based on a genetic algorithm and two dispatching rules. The shifting bottleneck

approach is extended by Balas et al. (2008). An effective B&B was developed

by Artigues and Feillet (2008). This algorithm extends constraint propagation

techniques for the SDST-JSP. The lower bound calculation is based on the traveling

salesman problem with time windows. The algorithm proposed by Artigues and

Feillet (2008) was able to prove the optimality for the first time on two benchmark

instances from BT96. Moreover, the lower bound is improved for six instances. The

effective hybrid genetic algorithm that hybridizes a genetic algorithm with a local

search is reported by González et al. (2008). Empirical results show that the new

model outperforms all previous state-of-the-art results improving best-known

solutions for 5 benchmark instances of BT96. González et al. (2009) combines a
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genetic algorithm with a tabu search approach instead of a local search method thus

outperforming several empirical results given by González et al. (2008). For

both González et al. (2008, 2009), the problem is modeled using the disjunctive

graph representation. Grimes and Hebrard (2010) proposed a constraint program-

ming approach that extends the previous model given by Grimes et al. (2009). The

model using simple binary disjunctive constraints combines AI strategies with the

generic SAT.

In the previous study (Ozolins 2017) we have successfully developed the DP to

the blocking flow shop scheduling problem. This problem is another variant of the

shop scheduling. Ultimately, this approach outperforms all the known state-of-the-

art exact algorithm for the blocking flow shop. This finding suggests that the DP

technique can successfully be applied to other variants of the shop scheduling.

Gromicho et al. (2012) proposed the base version of the DP approach for the JSP.

In this paper, we improve the DP method for solving the JSP thus increasing the

applicability of the DP approach. The novel contribution of our work lies in the

SDST-JSP. We extend the DP approach to the SDST-JSP with a makespan

objective. As far as we know this is the first time when the DP approach is used for

the SDST-JSP.

This paper is organized as follows. In Sect. 2, the JSP is introduced. Basic

notations and definitions are given. Section 3 presents the BDP algorithm for the

JSP and SDST-JSP cases. Computational results are described in Sect. 4. In Sect. 5,

conclusions are given. Finally, ‘‘Appendix’’ is given in the last section.

2 Problem formulation

Basic notations used in the present paper are summarized in Table 1 for a quick

reference.

Consider the JSP. The processing procedure of a job on a machine is called an

operation. Let O ¼ fOi;k j i ¼ 1; . . .; n; k ¼ 1; . . .mg denotes the set of operations,

partitioned into n jobs J1; . . .; Jn that need to be scheduled on m machines

M1; . . .;Mm. Let J ¼ fJ1; . . .; Jng and M ¼ fM1; . . .;Mmg denote the set of jobs

and the set of machines, respectively. Each operation Oi;k is associated with the

specific job Ji 2 J and the specific machine Mmi;k
2 M. Hence, mi;k denotes the

machine index of operation Oi;k. Alternatively, this index can be denoted by

MðOi;kÞ. Each job has to visit all the machines following a specific order. Each

machine can process only one job at the same time and each job can be processed by

only one machine at the same time. We will study the special case of the JSP where

each job has to visit all the machines exactly once.

The processing time of operation Oi;k is denoted by pðOi;kÞ or simply by pi;k.

Alternatively, the processing time associated with a machine Mk and a job Jj can be

denoted by pkj . Denote by w : O ! N [ f0g the schedule. For simplicity, we will

also use the notation wi;k as an alternative to the notation wðOi;kÞ. Let

Cmax ¼ max
O2O

wðOÞ þ pðOÞð Þ
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be the makespan that corresponds to the schedule w. The problem can formally be

stated as follows.

Definition 1 (Job shop scheduling problem)

Table 1 Basic notations

m Number of machines

n Number of jobs

M Set of machines, M ¼ fM1; . . .;Mmg
J Set of jobs, J ¼ fJ1; . . .; Jng
Oi;k The kth operation of job Ji

O Set of operations, fOi;k j i ¼ 1; . . .; n; k ¼ 1; . . .mg
pj;k Processing time of operation Oj;k 2 O
pðOj;kÞ Alternative formulation of pj;k

M(O) Machine index of operation O 2 O
mi;k Alternative formulation of machine index, mi;k ¼ MðOi;kÞ
wðOÞ The starting time of operation O

wi;k Alternative formulation of the starting time, wi;k ¼ wðOi;kÞ
Cmax Maximum completion time among all operations, Cmax ¼ maxO2O wðOÞ þ pðOÞð Þ
S Set of scheduled jobs, S � J
G Set of scheduled operations, G � O
T Finite sequence of operations associated with S and G;T ¼ ðT1;T2; . . .;TjGjÞ
T þ O Expansion of sequence T by adding operation O 2 OnG
ski;j Setup time between operations Oi;k1

and Oj;k2
on the same machine Mk

sk0;i Initial setup time of job Ji on machine Mk

qkðTÞ Job index corresponding to the last operation completed on machine Mk

CkðTÞ Completion time of the last operation scheduled on machine Mk

SuccjðGÞ Next operation needed to be scheduled by job Jj

xjðTÞ Binary variable representing whether SuccjðGÞ can be added to the end of T

CmaxðTÞ Maximum completion time among all operations from T

wjðTÞ The earliest starting time of SuccjðGÞ where T is associated with G

rj;kðTÞ The earliest starting time of operation Oj;k 2 OnG
qi;k Tail of operation Oi;k

T1 � T2 T1 weakly dominates T2

Z(G) Set of sequences associated to G � O
jZjt Number of sequences with size t; jZjt ¼

P
G�O:jGj¼t jZðGÞj

|Z| Total number of sequences, jZj ¼
P

G�O jZðGÞj
UB Upper bound

LB(T) Lower bound of sequence T
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minimise
w

Cmax

subject to:

Cmax �wi;m þ pi;m; i ¼ 1; . . .; n;

wi;k þ pi;k �wi;kþ1; i ¼ 1; . . .; n; k ¼ 1; . . .;m� 1;

wi;k1
þ pi;k1

�wj;k2
or

wj;k2
þ pj;k2

�wi;k1
Oi;k1

;Oj;k2
2 Owith i 6¼ j andmi;k1

¼ mj;k2
:

Using the notation given by Graham et al. (1979), the JSP can also be denoted by

JjjCmax.

The JSP can be generalized by defining the setup times ski;j between operations

Oi;k1
;Oj;k2

2 O on the same machine Mk 2 M. In addition, an initial setup s0;i is

defined for all i 2 f1; . . .; ng. This problem is denoted by Jjski;jjCmax and can be

formalized in the following way.

