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Abstract This article aims at studying the strategic behaviours of competing firms

with sticky retail pricing for the product. We base our study in the context of a

supply chain network comprising multiple manufacturers and retailers. The manu-

facturers are involved in the production of a homogeneous product while the

retailers purchase the product and sell it to consumers in the end markets. The retail

price of the product is sticky. A differential variational inequality model is proposed

to handle the multiple agents and their independent behaviours. Furthermore, the

existence and uniqueness of the solution to the dynamic supply chain network with

sticky price are shown. A numerical example is provided to illustrate the model and

the computational results of equilibrium behaviour are presented. This paper con-

tributes to literature by introducing price stickiness into supply chain networks and

developing a differential variational inequality model to analyze the dynamic

strategies of firms in the decentralized supply chain network.
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1 Introduction

Economists focus on price as a mechanism for the efficient allocation of resources.

Hence, new classical economists always assume that prices can adjust immediately

in response to changing demand and supply conditions. However, in recent years, a

lot of literatures have found that the prices of goods and services fail to respond to

the forces of demand and supply. Specifically, Carlton (1986) finds that the degree

of price stickiness in many industries is significantly different, e.g. the average

period of price adjustment for household appliances is 6 months while the

corresponding period for chemicals is 18 months. At present, there have been

several theories to explain why price is unchanging or rigid, such as the theory of

menu costs, judging quality by price, and asymmetric responses with costly search.

Whether or not price rigidity is efficient, one common conclusion drawn from the

models with price rigidity is that markets with rigid prices behave very differently

from markets with flexible prices.

This article aims at studying the strategic behaviour of competing firms with

sticky retail pricing for the product. We base our study in the context of a supply

chain network comprising multiple manufacturers and retailers that engage with

each other in a non-cooperative manner. Specifically, the manufacturers are

involved in the production of a homogeneous product while the retailers purchase

the product from the manufacturers and sell it to consumers in the end market. We

assume that the nominal retail price of the product does not adjust immediately to

demand and supply conditions. Simply put, the retail price of the product is sticky.

A differential variational inequality model is proposed to handle the multiple agents

and their independent behaviours. Furthermore, the existence and uniqueness of the

solution to the dynamic supply chain network with sticky price are shown in this

study. A numerical example is provided to illustrate the model and the

computational results of equilibrium behaviour are presented. This paper contributes

to literature by introducing price stickiness into a supply chain network and

developing a differential variational inequality model to analyze the dynamic

strategies of firms in the decentralized network.

Indeed, the study of supply chains has been a major research theme in the last

two decades, drawing significant interest from both industry and academia. A

supply chain is a coordinated system of organizations, people, activities, informa-

tion, and resources involved in producing and delivering a product from suppliers to

consumers. Notably, the advanced information systems today have enabled activity

coordination in a large and complex supply chain that connects global resources and

global markets. This opportunity urges operational researchers and management

scientists to provide a comprehensive and sound theory for understanding the

complex system as well as to provide a solution to a defined problem. Thus, supply

chain management has been the subject of a growing body of literatures, such as
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Boyaci and Gallego (2004), Cachon and Fisher (2000), Ha et al. (2011), Li et al.

(2010), and Zhang and Zhao (2010).

However, a majority of literatures on supply chain management have focussed on

intra-chain issues, such as supplier selection, distribution network design, produc-

tion coordination, and inventory management. These studies focus on a certain part

of the system and provide a solution to a local issue of interest confined to the sub-

network. The sub-network is usually very limited in scope and simplified in

structure, e.g. a two-tier single chain representing the coordination between one

supplier and two retailers.

In contrast to these microscopic models, a new stream of studies attempt to

provide a global understanding of the interactions among the supply chain agents

from a macroscopic point of view. The main characteristics of these studies are a

general network model comprising three or more tiers with a generalized number of

agents at each tier. One example of this is Nagurney et al. (2002a), which developed

a supply chain network equilibrium model consisting of three tiers of decision-

makers on the network, namely manufacturers, retailers, and consumers. They

established that the governing equilibrium conditions that reflected the optimality

conditions of the decision-makers along with the market equilibrium conditions

could be formulated and studied in a unified manner as a finite-dimensional

variational inequality problem. Such a modelling approach was subsequently

extended by Nagurney et al. (2002a, b) to include electronic commerce in the form

of business to business and business to consumer transactions and by Dong et al.

(2002) to introduce multi-criteria decision-making into supply chain network

equilibrium modelling and computations. Recently, several literatures have emerged

on this topic including Cheng and Wu (2006), Nagurney and Li (2015), Nagurney

et al. (2013, 2014), Wakolbinger et al. (2014), and Yu and Nagurney (2013).

However, most of these studies assume that the retail price is accurately determined

by the demand and supply conditions of the market. In this paper, we assume that

the market retail price is rigid, i.e. the nominal retail price of the product does not

adjust immediately to the demand and supply conditions. Specifically, the retail

price is adjusted according to two important factors. The first factor is the difference

between the price determined by demand and supply conditions and the nominal

retail price; the second factor is the adjustment coefficient determined by the

product type. Then, the process of adjusting sticky retail prices in this study is

expressed as an ordinary differential equation. Consequently, the decisions of

manufacturers and retailers generally lead to effects over time . Hence, we develop a

differential variational inequality model to analyze the independent behaviours of

decision makers and the influences of sticky price.

Although some studies including Cojocaru et al. (2005), Daniele

(2003a, b, 2006), Nagurney (2006), Nagurney and Pan (2006), and Nagurney et al.

(2007) also introduced evolutionary variational inequality to address the time-

dependent equilibrium problems in supply chain networks, the term evolutionary

variational inequality implies a variational inequality in the Hilbert space

Lpð½0; T �;RmÞ that involves no time derivative. Hence, this research differs from

such studies.
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Since the sticky price and the decisions of manufacturers and retailers generally

lead to effects over time, the agents included in this study actually engage in

dynamic or differential games, which form a particularly complex and fruitful

branch of game theory. To date, there have been several studies investigating supply

chain management in a differential game. Examples include Jøgensen et al. (2000)

who apply a Stackelberg differential game to model the interaction between the

manufacturer and the retailer in a decentralized channel and He et al. (2009) who

modelled a single manufacturer and single retailer supply chain as a stochastic

Stackelberg differential game. However, most of these studies have been established

only for the supply chain that has an identical and simplified structure such as one-

manufacturer one-retailer. In fact, differential games mainly investigate interactive

decision making over time. Specifically, the differential Nash game with multiple,

homogeneous decision-makers where each player solves an optimal control problem

simultaneously may be formulated as a differential variational inequality. At

present, many studies employ differential variational inequalities to analyze

complex problems with multiple decision-makers engaged in a differential Nash

game, including Friesz et al. (1993, 2006, 2011), and Mookherjee and Friesz (2008).

