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Abstract This paper addresses resource-constrained project scheduling problem

with mixed uncertainty of randomness and fuzziness (FS-RCPSP). The activity

durations are considered to be fuzzy random variables. A resource flow network

based mathematical model with fuzzy random variables is presented. Then, this

model is transformed into a mixed-integer linear programming model with crisp

variables. The CPLEX 12.6.0.1 solver in AIMMS (2014) is employed for applying

the proposed model to solve 960 benchmark instances generated from the well-

known sets J30 and J60 in PSPLIB. The computational results are encouraging and

indicate the ability of the proposed model to handle the FS-RCPSP.
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1 Introduction

Resource constrained project scheduling problem (RCPSP) is a well-known NP-

hard problem in scheduling, with the minimization of project duration as the

objective subject to precedence and resource constraints. In this problem

preemption is not allowed and the resources are considered to be renewable, and

also the availability of resources, the resource requirement for each activity, and the

activity durations are assumed to be known and fixed. So far, many exact, e.g.,

Damay et al. (2007) and Kolisch and Hartmann (2006), heuristic, e.g., Tormos and

Lova (2001), Pantouvakis and Manoliadis (2006) and Ying et al. (2009), and meta-

heuristic, e.g., Zamani (2011), Paraskevopoulos et al. (2012) and Sebt et al. (2013),

solution procedures have been proposed for solving this problem with deterministic

parameters. However, since the parameters cannot be exactly estimated in most

practical situations, it would be more appropriate to consider the uncertainty of

parameters in this problem.

In general, the majority of the research efforts to dealing with uncertainty in

project scheduling problem concentrated on reactive scheduling, proactive (robust)

scheduling, stochastic scheduling, and scheduling under fuzziness (Herroelen and

Leus 2005). Reactive project scheduling copes with the uncertainties by repairing or

rescheduling of the baseline schedule when an unexpected event occurs at the time

of project execution. Some papers being published in this research area are Sadeh

et al. (1993), Smith (1994), Van de Vonder et al. (2007), Lambrechts et al. (2008)

and Herroelen and Leus (2004a). In proactive project scheduling a baseline

schedule, which is protected as much as possible against disruptions during project

execution, is built. Some papers in the area of proactive (robust) project scheduling

are Lambrechts et al. (2008), Herroelen and Leus (2004a, b), Leus and Herroelen

(2004) and Artigues et al. (2013). Most of the research efforts on the stochastic

project scheduling concentrate on the Stochastic-RCPSP (S-RCPSP). In this

problem, it is assumed that the processing time of each activity is uncertain and

there are historical data about the activity durations, and therefore, based on this

historical data, a probability distribution is given to each activity. In S-RCPSP no

baseline schedule is produced and scheduling is usually done by a dynamic decision

process which is called a policy. Based on the observed past up to the decision time

t, each policy defines which activity/activities can start at that time. The literature on

this area are rather sparse and interested readers are referred to recently published

papers such as Ballestin and Leus (2009), Ashtiani et al. (2011) and Fang et al.

(2015). Sometimes, due to the lack of historical data, probability distributions are

not known for the activity durations. In these situations, activity durations are

estimated by some experts and these estimations are often vague and imprecise. To

cope with this kind of uncertainty, activity durations are modeled by fuzzy numbers.

As the first study on the Fuzzy-RCPSP (F-RCPSP), Hapke et al. (1994) generalized

the serial and parallel scheduling schemes to deal with fuzzy parameters. After this

study, many other research efforts concentrated on this research area, some of which

are Lorterapong (1994), Leu et al. (1999), Wang (2004), Xianggang and Wei
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(2010), Bhaskar et al. (2011), Atli and Kahraman (2012) and finally Atli and

Kahraman (2013).

In real world projects, especially construction projects, it is possible that some

activities of a project have been previously performed several times, and therefore

we have enough historical data about their durations, but some other activities of

this project may seldom or never been performed before and have no historical data.

In these situations, randomness and fuzziness appear simultaneously and the

corresponding scheduling problem is called fuzzy stochastic scheduling problem.

This kind of problems can be treated using mathematical tools that model both

randomness and fuzziness. Some of these tools are (Luhandjula 2006): probability

of a fuzzy event (Zadeh 1968), probabilistic set (Hirota 1981), fuzzy random

variable (Puri and Ralescu 1986; Kruse and Meyer 1987), and random fuzzy

variable (Liu 2002a, b). In addition to this list, Buckley (2005) proposed a new type

of fuzzy random variable based on his new fuzzy probability theory, which is used

in this paper to represent activity durations.