Definition 2 (Job shop problem with sequence dependent setup times)

minimise
w

Cmax

subject to:

Cmax �wi;m þ pi;m; i ¼ 1; . . .; n;

wi;k þ pi;k �wi;kþ1; i ¼ 1; . . .; n; k ¼ 1; . . .;m� 1;

wi;k1
þ pi;k1

þ ski;j �wj;k2
or Oi;k1

;Oj;k2
2 Owith

wj;k2
þ pj;k2

þ skj;i �wi;k1
i 6¼ j andmi;k1

¼ mj;k2
	 k;

wi;1 � s0;i i ¼ 1; . . .; n:

In addition, we assume that setup times satisfy the triangular inequality

ski;j � ski;h þ skh;j

for all k 2 f1; . . .;mg and for each triplet of distinct jobs ðJi; Jj; JhÞ.

3 Bounded dynamic programming algorithm

In this section, we will develop the bounded dynamic programming (BDP) approach

for solving the JSP. The base version of this approach was proposed by Gromicho

et al. (2012). In Sect. 3.1, the complete BDP algorithm will be proposed. The

SDST-JSP will be studied in Sect. 3.2. In Sects. 3.3 and 3.4, we will discuss lower

bounds for the JSP and SDST-JSP.

3.1 Bounded dynamic programming algorithm formulation

Let T be the sequence of operations. We will further say that T is associated with

G � O if G contains all the operations that appear in T. Those operations that are
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not in T are not included in G. We say that T is also associated with S � J if S

contains those jobs for which all the operations are completed. For example, if we

have the job shop instance with 3 jobs and 3 machines and

T ¼ ðO3;1;O1;1;O1;2;O2;1;O1;3Þ;

then T is associated with S ¼ fJ1g and

G ¼ fO3;1;O1;1;O1;2;O2;1;O1;3g:

A no-idle starting time of an operation means that this operation starts directly

after the last operation on the same machine or directly after the last operation of the

same job. We will further assume that wðOi;kÞ stands for this no-idle starting time of

operation Oi;k 2 G.

The sequence T is called feasible if

wðT1Þ þ pðT1Þ� � � � �wðTjGjÞ þ pðTjGjÞ:

In addition, MðTgÞ\MðTgþ1Þ for those g 2 f1; . . .; jGj � 1g for which

wðTgÞ þ pðTgÞ ¼ wðTgþ1Þ þ pðTgþ1Þ. From the construction of T it follows that each

sequence T can uniquely be associated with the given schedule.

Denote by CmaxðTÞ the maximum completion time among all the operations from

T. Let SucciðGÞ denotes the next operation that needs to be scheduled by job

Ji 2 J nS. Let wiðTÞ be the earliest starting time of operation SucciðGÞ. A sequence

obtained after this insertion is denoted by T þ SucciðGÞ. In fact, we have

T þ SucciðGÞ ¼ ðT1; . . .; TjGj; SucciðGÞÞ:

Denote by Oi;l 2 OnG the new operation that is inserted in T, i.e.

Oi;l ¼ SucciðGÞ. Fix Jj 2 J nS. We explain how to recursively obtain the starting

times wjðT þ Oi;lÞ from wjðTÞ. Firstly, the makespan is

CmaxðT þ Oi;lÞ ¼ wiðTÞ þ pi;l:

The resulting recurrence relation is

wjðT þ Oi;lÞ ¼
CmaxðT þ Oi;lÞ; mi;l ¼ MðSuccjðGÞÞ;
wjðTÞ; otherwise:

(

Now define the head rjðTÞ as the earliest starting time of operation SuccjðGÞ such

that T þ SuccjðGÞ is feasible. These heads rjðTÞ are strongly connected with wjðTÞ
and are obtained as follows:

rjðTÞ ¼
wjðTÞ; xjðTÞ ¼ 1;

CmaxðTÞ; xjðTÞ ¼ 0;

�

where xjðTÞ is a binary variable defined as
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xjðTÞ ¼
1; wjðTÞ þ pðSuccjðGÞÞ[CmaxðTÞ or

wjðTÞ þ pðSuccjðGÞÞ ¼ CmaxðTÞ andMðTjGjÞ\MðSuccjðGÞÞ
� �

;

0; otherwise:

8
><

>:

ð1Þ

The variable xjðTÞ represents whether the next operation can be added to the end of

T without a delay. In fact, xjðTÞ ¼ 1 if and only if

T þ SuccjðGÞ ¼ ðT1; . . .; TjGj; SuccjðGÞÞ

is feasible.

In order to understand the basic notations, we give an example. The basic

parameters of an instance are given in Table 2. Here each cell contains a pair ðpki ; lÞ
where l means that the lth operation of job Ji is processed on machine Mk.

Figure 1 illustrates the feasible sequence

T ¼ ðO3;1;O1;1;O2;1;O1;2;O3;2;O2;2;O1;3;O4;1;O1;4Þ:

This sequence is associated with the set of scheduled jobs S ¼ fJ1g and the set of

scheduled operations

G ¼ fO1;1;O1;2;O1;3;O1;4;O2;1;O2;2;O3;1;O3;2;O4;1g:

The starting times of operations belonging to G are given in Table 3.

The parameters SuccjðGÞ; xjðTÞ;wjðTÞ, and rjðTÞ are given in Table 4. In

addition, CmaxðTÞ, the earliest starting times, and the heads are illustrated in Fig. 1.

Note that x3ðTÞ ¼ 0 since

w3ðTÞ þ pðSucc3ðGÞÞ ¼ 9 þ 4\CmaxðTÞ

The next definition introduces the complete expansion of a sequence.

Table 2 Processing times and

processing orders of an instance
Jobs Machines

M1 M2 M3 M4

J1 (1, 3) (2, 1) (6, 2) (7, 4)

J2 (10, 3) (8, 1) (5, 2) (4, 4)

J3 (4, 3) (1, 4) (5, 1) (4, 2)

J4 (5, 2) (5, 1) (5, 3) (3, 4)

Table 3 The earliest starting times related to Fig. 1

(i, k) (1, 1) (1, 2) (1, 3) (1, 4) (2, 1) (2, 2) (3, 1) (3, 2) (4, 1)

wi;k 5 6 9 15 0 8 0 5 15
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Definition 3 Let T be the sequence of operations associated with G � O. Let

T
 ¼ ðT

1 ; . . .; T



n�mÞ

be the sequence of operations associated with O. We say that T
 is a complete

expansion of T if Th ¼ T

h (h ¼ 1; . . .; jGj) and T
 is feasible.

We introduce the weak dominance ‘�’ relation as follows.

Definition 4 Let T1 and T2 be two sequences of operations such that both T1 and

T2 are associated with S � J . We say that T1 weakly dominates T2, i.e. T1 � T2 if

riðT1Þ� riðT2Þ

for all Ji 2 J nS.

When two sequences of operations, namely T1 and T2, are given, then the

corresponding starting times will be denoted by w1ðOÞ and w2ðOÞ, respectively.

Hence O 2 O belongs to T1 and T2. We are ready to present the theorem related to

the weak dominance.