In addition, many other applications of differential inequality may be found in

Friesz (2010) and the references therein. However, these studies do not consider

price stickiness in supply chain networks. In this study, we introduce price

stickiness in supply chain networks, and develop a differential variational inequality

model to analyze the dynamic strategies of firms in the decentralized supply chain

network with multiple manufacturers and retailers.

The rest of this paper is organized as follows. In Sect. 2, we present the basic

definition of differential variational inequality. In Sect. 3, we propose a differential

variational inequality formulation for the differential Nash equilibrium of the supply

chain with sticky prices. Section 4 addresses the existence and uniqueness of the

solution to the dynamic model. In Sect. 5, an algorithm is presented to solve the

differential variational inequality problem, while numerical examples are presented

for illustrative purposes in Sect. 6. Finally, we provide concluding remarks in

Sect. 7.

2 Definition of differential variational inequality

The Differential Variational Inequality (DVI) comprises two major components: an

ordinary differential equation (ODE) and a variational inequality (VI). The reader is

referred to Pang and Stewart (2008) for an extensive treatment of the problem.

Specially, the VI may be defined as:

Definition 1 For given U : Rm ! Rm and a nonempty closed convex set K in Rm,

the VIðK;UÞ, is to find a vector u� 2 K such that:

ðu � u�ÞTUðu�Þ� 0; 8u 2 K ð1Þ
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Let SOLðK;UÞ denote the solution set of this problem. The formal definition of

differential variational inequality is:

Definition 2 (Pang and Stewart 2008) Let f : R1þnþm ! Rn and F : R1þnþm ! Rm

be two continuous vector functions. Let K be a nonempty closed convex set in Rm.

Let C : R2n ! Rn be a boundary function and T [ 0 be the terminal time. Then, the

DVI defined by the triplet of functions of f, F, and C, the set K, and the scalar T, is to

find time dependent trajectories x(t) and u(t) for t 2 ½0; T� that satisfy conditions (2)

and (3) whereby:

_xðtÞ ¼ f ðt; xðtÞ; uðtÞÞ
uðtÞ 2 SOLðK;Fðt; xðtÞ; uðtÞÞÞ

ð2Þ

Cðxð0Þ; xðTÞÞ ¼ 0 ð3Þ

where x is an absolutely continuous function on [0, T], and u is an integrable

function on [0, T]. Moreover, uðtÞ 2 SOLðK;Fðt; xðtÞ; uðtÞÞÞ means that for any

continuous ~uðtÞ : ½0; T � ! K satisfies

Z T

0

ð~uðtÞ � uðtÞÞT
Fðt; xðtÞ; uðtÞÞdt� 0 ð4Þ

According to Proposition 23.2 in Zeidler (1990), the space of continuous functions

Cð½0; T �;RmÞ is dense in Lpð½0; T �;RmÞ. Thus, if condition (4) holds for all contin-

uous ~uðtÞ 2 Cð½0; T�;RmÞ, it also holds for all ~uðtÞ 2 Lpð½0; T �;RmÞ.

3 The dynamic equilibrium model of the supply chain network
with sticky price

We consider a supply chain network with multiple manufacturers and retailers.

Specifically, m manufacturers are involved in the production of a homogeneous

product, which may then be purchased by n retailers in different geographical

locations, who, in turn, make the product available to consumers. The manufac-

turing firms are located at the top tier of nodes in the network while the retailers are

located at the bottom tier. For convenience, we denote a typical manufacturer by i,

where i ¼ 1; 2; . . .;m, and a typical retailer by j, where j ¼ 1; 2; . . .; n. We first focus

on the differential Nash equilibrium of the non-cooperative, competing manufac-

turers, and then turn to the retailers. The complete dynamic equilibrium model is

constructed along with the differential variational inequality formulation of the

governing equilibrium conditions.

3.1 The equilibrium conditions for the manufacturers

Let qijðtÞ denote the amount of the product shipped (or transacted) between

manufacturer i and retailer j at time t. We group the product shipments between the

manufacturers and the retailers into an mn-dimensional column vector q, where
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q 2 ðL2ð½0; T �ÞÞm�n
. QiðtÞ denotes the production output of manufacturer i at time t,

such that QiðtÞ� 0. If we group all QiðtÞ to a column vector Q(t), then, Q 2
ðL2ð½0; T �ÞÞm

where L2ð½0; T �Þ is the space of square-integrable functions. We

assume that each manufacturer i is faced with a production cost function fi, which

generally, may depend on the production outputs of other manufacturers, that is

fi ¼ fiðQðtÞÞ. Let qij denote the price charged for the product by manufacturer i to

retailer j (i.e. the supply price), and we assume qij is a function of qij. Furthermore,

let IiðtÞ denote the inventory of the product at time t and ui denote the inventory cost

function of manufacturer i. We assume that ui is continuous and convex in IiðtÞ.
Without loss of generality, we assume that the retailer bears the transaction cost,

which includes the cost of shipping the product.

