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Abstract In this paper, the job shop scheduling problem (JSP) with a makespan
minimization criterion is investigated. Various approximate algorithms exist that
can solve moderate JSP instances within a reasonable time limit. However, only a
few exact algorithms are known in the literature. We have developed an exact
algorithm by means of a bounded dynamic programming (BDP) approach. This
approach combines elements of a dynamic programming with elements of a branch
and bound method. In addition, a generalization is investigated: the JSP with
sequence dependent setup times (SDST-JSP). The BDP algorithm is adapted for this
problem. To the best of our knowledge, the dynamic programming approach has
never been applied to the SDST-JSP before. The BDP algorithm can directly be
used as a heuristic. Computational results show that the proposed algorithm can
solve benchmark instances up to 20 jobs and 15 machines for the JSP. For the
SDST-JSP, the proposed algorithm outperforms all the state-of-the-art exact algo-
rithms and the best-known lower bounds are improved for 5 benchmark instances.

Keywords Job shop scheduling - Makespan - Sequence dependent
setup times - Dynamic programming

1 Introduction

The job shop scheduling problem (JSP) is an important scheduling problem, which
is NP-hard. Since the JSP has applications in several areas, the problem and its
generalizations have been extensively studied.
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Several approximate algorithms have been proposed to tackle the JSP within a
reasonable amount of time. Adams et al. (1988) proposed the shifting bottleneck
procedure. The tabu search technique has been applied by several researchers,
e.g. Nowicki and Smutnicki (1996), Nowicki and Smutnicki (2005), Zhang et al.
(2008). The genetic approach has been investigated by Della Croce et al. (1995)
and Kurdi (2015). Gongalves and Resende (2014) presented the biased random-key
algorithm. Recently, Peng et al. (2015) presented a powerful hybrid search/path
relinking algorithm.

Only a few exact algorithms are known for the JSP. One such algorithm is the
branch and bound method (B&B). This method is proposed by several authors
(Carlier and Pinson 1989; Brucker et al. 1994; Martin and Shmoys 1996). Carlier
and Pinson (1989) proposed the B&B model combined with the concept of
immediate selection, which is based on branching on disjunctions. It was the first
exact method that solved Fisher and Thompson (1963) 10 x 10 benchmark
instance. Brucker et al. (1994) proposed the B&B based on the disjunctive graph
model. The basic scheduling decision is to fix precedence relations between the
operations on the same machine. A block approach was used. Gromicho et al.
(2012) a corrigendum on this paper by van Hoorn et al. 2016) proposed a dynamic
programming (DP) algorithm with the complexity proven to be exponentially lower
than exhaustive enumeration. However, computation results show that only 10 x 5
type benchmark instances were solved by the proposed algorithm. Recently, van
Hoorn (2016) provided the bounded dynamic programming algorithm. Thus, the
computational time of the previously proposed DP algorithm was drastically
decreased for solving benchmark instances. However, the proposed algorithm was
able to solve still limited size benchmark instances up to 10 machines and 10 jobs.

Consider now the job shop scheduling problem with sequence dependent setup
times (SDST-JSP). This problem is a generalization of the JSP in which setup times
occurs when the machine switches between two jobs. This feature significantly
changes the nature of the problem. Thus, the problem becomes harder to solve.
Within the current literature, the typical approach is to extend the methods that were
applied to the classical JSP. We will highlight only the most important papers.
Based on the work proposed by Brucker et al. (1994) and Brucker and Thiele
(1996) extended the B&B for the general shop problem where SDST-JSP is a
special case. They also provided new benchmark instances (denoted by BT96 and
named t2-ps01 to t2-ps15). Cheung and Zhou (2001) used a hybrid algorithm that is
based on a genetic algorithm and two dispatching rules. The shifting bottleneck
approach is extended by Balas et al. (2008). An effective B&B was developed
by Artigues and Feillet (2008). This algorithm extends constraint propagation
techniques for the SDST-JSP. The lower bound calculation is based on the traveling
salesman problem with time windows. The algorithm proposed by Artigues and
Feillet (2008) was able to prove the optimality for the first time on two benchmark
instances from BT96. Moreover, the lower bound is improved for six instances. The
effective hybrid genetic algorithm that hybridizes a genetic algorithm with a local
search is reported by Gonzalez et al. (2008). Empirical results show that the new
model outperforms all previous state-of-the-art results improving best-known
solutions for 5 benchmark instances of BT96. Gonzalez et al. (2009) combines a
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genetic algorithm with a tabu search approach instead of a local search method thus
outperforming several empirical results given by Gonzilez et al. (2008). For
both Gonzalez et al. (2008, 2009), the problem is modeled using the disjunctive
graph representation. Grimes and Hebrard (2010) proposed a constraint program-
ming approach that extends the previous model given by Grimes et al. (2009). The
model using simple binary disjunctive constraints combines Al strategies with the
generic SAT.

In the previous study (Ozolins 2017) we have successfully developed the DP to
the blocking flow shop scheduling problem. This problem is another variant of the
shop scheduling. Ultimately, this approach outperforms all the known state-of-the-
art exact algorithm for the blocking flow shop. This finding suggests that the DP
technique can successfully be applied to other variants of the shop scheduling.

Gromicho et al. (2012) proposed the base version of the DP approach for the JSP.
In this paper, we improve the DP method for solving the JSP thus increasing the
applicability of the DP approach. The novel contribution of our work lies in the
SDST-JSP. We extend the DP approach to the SDST-JSP with a makespan
objective. As far as we know this is the first time when the DP approach is used for
the SDST-JSP.

This paper is organized as follows. In Sect. 2, the JSP is introduced. Basic
notations and definitions are given. Section 3 presents the BDP algorithm for the
JSP and SDST-JSP cases. Computational results are described in Sect. 4. In Sect. 5,
conclusions are given. Finally, “Appendix” is given in the last section.

2 Problem formulation

Basic notations used in the present paper are summarized in Table 1 for a quick
reference.

Consider the JSP. The processing procedure of a job on a machine is called an
operation. Let O = {O;x |i=1,...,n,k =1,...m} denotes the set of operations,
partitioned into n jobs Ji,...,J, that need to be scheduled on m machines
My, .. M, Let 7 ={Jy,....,J,} and M = {M,...,M,,} denote the set of jobs
and the set of machines, respectively. Each operation O; is associated with the
specific job J; € J and the specific machine M,,, € M. Hence, m;; denotes the
machine index of operation O;;. Alternatively, this index can be denoted by
M(O;x). Each job has to visit all the machines following a specific order. Each
machine can process only one job at the same time and each job can be processed by
only one machine at the same time. We will study the special case of the JSP where
each job has to visit all the machines exactly once.