The literature on fuzzy stochastic scheduling is in its burn-in phase, and the study

of this research area has been initiated in Itoh and Ishii (2005). They proposed a

mathematical programming model for scheduling of an n-job machine. In their

model, processing times and due-dates for jobs were considered to be crisp and

fuzzy random variables, respectively (Itoh and Ishii 2005). Ke and Liu (2007) for

the first time studied a fuzzy stochastic project scheduling problem and made use of

random fuzzy variables for representation of uncertainties. Three types of random

fuzzy models were proposed for solving the understudy problem: expected cost

minimization model, (a, b)-cost minimization model, and chance maximization

model. Finally, a hybrid intelligent algorithm was designed for solving the

mentioned three models (Ke and Liu 2007). Huang et al. (2009) made use of random

fuzzy variables to solve the software project scheduling problem. They proposed an

expected cost model for scheduling of a stochastic software project. In addition, a

hybrid intelligent algorithm based on genetic algorithm and random fuzzy variables

was designed to solve the proposed model (Huang et al. 2009). Nematian et al.

(2010) were the first researchers for considering the Fuzzy Stochastic-RCPSP (FS-

RCPSP). The ready time, duration, and deadline of activities were considered to be

fuzzy random variables and expected value of fuzzy random variables was utilized

for transforming the mathematical model with fuzzy random variables to a mixed-

integer linear programming model (Nematian et al. 2010). Xu and Zhang (2012)

studied the resource constrained multiple project scheduling problems with the

mixed uncertainty of fuzziness and randomness. They proposed a multi-objective

mathematical model with fuzzy random variables, and transformed it into a multi

objective mathematical model with crisp variables. The objective functions of their

model are minimizing the total project time and minimizing the total tardiness

penalty of multiple projects. Xu and Zhang (2012) solved the model by a hybrid

genetic algorithm with fuzzy logic controller (flc-hGA).

In this paper, resource constrained project scheduling problem is considered

under the fuzzy random environment. A new simple and efficient approach in fuzzy

probability theory, which was presented by Buckley (2005), is utilized to develop a

mathematical model for RCPSP with fuzzy random activity durations. This model
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will be based on the concept of the resource flow network. Then, the proposed

model with fuzzy random activity durations is transformed to a mixed integer linear

programming (MILP) model with crisp variables and parameters.

The contributions of this paper are threefold: (1) an MILP model is proposed to

solve RCPSP when randomness and fuzziness co-exist in the estimates of the

durations of activities; (2) the uncertainties are represented by a new approach in

fuzzy probability theory and fuzzy random variables; (3) promising results are

obtained when the MILP model is applied to solve an extensive set of 960 FS-

RCPSP problems created by the ProGen benchmark scheduling problem generator.

The remainder of this paper is organized as follows: in Sect. 2, some

preliminaries on fuzzy theory and fuzzy probability theory are presented; Sect. 3

gives a formal description of the problem under study; Sect. 4 provides model

formulations; in Sect. 5, the results of computational experiments to test the potency

of our method in solving the FS-RCPSP are reported and finally, in Sect. 6,

concluding remarks are drawn out.

2 Preliminaries

Before going through the problem description and introducing a mathematical

model to solve it, it is necessary to know about some preliminaries. Thus, in this

section, some general information is given about fuzzy numbers and fuzzy

calculations. Then, the approach of Buckley (2005) in fuzzy probability theory and

fuzzy random variables, which are utilized in this paper for treating the uncertainties

in activity durations, are discussed. Hereafter, we place a ‘‘bar’’ and a ‘‘tilde’’ over a

letter to denote a fuzzy number and a fuzzy random number, respectively. The

different index/sets, parameters, and variables are defined in ‘‘Appendix’’.

2.1 Fuzzy numbers and fuzzy arithmetic

In this subsection, the fuzzy sets, fuzzy numbers, and their related mathematical

calculations are presented as follows:

Definition 1 A fuzzy set �A in the universe of discourse W is defined by its

membership function, f �AðxÞ. A membership function gives values in [0,1] for all x in

W.

Definition 2 The support of a fuzzy set �A is the crisp set of all elements of W with

nonzero membership in �A, and is shown as supp (�A) = [supp-(�A), supp?(�A)].
Klir and Yuan (2000) define the generalized left right fuzzy number with the

following definition.

Definition 3 A fuzzy set �A in IR is called a fuzzy number if and only if there exists

a closed interval ½a; b� 6¼ u such that:
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f �AðxÞ ¼
1 for x 2 ½a; b�
lðxÞ for x 2 ð�1; aÞ
rðxÞ for x 2 ðb;1Þ

8
<

:
ð1Þ

where l is a function from ð�1; aÞ to [0,1] that is monotonic increasing, continuous

from the right such that lðxÞ ¼ 0 for x 2 ð�1;w1Þ; r is a function from ðb;þ1Þ to
[0,1] that is monotonic decreasing, continuous from the left such that rðxÞ ¼ 0 for

x 2 ðw2;1Þ(Klir and Yuan 2000).