Obviously, the profit of manufacturer i is equal to the price that the manufacturer

charges for the product multiplied by the total quantity purchased by all retailers

minus the production cost and inventory cost in [0, T], where T is the terminal

decision time. Consequently, we can express the criterion of present value

maximization for manufacturer i between [0, T] as the following optimal control

problem:

max hi ¼
Z T

0

e�rt �fiðQðtÞÞ � ui IiðtÞð Þ þ
Xn

j¼1

qij qijðtÞ
� �

qijðtÞ
" #

dt ð5Þ

subject to

dIiðtÞ
dt

¼QiðtÞ �
Xn

j¼1

qijðtÞ

Iið0Þ ¼I0i

QiðtÞ� 0

ð6Þ

where QiðtÞ and IiðtÞ are the control variable and the state variable of the above

optimal control problem, respectively. The discount rate is represented by r, and
dIiðtÞ

dt
¼ QiðtÞ �

Pn
j¼1 qijðtÞ expresses the inventory dynamics of firm i. If we group

IiðtÞ of all manufacturers into an m-column vector I, i.e. I ¼ ðI1; I2; . . .; ImÞT
, then

IðQ; qÞ 2 ðL2ð½0; T �ÞÞm � ðL2ð½0; T �ÞÞm�n ! ðH1ð½0; T�ÞÞm
, where ðH1ð½0; T �ÞÞm

is a

Sobolev space for the real interval ½0; T� 2 Rm
þ, the detail of Sobolev space can be

referred Adams and Fournier (2003). I0i is the initial inventory of manufacturer i at

time t ¼ 0, and we assume that I0 is fixed and known to all manufacturers.

In this study, we assume the manufacturers compete in a non-cooperative

differential Nash game, which states that each manufacturer will determine the

optimal production trajectory to maximize his profit, given the optimal production

trajectories of his competitors. Hence, manufacturer i’s problem is to determine, for

each fixed but arbitrary tuple Q�iðtÞ and I�iðtÞ of other manufacturers strategies,

where Q�i ¼ ðQ1;Q2; . . .;Qi�1;Qiþ1; . . .;QmÞT
and I�i ¼ ðI1; I2; . . .; Ii�1; Iiþ1; . . .;

ImÞT
, an optimal strategy that solves the optimal control problem in Eqs. (5) and (6).

A differential Nash equilibrium solution is a pair of trajectories ðQ�ðtÞ; I�ðtÞÞ such

654 Z. Chen et al.

123



that for every manufacturer i, i ¼ 1; 2; . . .;m, ðQ�
i ðtÞ; I�i ðtÞÞ solves manufacturer i’s

optimal control problem simultaneously, given that all manufacturer i’s competitors

play their Nash strategies ðQ�
�iðtÞ; I��iðtÞÞ. Consequently, the equilibrium of the

differential Nash game between manufacturers may be formulated by a differential

variational inequality. Furthermore, the equilibrium conditions between these

manufacturers may be expressed by the following theorem.

Theorem 1 For every manufacturer i, i ¼ 1; 2; . . .;m, if the production cost

function fi and the inventory cost function ui are continuous and convex in Qi and Ii

respectively, a tuple ðQ�ðtÞ; I�ðtÞÞT
is the differential Nash equilibrium between

manufacturers if and only if ðQ�ðtÞ; I�ðtÞÞT
is determined by the following

differential variational inequality:

_k�ðtÞ ¼ �e�rt duiðI�i ðtÞÞ
dIi

: i ¼ 1; 2; . . .;m

� �

_I�ðtÞ ¼ Q�
i ðtÞ �

Xn

j¼1

qijðtÞ : i ¼ 1; 2; . . .;m

 !

Xm

i¼1

Z T

0

e�rt ofiðQ�ðtÞÞ
oQi

þ k�i ðtÞ
� �

QiðtÞ � Q�
i ðtÞ

� 	
dt � 0; 8Q 2 X1

I�ð0Þ ¼ I0

ð7Þ

where X1 ¼ fðQ; IÞ: (6) hold for every i, i ¼ 1; 2; . . .;m}, ki is the adjoint variable

to differential equation in (6).

Proofs of all the theorems are given in ‘‘Appendix’’.

Furthermore, the dynamic games that we considered between the manufacturers

are known as open-loop games. An open-loop game is one in which the initial

information is perfect and complete solution trajectories from the start time may be

calculated without reliance on any feedback (Yeung and Petrosyan 2000).

Consequently, the solution of the differential variational inequality (7) QðtÞ� is an

open-loop solution of the differential Nash game.

3.2 The equilibrium model of the retailers

Retailers purchase the product from manufacturers and sell it to consumers in the

end markets. In this study, we assume that retailers are based in different

geographical locations. We group all qijðtÞ, which is the amount of the product that

is purchased by retailer j from manufacturers i, for i ¼ 1; 2; . . .;m, as a column

vector qj, i.e. qjðtÞ ¼ ðq1jðtÞ; q2jðtÞ; . . .; qmjðtÞÞT
. In this study, we further assume

that the transaction costs are borne by the retailer. Let cij denote the transaction cost

of retailer i when purchasing the product from manufacturer j; then, cij is a function

of qijðtÞ. Furthermore, the retailer j incurs, what we term, a handling cost, which

may include the display and storage costs associated with the product. We denote

this cost by cj and, in the simplest case, cj would be a function of
Pm

i¼1 qijðtÞ, i.e. the
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holding cost of a retailer is a function of the quantity of the product he has obtained

from the various manufacturers.

Let pjðtÞ represent the product price that the consumers are charged by retailer j

for the product at time t. Grouping all retail prices pj into an n-dimensional column

vector p, we obtain pðqÞ 2 ðL2½0; T �Þm�n ! ðH1ð½0; T�ÞÞn
. In this study, we assume

that the retail price for the product is sticky, i.e. the retail price of the product fails to

respond to the forces of demand and supply. Specifically, we assume that the

adjustment process of the sticky retail price may be expressed by an ordinary

differential equation as following:

dpjðtÞ
dt

¼ k ajðtÞ � bj

Xm

i¼1

qijðtÞ � xj

Xm

i¼1

Xn

j0¼1;j0 6¼j

qij0 ðtÞ � pjðtÞ
" #

ð8Þ

where ajðtÞ is the market base of retailer j in the market. The retailer with a larger

ajðtÞ has a relative advantage in accessing customers due to a better brand, position,

reputation, quality, and so on. bj is the sensitivity coefficient of product supply on

the retail price in market j, xj is the sensitivity coefficient of other retailers’ product

supply on the retail price in market j, and bj [xj for j ¼ 1; 2; . . .; n. The sticky

retail price is adjusted according to two important factors, the difference between

the price that is determined by demand and supply conditions, i.e.

ajðtÞ � bj

Pm
i¼1 qijðtÞ � xj

Pm
i¼1

Pn
j0¼1;j0 6¼j qij0 ðtÞ, and the actual retail price pjðtÞ at

time t, and the adjustment coefficient k, which is determined by the product type.