The processing time of operation O;; is denoted by p(O;x) or simply by p;.
Alternatively, the processing time associated with a machine M; and a job J; can be
denoted by pj’?. Denote by ¢ : O — N U {0} the schedule. For simplicity, we will
also use the notation y;, as an alternative to the notation 1(O;y). Let

Cnax = max((0) +p(0))
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1704 A. Ozolins

Table 1 Basic notations

m Number of machines

n Number of jobs

M Set of machines, M = {My,...,M,,}

J Set of jobs, J = {Ji,...,Jn}

Oix The kth operation of job J;

@) Set of operations, {O;; |i=1,...,n,k=1,...m}

Djk Processing time of operation O;; € O

P(Ojx) Alternative formulation of p;x

M(O) Machine index of operation O € O

miy Alternative formulation of machine index, m;x = M(O;;)

W(0) The starting time of operation O

Wi Alternative formulation of the starting time, ¥, , = (0jx)

Crax Maximum completion time among all operations, Crax = maxopco(Y(0) + p(0))
S Set of scheduled jobs, S C J

G Set of scheduled operations, G C O

T Finite sequence of operations associated with S and G, T = (T}, T, .. ., ﬂG|)
T+0 Expansion of sequence T by adding operation O € O\G

s{.‘J. Setup time between operations O;, and Oz, on the same machine M
Sﬁ‘,- Initial setup time of job J; on machine M

pe(T) Job index corresponding to the last operation completed on machine M
Ci(T) Completion time of the last operation scheduled on machine M
Succ;(G) Next operation needed to be scheduled by job J;

x;(T) Binary variable representing whether Succj(G) can be added to the end of T
Crnax(T) Maximum completion time among all operations from T

¥ (T) The earliest starting time of Succ;(G) where T is associated with G
1ik(T) The earliest starting time of operation O;; € O\G

Gik Tail of operation O x

T' <7172 T! weakly dominates T

Z(G) Set of sequences associated to G C O

|Z|, Number of sequences with size #, |Z], = 3> 0.6~ |Z(G)]

1Z] Total number of sequences, |Z| = > ;o |Z(G)|

UB Upper bound

LB(T) Lower bound of sequence T

be the makespan that corresponds to the schedule . The problem can formally be
stated as follows.

Definition 1 (Job shop scheduling problem)
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minimise Cyax
17

subject to:
Cmalepi,m +pi‘m> i= 17”'7”;
lpi,k+pi,k§lpi,k+l7 iil,...,}’l,kilw..,m*l;

Vik, +Pis <Wjg, OF
Vik, +Pids <Wig,  Oin, Oja, € Owithi 7 jand mjg, = mjy, .
Using the notation given by Graham et al. (1979), the JSP can also be denoted by
J||Crnax-

The JSP can be generalized by defining the setup times sﬁ]- between operations
Oit,,Ojk, € O on the same machine M; € M. In addition, an initial setup so; is
defined for all i € {1,...,n}. This problem is denoted by J|st|Cmax and can be
formalized in the following way.

Definition 2 (Job shop problem with sequence dependent setup times)

minimise Cpax
v

subject to:
Cax > W,y + Pims i=1,...nm
Vi TPik < Vi1 i=1,...n k=1,...m—1;
Yig, + Pk, + 55 <y, o1 Oij,Ojx, € Owith
Vik, t Piko + sj’-fl- <V i #jandm;y, = mj, = k;
lnglzso,i i=1,...,n

In addition, we assume that setup times satisfy the triangular inequality
ko &k 4
8 S Sin Sy

for all k € {1,...,m} and for each triplet of distinct jobs (J;, J;, Jp).

3 Bounded dynamic programming algorithm

In this section, we will develop the bounded dynamic programming (BDP) approach
for solving the JSP. The base version of this approach was proposed by Gromicho
et al. (2012). In Sect. 3.1, the complete BDP algorithm will be proposed. The
SDST-JSP will be studied in Sect. 3.2. In Sects. 3.3 and 3.4, we will discuss lower
bounds for the JSP and SDST-JSP.

3.1 Bounded dynamic programming algorithm formulation

Let T be the sequence of operations. We will further say that T is associated with
G C O if G contains all the operations that appear in 7. Those operations that are
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not in 7 are not included in G. We say that T is also associated with S C J if §
contains those jobs for which all the operations are completed. For example, if we
have the job shop instance with 3 jobs and 3 machines and

T =(031,011,012,05,,0,3),
then T is associated with S = {J;} and

G=1{031,01,1,012,05,,0,3}.

A no-idle starting time of an operation means that this operation starts directly
after the last operation on the same machine or directly after the last operation of the
same job. We will further assume that y(O; ) stands for this no-idle starting time of
operation O;; € G.

The sequence T is called feasible if

y(Th) +p(T1) < -+ <Y(Tig) + p(Tig))-

In addition, M(T,)<M(T,,) for those ge{l,...,|G|—1} for which
Y(T,) + p(Ty) = Y(Te41) + p(Te11). From the construction of T it follows that each
sequence T can uniquely be associated with the given schedule.

Denote by Cyax(T) the maximum completion time among all the operations from
T. Let Succ;(G) denotes the next operation that needs to be scheduled by job
Ji € J\S. Let ,(T) be the earliest starting time of operation Succ;(G). A sequence
obtained after this insertion is denoted by T + Succ;(G). In fact, we have

T + Succi(G) = (T, . .., Tig|, Succi(G)).
Denote by O;; € O\G the new operation that is inserted in 7, i.e.

0;; = Succ;(G). Fix J; € J\S. We explain how to recursively obtain the starting
times (T + O;;) from ;(T). Firstly, the makespan is

Coax (T + 0iy) =Y (T) + pi.
The resulting recurrence relation is

Coax(T + 0iy), mi; = M(Succj(G)),

lpj(T +0y) = { ¥, (T), otherwise.

Now define the head r;(T) as the earliest starting time of operation Succ;(G) such
that 7'+ Succ;(G) is feasible. These heads r;(T) are strongly connected with /;(T)
and are obtained as follows:

lpj(T)7 x5(T)
r](T) - { Cmax(T)7 xj(T)

where x;(T) is a binary variable defined as

)

1
0,
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L, Yi(T) + p(Succi(G)) > Cnax(T) or
x(T) = [¥,(T) + p(Succj(G)) = Cmax(T) and M(T|G|) <M (Succ;(G))],
0, otherwise.
(1)
The variable x;(7') represents whether the next operation can be added to the end of
T without a delay. In fact, x;(7) = 1 if and only if
T + Succj(G) = (Ti,. .., Tig|, Succi(G))

is feasible.

In order to understand the basic notations, we give an example. The basic
parameters of an instance are given in Table 2. Here each cell contains a pair (p¥, /)
where [ means that the /th operation of job J; is processed on machine M.

Figure 1 illustrates the feasible sequence

T =(031,011,0,1,012,032,022,013,041,01 4).

This sequence is associated with the set of scheduled jobs S = {J;} and the set of
scheduled operations

G=1{011,012,013,014,011,022,031,035,04}.

The starting times of operations belonging to G are given in Table 3.

The parameters Succ;(G),x;(T),y;(T), and r;(T) are given in Table 4. In
addition, Cp.x (T), the earliest starting times, and the heads are illustrated in Fig. 1.
Note that x3(7) = 0 since

Us(T) + p(Succ3(G)) = 9+ 4 < Crax (T)

The next definition introduces the complete expansion of a sequence.

