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Abstract Failure mode and effects analysis (FMEA) is a prominent engineering

technique for eliminating the potential failures emerged from various systems such

as products, processes, designs, or systems. In the traditional FMEA, for each risk

factor, severity, occurrence, and detectability ratings are multiplied and risk ranking

number (RPN) is calculated. However, traditional FMEA has been subject of severe

criticism in the literature and significant efforts have been made to overcome the

shortcomings of the RPN. The present paper aims to put a step forward to enhance

fuzzy FMEA by proposing a hybrid multi-attribute decision making model by

combining fuzzy preference programming, fuzzy cognitive maps, and fuzzy graph-

theoretical matrix approach. Fuzzy preference programming method is used to

derive ratings of risk factors from incomplete, imprecise, and reciprocal pairwise

comparison judgments. The causal dependencies among failure modes are modelled

via fuzzy cognitive maps in order to capture the long term influences. Finally, fuzzy

graph-theoretical matrix approach is employed to calculate risk priority indices of

failure modes by taking into account interactions among risk factors. Although the

FMEA method has been implemented in variety of technical problems, its potential

in analyzing complex information systems have not been fully explored. Therefore,

the proposed model is implemented in evaluating enterprise resource planning

implementation risks in a real life case study.
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1 Introduction

Failure mode and effects analysis (FMEA) is a commonly employed engineering

technique for identifying and eliminating known and/or potential failures, problems,

errors and so on from system, design, process and/or service before they reach the

customer (Stamatis 1995). The major concern of FMEA is to assess the risk of

potential failure modes in a proactive way that the appropriate corrective actions can

be taken before the failure happens. The origins of FMEA technique dates back to

early 1960s, firstly developed by aerospace industry with their obvious reliability

and safety requirements (Bowles and Pelaez 1995; Teoh and Case 2005). Then,

manufacturing industry adopted FMEA technique as quality improvement and risk

assessment tool. After many standardization efforts such as Military Standard (MIL-

STD) 1629A, International Organization for Standardization (ISO) 9000 series, and

the Society of Automotive Engineers (SAE) standard J1739_199407, FMEA has

become one of the most extensively employed safety and reliability analysis tools in

general (Liu et al. 2015). FMEA technique has been broadly applied in a wide

variety of areas such as automotive, mechanical, chemical, electronics, and medical

industries (Liu et al. 2013).

In traditional FMEA studies, priority of a potential failure is determined through

risk priority number (RPN), which is defined as the product of severity, occurrence,

and detectability of a failure. Three risk factors (RFs) are evaluated by using the

ratings from 1 to 10. Despite its inherent simplicity, RPN number has been criticized

in terms of various aspects (Chang et al. 2001, 2014; Gargama and Chaturvedi 2011;

Gilchrist 1993; Pillay and Wang 2003): (1) different sets of severity, occurrence,

and detectability ratings might yield the same RPN value. Thus, RPN may not

detect a highly risky potential failure. (2) The rationale behind the multiplication of

severity, occurrence, and detectability ratings is unknown. (3) Relative importance

degrees of severity, occurrence, and detectability are ignored. (4) In the rating

tables, the conversion of scores is different for severity, occurrence, and

detectability. (5) There are many holes in the RPN distribution that makes it

difficult to interpret different RPN numbers. (6) Small variations in one of the RFs

produce vastly different effects on the RPN value. (7) Ratings of RFs are very

difficult to precisely determine. (8) Possible interdependencies among failure modes

(FMs) are ignored. (9) Interactions among RFs are neglected.

In the literature, a variety of approaches have been proposed in order to overcome

the shortcomings of the traditional RPN-based failure prioritization. Fuzzy set

theory (Zadeh 1965) is one of these approaches widely used within FMEA studies.

Fuzzy rule based models employ fuzzy if–then rules to model experts’ field

knowledge regarding the problem. Bowles and Pelaez (1995) proposed a fuzzy rule

based model for prioritizing the FMs. Puente et al. (2002) evaluated 125 fuzzy rules
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in order to rank the risks of potential causes of failure. Xu et al. (2002) developed a

fuzzy expert system for diesel engine gas turbocharger. Zafiropoulos and Dialynas

(2005) proposed a fuzzy rule based FMEA model for power electronic devices.

Although there are many applications of the fuzzy inference models being used to

enhance FMEA methodology, they suffer from several drawbacks (Liu et al. 2013;

Tay and Lim 2010; Yang et al. 2008; Zhang and Chu 2011): (1) there is a

combinatorial rule explosion problem. In order to improve the accuracy of the fuzzy

FMEA model, large number of rules are required. (2) Building a fuzzy if–then

knowledge base is cognitively demanding and requires vast number of expert

judgements. (3) Fuzzy if–then rules having different antecedents but the same

consequents cannot be distinguished which hinder complete ranking of FMs. (4)

There are some information loss during the inference calculations. (5) Analysis

requires dedicated software packages.

Apart from fuzzy rule based models, multi-attribute decision making (MADM)

models have been used to improve traditional RPN. Zammori and Gabbrielli (2012)

employed analytical network process (ANP), and RPN is calculated based on the

pairwise comparisons. Selim et al. (2016) and Braglia et al. (2003) implemented

fuzzy TOPSIS method in prioritizing FMs. Geum et al. (2011) proposed a service

specific FMEA model based on grey relation analysis. Seyed-Hosseini et al. (2006)

adopted DEMATEL method for linking causes of failures with the FMs. Liu et al.

(2012) used fuzzy VIKOR method to prioritize FMs. Similar studies can be found in

the detailed literature review of FMEA (Liu et al. 2013). The main drawback of the

MADM methods is that possible interdependencies among FMs are neglected.

Moreover, RFs are assumed to be preferentially independent of each other.

In this paper, a comprehensive fuzzy FMEA model is developed in order to

overcome the above mentioned deficiencies of the FMEA technique. The proposed

fuzzy FMEA model combines fuzzy preference programming (FPP) (Mikhailov

2003), fuzzy cognitive maps (FCMs) (Kosko 1986), and fuzzy graph-theoretical

matrix approach (GTMA) (Baykasoglu 2014; Koulouriotis and Ketipi 2011). The

proposed model exhibits some desirable features to overcome the drawbacks of the

traditional FMEA and contributes to the literature in the following ways:

• In traditional FMEA, ratings of RFs are assigned based on the scale between 1

and 10 for each FM. However, decision makers’ judgements are expressed in

natural language that involve inherent uncertainties. Hence, fuzzy logic should

be incorporated into the evaluation model. On the other hand, decision makers

may not directly assign a rating value. Therefore, in this study, FPP is adopted to

derive ratings of RFs for each FM. The main advantage of FPP is that it is able to

derive priorities from the incomplete, fuzzy, and reciprocal pairwise comparison

judgements. Furthermore, FPP is used to derive weights of RFs to deal with the

assumption of equal importance of RFs.

• In traditional FMEA, FMs are regarded as independent entities and their possible

influences on each other are neglected. However, a FM can cause the emergence

of other FMs. This study adopts FCMs for modeling and solving causal

dependencies among FMs. FCMs allow articulation of the dependencies through

linguistic terms and are able to provide dynamic analysis.
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• In traditional FMEA, ratings of RFs are multiplied to obtain RPN. However,

rationale of using the multiplication operation is not clear, and resulting RPN

does not produce accurate rankings. For that reason, this study employs fuzzy

GTMA method for ranking of FMs. Instead of multiplying the ratings of RFs for

each FM, fuzzy GMTA relies on the graph theory that takes into account all

possible permutations of interactions among RFs and yields accurate rankings

with no loss of information.