Membership functions can take many forms, but since the fuzzy numbers are

typically defined subjectively and in this way it is usually difficult to find an exact

quadratic or higher order functions, researchers had a tendency to use two special

linear functions namely, trapezoidal fuzzy number (TrFN) and triangular fuzzy

number (TFN). A TrFN is shown as ða1; a2; a3; a4Þ and has the following

membership function:

fTrFNðxÞ ¼

0 for x� a1
ðx� a1Þ
ða2 � a1Þ

for a1\x� a2

1 for a2\x� a3
ða4 � xÞ
ða4 � a3Þ

for a3\x� a4

0 for x� a4

8
>>>>>>><

>>>>>>>:

ð2Þ

A TFN is shown as ða1; a2; a3Þ and detailed form of its membership function is as

follows (see Fig. 1):

fTFNðxÞ ¼

0 for x� a1
ðx� a1Þ
ða2 � a1Þ

for a1\x� a2

ða3 � xÞ
ða3 � a2Þ

for a2\x� a3

0 for x� a3

8
>>>>><

>>>>>:

ð3Þ

In particular, when a2 ¼ a3, the TrFN is reduced to the TFN; therefore, TFNs are

special cases of TrFNs. In this paper, to simplify the calculations, TFNs are

employed to represent fuzzy numbers.

a1 2 3a a

1
TFN

TFN

xo

ζ (x)Fig. 1 A triangular fuzzy
number (TFN)
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The extension principle developed by Zadeh (1975) and later by Yager (1986) is

one of the most basic concepts of fuzzy set theory that enables us to extend the

domain of a function on fuzzy sets. It is possible to define fuzzy arithmetic

operations by applying the concept of extension principle to arithmetic operations.

Definition 4 Let �A, �B denote two fuzzy numbers, defined on universal set of real

numbers IR, that represent the operands x1 and x2, respectively. Using the extension

principle fuzzy arithmetic operation �A � �B, where � 2 þ;�;�;	f g, is defined as

f �A� �BðyÞ ¼ sup
y¼x1�x2

minðf �Aðx1Þ; f �Bðx2ÞÞf g: ð4Þ

The above addition and subtraction operations can be simplified for TFNs as

follows:

Definition 5 Let �A ¼ ða1; a2; a3Þ and �B ¼ ðb1; b2; b3Þ be two TFNs. The addition

and subtraction of �A and �B, are fuzzy numbers calculated as follows:

�Aþ �B ¼ ða1 þ b1; a2 þ b2; a3 þ b3Þ; ð5Þ

�A� �B ¼ ða1 � b3; a2 � b2; a3 � b1Þ: ð6Þ

Many methods have been proposed for comparing two fuzzy numbers, however,

none of them is commonly accepted. In this paper, the following method is

employed, since it is simple, computationally cheap, and suitable for transforming a

model with fuzzy parameters to a model with crisp ones.

Definition 6 Suppose �A ¼ ða1; a2; a3Þ and �B ¼ ðb1; b2; b3Þ are two TFNs. Then,

the following relation is hold (Nematian et al. 2010):

�A� �B , a1 � b1&a2 � b2&a3 � b3: ð7Þ

The fuzzy numbers obtained for the mean value of a project’s makespan can

be converted to a crisp value using a defuzzification method. Two common

techniques for defuzzification are máxima methods and área-based methods. The

advantages of máxima methods are their simplicity and speed (Pham and

Castellani 2002) and their major disadvantage is loss of information. The most

widely used área-based defuzzification method is the Centroid of Area (COA),

which has shown good accuracy and performance on real world problems.

Considering these pros and cons the COA method (see Eq. 8) is employed in

this paper to defuzzify fuzzy numbers.

COAð�AÞ ¼
R
f �AðxÞ:xdxR
f �AðxÞdx

: ð8Þ
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2.2 Fuzzy probability theory

Let X ¼ fx1; . . .; xng be a finite set and let P be a probability function defined on all

subsets of X with PðfxigÞ ¼ ai; 1� i� n; 0\ai\1 all i and
Pn

i¼1 ai ¼ 1. Due to the

uncertainties in the values of ai, each crisp number ai is substituted with a fuzzy

number �ai and it is assumed that 0\�ai\1 for all i. Then, X together with the �ai
values is a discrete fuzzy probability distribution (Buckley 2005). We write 0\�ai if
0\ supp-(�ai), and �ai\1 if supp?(�ai)\ 1. A fuzzy probability function is presented

as �P such that �PðfxigÞ ¼ �ai; 1� i� n; 0\�ai\1, and a random variable with a fuzzy

probability function is called a fuzzy random variable. Buckley (2005) considers the

following restriction on the �ai values: there are ai 2 �aia; a ¼ 1 so that
Pn

i¼1 ai ¼ 1.