Table 2 Processing times and

processing orders of an instance Jobs Machines
M, M, M; My
Ji (1, 3) 2, 1) (6, 2) (17, 4)
J (10, 3) @8, 1) (5,2 4, 4)
J3 4, 3) (1, 4) (CA)) 4, 2)
Jy (5,2) 5, 1) 5, 3) @3, 4)

Table 3 The earliest starting times related to Fig. 1

(i, k) (1, 1) (1,2) (1, 3) (1, 4) 2,1 2,2 G, 1D 3,2 4,1

Vir 5 6 9 15 0 8 0 5 15
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Table 4 Parameters related to

the schedule depicted in Fig. 1 2 3 4
Succj(G) 023 033 01>
x;(T) 1 0 1
W;(T) 13 9 20
r;(T) 13 22 20
M4 L] [ e, M=
[ 0 X
3.2 14
vs [T ]
3,1 4,4 %22
v [
%21 O3 041
M1 ¥y=9 | ,mr,=13 | =22
1 01-2 1 | ¢4=r4=120 )
0 5 10 15 20 25

Fig. 1 Example of a schedule

Definition 3 Let 7T be the sequence of operations associated with G C O. Let

T = (T5,...,T7,)

YT nem
be the sequence of operations associated with . We say that T* is a complete
expansion of Tif T, = T}f (h=1,...,|G|) and T* is feasible.

3

We introduce the weak dominance ‘=<’ relation as follows.

Definition 4 Let 7! and 77 be two sequences of operations such that both 7! and
T? are associated with § C 7. We say that T' weakly dominates 72, i.e. T' < T? if

r(T") <r(T?)
for all J; € J\S.

When two sequences of operations, namely 7' and T2, are given, then the
corresponding starting times will be denoted by ¥'(0) and *(0), respectively.

Hence O € O belongs to T' and T?. We are ready to present the theorem related to
the weak dominance.

Theorem 1 Let T' and T? be two sequences of operations such that both T' and
T? are associated with G C O. If T' weakly dominates T?, then for all complete
expansions of T* there exists a complete expansion of T' such that

¥'(0)<y*(0)
for all 0 € O\G

In other words, Theorem 1 says that T? can be disregarded if T' < T?. The
Proof of Theorem 1 will be given in Sect. 3.2 for the general case SDST-JSP
(Theorem 3) where Theorem 1 is a special case.
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The next definition introduces an indirect dominance.

Definition 5 Let 7 stands for the sequence of operations associated with G C O
and S C J. We say that T is indirectly dominated if there exists M; € M and
J; € J\S with M(Succ;(G)) = k such that the following two statements hold:

1. We have x;(T) = 0.
2. For all J;€ J\S\J; with M(Succi(G)) =k we have r(T)>y;(T)+
p(Succ;(G)).

Informally speaking, we can add to T at least one operation O € O\G such that the
heads remain the same for T + O. Thus, the sequences that are indirectly dominated
can be disregarded. The next theorem formalizes this idea.

Theorem 2 Let T be the sequence of operations associated with G C O and
S C J.If Tis indirectly dominated, then there exists job J; € J\S such that x;(T) =
0 and

ri(T + Succi(G)) = ri(T)
for all J; € J\S\J,.

The Proof of Theorem 2 directly follows from Definition 5. Theorem 2 is
formulated in a slightly different way than the one proposed by Gromicho et al.
(2012).

Now we investigate the previously studied example, see Fig. 1. Here, x3(T) = 0.
Moreover,

ri(T) 2 3(T) + p(Suce3 (G)) = 13

for i € {3,4}. Thus, the schedule depicted in Fig. 1 is indirectly dominated.
We are ready to present the BDP algorithm, see Algorithm 1. This algorithm is
similar to the one proposed by van Hoorn (2016). We have reformulated this

Algorithm 1: BDP algorithm.
Input : Job shop instance, upper bounds UB, window width H
Output: Upper bound UB

1.1 Z({0in}) ={(Oi1)},i=1,...,n
1.2 fort=1ton-m—1do

1.3 forall G C O with |G| =t do
1.4 forall T € Z(G) do
1.5 forall O, € O\ G with z;(T) =1 and Oj }, = Succ;(G) do
1.6 T'=T+0,
1.7 Gl =GuU{0;}
1.8 Z(G1) « filter_sequences(T*, Z(G'),UB)
1.9 if |Z|t+1 > H then
1.10 L keep only H sequences according to some priority rule

1.11 New UB value is obtained from Z(O)
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1710 A. Ozolins

algorithm using our notation system. Algorithm 1 will also be useful for the SDST-
JSP.

Now we briefly describe Algorithm 1. Initially, n sequences of operations are
created. Then a loop through stages t = 1 to n - m — 1 has been done, see line 1.2.
For each stage t we loop through all subsets G with the size ¢ (line 1.3). For each G,
we loop through all sequences T € Z(G). These sequences are expanded with the
operations that satisfy requirements given in line 1.5. Function filter _sequences
(line 1.8) firstly tests whether 7' is indirectly dominated. Then we try to reduce
Z(G") by keeping only non-dominated sequences of operations. If 7' is not
dominated by another sequence from Z(G'), then we test whether LB(T') <UB
holds. Finally, if 7" is not discarding, then 7" is included in Z(G"). If the state space
is growing too large, then only H sequences with size ¢ + 1 are kept (line 1.9). Also,
Algorithm 1 becomes the heuristic BDP algorithm. The sorting criterion can be LB
values.

In contrast to the previous version of the BDP (van Hoorn 2016), we use function
filter _sequences, see line 1.8. We have two main contribution of this function.
Firstly, we use a stronger lower LB than that one used by van Hoorn (2016). This
bound will be described in Sect. 3.3. Secondly, if T' is indirectly dominated, then
we do not test whether 7' < T2 for another T2. Thus, we do not need to save T if
T! is indirectly dominated.

Algorithm 2: Pseudocode for solving the job shop scheduling problem
to optimality.

Input : Job shop instance, the upper bound U By
Output: Opt - the optimal makespan

2.1 Z({Ol,l}) = {(Oll)}, 1= 1, BRI 14

2.2 Opt = BDP(1,Z,UBy)

2.3 BDP(t,Z;,UB)/* the procedure for obtaining UB */
2.4 begin
2.5 Z(G) =0 for all G C O with |G| =t+1
2.6 forall G C O with |G| =t do
2.7 forall T € Z(G) do
2.8 Z(GQ) = Z(G)\ {T}
2.9 forall O; ), € O\ G with x;(T) =1 and O, j, = Succ;(G) do
2.10 Tt =T+ Oj
2.11 Gl =GuU{0, i}
2.12 Z(GY) « filter_sequences(T', Z(G'), UB)
2.13 if |Z|i41 > H then
2.14 1=27
2.15 UB = BDP(t+1,2,UB)
2.16 UB = BDP(t, Z,UB)
2.17 if Z(O) # 0 then
2.18 | New UB is obtained from Z(O)
2.19 return UB

Algorithm 2 obtains the optimal solution of the JSP. This algorithm is based on
Algorithm 1. However, lines 1.9-1.10 are replaced by lines 2.13-2.16. In this case
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the subproblem (line 2.16) is solved if the state space is growing too large. The
parameter H (line 2.13 in Algorithm 2) depends on the computer system
requirements.

In summary, the main contributions of Algorithms 1 and 2 are summarized
below.

1. A stronger lower bound LB is used. This bound is described is Sect. 3.3. It can
be expected that more sequences T will be discarded.