Although majority of the FMEA studies deal with the technical/engineering

problems, we believe that FMEA has much to offer in complex, social and socio-

technical problems. For that reason, the proposed model is realized in prioritizing

potential failures in an Enterprise Resource Planning (ERP) implementation. The

remainder of the paper is organized as follows: in Sect. 2, FPP, FCMs, and fuzzy

GTMA are introduced. In Sect. 3, the proposed model is given. In Sect. 4, real life

application of the proposed model is introduced. Concluding remarks are given in

Sect. 5. Detailed computational steps regarding FPP method are given in ‘‘Appendix

A’’.

2 Methodology

In this section, FPP, FCMs, and fuzzy GTMA methods are introduced.

2.1 Fuzzy preference programming

Suppose that the pairwise comparisons with n criteria are conducted by means of

fuzzy numbers. The total of m fuzzy comparison judgments are elicited from

decision makers, which are represented by a set F ¼ f~aijg, where m B n(n - 1)/2.

Each comparison judgement is represented as a triangular fuzzy number

~aij ¼ ðlij;mij; uijÞ.
FPP method aims to derive a priority vector w = (w1, w2, …, wn)

T in which the

priority ratios are approximately within the scope of the initial fuzzy judgements as

given in the Eq. 1.

lij ~�
wi

wj

~� uij ð1Þ

where the symbol ~� represents ‘‘fuzzy less or equal to’’.

Each resultant crisp priority vector satisfies the double-side inequality (Eq. 1) to

some extent which is expressed by a membership function as in the Eq. 2.

lij
wi

wj

� �
¼

ðwi=wjÞ � lij

mij � lij
;

wi

wj

�mij

uij � ðwi=wjÞ
uij � mij

;
wi

wj

�mij

8>><
>>:

ð2Þ
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Note that the membership function in Eq. 2 coincides with the fuzzy triangular

judgment ~aij ¼ ðlij;mij; uijÞ.
The solution of the FPP entails two assumptions. The first assumption is the

existence of a non-empty fuzzy feasible area P on the (n - 1)-dimensional simplex

Qn-1 which is given in Eq. 3.

Qn�1 ¼ w1; . . .;wnð Þjwi [ 0;
Xn
i¼1

wi ¼ 1

( )
ð3Þ

The fuzzy feasible area is defined as the intersection of the membership function.

The membership function of the fuzzy feasible area is given by Eq. 4.

lPðwÞ ¼ min
ij

lijðwÞji ¼ 1; . . .; n� 1; j ¼ 2; . . .; n; j[ i
� �

ð4Þ

The second assumption of the FPP states that the highest degree of membership

in the aggregated membership function in Eq. 4 can be used to infer the priority

vector. Because lp(w) is a convex set, there is always a priority vector w* [ Qn-1

that has a maximum degree of membership as given in Eq. 5.

k� ¼ lPðw�Þ ¼ max
w2Qn�1

min
ij

lijðwÞ
� �

ð5Þ

The solution can be found based on the procedure of the maximin rule (Bellman

and Zadeh 1970). The maximin problem can be transferred into a linear

programming problem (Zimmermann 1990). The linear programming formulation

of the maximin prioritization problem can be given as in the Eq. 6.

maximise: k

subject to:

k� lijðwÞ; i ¼ 1; 2; . . .; n� 1; j ¼ 2; 3; . . .; n; j[ i

Xn
l¼1

wl ¼ 1; wl [ 0; l ¼ 1; 2; . . .; n

ð6Þ

Considering the membership function in the Eq. 2, linear program given in the

Eq. 6 can be transformed into the bilinear program as given in the Eq. 7.

maximise: k

subject to:

mij � lij
� �

kwj � wi þ lijwj � 0

uij � mij

� �
kwj þ wi � uijwj � 0

Xn
k¼1

wk ¼ 1; wk [ 0; k ¼ 1; 2; . . .; n

i ¼ 1; 2; . . .; n� 1; j ¼ 2; 3; . . .; n; j[ i

ð7Þ
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The optimal solution of the problem (k*, w*) can be obtained by using an

appropriate non-linear optimization solver. In the solution, w* represents the

priority vector that has the maximum degree of membership in the fuzzy feasible

area, and k* gives the corresponding degree. If k* is positive, it can be said that the

initial fuzzy judgements are quite consistent. In other words, the inequality given in

Eq. 1 is completely satisfied. If k* is negative, the solution ratios approximately

satisfy the all double-side inequalities. Hence, k* can be used to measure the

consistency of the fuzzy judgements.

2.2 Fuzzy cognitive maps

Cognitive mapping was introduced by Axelrod (1976) for the analysis of the

complex social systems. Despite many successful applications of the cognitive

mapping, its inadequacy for modeling and describing much more complex systems

was realized. In order to overcome the limited inference and knowledge

representation capabilities of CMs, Kosko (1986) introduced FCMs. Methodolog-

ical differences between CMs and FCMs can be found in (Özesmi and Özesmi

2004).

FCMs exhibit desirable properties of artificial neural networks (ANNs) and fuzzy

logic. When compared with ANNs, FCMs are very easy to interpret. In the

conventional ANNs, neurons and connections do not have specific meanings; on the

contrary, concepts and connections have certain meanings in the FCMs (Tsadiras

2008). In parallel with this, the relationships among system variables are not only

described by sign, but their strengths are also examined by means of fuzzy sets.

Linguistic variables such as low, medium, high, etc., are used to quantify the degree

of causal relationships among system variables.

In FCMs, concepts represent important elements of the system, and directed arcs

represent the causal relationships (Papageorgiou and Salmeron 2014). There are

three possible relationships as positive causality (Wij[ 0), negative causality

(Wij\ 0), and no causality (Wij = 0). The Wij values represent how strongly

concept Ci influences concept Cj (Kosko 1986). The causal dependencies are stored

in the connection matrix and they are usually normalized into [-1, ?1].

The values of the concepts are being updated at each time step by the Eq. 8

(Xirogiannis et al. 2004):

Ctþ1
i ¼ f Ct

i þ
Xn
j¼1
j 6¼i

ejiC
t
j

0
BB@

1
CCA ð8Þ

where Ci
t is the value of concept Ci at time t, Ci

t?1 represent the value of concept Ci

at time t ? 1, and eji is the weight of the relationship exerted from concept Cj to

concept Ci. The symbol f is used to denote a transformation function. The most

widely used transformation functions are bivalent, trivalent, unipolar sigmoid (lo-

gistic), and hyperbolic tangent functions (Bueno and Salmeron 2009; Tsadiras

2008). Applicability of the transformation functions considering nature of the
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problem can be found in (Nikas and Doukas 2016). Network topology and inference

scheme of an FCM are given in Fig. 1a, b, respectively.

An FCM is expected to converge one of the states: a fixed point, a limit cycle, or

a chaotic behavior (Kosko 1997). In the fixed point state, concept vector remains the

same for successive iterations. In a limit cycle, concept vector keeps repeating

indefinitely. In chaotic behavior, concept vector keeps changing and exhibits a

chaotic behavior.

2.3 Fuzzy graph-theoretical matrix approach

GTMA is based on graph theory and matrix permanents, and it exhibits desirable

features for modeling interactions in MADM problems. GTMA is able to depict the

problem in a visual form by means of graph theory. In addition, matrix

representation makes computer processing straightforward. The main fabric of the

GTMA relies on the permanent calculations.

Permanents belong to the branch of combinatorial mathematics, simultaneously

introduced by Binet and Cauchy (Minc 1978). While their inception dates back to

1812, computation of a permanent is still a challenging task. Unlike determinant of

a matrix, the permanent cannot be computed by using Gaussian elimination

(Baykasoglu 2014). Computing the permanent of a binary matrix is #P-complete

(Nourani and Andresen 1999).