Note that k 2 ½0; 1�, and a bigger k represents that the retail price is changing faster.

Specifically, the value of k is always depended on the type of the product and not

change over time. k ¼ 1 means that the retail price of the product is perfectly supply

elastic, while k ¼ 0 means that the retail price is complete rigid. Furthermore, if

ajðtÞ � bj

Pm
i¼1 qijðtÞ � xj

Pm
i¼1

Pn
j0¼1;j0 6¼j qij0 ðtÞ[ pjðtÞ, it means that the retail

price is on the low side at time t and the retailer j would likely raise the retail price.

Conversely, if ajðtÞ � bj

Pm
i¼1 qijðtÞ � xj

Pm
i¼1

Pn
j0¼1;j0 6¼j qij0 ðtÞ\pjðtÞ, then retailer

j would reduce the retail price. Consequently, the differential Eq. (8) depicts the

adjustment process of the sticky retail price.

The profit of retailer j is equal to the price that the retailer charges the customer

multiplied by the total quantity supplied minus the transaction cost, the handling

cost, and the payout to the manufacturers. Hence, retailer j would determine the

ordering quantity from manufacturers, i.e. qijðtÞ, such that he maximizes the present

value of his profit. Consequently, the optimal control problem of retailer j may be

expressed as follows:

max hj ¼
Z T

0

e�rt pjðtÞ
Xm

i¼1

qijðtÞ �
Xm

i¼1

cijðqijðtÞÞ � cj

Xm

i¼1

qijðtÞ
 !"

�
Xm

i¼1

qijðqijðtÞÞqijðtÞ
#

dt

ð9Þ

Subject to
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Pn
j¼1

qijðtÞ�QiðtÞ þ IiðtÞ; i ¼ 1; 2; . . .;m

dpjðtÞ
dt

¼ k ajðtÞ � bj

Xm

i¼1

qijðtÞ � xj

Xm

i¼1

Xn

j0¼1;j0 6¼j

qij0 ðtÞ � pjðtÞ
" #

pjð0Þ ¼ p0

ð10Þ

where the condition
Pn

j¼1 qijðtÞ�QiðtÞ þ IiðtÞ implies that the quantity ordered by

all retailers of manufacturer i cannot exceed the quantity that he holds. Although

backorder is very common in inventory management in many industries, the case is

not considered in this paper. p0
j is the initial price in the demand market j at t ¼ 0;

we assume p0 is fixed and known to all retailers. pjðtÞ is a state variable of retailer j’s

optimal control problem. We assume that the retailers are engaged in a non-coop-

erative, differential Nash game whereby each retailer will determine his optimal

ordering trajectory such that he maximizes his profit given the optimal trajectories

of his competitors. Similar to manufacturers, the equilibrium conditions between

these retailers may be expressed by the following theorem.

Theorem 2 For every retailer j, j ¼ 1; 2; . . .; n, if cij, cj, and qij are continuous

concave functions of qij, a tuple ðq�ðtÞ; p�ðtÞÞT
is the differential Nash equilibrium

between retailers if and only if ðq�ðtÞ; p�ðtÞÞT
is determined by the following

differential variational inequality:

_b�ðtÞ ¼ e�rt
Pm
i¼1

q�
ijðtÞ þ b�j ðtÞk : j ¼ 1; 2; . . .; n

� �

_p�ðtÞ ¼ k ajðtÞ � bj

Pm
i¼1

q�
ijðtÞ � xj

Pm
i¼1

Pn
j0¼1;j0 6¼j

q�
ij0 ðtÞ � p�

j ðtÞ
" #

: j ¼ 1; 2; . . .; n

 !

Pm
i¼1

Pn
j¼1

R T

0
e�rt �p�

j ðtÞ þ
ocij q�

ijðtÞ

 �

oqij

þ
ocj

Pm
i¼1

q�
ijðtÞ

� �

oqij

þ
oqij q�

ijðtÞ

 �

oqij

q�
ijðtÞ

2
664

2
664

þqij q�
ijðtÞ


 �i
þ b�j ðtÞk

i
� ½qijðtÞ � q�

ijðtÞ�dt � 0; 8q 2 X2

pð0Þ ¼ p0

bð0Þ free

ð11Þ

where X2 ¼ fðq; pÞ : (10) hold for every i and j, i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n}, b is

a column vector of adjoint variables for all retailers’ optimal control problems, that

is b ¼ ðb1; b2; . . .; bnÞ
T
.

In the equilibrium conditions of the supply chain network model, the

manufacturers and the retailers must satisfy the differential variational inequalities
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in Eqs. (7) and (11), simultaneously. Similar to the theory proposed in Nagurney

et al. (2002a), we now state this explicitly in the following definition:

Definition 3 The equilibrium state of the supply chain network with sticky price is

one where the production quantity and the product flows between the distinct tiers of

the decision-makers satisfy the sum of the optimality conditions in Eqs. (7) and

(11).

Consequently, we may express the equilibrium conditions of the supply chain

network that engages in a differential Nash game with sticky price as the following

differential variational inequality:

Theorem 3 The supply chain network with sticky price is in equilibrium if and

only if the following differential variational inequality is satisfied:

_k�ðtÞ¼ �e�rt dui I�i ðtÞ
� �
dIi

: i¼ 1;2; . . .;m

� �

_b�ðtÞ¼ e�rt
Xm

i¼1

q�
ijðtÞþb�j ðtÞk : j¼ 1;2; . . .;n

 !

_I�ðtÞ¼ Q�
i ðtÞ�

Xn

j¼1

q�
ijðtÞ : i¼ 1;2; . . .;m

 !

_p�ðtÞ¼ k ajðtÞ�bj

Xm

i¼1

q�
ijðtÞ�xj

Xm

i¼1

Xn

j0¼1;j0 6¼j

q�
ij0 ðtÞ�p�

j ðtÞ
" #

: j¼ 1;2; . . .;n

 !