2. We do not have to save those sequences that are indirectly dominated. Thus,
less memory could be required during the run of the BDP algorithm.

3. We have included lines 2.13-2.16 in Algorithm 2. Thus, the given algorithm is
theoretically able to solve any instance without running out of the given amount
of memory.

3.2 Bounded dynamic programming algorithm for the SDST-JSP

Again, let T be the sequence of operations. Throughout this section we will assume
that T is associated with S C J and G C O.

Some additional notations will be introduced. Let p;(T) denotes the job index
that corresponds to the last operation completed on machine M; € M. The
completion time of this operation is denoted by C,(T). If no operation is scheduled
on machine My, then C(T) = 0.

Table 5 reports p,(T) and Cy(T) values for the previously studied example (see
Table 2 and Fig. 1). In this example we assume that all setup times are equal to 0.

Now we will analyse the transition from 7 to T + O;; where O;; € O\G is the
next operation that job J; € J\ has to schedule. Let kK = m;; denotes the machine
index of operation O;;. Firstly, the makespan is equal to

Cmax(T + Ozﬂ,l) = WI(T) +Pi,l-

Secondly, the earliest starting times (T + O;;) can be greater than Cpax (T + O),
ie.

V(T + 0)) = max{CmaX(T +0.), Cu(T) + s’;k(T),,.}.

Also, setup times have to be taken into account in order to obtain (T + O;) for
Ji € J\S\{/;} with M(Succ;(G)) = k. For this case we have

Yi(T + 011) = Coax(T + Oi2) + 57, 7)1

Table 5 Parameters p,(7) and Cy(T) related to the schedule depicted in Fig. 1

k 1 2 3 4
ou(T) 1 4 2 1
Ci(T) 9 20 13 22
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1712 A. Ozolins

The resulting recurrence relation is

max{Cmax(T +0.), Cu(T) + s’;k(T)J}, i—j
ViT +0i0) = § Coan (T + 01)) + 55 1 M(Succ;(G)) = k,
lpj(T) ) otherwise.

where index j is such that J; € J\S.
The heads 7;(T) can be calculated as follows:

‘pj(T)> Xj(T) = 1,
r(T) = max{CmaX(T), C(T) + s’;k(T)J}, x(T) =0,

where x;(7) is the binary variable defined in (1). Note that r;(7) can be greater than
Cinax(T) due to the setup times.

Let us describe the general heads r;,(T). These heads represent the earliest
starting time of O;, € O\G. Let k = m;, denotes the machine index of O;,. In
general, rj ,(T) can recursively be estimated as follows:

ra(T) = ri(T),
1o(T) = max] (1) + gt D)+ b} g =141,
where index / means that Succ;(G) = O;,.
Theorem 1 about the weak dominance cannot directly be applied to the SDST-
JSP due to the setup times. Two simple examples are given in Figs. 2 and 3. These

examples show that Theorem 1 fails in these cases with unit processing times. The
setup times corresponding to Fig. 2 are

M2 OD 0l OD ol M2 ol (]

12 22 "32 “42 22 %12 %2(%p
W ol oD o. W oD Q o
11,21 ~3.1 .44 21, 71131 441
0 2 46 8 1012 0 2 4 6 8 1012

Fig. 2 On the left side: the optimal schedule. On the right side: the non-optimal schedule

Fig. 3 On the left side: the M2
optimal schedule. On the right 01132 0!2 OE]Z

side: the non-optimal schedule

M1
1,1] %1{% A : .
02 46 810 0 2 46 810
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0213 02 3 4
20 2 3 20 2 4

1Yy _ 2\ —

(D) =155 0 2[™(D)=14 4 0 2
3330 44 4 0

For the second example depicted in Fig. 3, we define the setup times as follows:

03 2 03 4
(s)=12 0 2 |and(s3)=[2 0 2
44 0 44 0

In the first case, we set

T' = (011,012,011,0:2,05,03,),
T? = (021,022,011,012,031,033).

Then
ra(TY) =9 > ry(T%) = 8.
However,
Conax (T" 4+ 041 + 042) = 11 < Congx (T* + O41 + 042) = 12.

In this case, the problem lies in the fact that the completion times of operation O3,
on the machine M, differs, i.e. C(T") <Cy(T?).
Now we study the example depicted in Fig. 3. In this case, we set

T' = (011,012,011,017),
7% = (021,022,011,012).

Then
r(TY) =7>r(T*) =6
and
Conax(T' + 031 + 032) = 9< Conax (T* + 031 + 03) = 10.

In this case, p,(T") # p,(T?).

Counterexamples in Figs. 2 and 3 show that Theorem 1 cannot be applied to the
SDST-JSP. Thus, a stronger dominance rule has to be used. The next definition
introduces this rule.

Definition 6 Let T! and 77 be two sequences of operations such that both 7! and

T? are associated with G C O and S C J. We say that T' < T? if the following two
statements hold:

1. r(TY) <r(T?) for all J; € J\S.
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2. Leti denotes the job index for which i = p,(T") and let / denotes the index with
k=mj;. If i # pi(T?) or Cy(T") > Ci(T?), then

Ce(T") + i <rju(T?)

for all J; € J\S.

Note that Definition 6 reduces to Definition 4 if sf.‘J =0 forall i,j € {1,...n} and
ke{l,...,m}.

Theorem 3 Let T and T? be two sequences of operations such that both T' and
T? are associated with G C O. If T' < T?, then for all complete expansions of T?
there exists a complete expansion of T' such that

y'(0) <y*(0)
forall O € O\G
Proof Let T* denotes the complete expansion of 72. Thus, we have
T = (T}, Tig Tii1s - - - Tum)-

Further, let 7% denotes an expansion of 7'. We assume that all operations from O\G
are in the same order as in 7%, i.e.

T3 = (T{, - Tig Tips15 - - +» Tam)-

By reordering operations from 77, we can obtain a feasible sequence of operations.

Let Oy, denotes the next operation 7| and let k denotes the machine index of
O;,,. From Condition 1 in Definition 6 it follows that y°(0;;,) <y*(0;,,). The
same can be stated for all other operations T}, (h > |G| + 1) for which the following
two statements hold:

o M(T,) # M(T));
e The job index between operations T, and T}, are different

forall g € {|G|+1,...,h—1}.

Let T, (h > |G|) denotes the first operation for which there exists previous
operation T, that has to be scheduled on the same machine or by the same job as
operation Tj. Let O;;, = T, denotes this operation.

Now we will study two cases. For the case M(T,) = M(T,), we have

VAT = ¥ (Ty) + p(Ty) + 55, (2)
lV‘(TJJ = ‘//4(Tg) +p(Tg) + Sf'(,j' 3)
Since lﬁ(Tg) < lp“(Tg), it follows from (2)—(3) that y*(T},) < y*(T}). For the case
i =j, we have O;;, = 0;;,—1. If no operation from O\G has been scheduled on
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machine M, then Condition 2 in Definition 6 ensures that y*(0;;,) <y*(0;,,) since
Y2 (0;1,1) <Y*(0j1,-1). Otherwise, we have

pk((T13’ T Ti?—l)) = pk((va EER) T;_l)),
Ck((Tlsa RS T}?—l)) < Ck((Tf7 RS Tg—l))7

from which it follows that v (T},) < y*(T},)

In summary, we have proved y°(T,) <y*(T,) for all g€ {|G|+1,...,h}.
Hence, T}, is the first operation for which there exists previous operation that has to
be scheduled on the same machine or by the same job. By repeating the same steps
of the proof, we can recursively prove that *(T,)<y*(T,) for all
g € {|G| +1,...,n-m}. By reordering the operations from sequence 7> such that
precedence relations among operations remain, we can obtain feasible sequence.
This sequence is the complete expansion of 7° such that

¥ (0) <y*(0)
for all O € O\G. The proof is completed. O
Definition 5, which introduces the indirect dominance, has to be generalized.