Let A = (aij) be an m 9 n matrix, where m B n. The permanent of a matrix A is

calculated by using Eq. 9 (Minc 1978).

PerðAÞ ¼
X
r

a1rð1Þa2rð2Þ; . . .; amrðmÞ ð9Þ

where, the summation extends over all one-to-one functions from {1, …, m} to

{1, …, n}. The sequence a1r(1), …, amr(m) represents the diagonal of matrix A and

the product a1r(1)…amr(m) is a diagonal product of A. Therefore, permanent of A is

the sum of all diagonal products of A (Baykasoglu 2014).
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Fig. 1 FCM representation. a Network topology of an FCM. b Inference scheme in an FCM
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In order to demonstrate the permanent calculation, let us consider the matrix

A and its visual representation as seen in Fig. 2.

The permanent of the matrix A can be computed by using the Eq. 10 as follows:

PerðAÞ ¼ abcþ agiþ behþ cdf þ dghþ efi ð10Þ

where Per(A) denotes the permanent of the matrix A. If the determinant of the same

matrix is calculated, the result becomes as given in the Eq. 11.

DetðAÞ ¼ abc� agi� beh� cdf þ dghþ efi ð11Þ

where Det(A) represents the determinant of the matrix A.

Note that the permanent is very similar to determinant except for the fact that all

signatures are taken as positive in the permanent. In other words, signatures of the

permutations are not taken into consideration and no negative sign appears in the

permanent function (Baykasoglu 2014; Rao and Padmanabhan 2006). Therefore, no

information is lost in the permanents. Due to this property, interactions within all

permutations in the graph are taken into account in the final ranking. Thereby, more

accurate rankings are obtained.

In the context of risk assessment, RFs have considerable impact on the overall

risk priorities. For instance, occurrence (O), severity (S), and detectability (D) are

the most commonly used RFs in the FMEA. In traditional FMEA studies, ratings of

the risk factors for each FM are multiplied. However, interactions among RFs

should be taken into account when obtaining the rankings of FMs. Experts’

knowledge and experience have pivotal role in this step. Decision makers’

evaluations regarding the interrelationships among RFs are generally expressed in

natural language, which are inherently vague and imprecise. For this reason, fuzzy

sets are utilized to model decision makers’ evaluations. Consequently, fuzzy GTMA

needs to be resolved.

In fuzzy GTMA, RFs and their interrelations are modeled via fuzzy digraphs.

Fuzzy digraph involves a set of nodes ~V ¼ ð~vjÞ, where j = 1, 2, …, n and a set of

direct edges ~E ¼ ð~ejkÞ. A node ~vj represents the fuzzy rating of the jth risk factor and
~ejk represents the degree of influence the jth RF has over the kth RF. The matrix

representation of the fuzzy digraph model is given in Eq. 12 as follows:

a d e
A f b g

h i c
=

a

b c

d ef

g

h

i

(a) (b)

Fig. 2 Matrix and digraph representations of matrix A. aMatrix representation. b Digraph representation
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RF1 RF2 RF3 � � � RFn

~A ¼

RF1

RF2

RF3

..

.

RFn

~A1 ~a12 ~a13 � � � ~a1n

~a21 ~A2 ~a23 � � � ~a2n

~a31 ~a32 ~A3 � � � ~a3n

..

. ..
. ..

. . .
. ..

.

~an1 ~an2 ~an3 � � � ~An

2
66666664

3
77777775

ð12Þ

where ~Aj represents fuzzy rating value of the jth RF, ~ajk is the fuzzy value of the

degree of influence RFj has on the RFk. The permanent of the matrix ~A is denoted by

Perð~AÞ and used to calculate the risk priority indices (RPIs). Details of the calcu-

lation steps of the fuzzy GMTA will be given in the next section.

3 Proposed evaluation model

This section presents the main framework of the proposed method used in this

paper. The proposed methodology is introduced and the algorithmic steps are

provided. The proposed methodology consists of the following procedures:

• Forming initial risk assessment matrix

• Modeling of interdependencies among failure modes

• Ranking of failure modes based on RPIs.

The proposed hybrid method is depicted in Fig. 3.

3.1 Phase I: forming initial risk assessment matrix

This phase consists of problem structuring and obtaining initial priorities of the FMs

and RFs. FPP models are constructed and non-linear mathematical models are

solved in order to derive weights of FMs and RFs.

Step 1. Problem structuring In this step, decision makers are identified. The aim

and the scope of the study are determined. With the help of expert opinions and

extensive literature reviews, the potential failure modes are listed. Then, the list

of risk factors is determined. Finally, linguistic variables and their associated

fuzzy numbers are formed.

Step 2. Calculating ratings of the FMs In this step, ratings of the FMs are

calculated by FPP method which allows imprecise and incomplete pairwise

judgements. The ratings of the FMs are assessed by solving the non-linear

mathematical programming models.

First, decision makers are asked to provide fuzzy pairwise comparisons of FMs

with respect to RFs. Suppose that n FMs are determined in the previous step and

the RFs are occurrence, severity, and detectability. Each decision maker makes

use of linguistic variables to compare these n FMs with respect to severity,

occurrence, and detectability, respectively. Then the majority rule is applied to
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form the group assessment. Here, if the linguistic label ‘‘High’’ is assigned to the

pairwise comparison ~aij ¼ ðlij;mij; uijÞ by the majority of the decision makers,

then the fuzzy number corresponding to the linguistic value ‘‘High’’ is used in the

comparison matrix. If the decision makers cannot assign a linguistic variable to a

pairwise comparison or the majority of the decision makers leave a particular

comparison empty, then the comparison judgement is assumed to be empty. The

FPP has a significant advantage that even if the some of the pairwise comparisons

are missing, the algorithm can still find priorities of each FM. When the pairwise

comparison matrices are formed, mathematical programming model given in the

Eq. 7 is constructed. Then, an appropriate non-linear solver is employed and the

rating of each FM is obtained as given in Eqs. 13–15.

FMS ¼ FMS
1 ;FM

S
2 ; . . .;FM

S
n

� �
ð13Þ

FMO ¼ FMO
1 ;FM

O
2 ; . . .;FM

O
n

� �
ð14Þ

FMD ¼ FMD
1 ;FM

D
2 ; . . .;FM

D
n

� �
ð15Þ

where FMS, FMO, FMD represent the rating vectors of n FMs with respect to

severity, occurrence, and detectability, respectively. If consistency level of a

pairwise comparison matrix has not found to be acceptable to decision makers,

then the pairwise comparisons are adjusted and the algorithm is repeated.

Step 3. Calculating weights of RFs Each risk factor has different level of

importance for decision makers. Thus, relative importance of each RF is

calculated by using the FPP method. The same calculation procedures are applied

as in the previous step. The relative importance of RFs are represented as in the

Eq. 16:

W ¼ wS;wO;wDð Þ ð16Þ

where wS, wO, wD represent relative importance of severity, occurrence, and

detectability RFs, respectively.

When the relative importance of RFs and the rating values of the FMs are

calculated, the initial risk assessment matrix is constructed as in the Table 1.

Step 4. Forming weighted risk assessment matrix In this step, risk assessment

matrix is weighted by the relative importance of each RF as given in Eqs. 17–19.

FMS
w ¼ FMS

1
� wS;FM

S
2
� wS; . . .;FM

S
n
� wS

� 	
ð17Þ

Table 1 Initial risk assessment

matrix
FMs/RFs Severity wSð Þ Occurrence wOð Þ Detectability wDð Þ

FM1 FM1
S FM1

O FM1
D

FM2 FM2
S FM2

O FM2
D

: : : :

FMn FMn
S FMn

O FMn
D
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FMO
w ¼ FMO

1 � wO;FM
O
2 � wO; . . .;FM

O
n � wO

� �
ð18Þ

FMD
w ¼ FMD

1 � wD;FM
D
2 � wD; . . .;FM

D
n � wD

� �
ð19Þ

where FMw
S , FMw

O, FMw
D denotes weighted rating vectors of n FMs with respect to

severity, occurrence, and detectability, respectively. Finally, weighted risk

assessment matrix is constructed as seen in Table 2.