Based on all of these, Buckley (2005) introduces the restricted fuzzy arithmetic as

follows:

Definition 7 Let A ¼ fx1; ::; xkg, 1� k\n, be a subset of X, then �PðAÞ is defined
as

�PaðAÞ ¼
Xk

i¼1

ai ai 2 �aiaj ; 1� i� n;
Xn

i¼1

ai ¼ 1

( )

; for 0� a� 1: ð9Þ

This is a restricted fuzzy arithmetic, because when all probabilities are fuzzy it is

insisted that the sum of all the individual probabilities equals one (Buckley 2005).

Assuming that ~X is a fuzzy random variable having fuzzy probability density f ðx; �hÞ,
where x 2 IR and �h ¼ �h1; . . .; �hQ

� �
is for parameters �hq, 1� q�Q, the above

restricted fuzzy arithmetic for discrete case can be extended to continuous one as:

�Pað ~X 2 ½z1; z2�Þ ¼
Z z2

z1

f ðx; hÞdx hq 2 �hqa
�
� ; 1� q�Q;

Z þ1

�1
f ðx; hÞdx ¼ 1

� �

;

for 0� a� 1:

ð10Þ

Definition 8 The expected value and variance of a fuzzy random variable with a

discrete are fuzzy numbers and are defined by their a-cuts as follows:

�la ¼
Xn

i¼1

xiai ai 2 �aiaj ; 1� i� n;
Xn

i¼1

ai ¼ 1

( )

for 0� a� 1; ð11Þ

�r2a ¼
Xn

i¼1

ðxi � lÞ2ai ai 2 �aiaj ; 1� i� n;
Xn

i¼1

ai ¼ 1; l ¼
Xn

i¼1

xiai

( )

for 0� a� 1:

ð12Þ
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Equations (11) and (12) for a fuzzy random variable with a continuous fuzzy

probability distribution are extended as follows:

�la ¼
Z þ1

�1
xf ðx; hÞdx hq 2 �hqa

�
� ; 1� q�Q;

Z þ1

�1
f ðx; hÞdx ¼ 1

� �

for 0� a� 1;

ð13Þ

�r2a ¼
Z þ1

�1
ðx� lÞ2f ðx; hÞdx hq 2 �hqa

�
� ; 1� q�Q; l ¼

Z þ1

�1
xf ðx; hÞdx

� �

;

for 0� a� 1:

ð14Þ

In this research, the processing times of a project’s activities are represented by

fuzzy random variables with fuzzy normal density functions.

Definition 9 A fuzzy normal density is shown as Nð�l; �r2Þ that in comparison with

the crisp normal density Nðl; r2Þ just the values of l and r2 have become fuzzy.

Based on Definition 8, it can be easily demonstrated that the fuzzy expected value of

a fuzzy random variable with fuzzy normal density Nð�l; �r2Þ equals to �l and its

fuzzy variance is �r2 (Buckley 2005).

Theorem 1 Let ~X and ~Y be two fuzzy random variables and k 2 IR. The following

equations are used for calculation of expected values denoted by E (Nematian et al.

2010):

EðkÞ ¼ k ð15Þ

Eð ~X þ k~YÞ ¼ Eð ~XÞ þ kEð~YÞ ð16Þ

Definition 10 The inequalities ‘‘ ~� ’’ and ‘‘ ~� ’’ for two fuzzy random variables ~X

and ~Y are defined as follows (Nematian et al. 2010):

~X ~� ~Y , Eð ~XÞ�Eð~YÞ ð17Þ

~X ~� ~Y , Eð ~XÞ�Eð~YÞ ð18Þ

3 Problem statement

The scope of this study is to model the uncertainties in resource constrained project

scheduling problem (RCPSP) by fuzzy probability theory, due to the simultaneous

existence of randomness and fuzziness; therefore, the problem under consideration

is Fuzzy Stochastic- RCPSP (FS-RCPSP). It is assumed that the uncertainty only

exists in the durations of activities. However, extending the proposed model of this

paper to a more general situation with uncertainties in other parameters is

straightforward.
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In FS-RCPSP a single project consisting of n ? 2 activities is considered. The

activities are numbered 0 to nþ 1, where 0th and (nþ 1)th activities are dummy

start and end activities, respectively. Each activity j cannot be interrupted once in

progress (i.e., preemption is not allowed), and has to be started after all its

immediate predecessor activities i (i 2 IPj) have been finished (i.e., precedence

constraint). We have L renewable resources (e.g., equipment and human resources),

and each resource l 2 L has a limited capacity Rl (1� l� L) throughout the project

duration. Each activity j requires rjl (0� j� nþ 1, 1� l� L) units of resource l once

in progress. The sum of resource requirements for resource l at any time period t

cannot exceed Rl (i.e., resource constraint). The processing time of activity j is

denoted as ~dj (0� j� nþ 1) which are fuzzy random variables. The start and finish

time of each activity j are respectively shown by ~sj and ~fj (0� j� nþ 1). The

objective is to find precedence and resource feasible completion times for all

activities which lead to minimum expected makespan.