Definition 7 Let 7 stands for the sequence of operations associated with G C O
and S C J. We say that T is indirectly dominated if there exists M, € M and
Ji € J\S with M(Succ;(G)) = k such that the following two statements hold:

1. We have x;(T) = 0.

2. For all J;e J\S\J; with M(Succ;(G)) =k we have ri(T)>y;(T)+
p(Sucej(G)) + 5.

Theorem 4 Let T be the sequence of operations associated with G C O and

S C J. If Tis indirectly dominated, then there exists job J; € J\S such that x;(T) =
0 and

ri(T + Succi(G)) = ri(T)
for all J; € J\S\J,.

The Proof of Theorem 4 immediately follows from Definition 7.

3.3 A lower bound for the JSP

Throughout this section we assume that all operations from G C O are scheduled.
The set of scheduled jobs is denoted by S. Let 7 denotes the sequence of operations
associated with S and G. Let g; be a tail, which is defined as a lower bound of the
time period between the completion time of operation O, € O\G and the optimal
makespan Cp,. The tails g; are calculated as follows:
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Gk= Y Pin (4)

h=k+1

Let rjx(T) denotes the earliest starting time of operation O;; € O\G. These
starting times can be estimated as follows:

ria(T) = 1i(T) + g1 — Gja—1, (5)

where index [ is such that O, ;11 = Succ;(G) holds.

Fix machine M) € M. Consider the one-machine scheduling problem with heads
rj;(T) and the corresponding tails where O;; € O and M(0;,;) = k. These heads and
tails are defined by (5) and (4) respectively. Let LB, (T) be the optimal solution of
this one-machine sequencing problem. Despite the NP-hardness, the problem can
efficiently be solved in practice using the branch and bound method proposed
by Carlier (1982). The final lower bound of T is

LB(T) = ke?llax }LBk(T).

geeey

3.4 A lower bound for the SDST-JSP

Again, we assume that all operations from G C O are scheduled and all jobs from
S C J are completed. Let T stands for the sequence of operations associated with
G and S.

The computation of the lower bounds can be reduced to the traveling salesman
problem with time windows (TSPTW). Fix machine M; € M. For the sake of

simplicity, denote by ok the following set:
o = {i| existsIwithO;; € O\Gand M(0;;) = k}
For all j € 6" define the time windows [a;, b;] as follows:

aj = r;(T) + pju,
by = UB — g5 — 1,

where [ is such that 0;; € O\G.
The costs ¢;; for i,j € oF with i # j are defined as

_ kK
Cij = Sij T Pjls

where [ is such that O;; € O\G. The cost ¢;; includes both the service time of i and
the time needed to travel from i to j. The feasible version of the TSPTW denoted by
F-TSPTW asks to find the feasible schedule satisfying time windows constraints. It
can be concluded that LB > UB if there exists machine M; € M such that the
solution of F-TSPTW is infeasible.

Obviously, the problem F-TSPTW is NP-hard since it is the generalization of the
TSP without the time windows. Similarly as by Artigues and Feillet (2008), we use
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the dynamic programming algorithm proposed by Feillet et al. (2004). This
algorithm solves the elementary shortest path problem with resource constraints
(ESPPRC) where TSPTW can be interpreted as a special case of the ESPPRC.

Algorithm 3: Algorithm that finds whether or not LB < UB.

Input : [a;,b;] - time windows, (¢; ;) - cost matrix
Output: success or failure

3.1 Find feasible solution using some heuristics

3.2 if solution is found then

3.3 L return success

3.4 Estimate LB using some polynomial time algorithm
3.5 if LB > UB then
3.6 | return failure

3.7 return F_.TSPTW(a,b,c)

We try to speed up the calculation due to the NP-hardness of the problem
F-TSPTW. The general scheme of the algorithm is given in Algorithm 3. The first
step in Algorithm 3 is to find a feasible solution of the TSPTW using a time
efficiency heuristic (line 3.1). In this paper, we use a variable neighborhood search
(VNS) heuristic proposed by Da Silva and Urrutia (2010). Papalitsas et al. (2015)
empirically shown that the sorting-based approach is not better than the random-
based procedure. However, the VNS algorithm modified by Papalitsas et al. (2015)
shows better performance.

If a feasible solution is not found immediately, then the weaker lower bound LB
is calculated (line 3.5). We apply the calculation of LB given by Brucker and Thiele

(1996). Let h(5*) be defined as

(&) = min i (T) + i+ min g+ setupmin(3°).
(6%) rii(T) Z Di ka,l setupumin(5") (6)

iE(Sk, m,31:k iE(Sk, m; =

ied, mi =k
The value sefupy;, () in (6) denotes a solution of the TSP with |6*| vertices and
setup times (costs) sf ! between those jobs J;,J; for which there exists unscheduled
operation on machine My. The values setupmm(ék ) for all oF can be preprocessing at
the beginning of Algorithm 3. Then h(3") is calculated for the new & that is
obtained by deleting one operation from the previous 5. We choose these opera-
tions according to the order of non-decreasing heads until * is empty. Then we
repeat the same procedure but now according to the order of non-decreasing tails.
LBy, is obtained by taking the maximum value among all h(ék) values.

Finally, if the result is not obtained in the previous two steps, then the relaxation
of the ESPRC algorithm given by Feillet et al. (2004) has to be solved, see
Algorithm 4. The value dist(V, i) denotes the shortest path for a pair (V, i) where
i € V is the current vertex and V C &* is the set of vertices already visited. The sets
A; and A" consist of the sets V for which dist(V,i) # oo. The reachability test
(line 4.9 in Algorithm 4) is the same as the one proposed by Artigues and Feillet
(2008).
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Algorithm 4: The relaxation of ESPRC algorithm proposed by Feillet
et al (2004).

4.1 F_ TSPTW(a,b,c)
4.2 begin

Initialization: dist({i},i) = a;
dist(V,i) = oo for V C 6* with |[V| > 1
Ay = {{i}}, i€ 6*
4.3 for k = 2 to |6*| do
4.4 Arew =0, i e &
4.5 forall i € 6 do
4.6 forall V € A; do
4.7 forall j € 6\ V do
4.8 F; ; = max{dist(V,i) + ¢; j,a;}
4.9 if F;; <dist(VU{j},j) and all nodes reachable from
J with F; ; then
4.10 L A = A7 U{V U{j}}
4.11 keep non-dominated vertices in A7
4.12 A= Anew

4 Computational results

We implement the BDP algorithm in C+4+ programming environment and
compiled it with Microsoft Visual Studio. Windows 64 bit operating system with
8 GB RAM memory and 2.8 GHz CPU was used. Several sets of benchmark
instances are used. The presented computation results will be in two directions: to
solve the problem without knowing a lower and upper bound, and the optimality
proof by taking UB equals the optimal solution. For the JSP we will only prove the
optimality with the aim to show the dimension of benchmark instances that can be
solved by the BDP algorithm. For the SDTS-JSP we will try to solve the instances to
optimality using two strategies.

