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Abstract To increase the ecological sustainability of manufacturing, enhancing the

yield of each product is a critical task that eliminates waste and increases prof-

itability. An equally crucial task is to estimate the future yield of each product so

that the majority of factory capacity can be allocated to products that are expected to

have higher yields. To this end, a fuzzy collaborative intelligence (FCI) approach is

proposed in this study. In this FCI approach, a group of domain experts is formed.

Each expert constructs an artificial neural work (ANN) to fit an uncertain yield

learning process for estimating the future yield with a fuzzy value; in past studies,

however, uncertain yield learning processes were modeled only by solving math-

ematical programming problems. In this research, fuzzy yield estimates from dif-

ferent experts were aggregated using fuzzy intersection. Then, the aggregated result

was defuzzified with another ANN. A real dynamic random access memory case

was utilized to validate the effectiveness of the proposed methodology. According

to the experimental results, the proposed methodology outperformed five existing

methods in improving the estimation accuracy, which was measured in terms of the

mean absolute error and the mean absolute percentage error.
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1 Introduction

Yield is the percentage of jobs that pass the fabrication process successfully. Yield has

been recognized as an essential factor to the competitiveness and sustainable development

of a factory (Chen and Wang 2014). Elevating yield is also a critical task for green

manufacturing, because a high yield minimizes scrap and rework, conserving materials,

energy, time, and labor (Rusinko 2007; Zhang et al. 2016; Huerta et al. 2016). For these

reasons, all factories have sought to enhance yield. To achieve this goal, yield must be

estimated in advance. A common managerial practice is to allocate the majority of

capacity to products that are estimated to have relatively high yields. The results of yield

estimation can also be fed back to adjust the settings of machines (Moyne et al. 2014).

The yield of a product can be estimated in two ways: micro yield modeling

(MiYM) and macro yield modeling (MaYM) (Mullenix et al. 1997). In MiYM, the

probability density function of defects is fitted for specific wafers intended to

produce a specific product in order to estimate the asymptotic yield of the product.

By contrast, in MaYM, wafers are not examined individually, but as a whole, and

relevant statistics are calculated to track the fluctuation in the average yield over

time. MiYM is a challenging task because numerous assumptions must be made;

however, such assumptions may be violated. Therefore, this study involves MaYM.

Fitting the improvement in yield with a learning model is a mainstream technique in

this field (Chen and Wang 1999, 2014; Chen and Chiu 2015). However,

considerable uncertainty exists in the yield learning process of a product (Chen

and Wang 1999), which must be expressed using stochastic or fuzzy methods (Lin

2012). The research trends in this field include the following:

1. Estimating the yield of a product of which the fabrication is to be delivered to

another factory (Ahmadi et al. 2015).

2. Using a yield model other than Gruber’s general yield model (Gruber

1992, 1994) to model the improvement in the yield of a product. Gruber’s

general yield model is perhaps the most commonly used yield learning model

that features an exponentially decaying failure rate (Chen 2009; Weber 2004).

3. Proposing a sophisticated method such as a fuzzy collaborative intelligence

(FCI) approach to fit a yield learning process (Chen and Lin 2008).

In an FCI approach, a fuzzy yield learning model is first established to estimate

the future yield. Subsequently, the opinions from multiple domain experts are

considered to convert the fuzzy learning model into various optimization problems

(Chen and Chiu 2015) such as quadratic programming (QP) or nonlinear

programming (NLP) problems, which is not easy for the following reasons:

1. A nonconvex QP problem is widely considered to be difficult to optimize (Chen

and Wang 2013).

2. Some settings of the model parameters result in no feasible solution.

3. The global optimal solution to a NLP problem is not easy to obtain. Therefore,

Chen and Wang (2013) established a systematic procedure to approximate an

NLP problem with a QP problem.
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4. Managers require another viewpoint for fitting a yield learning process.

To facilitate resolving these difficulties, in this study, a fuzzy yield learning

model is fitted with various artificial neural networks (ANNs) to provide more

feasible managerial insights and more flexibility. Similar approaches have not been

employed in past studies. The results of these fuzzy optimization problems represent

the experts’ estimates of the future yield. These estimates are aggregated using

fuzzy intersection (FI). The aggregation result is then defuzzified using another

ANN (Ahmadi et al. 2015). The procedure for the proposed FCI approach is shown

in Fig. 1.

The remainder of this paper is organized as follows. The concept of a fuzzy yield

learning model is reviewed in Sect. 2. The FCI approach for fitting a fuzzy yield

learning process is then described in Sect. 3. To illustrate the proposed methodology

and compare with other existing methods, a real case of a dynamic random access

memory (DRAM) product is detailed in Sect. 4. Subsequently, this study is

concluded in Sect. 5.

The variables and parameters used in this study are defined as follows:

1. g: the learning rate; 0� g� 1.