Xm

i¼1

Xn

j¼1

Z T

0

e�rt �p�
j ðtÞþ

ocij q�
ijðtÞ


 �

oqij

þ
ocjð

Pm
i¼1 q�

ijðtÞÞ
oqij

þ
oqijðq�

ijðtÞÞ
oqij

q�
ijðtÞ

0
@

2
4

þqijðq�
ijðtÞÞ

�
þb�j ðtÞk

i
� qijðtÞ�q�

ijðtÞ
h i

dt

þ
Xm

i¼1

Z T

0

e�rt ofiðQ�ðtÞÞ
oQi

þk�i ðtÞ
� �

QiðtÞ�Q�
i ðtÞ

� 	
dt�0; 8ðQ;qÞT 2X

Ið0Þ¼ I0

pð0Þ¼ p0

kð0Þ free

bð0Þ free ð12Þ

where X¼X1�X2.

The sufficient condition in the proof of Theorem 3 has a sound economic

interpretation, i.e. since this research does not consider the relationship hierarchy

between manufacturer and retailer, the manufacturers and retailers are considered to

have homogeneous engagements in the non-cooperative, differential Nash game to

maximize their own profits simultaneously. If ðQ�ðtÞ; q�ðtÞ; I�ðtÞ; p�ðtÞÞT
satisfy the

differential variational inequality in Eq. (12), then Q�ðtÞ and q�ðtÞ are the
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equilibrium strategies for manufacturers and retailers, respectively. Consequently,

Q�ðtÞ and q�ðtÞ must satisfy Eqs. (7) and (11) simultaneously; otherwise, some

manufacturer or retailer would have the incentive to change his own strategy.

The variables in the differential variational inequality problem are: the product

output of manufacturers Q(t), product inventory I(t), product shipments from the

manufacturers to the retailers q(t), and the retail product prices p(t). The equilibrium

strategy of manufacturers and retailers, in turn, is to find the time dependent

trajectories ðQ�ðtÞ; q�ðtÞ; I�ðtÞ; p�ðtÞÞ that satisfy the differential variational inequal-

ity for t 2 ½0; T�.

4 Qualitative properties

In this section, we provide some qualitative properties of the solution to the

differential variational inequality in Eq. (12). In particular, we prove the existence

and uniqueness of the solution to the dynamic supply chain network with sticky

price. For convenience, we let

xðtÞ ¼ kðtÞ; bðtÞ; IðtÞ; pðtÞð ÞT
uðtÞ ¼ ðQðtÞ; qðtÞÞT

f1 ¼ �e�rt duiðIiðtÞÞ
dIi

: i ¼ 1; 2. . .;m

� �

f2 ¼ e�rt
Xm

i¼1

qijðtÞ þ bjðtÞk : j ¼ 1; 2; . . .; n

 !

f3 ¼ QiðtÞ �
Xn

j¼1

qijðtÞ : i ¼ 1; 2; . . .;m

 !

f4 ¼ k ajðtÞ � bj

Xm

i¼1

qijðtÞ � xj

Xm

i¼1

Xn

j0¼1;j0 6¼j

qij0 ðtÞ � pjðtÞ
" #

: j ¼ 1; 2; . . .; n

 !

F1 ¼ rQi
Hiðt;Qi; Ii; ki;Q�i; I�iÞ : i ¼ 1; 2; . . .;mð Þ

F2 ¼ rqij
Hjðt; qj; pj; bj; q�j; p�jÞ : i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n

� �

and

f ðt; xðtÞ; uðtÞÞ ¼

f1

f2

f3

f4

0
BBB@

1
CCCA Fðt; xðtÞ; uðtÞÞ ¼

F1

F2

� �
x0 ¼

k0

b0

I0

p0

0
BBB@

1
CCCA

Consequently, the differential variational inequality (12) may be rewritten as

_xðtÞ ¼ f ðt; xðtÞ; uðtÞÞ
u�ðtÞ 2 SOLðX;Fðt; xðtÞ; uðtÞÞÞ

xð0Þ ¼ x0
ð13Þ
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Under the assumption of regularity conditions, Friesz (2010) proved the existence of

the solution of the differential variational inequality (13); specifically, the regularity

conditions are as per the following definition:

Definition 4 (Friesz 2010) We consider the differential variational inequality (13)

to be regular if:

(1) u 2 X 	 ðL2½0; T �Þmþm�n
, and X is convex.

(2) for every u 2 X, xðu; tÞ : ðL2½0; T�Þmþm�n ! ðH1½0; T�Þmþnþmþn
exists and is

unique, strongly continuous, and G-differentiable.

(3) F is continuous with respect to x and u.

(4) f is continuously differentiable with respect to x and u.

(5) x0 are known and fixed.

The motivation behind this definition of regularity is to analyze traditional

optimal control problems from the perspective of infinite-dimensional mathematical

programming. According to Theorem 6.5 in Friesz (2010), when the differential

variational inequality is regular, in accordance with Definition 4, and X is compact,

the differential variational inequality (13) has a solution. Although, we do not

emphasize the compactness of X in this study, the following reasonable assumption

could guarantee the compactness of the set.

Assumption 1 Assume that there exist positive constants M, such that:

ohi

oQi

\0; 8Q�M; i ¼ 1; 2; . . .;m

The above assumption is reasonable from an economics perspective whereby

when the production output of the manufacturer is large enough such that Q�M,

then due to the limitations of resources and production capacity, we could expect the

marginal profit to negative. Consequently, the manufacturer will ensure that his

production output does not exceed M in order to maximize his profit. Hence, we are

ready to state the following existence result:

Theorem 4 (Existence) When both regularity, in the sense of Definition 4, and

Assumption 1 hold, the differential variational inequality (13) has a solution.