Section 4.1 presents computational results for the JSP. In Sect. 4.2, the SDST-
JSP is studied.

4.1 Case JSP

In this section, we will analyse how proposed Algorithm 2 works on practice
proving the optimality for different benchmark instances. The effectiveness will be
analysed in terms of 1Z] and CPU times. Hence, 17| is defined as

1zl =" 1Z(G)|.

GCO

In other words IZ] is a number of the non-dominated sequences T for which
LB(T)<UB.
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The termination criterion of Algorithm 2 is chosen in the following way. The
calculation is interrupted if |Z|, ; > H for the subproblem (line 2.16 in Algorithm
2).

Table 6 shows that the optimality is proven for all 10 x 5,10 x 10,15 x 10,30 x
10 type benchmark instances. However, the BPP algorithm is able to solve only 5
out of 10 benchmark instances for the case 20 x 10 and 3 out of 5 instances for the
case 15 x 15. Furthermore, some 20 x 10 type instances were solved because of the
good estimation of the lower bound. Thus, the dominance relation between
sequences was not important for those 20 x 10 type instances as well as for the
cases 15 x 5,20 x 5, and 30 x 10. Finally, the BDP algorithm is not able to solve
any 20 x 15 type instance as well as instances with a larger dimension. We observe
from Table 6 that all 10 x 10 type instances were solved within a CPU time less
than 1 min. CPU times varies from seconds up to 4 h for 15 jobs and 10 machines.

The memory would be overreached for instances 1a21, 1a25, and 1a40 if the
termination criterion has not be used (line 2.13 in Algorithm 2).

van Hoorn (2016) gives computational results for his version of the BDP
algorithm where the optimality was proven only for instances up to 10 jobs. Table 7
compares CPU times with those reported by van Hoorn (2016). We observe that
almost all instances were solved significantly faster, except for instances with CPU
time zero second. Moreover, van Hoorn algorithm is able to prove the optimality
only for instances with a maximum of 10 jobs. It can be concluded that the BDP
algorithm proposed in this paper significantly increases the applicability of the BDP
approach for solving the classical JSP.

4.2 Case SDST-JSP

Table 11 reports the calculation of UB values whereas Table 8 gives a summary. In
this case Algorithm 1 is used where H is taken as 100, 1000, ... and finally
1,000,000 if it is necessary. Memory requirements of the computer allow us to use
H = 10,000,000. However, then CPU times would be increased significantly. For
larger instances t2-ps11 to t2-ps15, H = 1000 is the last time window. We start the
calculation by setting H = 100 and UB = oo. Then we try to iteratively improve UB
value until no improvement is possible for H = 100. Then we set H = 1000 and
repeat the same procedure, etc. In Table 8, the three columns with the title
‘Summary’ represent final results obtained for each instance. The calculations are
terminated when the optimal value is reached or the maximal H value is reached.
The relative percentage deviation (RPD) is calculated as follows:

UBga — BKS
= 7f X
BKS

where BKS denotes the best-known solution previously reported in the literature.
As seen in Table 8, the optimality can be proven within few seconds for small
instances of type 5 x 10 x 5. CPU times significantly grow for medium instances
(named t2-ps06 to t2-psl0). Computational times are huge compared to those
obtained by the state-of-the-art heuristic methods, e.g. a genetic algorithm combined

RPD 100

@ Springer



1720 A. Ozolins
Table 6 The optimality proof for each instance

Instance nxm Opt 1Z] CPU (s)
ft06 6x6 55 6 0
ft10 10 x 10 930 1,505,084 14
ft20 20x 5 1165 41 0
la01 10x5 666 10 0
1a02 10x5 655 10 0
1a03 10x5 597 12 0
la04 10x5 590 4566 0
1a05 10x5 593 10 0
1a06 15%x5 926 15 0
1a07 15x5 890 15 0
1a08 15x5 863 15 0
1a09 15x5 951 15 0
lal0 15x5 958 15 0
lall 20x 5 1222 20 0
lal2 20x 5 1039 20 0
lal3 20x 5 1150 20 0
lal4 20x 5 1292 20 0
lals 20x 5 1207 20 0
lal6 10 x 10 945 2,255,158 18
lal7 10 x 10 784 381,977 3
lal8 10 x 10 848 360,939 3
lal9 10 x 10 842 534,988 3
1a20 10 x 10 902 268,916 2
la21 15 x 10 1046 577,830,315 16,297
la22 15 x 10 927 4,092,387 90
la23 15 x 10 1032 15 0
la24 15 x 10 935 10,004,379 178
la25 15 x 10 977 606,558,571 9553
la26 20 x 10 1218 20 0
la27 20 x 10 1235 20 0
la28 20 x 10 1216 20 0
1a30 20 x 10 1355 20 0
la31 30 x 10 1784 30 0
la32 30 x 10 1850 30 0
la33 30 x 10 1719 30 0
la34 30 x 10 1721 30 0
la35 30 x 10 1888 30 0
la37 15 x 15 1397 23 0
1a39 15 x 15 1233 39,828,979 653
la40 15 x 15 1222 104,054,7408 18,204
orb01 10 x 10 1059 1,057,741 9
orb02 10 x 10 888 1,479,717 10

@ Springer



Bounded dynamic programming algorithm for the job shop... 1721
Table 6 continued
Instance nxm Opt 1Zl CPU (s)
orb03 10 x 10 1005 5,372,642 53
orb04 10 x 10 1005 1,112,160 10
orb05 10 x 10 887 2,330,397 17
orb06 10 x 10 1010 1,383,871 13
orb07 10 x 10 397 228,073 2
orb08 10 x 10 899 130,560 1
orb09 10 x 10 934 1,307,918 11
orb10 10 x 10 944 34,683 0
abz05 10 x 10 944 1,434,865 11
abz06 10 x 10 1234 78,464 1
swv02 20 x 10 1475 20 0
Gmes it the previous resalts | 115anE X Op CPU ()
of the BDP algorithm Algorithm 2 van Hoorn algorithm?

ft06 6x6 55 0 0

ft10 10x10 930 14 60

la01 10x 5 666 0 25

1a02 10x5 655 0 1

1a03 10x5 597 0 0

1a04 10x5 590 0 0

1a05 10x5 593 0 466

lal6 10x10 945 18 44

lal7 10x 10 784 3 1

lal8 10 x 10 848 3 14

la19 10 x 10 842 3 9

1a20 10x10 902 2 3

orb01 10x 10 1059 9 36

orb02 10 x 10 888 10 29

orb03 10 x 10 1005 53 185

orb04 10 x 10 1005 10 20

orb05 10 x 10 887 17 29

orb06 10x 10 1010 13 40

orb07 10 x 10 397 2 8

orb08 10 x 10 899 1 9

orb09 10x10 934 11 14

orb10 10x10 944 0 1

abz05 10x10 944 11 42
#Algorithm proposed by van abz06 10x 10 1234 1 3

Hoorn (2016)
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Table 8 Upper bounds: case