Theorem 1 Let T1 and T2 be two sequences of operations such that both T1 and

T2 are associated with G � O. If T1 weakly dominates T2, then for all complete

expansions of T2 there exists a complete expansion of T1 such that

w1ðOÞ�w2ðOÞ

for all O 2 OnG

In other words, Theorem 1 says that T2 can be disregarded if T1 � T2. The

Proof of Theorem 1 will be given in Sect. 3.2 for the general case SDST-JSP

(Theorem 3) where Theorem 1 is a special case.

Table 4 Parameters related to

the schedule depicted in Fig. 1
j 2 3 4

SuccjðGÞ O2;3 O3;3 O4;2

xjðTÞ 1 0 1

wjðTÞ 13 9 20

rjðTÞ 13 22 20

Fig. 1 Example of a schedule
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The next definition introduces an indirect dominance.

Definition 5 Let T stands for the sequence of operations associated with G � O
and S � J . We say that T is indirectly dominated if there exists Mk 2 M and

Jj 2 J nS with MðSuccjðGÞÞ ¼ k such that the following two statements hold:

1. We have xjðTÞ ¼ 0.

2. For all Ji 2 J nSnJj with MðSucciðGÞÞ ¼ k we have riðTÞ�wjðTÞþ
pðSuccjðGÞÞ.

Informally speaking, we can add to T at least one operation O 2 OnG such that the

heads remain the same for T þ O. Thus, the sequences that are indirectly dominated

can be disregarded. The next theorem formalizes this idea.

Theorem 2 Let T be the sequence of operations associated with G � O and

S � J . If T is indirectly dominated, then there exists job Jj 2 J nS such that xjðTÞ ¼
0 and

riðT þ SuccjðGÞÞ ¼ riðTÞ

for all Ji 2 J nSnJj.

The Proof of Theorem 2 directly follows from Definition 5. Theorem 2 is

formulated in a slightly different way than the one proposed by Gromicho et al.

(2012).

Now we investigate the previously studied example, see Fig. 1. Here, x3ðTÞ ¼ 0.

Moreover,

riðTÞ�w3ðTÞ þ pðSucc3ðGÞÞ ¼ 13

for i 2 f3; 4g. Thus, the schedule depicted in Fig. 1 is indirectly dominated.

We are ready to present the BDP algorithm, see Algorithm 1. This algorithm is

similar to the one proposed by van Hoorn (2016). We have reformulated this

Algorithm 1: BDP algorithm.
Input : Job shop instance, upper bounds UB, window width H
Output: Upper bound UB

1.1 Z({Oi,1}) = {(Oi,1)}, i = 1, . . . , n
1.2 for t = 1 to n · m − 1 do
1.3 forall G ⊂ O with |G| = t do
1.4 forall T ∈ Z(G) do
1.5 forall Oj,k ∈ O \ G with xj(T ) = 1 and Oj,k = Succj(G) do
1.6 T 1 = T +Oj,k

1.7 G1 = G ∪ {Oj,k}
1.8 Z(G1) ← filter sequences(T 1, Z(G1), UB)

1.9 if |Z|t+1 > H then
1.10 keep only H sequences according to some priority rule

1.11 New UB value is obtained from Z(O)
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algorithm using our notation system. Algorithm 1 will also be useful for the SDST-

JSP.

Now we briefly describe Algorithm 1. Initially, n sequences of operations are

created. Then a loop through stages t ¼ 1 to n � m� 1 has been done, see line 1.2.

For each stage t we loop through all subsets G with the size t (line 1.3). For each G,

we loop through all sequences T 2 ZðGÞ. These sequences are expanded with the

operations that satisfy requirements given in line 1.5. Function filter sequences

(line 1.8) firstly tests whether T1 is indirectly dominated. Then we try to reduce

ZðG1Þ by keeping only non-dominated sequences of operations. If T1 is not

dominated by another sequence from ZðG1Þ, then we test whether LBðT1Þ\UB

holds. Finally, if T1 is not discarding, then T1 is included in ZðG1Þ. If the state space

is growing too large, then only H sequences with size t þ 1 are kept (line 1.9). Also,

Algorithm 1 becomes the heuristic BDP algorithm. The sorting criterion can be LB

values.

In contrast to the previous version of the BDP (van Hoorn 2016), we use function

filter sequences, see line 1.8. We have two main contribution of this function.

Firstly, we use a stronger lower LB than that one used by van Hoorn (2016). This

bound will be described in Sect. 3.3. Secondly, if T1 is indirectly dominated, then

we do not test whether T1 � T2 for another T2. Thus, we do not need to save T1 if

T1 is indirectly dominated.

Algorithm 2: Pseudocode for solving the job shop scheduling problem
to optimality.
Input : Job shop instance, the upper bound UB0
Output: Opt - the optimal makespan

2.1 Z({Oi,1}) = {(Oi,1)}, i = 1, . . . , n
2.2 Opt = BDP (1, Z, UB0)
2.3 BDP (t, Zt, UB)/* the procedure for obtaining UB */
2.4 begin
2.5 Z(G) = ∅ for all G ⊂ O with |G| = t+ 1
2.6 forall G ⊂ O with |G| = t do
2.7 forall T ∈ Z(G) do
2.8 Z(G) = Z(G) \ {T}
2.9 forall Oj,k ∈ O \ G with xj(T ) = 1 and Oj,k = Succj(G) do

2.10 T 1 = T +Oj,k

2.11 G1 = G ∪ {Oj,k}
2.12 Z(G1) ← filter sequences(T 1, Z(G1), UB)

2.13 if |Z|t+1 > H then
2.14 Z1 = Z
2.15 UB = BDP (t+ 1, Z, UB)
2.16 UB = BDP (t, Z1, UB)

2.17 if Z(O) �= ∅ then
2.18 New UB is obtained from Z(O)

2.19 return UB

Algorithm 2 obtains the optimal solution of the JSP. This algorithm is based on

Algorithm 1. However, lines 1.9–1.10 are replaced by lines 2.13–2.16. In this case
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the subproblem (line 2.16) is solved if the state space is growing too large. The

parameter H (line 2.13 in Algorithm 2) depends on the computer system

requirements.

In summary, the main contributions of Algorithms 1 and 2 are summarized

below.

1. A stronger lower bound LB is used. This bound is described is Sect. 3.3. It can

be expected that more sequences T will be discarded.

2. We do not have to save those sequences that are indirectly dominated. Thus,

less memory could be required during the run of the BDP algorithm.

3. We have included lines 2.13–2.16 in Algorithm 2. Thus, the given algorithm is

theoretically able to solve any instance without running out of the given amount

of memory.

3.2 Bounded dynamic programming algorithm for the SDST-JSP

Again, let T be the sequence of operations. Throughout this section we will assume

that T is associated with S � J and G � O.

Some additional notations will be introduced. Let qkðTÞ denotes the job index

that corresponds to the last operation completed on machine Mk 2 M. The

completion time of this operation is denoted by CkðTÞ. If no operation is scheduled

on machine Mk, then CkðTÞ ¼ 0.

Table 5 reports qkðTÞ and CkðTÞ values for the previously studied example (see

Table 2 and Fig. 1). In this example we assume that all setup times are equal to 0.