Considering the aforementioned description of FS-RCPSP, this problem can be

modeled as:

where constraints (20) and (22) are respectively used to impose precedence and

resource constraints.

4 Mixed-integer linear programming model for FS-RCPSP

The above mathematical formulation (M1) cannot be solved directly, because there is

no approach for transferring set BðtÞ to a linear constraint. Many other linear

programming formulations have been proposed for the RCPSP with deterministic

activity durations that can be solved directly. One of these formulations is the

formulation of Artigues et al. (2003) which is a resource flow network model to solve

RCPSP. In this section, making use of the assumptions and concepts introduced by

these researchers, a mixed-integer linear programming model is proposed for FS-

RCPSP as follows.

In a possible schedule, after completion of each activity, its resources should be

transferred toother activity/activities.A resourceflownetworkexplicitly demonstrates the

amount of resources transferred from one activity to another. It is necessary to notice that,

each complete resource flow network corresponds with a possible schedule and the

objective of the resourceflownetworkmodel proposed byArtigues et al. (2003) is tofind a

resource flow that leads to a minimum project makespan. Let Cl
ij denote the amount of
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resource l directly transferred from activity i to activity j. Also, let xij be a binary

variable denoting that activity j is started immediately after the completion of activity i

whenever xij ¼ 1, otherwise xij ¼ 0. In addition, suppose that both of the dummy

activities requireRl units of resource l 2 L and their processing times are equal to zero.

Considering all of these, the resource flow network model for FS-RCPSP is written as

follows:

The objective function (24) minimizes the completion time of the dummy end

activity and consequently the completion time of the project. Equation (25)

introduces the precedence relations between the activities. Activity i precedes

activity j whenever xij ¼ 1, otherwise xij ¼ 0. Constraint (26) is transiting constraint

and constraint (27) ensures that no cycles will exist in the network. Constraints (28),

(31), and (34) are employed for setting the completion times of activities.

Constraints (29), (30), and (33) are resource flow inequalities. By constraint (33) the

resource flow values are limited to minðril; rjlÞ of arc ði; jÞ if the arc exists.

Constraints (29) and (30) have been devised to ensure that the incoming flow on

node i is equal to the outgoing flow from that node.

The M2 mathematical model is a model with fuzzy random parameters. Since the

aim of this paper is to develop an MILP model to solve the problem at hand, and

also to the best of our knowledge, this model cannot be solved by any of the

approaches proposed so far, we have to transform the model into a model with

deterministic parameters. To this end, considering the objective of FS-RCPSP

which is to minimize the expected makespan of the project, at first, the M2

mathematical model is transformed into a model with fuzzy parameters utilizing

theorem 1, Definition 10, and concept of expected value of fuzzy random variables.

It is worth reminding that all the fuzzy random variables in M2 have fuzzy normal

probability distribution density and their expected value and variance are assumed

to be triangular fuzzy numbers. Therefore,
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Since the expected value of a fuzzy random variable with probability density

Nð�l; �r2Þ is equal to �l, by substituting this value inM3 the followingmodel is resulted:

What to do now is to transform the model M4, which is a model with fuzzy

variables and parameters, to a model with deterministic ones. In the case of

objective function, since �lfnþ1
is a fuzzy number it cannot be minimized, thus we act

similar to Buckley and Feuring (2000) and change the problem of minimizing the

fuzzy number �lfnþ1
into a multi-objective problem, and then we change the multi-

objective problem into a single objective one. Since it is assumed that �ldi for each
activity i (0� i� nþ 1) is a triangular fuzzy number, the �lfnþ1

will also become a
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triangular fuzzy number like the one demonstrated in Fig. 2. Let LA be the area

under the graph from fnþ1;1 to fnþ1;2 and RA be the area under the graph from fnþ1;2

to fnþ1;3. Now, based on the approach of Buckley and Feuring (2000), we can

substitute the objective function Min(�lfnþ1
) with three objectives: (1) Min(fnþ1;2), (2)

Max(LA), and (3) Min(RA).