SDST-JSP Inst. nxm Best lit. UB Summary
Best found RPD CPU
©2-ps0l  10x5  798* 798+ 0 3
©2-ps02  10x5  784* 784 0 0
©2-ps03  10x5  749* 749+ 0 6
©2-ps04  10x5  730% 730+ 0 0
©2-ps05  10x5  691% 691+ 0 0
©2-ps06  15x5  1009% 1009+ 000 6707
©2-ps07  15x5  970% 970+ 000 62334
©2-ps08  15x5  963* 965 021 22388
©2-ps09  15x5 1060+ 1060+ 0.00 1875
©2-psl0 15x5  1018* 1018* 0.00 456
©2-psll  20x5 1438 1522 584 9370
©2-psl2 20x5 1269 1358 701 36,649
Values in bold: best-known t2-ps13  20x5 1406 1439 2.35 10,058
result is reached ©2-psld  20x5 1452 1540 6.06 1214
Asterisk “*’: upper bound is ©2-psl5 20x5 1485 1551 444 3108

equal to optimal solution

with a tabu search or a local search (Gonzalez et al. 2008, 2009). However, the BDP
algorithm is able to reach the optimal value for those instances except for t2-ps08
for which the H value should be increased to obtain the optimal solution. The
optimality has not been reached for instances t2-ps11 to t2-ps15 with n = 20 jobs.
However, the proposed algorithm can be applied for improving the best-known
lower bounds for harder instances.

The main contribution of the current research for the SDST-JSP is associated
with the computational results for large instances. In Table 12 we calculate lower
bounds using the following strategy. We start with some initial bound. We replace
UB in Algorithm 2 with the current bound. Then we run the BDP algorithm. If the
used bound is not lowered after the execution of the algorithm, then it is clear that
the lower bound cannot be less than the current value. Thus, the current bound is
increased by one for instances t2-psl to t2-ps10. For larger instances t2-psl1 to t2-
psl5, the increment is taken as five. If the solution is obtained for the current bound,
then the previous bound (namely LBgy,) is also the optimal value of the given
instance. If there exists 7 with |Z|, > 3 - 10, then the run is terminated. Thus, the
optimal solution is not found and the previous bound is taken as the final lower
bound of the given instance.

Table 9 gives a summary of lower bounds obtained by the DP. The value ) |Z|
in Table 9 stands for the sum of all IZ] that is obtained for all previous bounds. LBy,
denotes the best lower bound that is found by BDP algorithm. The initial lower
bound LBy is set significantly less in our runs. For the sake of simplicity we report
only the final six bounds in Table 12.
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Table 9 Lower bounds: case

SDST-JSP Inst. nxm Bestlit. Summary
LB LB UB Y7 CPU
©2-ps01 105 798 798 798+ 41,600 3
©2-ps02 10X 5 784% 784  784* 45,792 3
©2-ps03 10X 5 749%  749% 749 227583 13
©2-ps04  10x5 730%  730%  730% 8260 1
2-ps05 10x5 691%  691%  691* 3235 0
2-ps06  15x5 1009 1009 1009* 7,102,055 1744
©2-ps07 15x5 9705  970%  970% 718337 287
2-ps08 15x5 963%  963*  963* 5402280 6825
2-ps09 15x5 1060  1060* 1060* 9,107,100 7227
2-psl0 15x5 1018  1018* 1018* 83856013 1646
Values in bold: best known 2-psll 20 x5 1395 1402 - 0 15
result is reached t2-psl2 20 x5 1242 1249 - 1,668,701 74,265
Asterisk: bound is equal to ©2-psl3 20x5 1342 1364 - 4,738,581 186,625
optimal solution ©2-psl4 20x5 1432 1442 - 5923970 29,028
Value underlined: previously ©2-psl5 20x5 1406 1426 - 2,550,037 245,084

best known result is improved

As it is shown in Table 12, all small and medium instances t2-ps01 to t2-ps10 are
solved to optimally. The best-known lower bounds are improved for all 5 x 20 x 10
type benchmark instances. However, the proposed algorithm is not able to obtain the
optimal solution without overreaching the width 3 - 10°. CPU times varies from less
than 1 day to almost 3 days. In practice CPU times below the column ‘LBg,” can be
significantly less than those below the column ‘LBg,+1’ (e.g. the instances t2-ps07
and t2-ps10). On the other hand, for some cases these values can be similar (e.g. the
instances t2-ps06 and t2-ps09).

It is interesting to note that a higher 1Z] value not always means that a CPU value
will be higher. The highest > |Z| value is for the instance t2-p14. However, this
instance is solved in 8 h that is significantly faster than the time required to solve
three other instances, namely t2-ps12, t2-ps13, and t2-psl15.

Now we compare two strategies for solving the SDST-JSP by BDP (see Tables 8
and 9). We have that the first approach is slightly better for small instances in terms
of CPU times. For medium instances, the second strategy shows better performance
on average. The instance t2-ps06 is solved 200 times faster by the second strategy
and for the instance t2-ps07 the optimal solution is not even reached by the first
strategy.

The computational results of the state-of-the-art exact algorithms are summarized
in Table 10. BT96, ABF04, AF08, and BDP stand for computational results
obtained by Brucker and Thiele (1996), Artigues et al. (2004), Artigues and Feillet
(2008), and our BDP approach, respectively. For the BDP we have shown the
CPU_p times for the second strategy, see Tables 9 and 12. The results under AF08
are obtained by similar computer requirements as used in the current work. 2 GHz
processor is used for ABF04. Unfortunately, it is difficult to compare our results to
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Table 10 Comparison versus state-of-the-art exact algorithms: case SDST-JSP

Inst. nxm BT96 ABF04
LB UB CPU LB UB CPU

t2-ps01 10 x5 756 798* 502 798* 798* 522
t2-ps02 10 x5 705 784* 158 784 784* 8
2-ps03 10x5 658 749% 1892 749* 749%* 48
t2-ps04 10 x5 627 730%* 189 730%* 730%* 34
2-ps05 10x5 653 691+ 770 691* 691* 30
2-ps06 15x5 986 - 7200 996 1026 7200
2-ps07 15%x5 940 - 7200 970* 970* 16,650
2-ps08 15%x5 913 - 7200 923 1002 7200
t2-ps09 155 1001 - 7200 1037 1060+ 7200
2-ps10 15%x5 1008 - 7200 1018* 1018+ 498
t2-psl1 20 x 5 1322 - 7200 - - -
2-ps12 20 x 5 1139 - 7200 1159 1319 7200
2-ps13 20 x 5 1250 - 7200 1250 1439 7200
t2-psl4 20 x 5 1402 - 7200 - - -
2-psl5 20 x 5 1307 - 7200 - - -
Inst. nxm AF08 BDP