Now we will analyse the transition from T to T þ Oi;l where Oi;l 2 OnG is the

next operation that job Ji 2 J n has to schedule. Let k ¼ mi;l denotes the machine

index of operation Oi;l. Firstly, the makespan is equal to

CmaxðT þ Oi;lÞ ¼ wiðTÞ þ pi;l:

Secondly, the earliest starting times wiðT þ Oi;lÞ can be greater than CmaxðT þ Oi;lÞ,
i.e.

wiðT þ Oi;lÞ ¼ max CmaxðT þ Oi;lÞ;CkðTÞ þ skqkðTÞ;i

n o
:

Also, setup times have to be taken into account in order to obtain wjðT þ Oi;lÞ for

Jj 2 J nSnfJig with MðSuccjðGÞÞ ¼ k. For this case we have

wjðT þ Oi;lÞ ¼ CmaxðT þ Oi;lÞ þ skqkðTÞ;j:

Table 5 Parameters qkðTÞ and CkðTÞ related to the schedule depicted in Fig. 1

k 1 2 3 4

qkðTÞ 1 4 2 1

CkðTÞ 9 20 13 22
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The resulting recurrence relation is

wjðT þ Oi;lÞ ¼
max CmaxðT þ Oi;lÞ;CkðTÞ þ skqkðTÞ;j

n o
; i ¼ j;

CmaxðT þ Oi;lÞ þ skqkðTÞ;j; MðSuccjðGÞÞ ¼ k;

wjðTÞ; otherwise:

8
>><

>>:

where index j is such that Jj 2 J nS.

The heads rjðTÞ can be calculated as follows:

rjðTÞ ¼
wjðTÞ; xjðTÞ ¼ 1;

max CmaxðTÞ;CkðTÞ þ skqkðTÞ;j

n o
; xjðTÞ ¼ 0;

8
<

:

where xjðTÞ is the binary variable defined in (1). Note that rjðTÞ can be greater than

CmaxðTÞ due to the setup times.

Let us describe the general heads rj;gðTÞ. These heads represent the earliest

starting time of Oj;g 2 OnG. Let k ¼ mj;g denotes the machine index of Oj;g. In

general, rj;gðTÞ can recursively be estimated as follows:

rj;lðTÞ ¼ rjðTÞ;

rj;gðTÞ ¼ max rj;g�1ðTÞ þ pj;g�1;CkðTÞ þ skqkðTÞ;j

n o
; g ¼ lþ 1; . . .;m;

where index l means that SuccjðGÞ ¼ Oj;l.

Theorem 1 about the weak dominance cannot directly be applied to the SDST-

JSP due to the setup times. Two simple examples are given in Figs. 2 and 3. These

examples show that Theorem 1 fails in these cases with unit processing times. The

setup times corresponding to Fig. 2 are

Fig. 2 On the left side: the optimal schedule. On the right side: the non-optimal schedule

Fig. 3 On the left side: the
optimal schedule. On the right
side: the non-optimal schedule
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s1
i;j

� �
¼

0 2 1 3

2 0 2 3

3 3 0 2

3 3 3 0

0

B
B
B
@

1

C
C
C
A

and s2
i;j

� �
¼

0 2 3 4

2 0 2 4

4 4 0 2

4 4 4 0

0

B
B
B
@

1

C
C
C
A
:

For the second example depicted in Fig. 3, we define the setup times as follows:

s1
i;j

� �
¼

0 3 2

2 0 2

4 4 0

0

B
@

1

C
A and s2

i;j

� �
¼

0 3 4

2 0 2

4 4 0

0

B
@

1

C
A:

In the first case, we set

T1 ¼ ðO1;1;O1;2;O2;1;O2;2;O3;1;O3;2Þ;
T2 ¼ ðO2;1;O2;2;O1;1;O1;2;O3;1;O3;2Þ:

Then

r4ðT1Þ ¼ 9[ r4ðT2Þ ¼ 8:

However,

CmaxðT1 þ O4;1 þ O4;2Þ ¼ 11\CmaxðT2 þ O4;1 þ O4;2Þ ¼ 12:

In this case, the problem lies in the fact that the completion times of operation O3;2

on the machine M2 differs, i.e. C2ðT1Þ\C2ðT2Þ.
Now we study the example depicted in Fig. 3. In this case, we set

T1 ¼ ðO1;1;O1;2;O2;1;O2;2Þ;
T2 ¼ ðO2;1;O2;2;O1;1;O1;2Þ:

Then

r3ðT1Þ ¼ 7[ r3ðT2Þ ¼ 6

and

CmaxðT1 þ O3;1 þ O3;2Þ ¼ 9\CmaxðT2 þ O3;1 þ O3;2Þ ¼ 10:

In this case, q2ðT1Þ 6¼ q2ðT2Þ.
Counterexamples in Figs. 2 and 3 show that Theorem 1 cannot be applied to the

SDST-JSP. Thus, a stronger dominance rule has to be used. The next definition

introduces this rule.

Definition 6 Let T1 and T2 be two sequences of operations such that both T1 and

T2 are associated with G � O and S � J . We say that T1 � T2 if the following two

statements hold:

1. rjðT1Þ� rjðT2Þ for all Jj 2 J nS.
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2. Let i denotes the job index for which i ¼ qkðT1Þ and let l denotes the index with

k ¼ mj;l. If i 6¼ qkðT2Þ or CkðT1Þ[CkðT2Þ, then

CkðT1Þ þ ski;j � rj;lðT2Þ

for all Jj 2 J nS.

Note that Definition 6 reduces to Definition 4 if ski;j ¼ 0 for all i; j 2 f1; . . .ng and

k 2 f1; . . .;mg.

Theorem 3 Let T1 and T2 be two sequences of operations such that both T1 and

T2 are associated with G � O. If T1 � T2, then for all complete expansions of T2

there exists a complete expansion of T1 such that

w1ðOÞ�w2ðOÞ

for all O 2 OnG

Proof Let T4 denotes the complete expansion of T2. Thus, we have

T4 ¼ ðT2
1 ; . . .; T

2
jGj; TjGjþ1; . . .; Tn�mÞ:

Further, let T3 denotes an expansion of T1. We assume that all operations from OnG
are in the same order as in T4, i.e.

T3 ¼ ðT1
1 ; . . .; T

1
jGj; TjGjþ1; . . .; Tn�mÞ:

By reordering operations from T3, we can obtain a feasible sequence of operations.

Let Oj;l1 denotes the next operation TjGjþ1 and let k denotes the machine index of

Oj;l1 . From Condition 1 in Definition 6 it follows that w3ðOj;l1Þ�w4ðOj;l1Þ. The

same can be stated for all other operations Th (h[ jGj þ 1) for which the following

two statements hold:

• MðTgÞ 6¼ MðThÞ;
• The job index between operations Tg and Th are different

for all g 2 fjGj þ 1; . . .; h� 1g.