Here, FMS
w1

represents the weighted rating value of the FM1
S.

3.2 Phase II: modeling interdependencies among failure modes

In the second phase of the evaluation model, FMs are evaluated by using FCMs. In

traditional FMEA studies, FMs are assumed to be independent of each other.

However, in many real life problems, various dependence and feedback relations

exist among the FMs. For instance, a particular FM can precipitate unexpected

consequences in the long term. Thus, ignoring such interdependencies can lead to

erroneous results (Gölcük and Baykasoğlu 2016). FCMs are significant knowledge

representation tools that allow modeling causal dependencies among FMs.

In a FMEA risk assessment framework, an FM can influence the other FMs in

different degrees in terms of severity, occurrence, and detectability perspectives.

For instance, an FM can have ‘‘High’’ influence on the occurrence, ‘‘Low’’ influence

on the severity, and no influence on the detectability of another FM. Describing

diverse causal influences among FMs can provide great benefits for understanding

and analysis of the complex system.

Steps for modeling dependencies among FMs are as follows:

Step 5. Setting up initial concept values As mentioned in the previous section,

concept nodes represent system variables and their interrelationships or

causalities are characterized by directed arcs. In the presented FMEA model,

each FM is described by concepts and causal dependencies among FMs are

represented by directed arcs.

Initial concept values are derived from the risk assessment matrix. Initial concept

values of the FCM that is developed in terms of severity is given in Eq. 20:

Table 2 Weighted risk assessment matrix

FMs/RFs Severity wSð Þ Occurrence wOð Þ Detectability wDð Þ

FM1 FMS
w1

¼ FMS
1 � wS FMO

w1
¼ FMO

1 � wO FMD
w1

¼ FMD
1 � wD

FM2 FMS
w2

¼ FMS
2 � wS FMO

w2
¼ FMO

2 � wO FMD
w2

¼ FMD
2 � wD

: : : :

FMn FMS
wn

¼ FMS
n � wS FMO

wn
¼ FMO

n � wO FMD
wn

¼ FMD
n � wD
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Ct¼0
FMS

1

Ct¼0
FMS

2

..

.

Ct¼0
FMS

p

..

.

Ct¼0
FMS

n

2
66666666664

3
77777777775
¼

FMS
w1

FMS
w2

..

.

FMS
wp

..

.

FMS
wn

2
6666666664

3
7777777775

ð20Þ

where Ct¼0
FMS

i

is the ith FM when t = 0. Similarly, the initial concept values of the

FCMs developed in terms of occurrence and detectability are constructed as in the

Eqs. 21 and 22, respectively.

Ct¼0
FMO

1

Ct¼0
FMO

2

..

.

Ct¼0
FMO

p

..

.

Ct¼0
FMO

n

2
66666666664

3
77777777775
¼

FMO
w1

FMO
w2

..

.

FMO
wp

..

.

FMO
wn

2
6666666664

3
7777777775

ð21Þ

Ct¼0
FMD

1

Ct¼0
FMD

2

..

.

Ct¼0
FMD

p

..

.

Ct¼0
FMD

n

2
66666666664

3
77777777775
¼

FMD
w1

FMD
w2

..

.

FMD
wp

..

.

FMD
wn

2
6666666664

3
7777777775

ð22Þ

where Ct¼0
FMO

i

and Ct¼0
FMD

i

are the ith FMs for occurrence and severity when t = 0,

respectively.

Step 6. Obtaining fuzzy influence matrices Fuzzy influence matrices represent the

degree of causal dependency between each pair of FMs. The influence matrix of

the FMi
S which is elicited from the kth decision maker is denoted by ~eSjik.

Similarly, influence matrices ~eOjik and ~eDjik are obtained.

Step 7: Forming augmented FCMs Fuzzy influence matrices which are elicited

from K decision makers are aggregated, and the augmented FCM is formed. The

augmented FCM calculations are given in Eqs. 23–25.

~eSji ¼
PK

k¼1 ~e
S
jik

K
; i ¼ 1; . . .; n; j ¼ 1; . . .; n ð23Þ
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~eOji ¼
PK

k¼1 ~e
O
jik

K
; i ¼ 1; . . .; n; j ¼ 1; . . .; n ð24Þ

~eDji ¼
PK

k¼1 ~e
D
jik

K
; i ¼ 1; . . .; n; j ¼ 1; . . .; n ð25Þ

where ~eSji; ~e
O
ji ; ~e

D
ji are the aggregated fuzzy influence matrices constructed in terms

of severity, occurrence, and detectability, respectively.

Step 8. Defuzzifying influence matrices The aggregated fuzzy influence matrices

are defuzzified. Many defuzzification methods have been proposed in the

literature (Broekhoven and Baets 2006; Chandramohan et al. 2006; Leekwijck

and Kerre 2001; Mahdiani et al. 2013; Opricovic and Tzeng 2003). Center of

gravity method is simple and practical, and it does not require preferences of

decision makers (Hsieh et al. 2004). For this reason, center of gravity method is

employed in this study. Defuzzification of a triangular fuzzy number ~N ¼ ðl;m; rÞ
is given by center of gravity method as seen in Eq. 26.

BNP ¼ lþ ½ðm� lÞ þ ðr � lÞ�=3 ð26Þ

where BNP is the non-fuzzy performance of the triangular fuzzy number.

Step 9. Simulating the FCMs The FCMs simulation with an appropriate threshold

function is conducted in order to capture the long term influences among FMs.

The threshold function can be selected as hyperbolic tangent, unipolar sigmoid, or

bivalent function, etc. The FCM simulation is conducted by using Eq. 27.

Ctþ1
FMS

i

¼ f Ct
FMS

i
þ
Xn
j¼1
j 6¼i

eSji � Ct
FMS

j

0
BB@

1
CCA ð27Þ

where Ct
FMS

i

is the concept value of the ith FMi
S at time step t. Similarly, the

formulation related to dynamic analysis of the FCMs which are constructed in

terms of occurrence and detectability are given in Eqs. 28 and 29, respectively.

Ctþ1
FMO

i

¼ f Ct
FMO

i
þ
Xn
j¼1
j 6¼i

eOji � Ct
FMO

j

0
BB@

1
CCA ð28Þ

Ctþ1
FMD

i

¼ f Ct
FMD

i
þ
Xn
j¼1
j 6¼i

eDji � Ct
FMD

j

0
BB@

1
CCA ð29Þ

where Ct
FMO

i

is the concept value of the ith FMi
O at time step t. The concept value

of the ith FMi
D at time step t is represented by Ct

FMD
i

.
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When the causal dependencies among FMs are resolved by means of FCM

simulation, steady-state concept values are considered for the next step.

3.3 Phase III: ranking of failure modes

In this phase, based on the final ratings of FMs and interactions among RFs, FMs are

ranked by using the fuzzy GTMA. Because only three RFs are considered in this

study, which are severity, occurrence, and detectability, formulations are given

based on the considered RFs. The required computational steps are given as follows:

Step 10. Forming rating matrix In this step, the rating matrix is constructed based

on the converged FCM concepts. The rating matrix for the ith FM Wi is given as

in the Eq. 30.