2. ~h: the threshold on the output node.

3. D~ht: the modification to be made to ~h when considering the t-th example only.

4. dt: the deviation between the network output and the actual value.

5. at: the actual value.

6. b̂ (or ~b): the yield learning rate; b̂ (or ~b) C 0.

7. ~ot: the ANN output for the t-th example.

8. t: the time index; t = 1,…, T.

9. ~w: the weight of the connection between the input node and the output node.

10. D ~wt: the modification to be made to ~w when considering the t-th example only.

11. xt : the input to the ANN within period t.

12. Ŷ0 (or ~Y0): the asymptotic yield to which Yt will converge when t ? ?; Ŷ0 (or
~Y0) [ [0, 1]. Ŷ0 (or ~Y0) can be estimated by analyzing the distribution of

defects.

13. Ymax: an upper bound on ~Y0.

14. Ymin: a lower bound on ~Y0.
15. Yt: the actual (average) yield within period t.

16. Ŷt (or ~Yt): the estimated (average) yield within period t; Ŷt (or ~Yt) [ [0, 1].

17. ð�Þ: fuzzy subtraction.

2 Fuzzy yield learning models

The improvement in the yield of a product can be traced with a learning model as

(Gruber 1994)

Ŷt ¼ Ŷ0e
�b̂

tþrðtÞ ð1Þ
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r(t) is a homoscedastic, serially noncorrelated error term satisfying the following

assumption (Chen and Wang 1999):

rðtÞ�Normal ð0; r2Þ; r̂ðtÞ ¼ 0 for all t ð2Þ

The yield learning model in (2) has been applied in numerous studies on yield

estimation and management (Chen and Wang 1999, 2013, 2014; Chen and Chiu

2015; Gruber 1994; Chen 2009; Weber 2004; Chen and Lin 2008). In addition,

Each expert constructs an ANN

Defuzzify the aggregation 
result with another ANN

Evaluate the estimation 
accuracy Collaboration

Form a group of domain 
experts

Train the ANN to generate the 
fuzzy yield estimate

Is the estimation 
accuracy 

satisfactory?

Stop

Yes

No

Aggregate the estimates using 
FI

Fig. 1 Procedure for the proposed FCI approach

674 T. Chen, Y.-C. Wang

123



according to numerous empirical analyses, such as those of Gruber (1994) and

Weber (2004), the failure rate of semiconductor manufacturing follows an

exponentially decaying process. The yield learning model also conforms to this

requirement. Recently, Tirkel (2013) used the model to describe the survival rate

after each step, which is called the step yield. Then, the yield after the whole

fabrication process was described with a combination of the models. This again

supported the applicability of the yield learning model to semiconductor manufac-

turing. For these reasons, the yield learning model is considered suitable for tracking

the improvement in the yield of semiconductor manufacturing in this study.

After converting the parameters and variables in (1) into logarithms,

lnŶt ¼ ln Ŷ0 �
b̂

t
þ rðtÞ ð3Þ

which is a linear regression (LR) problem that can be solved by minimizing the sum

of the squared deviations:

Min
XT

t¼1

ðYt�ŶtÞ2 ð4Þ

which leads to the following two equations:

b̂ ¼ �
PT

t¼1
lnYt
t
� T 1

t

� �
ln Yt
� �

PT
t¼1

1
t2
� T 1

t

� �2 ð5Þ

Ŷ0 ¼ eln Ytþb̂1
t ð6Þ

However, optimizing another measure such as the mean absolute error (MAE) or

the mean absolute percentage error (MAPE), is not straightforward. Optimizing

certain measures requires a solution for complex mathematical programming

problems.

In considering the uncertainty of the yield learning process, the parameters can be

given in triangular fuzzy numbers (TFNs) (Chen and Wang 1999):

~Y0 ¼ eðy1;y2;y3Þ ð7Þ

~b ¼ ðb1; b2; b3Þ ð8Þ

As a result,

~Yt ¼ ~Y0e
� ~b

t
þrðtÞ ¼ e y1�

b3
t
;y2�b2

t
;y3�b1

t
þrðtÞð Þ: ð9Þ

Lognormalizing (9) yields the following:

ln ~Yt ¼ ln ~Y0ð�Þ
~b

t
þ rðtÞ ¼ y1 �

b3

t
; y2 �

b2

t
; y3 �

b1

t

� �
þ rðtÞ ð10Þ
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ð�Þ denotes fuzzy subtraction. TFNs have been extensively used in various

fields, including management performance evaluation (Wang et al. 2016), user

influence measurement (Xiao et al. 2015), and ocean platform risk evaluation (Feng

et al. 2016). Because TFNs have been widely successful, they are used in the

proposed methodology. The proposed model can be easily modified to incorporate

other types of fuzzy numbers, including trapezoidal fuzzy numbers, Gaussian fuzzy

numbers, generalized bell fuzzy numbers, and others. However, if fuzzy numbers

with nonlinear membership functions are used, the mathematical programming

models for solving the parameters will also be nonlinear, causing difficulties in

searching for global optimal solutions.