Let Th (h[ jGj) denotes the first operation for which there exists previous

operation Tg that has to be scheduled on the same machine or by the same job as

operation Th. Let Oi;l2 ¼ Tg denotes this operation.

Now we will study two cases. For the case MðThÞ ¼ MðTgÞ, we have

w3ðThÞ ¼ w3ðTgÞ þ pðTgÞ þ ski;j; ð2Þ

w4ðThÞ ¼ w4ðTgÞ þ pðTgÞ þ ski;j: ð3Þ

Since w3ðTgÞ�w4ðTgÞ, it follows from (2)–(3) that w3ðThÞ�w4ðThÞ. For the case

i ¼ j, we have Oi;l2 ¼ Oj;l1�1. If no operation from OnG has been scheduled on
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machine Mk, then Condition 2 in Definition 6 ensures that w3ðOj;l1Þ�w4ðOj;l2Þ since

w3ðOj;l1�1Þ�w4ðOj;l1�1Þ. Otherwise, we have

qkððT3
1 ; . . .; T

3
h�1ÞÞ ¼ qkððT4

1 ; . . .; T
4
h�1ÞÞ;

CkððT3
1 ; . . .; T

3
h�1ÞÞ�CkððT4

1 ; . . .; T
4
h�1ÞÞ;

from which it follows that w3ðThÞ�w4ðThÞ
In summary, we have proved w3ðTgÞ�w4ðTgÞ for all g 2 fjGj þ 1; . . .; hg.

Hence, Th is the first operation for which there exists previous operation that has to

be scheduled on the same machine or by the same job. By repeating the same steps

of the proof, we can recursively prove that w4ðTgÞ�w4ðTgÞ for all

g 2 fjGj þ 1; . . .; n � mg. By reordering the operations from sequence T3 such that

precedence relations among operations remain, we can obtain feasible sequence.

This sequence is the complete expansion of T3 such that

w3ðOÞ�w4ðOÞ

for all O 2 OnG. The proof is completed. h

Definition 5, which introduces the indirect dominance, has to be generalized.

Definition 7 Let T stands for the sequence of operations associated with G � O
and S � J . We say that T is indirectly dominated if there exists Mk 2 M and

Jj 2 J nS with MðSuccjðGÞÞ ¼ k such that the following two statements hold:

1. We have xjðTÞ ¼ 0.

2. For all Ji 2 J nSnJj with MðSucciðGÞÞ ¼ k we have riðTÞ�wjðTÞþ
pðSuccjðGÞÞ þ skj;i.

Theorem 4 Let T be the sequence of operations associated with G � O and

S � J . If T is indirectly dominated, then there exists job Jj 2 J nS such that xjðTÞ ¼
0 and

riðT þ SuccjðGÞÞ ¼ riðTÞ

for all Ji 2 J nSnJj.

The Proof of Theorem 4 immediately follows from Definition 7.

3.3 A lower bound for the JSP

Throughout this section we assume that all operations from G � O are scheduled.

The set of scheduled jobs is denoted by S. Let T denotes the sequence of operations

associated with S and G. Let qj;k be a tail, which is defined as a lower bound of the

time period between the completion time of operation Oj;k 2 OnG and the optimal

makespan Cmax. The tails qj;k are calculated as follows:
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qj;k ¼
Xm

h¼kþ1

pj;h: ð4Þ

Let rj;kðTÞ denotes the earliest starting time of operation Oj;k 2 OnG. These

starting times can be estimated as follows:

rj;kðTÞ ¼ rjðTÞ þ qj;l � qj;k�1; ð5Þ

where index l is such that Oj;lþ1 ¼ SuccjðGÞ holds.

Fix machine Mk 2 M. Consider the one-machine scheduling problem with heads

rj;lðTÞ and the corresponding tails where Oj;l 2 O and MðOj;lÞ ¼ k. These heads and

tails are defined by (5) and (4) respectively. Let LBkðTÞ be the optimal solution of

this one-machine sequencing problem. Despite the NP-hardness, the problem can

efficiently be solved in practice using the branch and bound method proposed

by Carlier (1982). The final lower bound of T is

LBðTÞ ¼ max
k2f1;...;mg

LBkðTÞ:

3.4 A lower bound for the SDST-JSP

Again, we assume that all operations from G � O are scheduled and all jobs from

S � J are completed. Let T stands for the sequence of operations associated with

G and S.

The computation of the lower bounds can be reduced to the traveling salesman

problem with time windows (TSPTW). Fix machine Mk 2 M. For the sake of

simplicity, denote by dk the following set:

dk ¼ fi j exists lwithOi;l 2 OnG andMðOi;lÞ ¼ kg

For all j 2 dk define the time windows ½aj; bj� as follows:

aj ¼ rj;lðTÞ þ pj;l;

bj ¼ UB� qj;l � 1;

where l is such that Oj;l 2 OnG.

The costs ci;j for i; j 2 dk with i 6¼ j are defined as

ci;j ¼ ski;j þ pj;l;

where l is such that Oj;l 2 OnG. The cost ci;j includes both the service time of i and

the time needed to travel from i to j. The feasible version of the TSPTW denoted by

F-TSPTW asks to find the feasible schedule satisfying time windows constraints. It

can be concluded that LB�UB if there exists machine Mk 2 M such that the

solution of F-TSPTW is infeasible.

Obviously, the problem F-TSPTW is NP-hard since it is the generalization of the

TSP without the time windows. Similarly as by Artigues and Feillet (2008), we use

1716 A. Ozolins

123



the dynamic programming algorithm proposed by Feillet et al. (2004). This

algorithm solves the elementary shortest path problem with resource constraints

(ESPPRC) where TSPTW can be interpreted as a special case of the ESPPRC.

Algorithm 3: Algorithm that finds whether or not LB < UB.
Input : [ai, bi] - time windows, (ci,j) - cost matrix
Output: success or failure

3.1 Find feasible solution using some heuristics
3.2 if solution is found then
3.3 return success

3.4 Estimate LB using some polynomial time algorithm
3.5 if LB ≥ UB then
3.6 return failure

3.7 return F TSPTW(a,b,c)

We try to speed up the calculation due to the NP-hardness of the problem

F-TSPTW. The general scheme of the algorithm is given in Algorithm 3. The first

step in Algorithm 3 is to find a feasible solution of the TSPTW using a time

efficiency heuristic (line 3.1). In this paper, we use a variable neighborhood search

(VNS) heuristic proposed by Da Silva and Urrutia (2010). Papalitsas et al. (2015)

empirically shown that the sorting-based approach is not better than the random-

based procedure. However, the VNS algorithm modified by Papalitsas et al. (2015)

shows better performance.