Specifically, since SOLðX;Fðt; xðtÞ; 
ÞÞ might have multiple solutions, conse-

quently, substitution of solutions u into the differential equation would give

differential inclusions, that is _xðtÞ 2 F ðt; xÞ � f ðt; x; SOLðX;Fðt; x; 
ÞÞÞ. At pre-
sent, the detailed analysis of these systems already pose considerable technical

challenges, and a number of issues generally complicate their theory and

computation. A special case of the differential variational inequality (13) is that

the DVIðX;Fðt; xðtÞ; 
ÞÞ has a unique solution, say u(t, x), that is a Lipschitz

continuous function of (t, x). In this case, provided that f is Lipschitz continuous, we

arrive at the familiar domain of an ordinary differential equation with a Lipschitz

right-hand side whereby the differential variational inequality (13) has a unique
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solution. Consequently, we spell out the conditions that guarantee a unique solution

of the DVIðX;Fðt; xðtÞ; 
ÞÞ, as follows:

Theorem 5 (Uniqueness) Under the following two conditions, there exists a

Lipschitz continuous function u : ½0; T � � X ! X such that for each pair

ðt; xÞ 2 ½0;T � � X, u(x, t) is the unique solution of DVIðX;Fðt; xðtÞ; 
ÞÞ.
(1) Fðt; x; 
Þ is a continuous, strictly monotone function on X with a modulus that

is independent of (t, x), i.e. there exists a constant gF [ 0, such that

ðu � u0ÞT



Fðt; x; uÞ � Fðt; x; u0Þ
�
� gFku � u0k2

for all ðt; xÞ 2 ½0; T � � X, u � ðuvÞN
v¼1 2 X, and u0 � ðu0

vÞ
N
v¼1 2 X.

(2) Fð
; 
; 
Þ is Lipschitz continuous with a constant, i.e. there exists a constant

kFðt; x; uÞ � Fðt0; x0; u0Þk� LF

h
kt � t0k þ kx � x0k þ ku � u0k

i

for all ðt; xÞ 2 ½0; T � � X, ðt0; x0Þ 2 ½0; T � � X, and u 2 X.

Accordingly, we may obtain the following theorem for the differential variational

inequality established in this paper.

Theorem 6 For every iði ¼ 1; 2; . . .;mÞ and jðj ¼ 1; 2; . . .; nÞ, if (1)
ofiðQðtÞÞ

oQi
is

strongly monotone for Qi, and
ocijðqijðtÞÞ

oqij
,
ocjð
Pm

i¼1
qijðtÞÞ

oqij
,
oqijðqijðtÞÞ

oqij
qijðtÞ, and qijðqijðtÞÞ

are continuous and strongly monotone for qij; (2) the above functions and ajðtÞ are

Lipschitz continuous with t; and (3)
duiðIiðtÞÞ

dIi
is Lipschitz continuous with ðt; IiÞ, then

the differential variational inequality (12) has a unique equilibrium solution

ðQ�ðtÞ; q�ðtÞ; I�ðtÞ; p�ðtÞÞ.

5 The Algorithm

Currently, there have been many studies investigating the methods to solve the

differential variational inequality. In this study, we employ the DVI-specific

approach that is proposed by Pang and Stewart (2008) to solve the DVI in Eq. (13).

The algorithm may be summarized as follows:

Step 1. Divide the time interval [0, T] into Nh þ 1 subintervals, and

0 ¼ th;0\th;1\ � � �\th;NHþ1 ¼ T .

Step 2. Initialization: set x0, and # 2 ð0; 1Þ.
Step 3. Computation: solve the following ODE and variational inequality

simultaneously:
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xh;iþ1 ¼ xh;i þ hf th;iþ1; #xh;i þ ð1� #Þxh;iþ1; uh;iþ1
� �

uh;iþ1 2 SOL X;Fðth;iþ1; xh;i; 
Þ
� �

xh;0 ¼ x0

8><
>: ð14Þ

The details of the DVI-specific approach and its convergence result may be obtained

from Pang and Stewart (2008). Specifically, in the DVI-specific approach, the

variational inequality problem may be solved independent of the first equation

(assuming xh;i is known). Furthermore, many algorithms including the Project

algorithm (Solodov and Svaiter 1999) and the Euler algorithm (Nagurney and

Zhang 1996) may solve this problem. The method to solve the variational inequality

problem may be outlined as follows:

Step 1. Initialization: Set u0 2 X, a and �;
Step 2. Computation: Solve the following convex quadratic programming

problem at iteration s:

usþ1 ¼ argmin
u2X

1

2
uT u � ðus þ aFðusÞÞT

u

Step 3. Convergence verification: If kusþ1 � usk� �, then stop; otherwise, set

s :¼ sþ 1, and go to Step 2.

6 Numerical examples

In this section, we present a numerical example to illustrate the model. Haier and

Midea are the two largest manufacturers of water heaters in China, accounting for

48.99% of market share in May 2015. Furthermore, the two manufacturers’ products

that have the same specifications are sometimes deemed homogeneous in the

markets. Hence, to keep customer base intact, the price of the water heater is rigid in

response to changes in demand and supply conditions, i.e. if the two manufacturers

were to keep changing the price of the commodities sold, they would offend heir

customers. Consequently, the price of water heaters is sticky. Hence, we propose the

following numerical example to illustrate the competition between Haier and Midea

in this study. We assume the existence of two retailers that sell water heaters to

customers, with terminal time T ¼ 5, and discount rate r ¼ 0:05. The data for this

example was constructed for ease of interpretation. The production cost function

fiðQÞ for manufacturer iði ¼ 1; 2Þ, is given by

f1ðQðtÞÞ ¼ 2:5ðQ1ðtÞÞ2 þ Q1ðtÞQ2ðtÞ þ Q1ðtÞ
f2ðQðtÞÞ ¼ 3ðQ2ðtÞÞ2 þ Q1ðtÞQ2ðtÞ þ 2Q2ðtÞ

The supply price qijðqijðtÞÞ of the product charged by manufacturer i to retailer j

(where i ¼ 1; 2 and j ¼ 1; 2) is:
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q11ðq11ðtÞÞ ¼ 10� 2:5q11ðtÞ; q12ðq12ðtÞÞ ¼ 10� 2q12ðtÞ;
q21ðq21ðtÞÞ ¼ 10� 2q21ðtÞ; q22ðq22ðtÞÞ ¼ 10� 2:5q22ðtÞ

The inventory costs for manufacturer iði ¼ 1; 2Þ are

u1ðI1ðtÞÞ ¼ 2ðI1ðtÞÞ2;u2ðI2ðtÞÞ ¼ 2ðI2ðtÞÞ2;

The initial product inventory for manufacturer iði ¼ 1; 2Þ are

I1ð0Þ ¼ I01 ¼ 5; I2ð0Þ ¼ I02 ¼ 5

The transaction cost functions faced by the retailers in association with transacting

with the manufacturers are the following:

cðq11ðtÞÞ ¼ 0:5ðq11ðtÞÞ2 þ 4q11ðtÞ; cðq12ðtÞÞ ¼ 0:5ðq12ðtÞÞ2 þ 3:5q12ðtÞ
cðq21ðtÞÞ ¼ 0:5ðq21ðtÞÞ2 þ 3q21ðtÞ; cðq22ðtÞÞ ¼ 0:5ðq22ðtÞÞ2 þ 4q22ðtÞ