It is obvious that, LA is increased by increasing the distance between fnþ1;1 and

fnþ1;2, and vice versa. Thus, we can substitute the objective Max(LA) with

Max(fnþ1;2 � fnþ1;1) or Min(fnþ1;1 � fnþ1;2). Similarly, RA is decreased by decreasing

the distance between fnþ1;2 and fn?1,3, and vice versa. Therefore, Min)RA(can be

substituted with Min(fnþ1;3 � fnþ1;2). In this paper, the weighted sum method

(Marler and Arora 2010) is employed to convert the multi-objective problem to a

single objective one. Let xi � 0; i ¼ 1; 2; 3 and x1 þ x2 þ x3 ¼ 1, then we would

have the following function to be minimized:

Min Z ¼ x1ðfnþ1;1 � fnþ1;2Þ þ x2ðfnþ1;2Þ þ x3ðfnþ1;3 � fnþ1;2Þ: ð57Þ

Now constraints, having fuzzy parameters and variables, are transformed into

constraints with deterministic ones, and for this purpose, we will make use of

Definition 6. Consequently, the following mathematical model (M5), which is a

mixed-integer linear programming model, is deduced.

f f f

1

RA

(x)

xo

LA

n+1,3n+1,2n+1,1

ζFig. 2 A triangular fuzzy
number for �lfnþ1
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This formulation (M5) is a mixed integer linear programming model that can be

solved by every MILP solver methods and software. The objective function of this

model is more flexible for project managers since they can vary the values of x1,

x2, and x3 to satisfy their different requirements. Also, by a mutual interaction

between manager and contractor, an agreement upon the membership functions of

fuzzy numbers can be achieved that will help to make decisions being acceptable for

both manager and contractor.

The user of the proposed method of this paper can consider any shape other than

triangular fuzzy number for the membership function of fuzzy parameters and

accordingly adjust the MILP model, however for any other shape the computation

effort will increase. Since models M1–M4 are independent from the shape of fuzzy

numbers, this change will affect on model M5 and its related calculations.

5 Computational experiments

With the aim of studying the computational performance of the proposed MILP

model, in this section some benchmark problems are solved using this model. All

the problems are implemented to optimality with the AIMMS (2014) modeling

software running CPLEX 12.6.0.1 as a MILP solver on a laptop with windows 7

operating system, Intel Core 2 Duo and a CPU at 2.00 GHz. AIMMS is a state-of-

the-art mathematical modeling environment and its CPLEX solver have found many

application in optimizing real world complex problems such as supply chain
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management (Ebadian et al. 2013), pipeline scheduling problem (Zaghian and

Mostafaei 2015; Mostafaei et al. 2015), workforce planning problem (van der Veen

et al. 2015), etc.

5.1 Problem set generation

There are benchmark problems for RCPSP with deterministic activity times, but

there is no benchmark problem set for RCPSP with fuzzy random activity times. In

order to generate some benchmark problems, we take the ProGen project instances

with 30 and 60 activities, named J30 and J60, each consisting of 480 problems (i.e.,

a total of 960 problems) with four types of resources, from the PSPLIB set of

benchmark problems (see site: http://www.om-db.wi.tum.de/psplib/data.html) as the

base and generate problems with fuzzy random activity durations. Since the pro-

cessing times of activities are fuzzy normal variables and only their expected values

�ldi ¼ ðdi;1; di;2; di;3Þ, 0� i� nþ 1, are exploited in our calculations, it would be

enough if we generate triangular fuzzy numbers for the activities with regard to their

deterministic durations. The mean duration �ldi of each activity i is generated as

follows: the most likely points di;2, 0\i\nþ 1, are taken equal to deterministic

estimates, the most optimistic times di;1, 0\i\nþ 1, are calculated as di;1 ¼
di;2 � 2 and we bound it by zero, and the most pessimistic times di;3, 0\i\nþ 1,

are calculated as di;3 ¼ di;2 þ 3. Finally, expected values of dummy start and end

activities are set to (0, 0, 0).

5.2 Computational results

The computational results obtained by implementing our proposed mathematical

model to solve the aforementioned 960 generated instances are presented in

Table 1. In all experiments, values of x1, x2, and x3 were set to be 0.1, 0.8, and 0.1,

respectively. There are 48 groups of problems for both J30 and J60, such that each

group contains 10 problems. In Tables 1 and 2, for each group the number of

problems out of 10 which CPLEX solver in AIMMS could find an integer solution

for them, the mean value of these problems’ objective function (Z), the mean value

of their defuzzified �lfnþ1
, as well as the mean value of their computation time are

indicated. In addition, the average value of optimal makespans reported in PSPLIB

for the deterministic version of J30 problems is provided for each group in Table 1

to compare it with the mean of defuzzified �lfnþ1
for that group. However, As for J60

set some of the optimal solutions are not known, the average value of lower bounds

for each group of J60 problems is presented in Table 2.