Wi ¼
CFMS

i
0 0

0 CFMO
i

0

0 0 CFMD
i

2
4

3
5 ð30Þ

where CFMS
i
;CFMO

i
;CFMD

i
represent the steady-state concept values of the FCMs

which are constructed in terms of severity, occurrence, and detectability,

respectively. In our approach, FCM weights are assumed to be positive as it is

easier to collect information by means of linguistic variables given in Table 4. If

there are more than one stable fixed points, then average of the fixed points can be

used. In the case of chaotic behavior, decision makers can revise initial FCMs,

stop FCM simulation after certain number of iterations, or change threshold

functions and other parameters of the FCM. Note that each scenario helps

decision makers better understand the nature of the system behavior.

Step 11. Generating interaction matrix Interactions among the RFs are collected.

Decision makers are asked to determine degree of influence among RFs by means

of linguistic variables given in Table 4. Then majority rule is employed to form

interaction matrix ~b which is given in the Eq. 31:

~b ¼
0 ~r12 ~r13
~r21 0 ~r23
~r31 ~r32 0

2
4

3
5 ð31Þ

where ~rij represents the influence of the ith RF over the jth RF.

Step 12. Forming risk ranking matrix After forming rating matrix (Wi) and

interaction matrix ð~bÞ, the next step is to obtain risk ranking matrix which is

given in Eq. 32.

~ni ¼ wi þ ~b ¼
CFMS

i
~r12 ~r13

~r21 CFMO
i

~r23
~r31 ~r32 CFMD

i

2
4

3
5 ð32Þ

where ~ni represents risk ranking matrix of the ith FM.
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Step 13. Calculating permanent of the risk ranking matrix The permanent of the

risk ranking matrix is calculated. For each FM, per ~ni
� 	

is calculated and

arranged in an descending order. The FM with the highest per ~ni
� 	

value is

considered as the most critical FM.

4 Case study

The role of information technologies on the business activities of the firms is rapidly

expanding. In parallel with the increase in complexity of products, services, and

customer expectations, the compelling market pressures lead firms to use

sophisticated software to maintain their operations. ERP software is one of such

solutions which help firms to integrate all the business functions for operational

efficiency and effectiveness.

Despite the growing interest to the ERP solutions, there are numerous difficulties

in the adoption process. Unfortunately, many enterprises have reported ERP

implementation to be fraught with failures due to the variety of challenges. As the

ERP implementations are such risky and difficult undertakings, firms should be

supported with appropriate risk management tools in order to eliminate the potential

failures during the implementation process. Evidently, awareness regarding the

importance of ERP risk management tools for the success of implementation

projects is growing. The company, which is contacted within the scope of this study,

is well aware of the significance of such tools. Due to the firm policy, it is named as

company A.

Company A is one of the largest software producers, heavily involved in business

intelligence technologies, mobile solutions, ERP, and software-as-a-service appli-

cations. While penetrating into new market, company A is targeting absolute

customer satisfaction to enhance the corporate image of the trademark. Company A

is recently developing projects in order to decrease the chance of failures in ERP

implementation of their customers. The authors of this study have recently

collaborated with company A in order to identify the critical success factors of the

ERP implementation. In parallel with these efforts, the proposed model is realized

in collaboration with the experts of company A as an extension of the previous

work.

Step 1 First, five experts from the company A are identified based on their

professional backgrounds. Number of participants are reduced by assuring the

heterogeneity of panel members. The experts consist of a team manager, an

analyst, and three consultants who have more than 5 years of experience. After

identification of the experts, participants are elucidated about the scope and

details of the study. Then, the linguistic scales are determined. Linguistic scale,

which is used for pairwise comparisons of the FPP, is given in Table 3.
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Similarly, the linguistic scale for the analysis of interactions (i.e., FMs, RFs) is

given in Table 4.

A comprehensive literature review has been conducted in order to identify the

FMs, their causes, and effects. There are numerous studies which provide review,

classification, and analysis of factors in the ERP implementation success (Leyh and

Crenze 2013; Leyh and Sander 2015; Ngai et al. 2008; Shaul and Tauber 2013; Yeh

and Xu 2013). With the help of literature review, previous study results, and

experts’ views, FMEA table is constructed as in the Table 5.

The RFs are determined as severity, occurrence, and detectability for the

practicality concerns.

4.1 Solution of pairwise comparisons

When the FMs and RFs are identified, the next step is to derive relative importance

degrees by using the FPP.

Step 2 The decision makers are asked to compare FMs with respect to RFs. First,

pairwise comparisons of FMs with respect to severity, occurrence, and the

detectability are collected as given in Tables 6, 7 and 8, respectively.

The solution of the FPP method is given in Eqs. 33–35.

FMS ¼ 0:090; 0:104; 0:204; 0:081; 0:081; 0:052; 0:272; 0:115ð Þ ð33Þ

FMO ¼ 0:064; 0:060; 0:122; 0:040; 0:122; 0:061; 0:259; 0:273ð Þ ð34Þ

FMD ¼ 0:057; 0:031; 0:144; 0:038; 0:108; 0:074; 0:186; 0:361ð Þ ð35Þ

The corresponding k values for the pairwise comparison matrices constructed

with respect to severity, occurrence, and detectability are found as -4.714, -5.476,

and -5.601, respectively. Because matrices are relatively large and involve

incomplete comparisons, k values are accepted by the decision makers. Note that

the FPP is able to find the relative importance of each FMs even if some of the

pairwise comparisons are left blank.

Step 3 After obtaining the ratings of FMs, the relative importance of each RF is

calculated. The pairwise comparison matrix of the RFs is given in Table 9.

Table 3 Linguistic variables for modeling pairwise comparisons

Linguistic variable Fuzzy number Reciprocal fuzzy number

Extreme importance (EXI) (8, 9, 10) (1/10, 1/9, 1/8)

Very strong importance (VSI) (6, 7, 8) (1/8, 1/7, 1/6)

Strong importance (SI) (4, 5, 6) (1/6, 1/5, 1/4)

Moderate importance (MI) (2, 3, 4) (1/4, 1/3, 1/2)

Equal importance (EI) (1, 1, 2) (1/2, 1, 1)
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The resulting weights of RFs are calculated as given in Eq. 36.

wS wO wD

W ¼ 0:516; 0:112; 0:372ð Þ
ð36Þ

where k is calculated as 0.612 which indicates that the pairwise comparison matrix

of the RFs is quite consistent. Computational details are given in ‘‘Appendix A’’.

Table 4 Linguistic variables

for modeling interactions
Linguistic variable Triangular fuzzy number

Very very high (VVH) (0.8, 0.9, 1)

Very high (VH) (0.65, 0.8, 0.9)

High (H) (0.5, 0.65, 0.8)

Medium (M) (0.35, 0.5, 0.65)

Low (L) (0.2, 0.35, 0.5)

Very low (VL) (0.1, 0.2, 0.35)

Very very low (VVL) (0, 0.1, 0.2)

Table 5 FMEA table for ERP risks

No. Failure modes Causes of failure Effects of failure

FM1 Failure to redesign

business processes

Inadequate change management

program, inadequate training and

education

Budget and time excess,

poor economic/financial

performance

FM2 Failure to work as an

effective team

Planning and problem solving

experience of team members are

inadequate, inadequate team

formation

Poor team performance

FM3 Failure to gain top

management support

Unclear strategic objectives, lack of

leadership, insufficient resources

Poor business

performance, low

strategic goal fitting

FM4 Failure to build an

effective software

management

methodology

Ineffective software engineering team,

lack of training, poor communication,

unclear objectives

Inadequate system

reliability and stability,

low degree of integration

FM5 Failure to ensure

integration between

enterprise-wide systems

Inadequate change management

program, inadequate training of

consulting company, lack of common

understanding among departments

Project delay, low degree

of flexibility, inadequate

system stability

FM6 Failure to understand and

respond changing

customer requirements

Inadequate leadership, inadequate

customer requirements planning

system

Low strategic goal fitting,

low degree of flexibility,

poor performance

FM7 Failure to ensure key user

involvement

Inadequate training, ineffective

communication

Low user friendliness,

poor business

performance

FM8 Failure to maintain an

effective project

management

Inadequate leadership, inadequate use

of project management tools,

ineffective communication

Budget and time excess
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Table 6 Pairwise comparisons of FMs with respect to severity