The handling costs of the retailers are given by:

c1 ¼ 0:5ðq11ðtÞ þ q21ðtÞÞ2; c2 ¼ 0:5ðq12ðtÞ þ q22ðtÞÞ2;

The initial retail prices are given by:

p1ð0Þ ¼ p0
1 ¼ 50; p2ð0Þ ¼ p0

2 ¼ 60

The adjustment process of retail prices may be written as:

dp1ðtÞ
dt

¼ 0:5½30þ 2t � 0:2ðq11ðtÞ þ q21ðtÞÞ � p1ðtÞ�

dp2ðtÞ
dt

¼ 0:5½25þ 2t � 0:2ðq12ðtÞ þ q22ðtÞÞ � p2ðtÞ�

We employ the DVI-specific approach to solve this numerical example (length of

subinterval of time h ¼ 0:1) and the Euler algorithm to solve the variational

inequality problem in (14) (termination criteria e ¼ 0:01). The optimal trajectories

for Q(t) and q(t), and I(t) and p(t) are shown in Figs. 1 and 2, respectively.

Based on the equilibrium solutions shown in Figs. 1 and 2, we may conclude the

following:

First, since the two manufacturers’ initial inventory is relatively high, the

manufacturers would consciously control the production output to reduce inventory

cost. Consequently, the product inventory would be gradually reduced to zero.

Second, since the initial retail prices are relatively high, the prices determined by

demand and supply conditions, ajðtÞ � bj

Pm
i¼1 qijðtÞ, are much lower than the actual

retail prices, pjðtÞ, and hence, the optimal trajectories of pjðtÞ are decreasing in the

first part of terminal time. However, as time progresses, since the market base for

the product increases over time, the actual retail prices, pjðtÞ, will increase slowly.

Furthermore, since the production efficiency of manufacturer 1 is higher than that of

manufacturer 2, manufacturer 1 enjoys a larger market share for the product.
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Furthermore, the effect of adjustment coefficient k on the operational decisions of

every enterprise can also be analyzed. Specially, we select three different

adjustment coefficient, that is k ¼ 0 (when the retail price is complete rigid), k ¼
0:5 (when the retail price is moderate rigid) and k ¼ 0:8 (when the retail price is

relative elastic). The results can be showed in Figs. 3 and 4.

Based on the compare of the equilibrium solutions with different adjustment

coefficient, we may conclude the following: According to Fig. 3, with higher

production efficiency, the manufacture 1 can reach a higher level of output even

though the market price is sticky. Hence, the sticky retail price of product can not

change the market share of enterprises. Furthermore, based on Fig. 4, we may

conclude that equilibrium price becomes less responsive to market supply as the

adjustment coefficient getting bigger, and the result also applied to the manufactures

output level. Hence, the stickiness of market price should never be ignored when the

manufacture and retailer try to work out his optimal yield. This numerical example

illustrates the rationality of the proposed differential variational inequalities for the

supply chain network with sticky price.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Fig. 1 Optimal trajectories of the control variables, Q(t) and q(t)
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Fig. 2 Optimal trajectories of the state variables, p(t)
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7 Conclusions

In this study, we have proposed a theoretically rigorous framework for the

modelling, qualitative analysis, and computation of solutions to the supply chain

network problems within an equilibrium context in the case of sticky pricing. The

theoretical analysis is based on differential variational inequality theory.

In particular, we have assumed a supply chain network consisting of competing

manufacturers and competing retailers, each of whom seeks to maximize profits.

The manufacturers are involved in the production of a homogeneous product. The

retailers purchase the product from manufacturers and sell it to consumers in the end

market. Specifically, the retail product price in the market is sticky. The differential

variational inequality is then employed to derive, under reasonable conditions, the
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Fig. 3 Optimal trajectories of control variables with different adjustment coefficients k
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Fig. 4 Optimal trajectories of state variables with different adjustment coefficients k
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existence of the differential Nash equilibrium solution, as well as to establish its

uniqueness. Moreover, a numerical example is presented to illustrate the model.

This study establishes the foundations for decentralized and competitive supply

chain network problems in the case of sticky price within an equilibrium

framework. Future research may include random demand in the dynamic model.

Appendix

Proof of Theorem 1 The corresponding Hamiltonian for manufacturer i’s optimal

control problem reflected in Eqs. (5) and (6), i ¼ 1; 2; . . .;m, is

Hiðt;Qi; Ii; ki;Q�i; I�iÞ ¼e�rt fiðQðtÞÞ þ uiðIiðtÞÞ �
Xn

j¼1

qijðqijðtÞÞqijðtÞ
" #

þ kiðtÞ QiðtÞ �
Xn

j¼1

qijðtÞ
" #

where ki is the adjoint variable that solves the adjoint differential equation in (6) and

satisfies the transversality conditions for the given state and control variables in

manufacturer i’s optimal control problem. For every manufacturer i, i ¼ 1; 2; . . .;m,

if fiðQÞ and uiðIiðtÞÞ are two continuous and concave functions of Qi and IiðtÞ
respectively, then for a given instant in time, Hiðt;Qi; Ii; ki;Q�i; I�iÞ is a continuous
and concave function of Qi and Ii. According to the Pontryagin minimum principle,

the optimal condition for manufacturer i’s optimal control problem is:

Q� ¼ arg min
Q2X1

Hiðt;Qi; Ii; ki;Q�i; I�iÞ
� 

For each t 2 ½0; T �, it is now a relatively easy matter to derive the necessary and

sufficient conditions of manufacturer i’s optimal control problem as:

rQi
Hiðt;Q�

i ; Ii; ki;Q�i; I�iÞ
� 	T

QiðtÞ � Q�
i ðtÞ

� �
� 0; 8Qi � 0

where ki is determined by:

_kiðtÞ ¼ �rIi
Hi t;Qi; Ii; ki;Q�i; I�ið Þ ¼ �e�rt dui IiðtÞð Þ

dIi

Since manufacturers are engaged in a non-cooperative Nash game, then solutions to

manufacturer’s optimal control problems are simultaneously determined. Concate-

nating together these conditions across all manufacturers, we obtain Theorem 1. h

Proof of Theorem 2 The proof of Theorem 2 is similar to that in Theorem 1, and the

detail of the proof is omitted here. h

Proof of Theorem 3 (Necessary Condition) The summation of Eqs. (7) and (11)

yields the inequality in Eq. (12).
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(Sufficient Condition) Suppose the time dependent trajectories

ðQ�ðtÞ; q�ðtÞ; I�ðtÞ; p�ðtÞÞT
satisfy the differential variational inequality in Eq. (12)

for arbitrary ðQ; qÞT 2 X. Clearly ðQ�ðtÞ; q�ðtÞÞT
belongs to X. By taking qijðtÞ ¼

q�
ijðtÞ for i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n, the differential variational inequality in

Eq. (12) degenerates to Eq. (7). Then, for arbitrary Q 2 X1, Q�ðtÞ satisfies Eq. (7).
Consequently, Q�ðtÞ is a solution to the differential variational inequality in Eq. (7).

Similarly, we can prove that the q�ðtÞ that satisfies Eq. (12) is also a solution to the

differential variational inequality in Eq. (11). h

Proof of Theorem 4 Under the assumption of regularity of the differential varia-

tional inequality (13), x(u, t) is well defined and continuous. So F(t, x(t), u(t)) is

continuous in u. Also, by regularity and Assumption 1, X is convex and compact.

Consequently, based on Browder fixed-point theorem of multi-valued mappings

(Theorem 2 in Browder 1968), the differential variational inequality (13) has a

solution. h

Proof of Theorem 5

(1) According to condition (1) of Theorem 5 and Theorem 3.5.15 in Facchinei

and Pang (2003) , VIðX;Fðt; xðtÞ; 
ÞÞ has a unique solution for any given

ðt; xÞ 2 ½0; T� � X. The details of the proof may be obtained from Facchinei

and Pang (2003).

(2) We claim that u(x, t) is continuous in ðt; xÞ 2 ½0; T � � X. From Proposition

1.5.9 of Facchinei and Pang (2003), for any given (t, x), u(x, t) is a solution of

VIðX;Fðt; xðtÞ; 
ÞÞ if and only if there exists a vector z such that gðt; x; zÞ ¼
PXðzÞ � F

�
t; x;PXðzÞ

�
and uðt; xÞ ¼ PXðzÞ, where PXðzÞ is the Euclidean

projection of z onto X. For any given ðt; xÞ; ðt0; x0Þ 2 ½0; T � � X, we assume

u and u0 are the solutions of VIðX;Fðt; x; 
ÞÞ respectively, and can obtain:

k u � u0 k¼ k PXðzÞ �PXðz0Þ k � k z � z0 k¼k gðt; x; zÞ � gðt0; x0; z0Þ k
¼ k gðt; x; zÞ � gðt; x; z0Þ þ gðt; x; z0Þ � gðt0; x0; z0Þ k
� k gðt; x; zÞ � gðt; x; z0Þ k þ k gðt; x; z0Þ � gðt0; x0; z0Þ k

First,

k gðt; x; zÞ � gðt; x; z0Þ k2¼k PXðzÞ �PXðz0Þ � Fðt; x;PXðzÞÞ þ Fðt; x;PXðz0ÞÞ k2

¼
�
PXðzÞ �PXðz0Þ � Fðt; x;PXðzÞÞ þ Fðt; x;PXðz0ÞÞ;

PXðzÞ �PXðz0Þ � Fðt; x;PXðzÞÞ þ Fðt; x;PXðz0ÞÞ
�

¼k PXðzÞ �PXðz0Þ k2 þkFðt; x;PXðzÞÞ � Fðt; x;PXðz0ÞÞk2

� 2
�
PXðzÞ �PXðz0Þ;Fðt; x;PXðzÞÞ � Fðt; x;PXðz0ÞÞ

�

where h
; 
i is the inner product of two vectors. Since F(t, x, u) is strictly monotone

in u for any given ðt; xÞ 2 ½0; T � � X, consequently, there exists a constant gF [ 0

such that:
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�
PXðzÞ �PXðz0Þ;Fðt; x;PXðzÞÞ � Fðt; x;PXðz0ÞÞ

�
� gF k PXðzÞ �PXðz0Þ k

Hence, according to condition (2) of Theorem 5, there exists a constant LF [ 0 such

that:

k Fðt; x;PXðzÞÞ � Fðt; x;PXðz0ÞÞ k2 � L2
F k PXðzÞ �PXðz0Þ k2 � L2

F k z � z0 k2

Consequently, we obtain:

k gðt; x; zÞ � gðt; x; z0Þ k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2gF þ L2

F

q
k z � z0 k

Second, since

k gðt; x; z0Þ � gðt0; x0; ; z0Þ k
¼k PXðz0Þ �PXðz0Þ � Fðt; x;PXðz0ÞÞ þ Fðt0; x0;PXðz0ÞÞ k
¼k Fðt; x;PXðz0ÞÞ � Fðt0; x0;PXðz0ÞÞ k � LF

�
k t � t0 k þ k x � x0 k

	

Consequently,

k uðt; xÞ � u0ðt0; x0Þ k � k z � z0 k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2gF þ L2

F

q
k z � z0 k

þ LF

�
k t � t0 k þ k x � x0 k

	

which implies that:

k z � z0 k � LF

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2gF þ L2

F

p �
k t � t0 k þ k x � x0 k

	

Furthermore, we obtain:

k uðt; xÞ � u0ðt0; x0Þ k � LF

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2gF þ L2

F

p �
k t � t0 k þ k x � x0 k

	

This implies that if ðt; xÞ ! ðt0; x0Þ, then u ! u0. Hence, u(x, y) is Lipschitz con-

tinuous for each pair ðt; xÞ 2 ½0; T � � X. Hence, Theorem 5 is proved. h

Proof of Theorem 6 Based on the conditions of Theorem 6, it is easy to confirm that

F(t, x, u) is strictly monotone of u and Lipschitz continuous of (t, x, u). Hence,

Theorem 6 may be derived from Theorem 5. h
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