For problem set J30, the CPLEX 12.6.0.1 solver in AIMMS (2014) could find

integer solutions for 433 out of 480 problems. However, in the case of problem set

J60, this solver could just find integer solutions for 329 out of 480 problems. The

resulted mean of deffuzified �lfnþ1
for all the groups in both problem sets J30 and J60

are close to that of crisp makespan and crisp lower bound, respectively. The

differences are because we considered RA to be 1.5 times larger than LA. In

addition, these differences may be related to our decision in selecting values for x1,
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Table 1 Results of CPLEX 12.6.0.1 solver of AIMMS for problems generated from J30 set

No. Group Integer solved

no.

Mean of crip

makespan.

FS-RCPSP

Mean of defuzzified

�lfnþ1

Mean of

Z

Mean of CPU

(s)

1 j30_1 10 49.3 52.50 40.40 365.57

2 j30_2 10 47.1 50.23 38.62 13.11

3 j30_3 10 60 62.80 48.84 1.14

4 j30_4 10 51.4 54.53 42.06 0.38

5 j30_5 10 67.6 75.83 58.50 5308.60

6 j30_6 10 50.1 53.67 41.15 3821.49

7 j30_7 10 46.5 49.47 38.09 45.18

8 j30_8 10 49.9 52.90 40.82 1.99

9 j30_9 0 – N/A N/A 4934.15

10 j30_10 10 49.6 56.97 43.64 3767.31

11 j30_11 10 55 59.40 45.67 3027.07

12 j30_12 10 49.2 52.00 40.20 8.87

13 j30_13 0 – N/A N/A 3369.70

14 j30_14 10 50.9 55.63 42.89 6517.80

15 j30_15 10 53 56.83 43.85 2620.86

16 j30_16 10 45.7 48.07 37.27 178.35

17 j30_17 10 58.3 62.23 47.82 38.83

18 j30_18 10 54.4 57.77 44.53 1.43

19 j30_19 10 51.4 55.17 42.25 16.53

20 j30_20 10 50.2 54.43 41.43 3.23

21 j30_21 10 68.5 77.03 58.96 13,411.07

22 j30_22 10 54.2 57.97 44.54 2702.73

23 j30_23 10 55.9 59.63 45.84 385.11

24 j30_24 10 51.8 54.30 42.19 4.47

25 j30_25 0 – N/A N/A 5482.67

26 j30_26 10 56 61.07 46.92 4101.51

27 j30_27 10 56.5 60.57 46.57 141.04

28 j30_28 10 56.5 59.67 46.15 3196.74

29 j30_29 0 – N/A N/A 4596.00

30 j30_30 10 55.2 63.90 48.82 10,739.64

31 j30_31 10 54.3 58.43 45.28 4716.09

32 j30_32 10 54.9 58.17 44.90 48.66

33 j30_33 10 60.6 64.13 49.54 4.65

34 j30_34 10 58.6 61.83 47.85 1.90

35 j30_35 10 58 59.63 46.89 10.30

36 j30_36 10 57.7 59.33 46.65 7.03

37 j30_37 10 76.7 83.27 64.03 10,471.41

38 j30_38 10 60.3 64.67 49.55 964.60

39 j30_39 10 58.7 61.93 47.93 13.14
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x2, and x3 as 0.1, 0.8, 0.1, respectively. The computational times are satisfactory,

however, we believe that by improving the performance of CPLEX solver or

introducing other algorithms to solve the model these computational efforts can be

decreased. Altogether, the results in Tables 1 and 2 show that our MILP model

works well and CPLEX 12.6.0.1 obtains quite good results, however this solver’s

performance is not acceptable on 47 problems (i.e., about 10% of problems) in J30

set and on 151 problems (i.e., about 31% of problems) in J60 set.

6 Concluding remarks

A mixed-integer linear programming model was developed to solve Fuzzy

Stochastic- Resource-Constrained Project Scheduling Problem (FS-RCPSP). A

recently proposed approach in fuzzy probability theory and fuzzy random variables

utilized to model the RCPSP under fuzzy random environment. The application of

fuzzy random variables makes the proposed model more suitable for treating with

uncertainties in real world projects where randomness and fuzziness co-exists. The

primary model with fuzzy random variables was developed with the help of

resource flow network concept. We made use of expected value of fuzzy random

variables to transform this primary model to an LP-model with fuzzy variables and

parameters. Then, this model was transformed into an MILP model with crisp

variables and parameters. For illustrating the performance of the model, the CPLEX

12.6.0.1 solver in AIMMS (2014) was employed for applying the proposed model to

solve 960 benchmark instances generated from the well-known sets J30 and J60 in

PSPLIB. The results were promising and indicated the ability of our proposed model

in handling FS-RCPSP.