If a feasible solution is not found immediately, then the weaker lower bound LB

is calculated (line 3.5). We apply the calculation of LB given by Brucker and Thiele

(1996). Let hðdkÞ be defined as

hðdkÞ ¼ min
i2dk ; mi;l¼k

ri;lðTÞ þ
X

i2dk ; mi;l¼k

pi;l þ min
i2dk ; mi;l¼k

qi;l þ setupminðdkÞ: ð6Þ

The value setupminðdkÞ in (6) denotes a solution of the TSP with jdkj vertices and

setup times (costs) ski;j between those jobs Ji; Jj for which there exists unscheduled

operation on machine Mk. The values setupminðdkÞ for all dk can be preprocessing at

the beginning of Algorithm 3. Then hðdkÞ is calculated for the new dk that is

obtained by deleting one operation from the previous dk. We choose these opera-

tions according to the order of non-decreasing heads until dk is empty. Then we

repeat the same procedure but now according to the order of non-decreasing tails.

LBk is obtained by taking the maximum value among all hðdkÞ values.

Finally, if the result is not obtained in the previous two steps, then the relaxation

of the ESPRC algorithm given by Feillet et al. (2004) has to be solved, see

Algorithm 4. The value dist(V, i) denotes the shortest path for a pair (V, i) where

i 2 V is the current vertex and V � dk is the set of vertices already visited. The sets

Ki and Knew
i consist of the sets V for which distðV ; iÞ 6¼ 1. The reachability test

(line 4.9 in Algorithm 4) is the same as the one proposed by Artigues and Feillet

(2008).
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4 Computational results

We implement the BDP algorithm in C?? programming environment and

compiled it with Microsoft Visual Studio. Windows 64 bit operating system with

8 GB RAM memory and 2.8 GHz CPU was used. Several sets of benchmark

instances are used. The presented computation results will be in two directions: to

solve the problem without knowing a lower and upper bound, and the optimality

proof by taking UB equals the optimal solution. For the JSP we will only prove the

optimality with the aim to show the dimension of benchmark instances that can be

solved by the BDP algorithm. For the SDTS-JSP we will try to solve the instances to

optimality using two strategies.

Section 4.1 presents computational results for the JSP. In Sect. 4.2, the SDST-

JSP is studied.

4.1 Case JSP

In this section, we will analyse how proposed Algorithm 2 works on practice

proving the optimality for different benchmark instances. The effectiveness will be

analysed in terms of |Z| and CPU times. Hence, |Z| is defined as

jZj ¼
X

G�O
jZðGÞj:

In other words |Z| is a number of the non-dominated sequences T for which

LBðTÞ\UB.

Algorithm 4: The relaxation of ESPRC algorithm proposed by Feillet
et al (2004).

4.1 F TSPTW(a,b,c)
4.2 begin

Initialization: dist({i}, i) = ai

dist(V, i) = ∞ for V ⊂ δk with |V | > 1
Λi = {{i}}, i ∈ δk

4.3 for k = 2 to |δk| do
4.4 Λnew

i = ∅, i ∈ δk

4.5 forall i ∈ δk do
4.6 forall V ∈ Λi do
4.7 forall j ∈ δk \ V do
4.8 Fi,j = max{dist(V, i) + ci,j , aj}
4.9 if Fi,j ≤ dist(V ∪ {j}, j) and all nodes reachable from

j with Fi,j then
4.10 Λnew

j = Λnew
j ∪ {V ∪ {j}}

4.11 keep non-dominated vertices in Λnew
j

4.12 Λ = Λnew
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The termination criterion of Algorithm 2 is chosen in the following way. The

calculation is interrupted if jZjtþ1 [H for the subproblem (line 2.16 in Algorithm

2).

Table 6 shows that the optimality is proven for all 10 � 5; 10 � 10; 15 � 10; 30 �
10 type benchmark instances. However, the BPP algorithm is able to solve only 5

out of 10 benchmark instances for the case 20 � 10 and 3 out of 5 instances for the

case 15 � 15. Furthermore, some 20 � 10 type instances were solved because of the

good estimation of the lower bound. Thus, the dominance relation between

sequences was not important for those 20 � 10 type instances as well as for the

cases 15 � 5; 20 � 5, and 30 � 10. Finally, the BDP algorithm is not able to solve

any 20 � 15 type instance as well as instances with a larger dimension. We observe

from Table 6 that all 10 � 10 type instances were solved within a CPU time less

than 1 min. CPU times varies from seconds up to 4 h for 15 jobs and 10 machines.

The memory would be overreached for instances la21, la25, and la40 if the

termination criterion has not be used (line 2.13 in Algorithm 2).

van Hoorn (2016) gives computational results for his version of the BDP

algorithm where the optimality was proven only for instances up to 10 jobs. Table 7

compares CPU times with those reported by van Hoorn (2016). We observe that

almost all instances were solved significantly faster, except for instances with CPU

time zero second. Moreover, van Hoorn algorithm is able to prove the optimality

only for instances with a maximum of 10 jobs. It can be concluded that the BDP

algorithm proposed in this paper significantly increases the applicability of the BDP

approach for solving the classical JSP.

4.2 Case SDST-JSP

Table 11 reports the calculation of UB values whereas Table 8 gives a summary. In

this case Algorithm 1 is used where H is taken as 100, 1000, ... and finally

1,000,000 if it is necessary. Memory requirements of the computer allow us to use

H ¼ 10;000;000. However, then CPU times would be increased significantly. For

larger instances t2-ps11 to t2-ps15, H ¼ 1000 is the last time window. We start the

calculation by setting H ¼ 100 and UB ¼ 1. Then we try to iteratively improve UB

value until no improvement is possible for H ¼ 100. Then we set H ¼ 1000 and

repeat the same procedure, etc. In Table 8, the three columns with the title

‘Summary’ represent final results obtained for each instance. The calculations are

terminated when the optimal value is reached or the maximal H value is reached.

The relative percentage deviation (RPD) is calculated as follows:

RPD ¼ UBfinal � BKS

BKS
� 100

where BKS denotes the best-known solution previously reported in the literature.

As seen in Table 8, the optimality can be proven within few seconds for small

instances of type 5 � 10 � 5. CPU times significantly grow for medium instances

(named t2-ps06 to t2-ps10). Computational times are huge compared to those

obtained by the state-of-the-art heuristic methods, e.g. a genetic algorithm combined
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Table 6 The optimality proof for each instance

Instance n� m Opt |Z| CPU (s)

ft06 6 � 6 55 6 0

ft10 10 � 10 930 1,505,084 14

ft20 20 � 5 1165 41 0

la01 10 � 5 666 10 0

la02 10 � 5 655 10 0

la03 10 � 5 597 12 0

la04 10 � 5 590 4566 0

la05 10 � 5 593 10 0

la06 15 � 5 926 15 0

la07 15 � 5 890 15 0

la08 15 � 5 863 15 0

la09 15 � 5 951 15 0

la10 15 � 5 958 15 0

la11 20 � 5 1222 20 0

la12 20 � 5 1039 20 0

la13 20 � 5 1150 20 0

la14 20 � 5 1292 20 0

la15 20 � 5 1207 20 0

la16 10 � 10 945 2,255,158 18

la17 10 � 10 784 381,977 3

la18 10 � 10 848 360,939 3

la19 10 � 10 842 534,988 3

la20 10 � 10 902 268,916 2

la21 15 � 10 1046 577,830,315 16,297

la22 15 � 10 927 4,092,387 90

la23 15 � 10 1032 15 0

la24 15 � 10 935 10,004,379 178

la25 15 � 10 977 606,558,571 9553

la26 20 � 10 1218 20 0

la27 20 � 10 1235 20 0

la28 20 � 10 1216 20 0

la30 20 � 10 1355 20 0

la31 30 � 10 1784 30 0

la32 30 � 10 1850 30 0

la33 30 � 10 1719 30 0

la34 30 � 10 1721 30 0

la35 30 � 10 1888 30 0

la37 15 � 15 1397 23 0

la39 15 � 15 1233 39,828,979 653

la40 15 � 15 1222 104,054,7408 18,204

orb01 10 � 10 1059 1,057,741 9

orb02 10 � 10 888 1,479,717 10
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Table 6 continued