FM1 FM2 FM3 FM4 FM5 FM6 FM7 FM8

FM1 1 MI-1 EI-1 MI-1 EI EI EI-1 MI

FM2 MI 1 SI VSI MI-1 – SI-1 –

FM3 EI SI-1 1 VSI EI EI – VSI

FM4 MI VSI-1 VSI-1 1 EI EI SI-1 –

FM5 EI-1 MI EI-1 EI-1 1 EI SI MI-1

FM6 EI-1 – EI-1 EI-1 EI-1 1 MI-1 MI-1

FM7 EI SI – SI SI-1 MI 1 EI

FM8 MI-1 – VSI-1 – MI MI EI-1 1

Table 7 Pairwise comparisons of FMs with respect to occurrence

FM1 FM2 FM3 FM4 FM5 FM6 FM7 FM8

FM1 1 SI VSI EI SI-1 SI EI-1 MI-1

FM2 SI-1 1 MI – MI-1 – MI-1 –

FM3 VSI-1 MI-1 1 VSI EI EI – MI

FM4 EI-1 – VSI-1 1 MI MI-1 SI-1 –

FM5 SI MI EI-1 MI-1 1 EI EI-1 SI-1

FM6 SI-1 – EI-1 MI EI-1 1 VSI-1 MI-1

FM7 EI MI – SI EI VSI 1 SI

FM8 MI – MI-1 – SI MI SI-1 1

Table 8 Pairwise comparisons of FMs with respect to detectability

FM1 FM2 FM3 FM4 FM5 FM6 FM7 FM8

FM1 1 VSI VSI EI SI-1 SI EI-1 MI-1

FM2 VSI-1 1 MI – SI-1 – EI-1 –

FM3 VSI-1 MI-1 1 VSI SI EI – VSI

FM4 EI-1 – VSI-1 1 – MI-1 SI-1 –

FM5 SI SI SI-1 – 1 EI MI-1 VSI-1

FM6 SI-1 – EI-1 MI EI-1 1 – EI-1

FM7 EI EI – SI MI – 1 SI

FM8 MI – VSI-1 – VSI EI SI-1 1

Table 9 Pairwise comparisons

of RFs
S O D

S 1 SI EI

O SI-1 1 MI-1

D EI-1 MI 1
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Based on the results given in Eqs. 33–36, the initial risk assessment matrix is

constructed as in the Table 10.

Step 4 The initial risk assessment matrix is weighted by the corresponding RF

weights. The resulting weighted risk assessment matrix is given as in Table 11.

4.2 Resolving interdependencies

Traditional FMEA methods assume the independence of FMs. However, emergence

of a FM can trigger the unfolding of other FMs with different levels of severity,

occurrence, and detectability. For that reason, FCMs are built for each RF.

Step 5 The FCM is constructed and the initial concept values are established by

using the weighted risk assessment matrix. The initial concept values of the FCM

which is developed in terms of severity are given in Eq. 37.

Ct¼0
FMS

1

Ct¼0
FMS

2

..

.

Ct¼0
FMS

5

..

.

Ct¼0
FMS

8

2
66666666664

3
77777777775
¼

0:046
0:054

..

.

0:042
..
.

0:059

2
66666664

3
77777775

ð37Þ

In a similar fashion, initial concept values of the FCMs which are constructed

based on the occurrence and detectability are established as in Eqs. 38 and 39,

respectively.

Ct¼0
FMO

1

Ct¼0
FMO

2

..

.

Ct¼0
FMO

5

..

.

Ct¼0
FMO

8

2
66666666664

3
77777777775
¼

0:007
0:007

..

.

0:014
..
.

0:031

2
66666664

3
77777775

ð38Þ
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Ct¼0
FMD

1

Ct¼0
FMD

2

..

.

Ct¼0
FMD

5

..

.

Ct¼0
FMD

8

2
66666666664

3
77777777775
¼

0:021
0:012

..

.

0:040
..
.

0:134

2
66666664

3
77777775

ð39Þ

Step 6 When the initial concept values are determined, the next step is to model

relationships among FMs. In modeling of the relationships among FMs, fuzzy

influence matrices are collected, aggregated, and defuzzified. In this step, the

fuzzy influence matrices are collected.

Step 7 The fuzzy influence matrices are aggregated by employing Eqs. 23–25 in

this step. The required modifications are discussed with the experts.

Step 8 The influence matrices are defuzzified by employing Eq. 26.

The resulting FCM topologies are visualized in Fig. 4.

Table 10 Result of the initial risk assessment matrix

FMs/RFs Severity (0.516) Occurrence (0.112) Detectability (0.372)

FM1 0.090 0.064 0.057

FM2 0.104 0.060 0.031

FM3 0.204 0.122 0.144

FM4 0.081 0.040 0.038

FM5 0.081 0.122 0.108

FM6 0.052 0.061 0.074

FM7 0.272 0.259 0.186

FM8 0.115 0.273 0.361

Table 11 Result of the

weighted risk assessment matrix
FMs/RFs Severity Occurrence Detectability

FM1 FMS
w1

¼ 0:046 FMO
w1

¼ 0:007 FMD
w1

¼ 0:021

FM2 FMS
w2

¼ 0:054 FMO
w2

¼ 0:007 FMD
w2

¼ 0:012

FM3 FMS
w3

¼ 0:105 FMO
w3

¼ 0:014 FMD
w3

¼ 0:054

FM4 FMS
w4

¼ 0:042 FMO
w4

¼ 0:004 FMD
w4

¼ 0:014

FM5 FMS
w5

¼ 0:042 FMO
w5

¼ 0:014 FMD
w5

¼ 0:040

FM6 FMS
w6

¼ 0:027 FMO
w6

¼ 0:007 FMD
w6

¼ 0:028

FM7 FMS
w7

¼ 0:140 FMO
w7

¼ 0:029 FMD
w7

¼ 0:069

FM8 FMS
w8

¼ 0:059 FMO
w8

¼ 0:031 FMD
w8

¼ 0:134
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Step 9 FCMs are simulated in order to capture the long term effects of FMs. The

hyperbolic tangent function is selected and the FCM simulation is conducted by

employing Eqs. 27–29. Table 12 summarizes the changes in the concept values

which are constructed in terms of severity of FMs.

The FCM simulation has reached the steady-state after 25 iterations. The

dynamic behavior of the FMs is given in Fig. 5.

It can be observed that failure to redesign business processes has been converged

to relatively low concept values. The main reason is that only the failure to work as

an effective team has small impact on the failure to redesign business processes. On

the contrary, failure to ensure key user involvement has converged to higher concept

values. This is due to the fact that severity of failure to ensure key user involvement

has been influenced by failure to redesign business processes, failure to gain top

management support, failure to understand and respond changing customer

requirements, and failure to maintain an effective project management. Hence,

severity of the failure to ensure key user involvement has increased in the long term.