This paper has some potential future works: one of the future prospects of the

mathematical formulation proposed here is to consider parameters other than

activity times (e.g., resource consumption) to be fuzzy random numbers. Besides,

Table 1 continued

No. Group Integer solved

no.

Mean of crip

makespan.

FS-RCPSP

Mean of defuzzified

�lfnþ1

Mean of

Z

Mean of CPU

(s)

40 j30_40 10 56.4 58.30 45.69 1.72

41 j30_41 8 91.375 112.42 86.41 6045.91

42 j30_42 10 61.8 67.20 51.61 9401.20

43 j30_43 10 57.5 62.20 47.51 5734.81

44 j30_44 10 54.1 58.67 44.65 3.22

45 j30_45 5 89.4 115.27 89.08 6211.25

46 j30_46 10 59.2 67.93 51.78 10,143.28

47 j30_47 10 56 59.67 45.95 3577.96

48 j30_48 10 55.2 59.03 45.31 3.13
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Table 2 Results of CPLEX 12.6.0.1 solver of AIMMS for problems generated from J60 set

No. Group Integer solved

no.

Mean of crip lower

bound

FS-RCPSP

Mean of defuzzified

�lfnþ1

Mean of

Z

Mean of CPU

(s)

1 j60_1 10 75.5 80.67 61.95 13,712.01

2 j60_2 10 67.4 71.30 55.09 327.22

3 j60_3 10 70.5 74.93 57.73 897.56

4 j60_4 10 69.7 73.73 56.97 0.87

5 j60_5 0 83.3 N/A N/A 8926.37

6 j60_6 8 67 74.83 56.89 14,128.38

7 j60_7 10 70.4 75.20 57.76 230.03

8 j60_8 10 69 73.33 56.50 25.09

9 j60_9 0 92 N/A N/A 15,389.13

10 j60_10 4 72.5 78.58 59.95 21,836.5

11 j60_11 10 67.1 71.20 54.91 3721.25

12 j60_12 10 64.7 69.17 53.10 122.26

13 j60_13 0 96.6 N/A N/A 3369.7

14 j60_14 6 66.6 78.56 60.48 4490.7

15 j60_15 7 74.2 78.90 60.60 1871.2

16 j60_16 10 64.5 69.23 53.02 253.22

17 j60_17 6 75.9 78.89 61.42 11,746.37

18 j60_18 10 77.6 81.90 63.37 124.58

19 j60_19 10 73.1 77.70 59.86 27.45

20 j60_20 10 74.4 78.90 60.87 0.56

21 j60_21 0 94.8 N/A N/A 17,342.3

22 j60_22 0 70.8 N/A N/A 213,782.2

23 j60_23 10 72.2 76.47 59.04 147.28

24 j60_24 10 71.1 75.83 58.30 22.41

25 j60_25 0 101.9 N/A N/A 8937.23

26 j60_26 6 73.5 69.89 52.97 4138

27 j60_27 10 75.2 80.00 61.60 5026.36

28 j60_28 10 75.7 80.20 61.91 54.86

29 j60_29 0 113.4 N/A N/A 16,283.7

30 j60_30 5 77.4 85.87 66.46 12,562.18

31 j60_31 10 71 75.80 58.24 6221.54

32 j60_32 10 79.7 84.23 65.12 178.37

33 j60_33 10 89.7 93.90 73.02 4605.7

34 j60_34 10 76.2 81.37 62.51 1398.67

35 j60_35 10 76.9 82.17 63.10 13.5

36 j60_36 10 73.8 78.47 60.44 0.62

37 j60_37 0 102.7 N/A N/A 11,231.45

38 j60_38 7 75 82.90 63.59 7525.78

39 j60_39 10 78.7 83.30 64.34 4845.14
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the model can be generalized by considering the effect of factors other than

expected value like variance of fuzzy random variables to the model. In addition,

implementation of other exact, heuristic, and meta-heuristic algorithms to solve the

proposed model can be another prospect of future studies.

Appendix: Nomenclatures

The different index/sets, parameters, and variables in this paper are defined as

follows:

See Table 3.

Table 2 continued

No. Group Integer solved

no.

Mean of crip lower

bound

FS-RCPSP

Mean of defuzzified

�lfnþ1

Mean of

Z

Mean of CPU

(s)

40 j60_40 10 78.7 83.60 64.43 5.25

41 j60_41 0 117 N/A N/A 14,651.5

42 j60_42 0 78.6 N/A N/A 7638.2

43 j60_43 10 79.6 85.13 65.34 7834.66

44 j60_44 10 76 80.27 62.08 45.82

45 j60_45 0 104.4 N/A N/A 19,456.3

46 j60_46 0 80.1 N/A N/A 6738.4

47 j60_47 10 73 79.57 60.67 11,851.27

48 j60_48 10 78.8 83.23 64.37 149.32
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