Instance n� m Opt |Z| CPU (s)

orb03 10 � 10 1005 5,372,642 53

orb04 10 � 10 1005 1,112,160 10

orb05 10 � 10 887 2,330,397 17

orb06 10 � 10 1010 1,383,871 13

orb07 10 � 10 397 228,073 2

orb08 10 � 10 899 130,560 1

orb09 10 � 10 934 1,307,918 11

orb10 10 � 10 944 34,683 0

abz05 10 � 10 944 1,434,865 11

abz06 10 � 10 1234 78,464 1

swv02 20 � 10 1475 20 0

Table 7 Comparison of CPU

times with the previous results

of the BDP algorithm

aAlgorithm proposed by van

Hoorn (2016)

Instance n� m Opt CPU (s)

Algorithm 2 van Hoorn algorithma

ft06 6 � 6 55 0 0

ft10 10 � 10 930 14 60

la01 10 � 5 666 0 25

la02 10 � 5 655 0 1

la03 10 � 5 597 0 0

la04 10 � 5 590 0 0

la05 10 � 5 593 0 466

la16 10 � 10 945 18 44

la17 10 � 10 784 3 1

la18 10 � 10 848 3 14

la19 10 � 10 842 3 9

la20 10 � 10 902 2 3

orb01 10 � 10 1059 9 36

orb02 10 � 10 888 10 29

orb03 10 � 10 1005 53 185

orb04 10 � 10 1005 10 20

orb05 10 � 10 887 17 29

orb06 10 � 10 1010 13 40

orb07 10 � 10 397 2 8

orb08 10 � 10 899 1 9

orb09 10 � 10 934 11 14

orb10 10 � 10 944 0 1

abz05 10 � 10 944 11 42

abz06 10 � 10 1234 1 3
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with a tabu search or a local search (González et al. 2008, 2009). However, the BDP

algorithm is able to reach the optimal value for those instances except for t2-ps08

for which the H value should be increased to obtain the optimal solution. The

optimality has not been reached for instances t2-ps11 to t2-ps15 with n ¼ 20 jobs.

However, the proposed algorithm can be applied for improving the best-known

lower bounds for harder instances.

The main contribution of the current research for the SDST-JSP is associated

with the computational results for large instances. In Table 12 we calculate lower

bounds using the following strategy. We start with some initial bound. We replace

UB in Algorithm 2 with the current bound. Then we run the BDP algorithm. If the

used bound is not lowered after the execution of the algorithm, then it is clear that

the lower bound cannot be less than the current value. Thus, the current bound is

increased by one for instances t2-ps1 to t2-ps10. For larger instances t2-ps11 to t2-

ps15, the increment is taken as five. If the solution is obtained for the current bound,

then the previous bound (namely LBfin) is also the optimal value of the given

instance. If there exists t with jZjt [ 3 � 105, then the run is terminated. Thus, the

optimal solution is not found and the previous bound is taken as the final lower

bound of the given instance.

Table 9 gives a summary of lower bounds obtained by the DP. The value
P

jZj
in Table 9 stands for the sum of all |Z| that is obtained for all previous bounds. LBfin

denotes the best lower bound that is found by BDP algorithm. The initial lower

bound LB0 is set significantly less in our runs. For the sake of simplicity we report

only the final six bounds in Table 12.

Table 8 Upper bounds: case

SDST-JSP

Values in bold: best-known

result is reached

Asterisk ‘*’: upper bound is

equal to optimal solution

Inst. n� m Best lit. UB Summary

Best found RPD CPU

t2-ps01 10 � 5 798* 798* 0 3

t2-ps02 10 � 5 784* 784* 0 0

t2-ps03 10 � 5 749* 749* 0 6

t2-ps04 10 � 5 730* 730* 0 0

t2-ps05 10 � 5 691* 691* 0 0

t2-ps06 15 � 5 1009* 1009* 0.00 6707

t2-ps07 15 � 5 970* 970* 0.00 62,334

t2-ps08 15 � 5 963* 965 0.21 22,388

t2-ps09 15 � 5 1060* 1060* 0.00 1875

t2-ps10 15 � 5 1018* 1018* 0.00 456

t2-ps11 20 � 5 1438 1522 5.84 9370

t2-ps12 20 � 5 1269 1358 7.01 36,649

t2-ps13 20 � 5 1406 1439 2.35 10,058

t2-ps14 20 � 5 1452 1540 6.06 1214

t2-ps15 20 � 5 1485 1551 4.44 3108
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As it is shown in Table 12, all small and medium instances t2-ps01 to t2-ps10 are

solved to optimally. The best-known lower bounds are improved for all 5 � 20 � 10

type benchmark instances. However, the proposed algorithm is not able to obtain the

optimal solution without overreaching the width 3 � 105. CPU times varies from less

than 1 day to almost 3 days. In practice CPU times below the column ‘LBfin’ can be

significantly less than those below the column ‘LBfin?1’ (e.g. the instances t2-ps07

and t2-ps10). On the other hand, for some cases these values can be similar (e.g. the

instances t2-ps06 and t2-ps09).

It is interesting to note that a higher |Z| value not always means that a CPU value

will be higher. The highest
P

jZj value is for the instance t2-p14. However, this

instance is solved in 8 h that is significantly faster than the time required to solve

three other instances, namely t2-ps12, t2-ps13, and t2-ps15.

Now we compare two strategies for solving the SDST-JSP by BDP (see Tables 8

and 9). We have that the first approach is slightly better for small instances in terms

of CPU times. For medium instances, the second strategy shows better performance

on average. The instance t2-ps06 is solved 200 times faster by the second strategy

and for the instance t2-ps07 the optimal solution is not even reached by the first

strategy.