The comparison of the initial and the steady-state concept values are depicted in

Fig. 6. The most severe FM has found to be failure to ensure key user involvement
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Fig. 4 FCM topologies with respect to risk factors. a Severity, b occurrence and c detectability
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Table 12 Change of the concept values for the severity of failure modes

Failure modes

Iteration CFM1 CFM2 CFM3 CFM4 CFM5 CFM6 CFM7 CFM8

0 0.046 0.054 0.105 0.042 0.042 0.027 0.140 0.059

1 0.057 0.073 0.161 0.058 0.074 0.106 0.201 0.082

2 0.071 0.101 0.235 0.080 0.117 0.225 0.316 0.116

3 0.091 0.139 0.332 0.110 0.174 0.394 0.487 0.163

4 0.118 0.190 0.450 0.150 0.248 0.593 0.680 0.226

5 0.155 0.256 0.579 0.204 0.340 0.761 0.826 0.308

6 0.203 0.335 0.700 0.274 0.449 0.858 0.899 0.404

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

24 0.679 0.743 0.935 0.750 0.884 0.961 0.963 0.777

25 0.679 0.743 0.935 0.750 0.884 0.961 0.963 0.777
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Fig. 5 Dynamic behavior of FMs with respect to severity

0.046

0.054

0.105

0.042

0.042

0.027

0.140

0.059

0.679

0.743

0.935

0.750

0.884

0.961

0.963

0.777

CFM1

CFM2

CFM3

CFM4

CFM5

CFM6

CFM7

CFM8

Concept Values

Co
nc

ep
ts

Concept Values for Severity

Final Concept Values

Initial Concept Values

Fig. 6 Change of concept values with respect to severity

Comprehensive fuzzy FMEA model: a case study of ERP… 817

123



with the concept value 0.963. The second most severe FM is the failure to

understand and respond chancing customer requirements. Although failure to

understand and respond chancing customer requirements has a relatively small

initial concept value, the integration problems between the enterprise-wide systems

have considerable impact on it leading to increased severity in the long term. The

third most severe FM has found as failure to gain top management support which

ranks second according to initial concept values. The least severe FM has found to

be failure to redesign business processes.

The dynamic behavior of FCM that is constructed in terms of occurrence is given

in Fig. 7. It is observed that failure to ensure integration between enterprise-wide

systems is the most frequent FM during the ERP implementation. Especially, failure

to redesign business processes, failure to work as an effective team, and failure to

build an effective software management methodology have considerable impact on

the occurrence of enterprise-wide system integration. The FMs with the least

concept value are failure to maintain an effective project management and failure to

build an effective software management methodology.

Changes in the concept values with respect to occurrence of FMs are depicted in

Fig. 8. Investigating the concept values, a drastic change has observed in the failure

to main an effective project management. Despite its relatively high initial concept

value, occurrence of the failure to maintain an effective project management has

ranked eighth in terms of the final concept values. This is due the fact that only

failure to work as an effective team and failure to gain top management support

affect the occurrence of the failure to maintain an effective project management.

The second interesting observation is that the occurrence of failure to understand

and respond changing environment has ranked third in terms of steady-state concept

values where it can only rank seventh in terms of initial concept value. This is due to

the fact that flexibility of an organization in fulfilling customer expectations is

highly influenced by enterprise-wide system integration, involvement of key users,

and effective project management.
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As given in the Fig. 9, it takes 30 iterations to reach steady-state concept values

of the FCM which is constructed in terms of detectability of the FMs. Failure to

ensure key user involvement has reached to highest concept value which is 0.929.

The FM with the second highest concept value is found to be failure to ensure

integration between enterprise-wide systems. The most interesting observation is

related to failure to maintain an effective project management. Although it has the

highest initial concept value, failure to maintain an effective project management

has converged to the lowest concept value. The main reason is that only failure to

gain top management support makes it more difficult to detect the failure to

maintain an effective project management. Other six FMs have no influence on the

detectability of the failure to maintain an effective project management.

Evolution of the concept values from the detectability point of view is given in

Fig. 10. The top ranked FMs with respect to detectability are failure to ensure key

user involvement, failure to ensure integration between enterprise-wide systems,
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and failure to understand and respond changing customer requirements. Despite

having the third rank in terms of initial concept value, failure to gain top

management support moves to rank seven with respect to detectability of the FMs.

Another interesting observation is that failure to effective project management ranks

first in terms of initial concept value. Because of the minor impacts received from

other FMs, failure to effective project management has ranked eighth in terms of

detectability. This is probably due to the fact that problems incurred from the

ineffective project management are easier to detect and control.

4.3 Ranking of failure modes

Step 10 The final concept values are used to form rating matrix. The rating

matrices have the form as given in Eq. 40.

W1 ¼
0:679 0 0

0 0:818 0

0 0 0:891

2
64

3
75;

W2 ¼
0:743 0 0

0 0:830 0

0 0 0:837

2
64

3
75; . . .;

W8 ¼
0:777 0 0

0 0:789 0

0 0 0:586

2
64

3
75

ð40Þ

Step 11 Interaction matrix is formed by means of linguistic variables. The

interaction matrix is given in Eq. 41.
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~b ¼
0 H M

VH 0 H

L H 0

2
64

3
75

¼
0 0:50; 0:65; 0:80ð Þ 0:35; 0:50; 0:65ð Þ

0:65; 0:80; 0:90ð Þ 0 0:50; 0:65; 0:80ð Þ
0:20; 0:35; 0:50ð Þ 0:50; 0:65; 0:80ð Þ 0

2
64

3
75

ð41Þ

Step 12 Sum of the rating and interaction matrices is calculated, and the risk

ranking matrices are obtained. For instance, risk ranking matrix for the FM1 is

calculated as given in Eq. 42.

~n1 ¼
0:679 0 0

0 0:818 0

0 0 0:891

2
64

3
75

þ
0 0:50; 0:65; 0:80ð Þ 0:35; 0:50; 0:65ð Þ

0:65; 0:80; 0:90ð Þ 0 0:50; 0:65; 0:80ð Þ
0:20; 0:35; 0:50ð Þ 0:50; 0:65; 0:80ð Þ 0

2
64

3
75

¼
0:679; 0:679; 0:679ð Þ 0:50; 0:65; 0:80ð Þ 0:35; 0:50; 0:65ð Þ
0:65; 0:80; 0:90ð Þ 0:818; 0:818; 0:818ð Þ 0:50; 0:65; 0:80ð Þ
0:20; 0:35; 0:50ð Þ 0:50; 0:65; 0:80ð Þ 0:891; 0:891; 0:891ð Þ

2
64

3
75

ð42Þ

The same calculations are performed and the risk ranking matrices are obtained

as seen in Table 13.

Step 13 Permanent values of the risk ranking matrices are calculated to obtain

RPIs. The fuzzy permanent values and their crisp equivalents are given in

Table 14.

Finally, calculated permanent values are sorted in a descending order. The most

critical FMs are depicted in Fig. 11.

The most significant FM is found as failure to ensure key user involvement.

The yielded results have been compared with the traditional approach. In the

traditional FMEA, RPN value of each FM is produced by multiplication of risk

ratings. Because traditional FMEA employs a different rating scale, the produced

results are compared with the case in which possible interdependencies in RFs and

FMs are ignored. Based on the weighted risk assessment matrix given in Table 11,

risk ratings are multiplied and the FMs are prioritized. Consequently, the most

critical FM has been found as failure to ensure key user involvement (FM7), which

is in line with the produced result. The second critical FM in the traditional

approach is failure to maintain an effective project management (FM8). However,

FM8 has received relatively low influences from FM2 and FM3 only in the FCM.