LB UB CPU_p CPUyp LB UB CPU_p CPUyg
2-ps01 10x5 798* 798* 57 798%* 798* 3
2-ps02 10x5 784 784 105 784%* 784 3
2-ps03 10x5 749%* 749%* 353 749%* 749%* 13
2-ps04 10x5 730* 730* 16 730* 730* 1
2-ps05 10x5 691°* 691°* 16 691°* 691°* 0
2-ps06 15x5 1009* 1009* 1798 1009* 1009+ 1744
2-ps07 15x5 970%* 970%* 782 970%* 970%* 287
2-ps08 15x5 963* 963 349,923 22,717 963* 963* 6825
2-ps09 15x5 1051 1061 169,582 26,755 1060+ 1060* 7227
2-ps10 15x5 1018+ 1018* 35 46,590 1018+ 1018* 1646
2-psll 20x 5 1395 1494 916,833 39,489 1402 1522 15 9370
2-ps12 20x 5 1242 1381 914,086 26,678 1249 1358 74,266 36,649

t2-ps13 20 x5 1342 1457 895,059 50,336 1364 1439 186,626 10,058
t2-ps14 20 x5 1432 1483 306,899 37,236 1442 1540 29,029 1214
t2-ps15 20x 5 1406 1661 792,196 46,590 1426 1551 245,085 3108

Values in bold: best known result is reached
Asterisk: bound is equal to optimal solution

Value underlined: previously best known result is improved

those obtained by Brucker and Thiele (1996). Thus, we provide only a rough
comparison with BT96. We apply factor 1.5 and 15 for CPU time comparisons with
ABF04 and BT96, respectively.
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CPUrg and CPUpyp denote CPU times necessary to obtain LB and UB
respectively. Some table cells under column CPUg are empty thus meaning that
CPU=CPU.g, i.e. LB and UB are obtained in a single run. Artigues and Feillet
(2008) uses two slightly different strategies for their branch and bound method.
Thus, for each instance the best-obtained results are reported in Table 10.

Table 10 shows that our CPU times outperforms all the state-of-the-art exact
algorithms for 10 instances that our approach is able to solve to optimality. The only
exception is instance t2-ps06 where the results of AFO8 show similar performance.
Especially good performance is observed for five smallest BT instances where the
BDP algorithm can be competitive even with the heuristic methods. Even using
factor 15 for CPU times, the BDP method performs much better than BT96. In fact,
for five small instances the average CPU time of the BDP are almost 200 times less
than the one of BT96.

All medium instances t2-ps06 to t2-ps10 are solved in a reasonable time limit.
This cannot be said about AFO8 method, which spends several days to solve the
instance t2-ps08. Moreover, the instance t2-ps09 is not solved to optimality since
the calculation is terminated after 2 days. On the other hand, our BDP algorithm can
solve this instance in 1 h. Lower bounds are improved for all larger instances.
Moreover, the CPU times are significantly less than those reported by Artigues and
Feillet (2008). The UB-values for large instances are better on average compared to
those of AF08. However, the overall performance for obtaining the upper bounds is
poor compared to the best-known solutions.

5 Conclusions

In this paper, the bounded dynamic programming (BDP) algorithm that solves the job
shop scheduling problem (JSP) is investigated. We developed the BDP algorithm for
solving the JSP to optimality. The proposed algorithm is able to prove the optimality
for moderate benchmark instances (e.g. 15 jobs and 15 machines, or 20 jobs and 10
machines) thus significantly increasing the applicability of the BDP approach.

The main contribution of the present work is to adapt the BDP algorithm for the
JSP with sequence dependent setup times (SDST-JSP). As far as we know this has
not been done before. The quality of the BDP algorithm is strongly dependent on the
quality of lower bounds (LB). We present the algorithm that calculates an LB. The
performance of the BDP is evaluated against 15 benchmark instances proposed
by Brucker and Thiele (1996). The comparison among the best-known algorithms
shows that the BDP algorithm developed in the current work outperforms all the
current state-of-the-art exact methods for the SDST-JSP case. Moreover, we have
improved the best-known lower bounds for all 5 unsolved instances given
by Brucker and Thiele (1996).

Appendix

See Tables 11 and 12.

@ Springer



A. Ozolins

1726

uonnjos [ewndo o) [enba s1 punoq SHAISY

PAYOLAI ST JINSAI UMOUY JSAq :P[Oq UT SIN[BA

L619 1661 81 0891 S8yl ¢ X0C grsd-g1
€Icl 029! I 000°01 [494! ¢ X0C v1sd-0)
75891 6evl £9C¢e (444! 90v1 ¢ X0C ¢1sd-g1
06£°99 86¢l 8069 OLET 69¢C1 ¢ X0C zisd-g1
LLT'81 (449! 9¢ CI91 8¢Vl ¢ X0C 11sd-0
8¢¢ 8101 801 LY01 8 901 C SLOT +8T01 gX¢l o1sd-z1
LOLT 0901 43! 1901 123 1901 C 2901 0901 g X6l 60sd-21
86SL §96 CTLOE §96 L9Y SL6 (94 966 L 9€01 *£96 gX¢l 80sd-71
S19°81 0L6 €Iv6 £66 8€8¢C L66 99¢ (440! 123 8201 *0L6 gX¢l Losd-0)
§ao1 6001 SIEl 9201 861 €01 L1 LLOT 6001 §xX¢l 90sd-7)
0 169 0 €69 169 § X0l Sosd-g1
0 0€L «0EL § X0l r0sd-7)
4 6vL [4 6SL I 6SL *6VL § X0l €0sd-g1
0 8L «P8L § X0l z0sd-)
[4 86L I 708 *86L ¢ X0l 10sd-2)
ndo an ndo an ndo an ndo an ndo an
0000001 = H 000001 = H 00001 = H 000l = H 001 = H S wxu suf

dS[-1.SdS oseo :spunoq 1oddn jo uonenore) [y dqel

pringer

As



Bounded dynamic programming algorithm for the job shop... 1727

Table 12 Calculation of lower bounds: case SDST-JSP

Inst. nxm Best lit. CPU
LB LBfin —4 LBfn—3 LB —2 LBgn—1  LBpy,  LBgy +1
t2-ps01 10 x5 798+ 0 0 0 1 1 1
t2-ps02 10 x5 784* 0 0 0 0 0 0
t2-ps03 10 x5 749* 1 1 1 2 2 2
t2-ps04 10 x5 730* 0 0 0 0 0 0
t2-ps05 10 x5 691* 0 0 0 0 0 0
t2-ps06 15 x5  1009* 0 0 384 405 439 493
t2-ps07 15 x5 970* 14 15 15 18 18 179
t2-ps08 15 x5 963* 284 302 340 365 382 2861
t2-ps09  15x5  1060* 247 322 340 402 2445 2607
©2-psl0  15x5 1018+ 0 0 0 0 0 1646
Inst. nxm Best lit. CPU
LB LBgi, — 20 LB, — 15 LB, — 10 LBg, — 5 LBgin

t2-psll 20 x 5 1395 1 2 2 2

2
t2-psl2 20x 5 1242 2908 4579 10,047 18,579

34,967
t2-ps13 20x 5 1342 13,976 19,673 30,767 44,780

61,548
t2-psl4 20x 5 1432 1186 1653 2380 10,156

12,635
t2-psl5 20x 5 1406 14,079 20,716 30,075 55,128

118,591

Value in bold: the best-known result is reached

Asterisk “*’: a lower bound is equal to the optimal solution
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