The computational results of the state-of-the-art exact algorithms are summarized

in Table 10. BT96, ABF04, AF08, and BDP stand for computational results

obtained by Brucker and Thiele (1996), Artigues et al. (2004), Artigues and Feillet

(2008), and our BDP approach, respectively. For the BDP we have shown the

CPULB times for the second strategy, see Tables 9 and 12. The results under AF08

are obtained by similar computer requirements as used in the current work. 2 GHz

processor is used for ABF04. Unfortunately, it is difficult to compare our results to

Table 9 Lower bounds: case

SDST-JSP

Values in bold: best known

result is reached

Asterisk: bound is equal to

optimal solution

Value underlined: previously

best known result is improved

Inst. n� m Best lit. Summary

LB LB UB
P

jZj CPU

t2-ps01 10 � 5 798* 798* 798* 41,600 3

t2-ps02 10 � 5 784* 784* 784* 45,792 3

t2-ps03 10 � 5 749* 749* 749* 227,583 13

t2-ps04 10 � 5 730* 730* 730* 8260 1

t2-ps05 10 � 5 691* 691* 691* 3235 0

t2-ps06 15 � 5 1009* 1009* 1009* 7,102,055 1744

t2-ps07 15 � 5 970* 970* 970* 718,337 287

t2-ps08 15 � 5 963* 963* 963* 5,402,280 6825

t2-ps09 15 � 5 1060* 1060* 1060* 9,107,100 7227

t2-ps10 15 � 5 1018* 1018* 1018* 8,856,013 1646

t2-ps11 20 � 5 1395 1402 – 0 15

t2-ps12 20 � 5 1242 1249 – 1,668,701 74,265

t2-ps13 20 � 5 1342 1364 – 4,738,581 186,625

t2-ps14 20 � 5 1432 1442 – 5,923,970 29,028

t2-ps15 20 � 5 1406 1426 – 2,550,037 245,084
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those obtained by Brucker and Thiele (1996). Thus, we provide only a rough

comparison with BT96. We apply factor 1.5 and 15 for CPU time comparisons with

ABF04 and BT96, respectively.

Table 10 Comparison versus state-of-the-art exact algorithms: case SDST-JSP

Inst. n� m BT96 ABF04

LB UB CPU LB UB CPU

t2-ps01 10 � 5 756 798* 502 798* 798* 522

t2-ps02 10 � 5 705 784* 158 784* 784* 8

t2-ps03 10 � 5 658 749* 1892 749* 749* 48

t2-ps04 10 � 5 627 730* 189 730* 730* 34

t2-ps05 10 � 5 653 691* 770 691* 691* 30

t2-ps06 15 � 5 986 – 7200 996 1026 7200

t2-ps07 15 � 5 940 – 7200 970* 970* 16,650

t2-ps08 15 � 5 913 – 7200 923 1002 7200

t2-ps09 15 � 5 1001 – 7200 1037 1060* 7200

t2-ps10 15 � 5 1008 – 7200 1018* 1018* 498

t2-ps11 20 � 5 1322 – 7200 – – –

t2-ps12 20 � 5 1139 – 7200 1159 1319 7200

t2-ps13 20 � 5 1250 – 7200 1250 1439 7200

t2-ps14 20 � 5 1402 – 7200 – – –

t2-ps15 20 � 5 1307 – 7200 – – –

Inst. n� m AF08 BDP

LB UB CPULB CPUUB LB UB CPULB CPUUB

t2-ps01 10 � 5 798* 798* 57 798* 798* 3

t2-ps02 10 � 5 784* 784* 105 784* 784* 3

t2-ps03 10 � 5 749* 749* 353 749* 749* 13

t2-ps04 10 � 5 730* 730* 16 730* 730* 1

t2-ps05 10 � 5 691* 691* 16 691* 691* 0

t2-ps06 15 � 5 1009* 1009* 1798 1009* 1009* 1744

t2-ps07 15 � 5 970* 970* 782 970* 970* 287

t2-ps08 15 � 5 963* 963* 349,923 22,717 963* 963* 6825

t2-ps09 15 � 5 1051 1061 169,582 26,755 1060* 1060* 7227

t2-ps10 15 � 5 1018* 1018* 35 46,590 1018* 1018* 1646

t2-ps11 20 � 5 1395 1494 916,833 39,489 1402 1522 15 9370

t2-ps12 20 � 5 1242 1381 914,086 26,678 1249 1358 74,266 36,649

t2-ps13 20 � 5 1342 1457 895,059 50,336 1364 1439 186,626 10,058

t2-ps14 20 � 5 1432 1483 306,899 37,236 1442 1540 29,029 1214

t2-ps15 20 � 5 1406 1661 792,196 46,590 1426 1551 245,085 3108

Values in bold: best known result is reached

Asterisk: bound is equal to optimal solution

Value underlined: previously best known result is improved
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CPULB and CPUUB denote CPU times necessary to obtain LB and UB

respectively. Some table cells under column CPULB are empty thus meaning that

CPU=CPULB, i.e. LB and UB are obtained in a single run. Artigues and Feillet

(2008) uses two slightly different strategies for their branch and bound method.

Thus, for each instance the best-obtained results are reported in Table 10.

Table 10 shows that our CPU times outperforms all the state-of-the-art exact

algorithms for 10 instances that our approach is able to solve to optimality. The only

exception is instance t2-ps06 where the results of AF08 show similar performance.

Especially good performance is observed for five smallest BT instances where the

BDP algorithm can be competitive even with the heuristic methods. Even using

factor 15 for CPU times, the BDP method performs much better than BT96. In fact,

for five small instances the average CPU time of the BDP are almost 200 times less

than the one of BT96.

All medium instances t2-ps06 to t2-ps10 are solved in a reasonable time limit.

This cannot be said about AF08 method, which spends several days to solve the

instance t2-ps08. Moreover, the instance t2-ps09 is not solved to optimality since

the calculation is terminated after 2 days. On the other hand, our BDP algorithm can

solve this instance in 1 h. Lower bounds are improved for all larger instances.

Moreover, the CPU times are significantly less than those reported by Artigues and

Feillet (2008). The UB-values for large instances are better on average compared to

those of AF08. However, the overall performance for obtaining the upper bounds is

poor compared to the best-known solutions.

5 Conclusions

In this paper, the bounded dynamic programming (BDP) algorithm that solves the job

shop scheduling problem (JSP) is investigated. We developed the BDP algorithm for

solving the JSP to optimality. The proposed algorithm is able to prove the optimality

for moderate benchmark instances (e.g. 15 jobs and 15 machines, or 20 jobs and 10

machines) thus significantly increasing the applicability of the BDP approach.

The main contribution of the present work is to adapt the BDP algorithm for the

JSP with sequence dependent setup times (SDST-JSP). As far as we know this has

not been done before. The quality of the BDP algorithm is strongly dependent on the

quality of lower bounds (LB). We present the algorithm that calculates an LB. The

performance of the BDP is evaluated against 15 benchmark instances proposed

by Brucker and Thiele (1996). The comparison among the best-known algorithms

shows that the BDP algorithm developed in the current work outperforms all the

current state-of-the-art exact methods for the SDST-JSP case. Moreover, we have

improved the best-known lower bounds for all 5 unsolved instances given

by Brucker and Thiele (1996).

Appendix

See Tables 11 and 12.
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