Therefore, overall influence exerted into FM8 in the resulted FCM simulation is
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quite low. Investigating the failure to understand and respond changing customer

requirements (FM6), relatively high influences are exerted into this FM in the FCM

simulation. Hence, FM6 is ranked second as a result of the proposed model. In the

traditional approach, the third and fourth ranked FMs are FM3 and FM5,

Table 13 Risk ranking matrices of the failure modes

S O D

FM1 S (0.679, 0.679, 0.679) (0.50, 0.65, 0.80) (0.35, 0.50, 0.65)

O (0.65, 0.80, 0.90) (0.818, 0.818, 0.818) (0.50, 0.65, 0.80)

D (0.20, 0.35, 0.50) (0.50, 0.65, 0.80) (0.891, 0.891, 0.891)

FM2 S (0.743, 0.743, 0.743) (0.50, 0.65, 0.80) (0.35, 0.50, 0.65)

O (0.65, 0.80, 0.90) (0.830, 0.830, 0.830) (0.50, 0.65, 0.80)

D (0.20, 0.35, 0.50) (0.50, 0.65, 0.80) (0.837, 0.837, 0.837)

FM3 S (0.935, 0.935, 0.935) (0.50, 0.65, 0.80) (0.35, 0.50, 0.65)

O (0.65, 0.80, 0.90) (0.946, 0.946, 0.946) (0.50, 0.65, 0.80)

D (0.20, 0.35, 0.50) (0.50, 0.65, 0.80) (0.714, 0.714, 0.714)

FM4 S (0.750, 0.750, 0.750) (0.50, 0.65, 0.80) (0.35, 0.50, 0.65)

O (0.65, 0.80, 0.90) (0.795, 0.795, 0.795) (0.50, 0.65, 0.80)

D (0.20, 0.35, 0.50) (0.50, 0.65, 0.80) (0.797, 0.797, 0.797)

FM5 S (0.884, 0.884, 0.884) (0.50, 0.65, 0.80) (0.35, 0.50, 0.65)

O (0.65, 0.80, 0.90) (0.966, 0.966, 0.966) (0.50, 0.65, 0.80)

D (0.20, 0.35, 0.50) (0.50, 0.65, 0.80) (0.904, 0.904, 0.904)

FM6 S (0.961, 0.961, 0.961) (0.50, 0.65, 0.80) (0.35, 0.50, 0.65)

O (0.65, 0.80, 0.90) (0.950, 0.950, 0.950) (0.50, 0.65, 0.80)

D (0.20, 0.35, 0.50) (0.50, 0.65, 0.80) (0.895, 0.895, 0.895)

FM7 S (0.963, 0.963, 0.963) (0.50, 0.65, 0.80) (0.35, 0.50, 0.65)

O (0.65, 0.80, 0.90) (0.964, 0.964, 0.964) (0.50, 0.65, 0.80)

D (0.20, 0.35, 0.50) (0.50, 0.65, 0.80) (0.929, 0.929, 0.929)

FM8 S (0.777, 0.777, 0.777) (0.50, 0.65, 0.80) (0.35, 0.50, 0.65)

O (0.65, 0.80, 0.90) (0.789, 0.789, 0.789) (0.50, 0.65, 0.80)

D (0.20, 0.35, 0.50) (0.50, 0.65, 0.80) (0.586, 0.586, 0.586)

Table 14 Permanent values of

the failure modes
Failure mode Fuzzy permanent Crisp permanent (RPI)

FM1 (1.175, 1.796, 2.625) 1.865

FM2 (1.196, 1.819, 2.653) 1.889

FM3 (1.327, 1.971, 2.839) 2.045

FM4 (1.141, 1.754, 2.575) 1.823

FM5 (1.518, 2.192, 3.090) 2.267

FM6 (1.579, 2.263, 3.173) 2.338

FM7 (1.637, 2.329, 3.249) 2.405

FM8 (0.963, 1.538, 2.323) 1.608
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respectively. On the other hand, in the proposed model, FM5 is ranked third, and

FM3 is ranked fourth, respectively. As a result of the analysis, it can be said that

priorities of the FMs may differ considerably if the causal dependencies are taken

into consideration. The main advantage of the proposed model is that decision

makers can better understand cause and effect relationships among FMs and

interpret the results.

5 Concluding remarks

In this study, a new hybrid fuzzy FMEA model, which combines FPP, FCMs, and

fuzzy GTMA, is proposed. The proposed model exhibits desirable properties that

help overcome the drawbacks of the traditional FMEA and RPN. The proposed

model is realized in a software company producing ERP products. The results have

showed that the most critical risks among the potential failures are failure to ensure

key user involvement, failure to understand and respond chancing customer

requirements, and failure to ensure integration between enterprise-wide systems.

The results have been shared with the company, and several action plans are being

generated to mitigate the ERP implementation failures.

The main limitation of the presented study is that the results produced by the

proposed model is highly dependent on the expert’s perceptions. Accordingly,

results are difficult to be generalized. Secondly, experts are the ERP implementers

of the company so that the results might represent single-sided views. Nevertheless,

the presented study can be improved in terms of many aspects. The higher order

uncertainties, such as type-2 fuzzy sets, hesitant fuzzy sets, etc. can be used in the

survey processing stage. Also, other stakeholders’ views can be included. Different

FM1

FM3

FM5

FM7

0.441

0.882

1.323

1.764

2.205
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Fig. 11 Final rankings of the failure modes
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RFs can be incorporated into the evaluation model. In future studies, these

considerations will be at the top of our agenda.

Appendix A: Fuzzy preference programming solution

In this section, derivation of RF weights has been explained in detail. According to

Table 9, pairwise comparisons of RFs can be written as in Eq. A.1.

~a11 ¼ 1; 1; 1ð Þ ~a12 ¼ 4; 5; 6ð Þ ~a13 ¼ 1; 1; 2ð Þ
~a21 ¼ 1=6; 1=5; 1=4ð Þ ~a22 ¼ 1; 1; 1ð Þ ~a23 ¼ 1=4; 1=3; 1=2ð Þ

~a31 ¼ 1=2; 1; 1ð Þ ~a32 ¼ 2; 3; 4ð Þ ~a33 ¼ 1; 1; 1ð Þ

2
4

3
5 ðA:1Þ

Based on the bilinear program given in Eq. 7, mathematical model is constructed.

Because the fuzzy pairwise comparison matrix is reciprocal, only the elements of

the upper right part are used for building mathematical model. Therefore, we need

to write constraints for the following judgements: ~a12, ~a13, and ~a23. The resulting

nonlinear optimization model is given in Eq. A.2.

Maximize: k

Subject to

5� 4ð Þkw2 � w1 þ 4ð Þw2 � 0

6� 5ð Þkw2 þ w1 � 6ð Þw2 � 0

)
constraints for ~a12

1� 1ð Þkw3 � w1 þ 1ð Þw3 � 0

2� 1ð Þkw3 þ w1 � 2ð Þw3 � 0

)
constraints for ~a13

1=3� 1=4ð Þkw3 � w2 þ 1=4ð Þw3 � 0

1=2� 1=3ð Þkw3 þ w2 � 1=2ð Þw3 � 0

)
constraints for ~a23

w1 þ w2 þ w3 ¼ 1

w1 � 0; w2 � 0; w3 � 0

ðA:2Þ

Note that for each judgement in the upper right part of the comparison matrix,

two constraints have been added to the model. If a judgement has been left blank by

decision maker, then no constraint has been written instead. Solution of the above

model has already been given in Eq. 36, Sect. 4.1.
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123


	Comprehensive fuzzy FMEA model: a case study of ERP implementation risks
	Abstract
	Introduction
	Methodology
	Fuzzy preference programming
	Fuzzy cognitive maps
	Fuzzy graph-theoretical matrix approach

	Proposed evaluation model
	Phase I: forming initial risk assessment matrix
	Phase II: modeling interdependencies among failure modes
	Phase III: ranking of failure modes

	Case study
	Solution of pairwise comparisons
	Resolving interdependencies
	Ranking of failure modes

	Concluding remarks
	Appendix A: Fuzzy preference programming solution
	References