Equation (10) is a fuzzy linear regression (FLR) problem that can be solved in

various ways. For example, Tanaka and Watada (1988) minimized the sum of

spreads (or ranges) by solving a linear programming (LP) problem. Peters (1994)

maximized the average satisfaction level by solving a NLP problem. By combining

the previous two approaches, Donoso et al. (2006) minimized the weighted sum of

both the central tendency and the sum of spreads. Recently, Roh et al. (2012)

constructed a polynomial neural network to fit an FLR equation. However, most of

the parameters of a yield learning process are constrained. Whether the method of

Roh et al. (2012) can be directly applied is questionable. Chen and Lin (2008)

modified Tanaka and Watada’s model and Peters’s model to incorporate nonlinear

objective functions or constraints.

3 The proposed methodology

In the proposed methodology, a group of domain experts is formed. To this end,

product engineers, quality control engineers, or industrial engineers from the factory

who are responsible for monitoring or accelerating the quality improvement

progress of the product will be invited. Each expert constructs an ANN to estimate

the future yield of a product. An ANN is used because of the following reasons:

1. An ANN is much different from the mathematical programming models used in

the existing methods; hence, an ANN provides a different point of view in

fitting the yield learning process.

2. It is easier to find a feasible solution to an ANN than to the NLP problems in the

existing methods.

3. An ANN is a well-known tool for fitting any nonlinear function, whereas the

mathematical programming models used in the existing methods are not

problem free.

3.1 ANN

The ANNs used by the experts are based on the same architecture; however, they

have different settings and undergo separate training processes, resulting in different

yield estimates that must be aggregated (Fig. 2).
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The ANN has two layers. At first, the reciprocal of the time index is entered into

the input layer as follows:

xt ¼ 1=t ð11Þ

After the input has been multiplied by the connection weight, the product is

passed to the output layer. Here the connection weight is set to the learning constant:

~w ¼ ~b ð12Þ

On the output node, the received signal is compared with a threshold that is equal

to the logarithm of the asymptotic yield:

~h ¼ ln ~Y0 ð13Þ

Subsequently, the result is transformed into the network output. To this end, the

common log-sigmoid function (Bonnans et al. 2006) is adopted:

y ¼ 1

1þ e�x
ð14Þ

By setting x in (14) to ~wxtð�Þ~h to derive the network output ~ot,

~ot ¼
1

1þ e�ð ~wxtð�Þ~hÞ

¼ 1

1þ e�ð ~b
t
ð�Þ ln ~Y0Þ

¼ 1

1þ ~Y0e�
~b
t

¼ 1

1þ ~Yt

ð15Þ

or equivalently,

~Yt ¼
1

~ot
� 1 ð16Þ

For a comparison, the actual value can be set to the following equation:

at ¼
1

1þ Yt
ð17Þ

and the training of the ANN aims to minimize the following objective function:

tx t taw
Fig. 2 The ANN architecture
used by each domain expert
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Min
XT

t¼1

ðot2 � atÞ2 ¼
XT

t¼1

1

1þ Yt2
� 1

1þ Yt

� �2

ð18Þ

which forces Yt2 to be close to Yt in a distinct way. In addition, (18) is different from

(4), meaning that it is a new viewpoint for fitting an uncertain yield learning pro-

cess. However, no absolute rule exists for judging whether (18) is better than (4), or

vice versa. The objective function (18), minimizing the sum of squared error (SSE),

is a common objective function for ANN training. In addition, the algorithm pro-

posed in this study for training the ANN is modified from the existing gradient

descent algorithm that also aims to minimize the SSE. Many other existing training

algorithms also minimize the same objective function. For these reasons, the

objective function (18) is chosen in the proposed methodology.

The following theorems are conducive to determining the optimal values of the

network parameters.

Property 1 The lower bound of the network output, ot1, is associated with Y03 and

b1. Conversely, ot3, is associated with Y01 and b3.

Theorem 1 A reasonable choice of b1 is min
t

�t ln
1
at
�1

Ymax

� �n o
if the asymptotic yield

is expected to be less than Ymax.

Proof ot1 is a lower bound on at,

ot1 � at ð19Þ

According to Property 1,
1

1þ Y03e
�b1

t

� at ð20Þ

Y03e
�b1

t � 1

at
� 1 ð21Þ

If the asymptotic yield is expected to be less than Ymax,
Ymax � Y03 ð22Þ

Substituting (21) into (22), the following equations are obtained:

Ymaxe
�b1

t � Y03e
�b1

t � 1

at
� 1 ð23Þ

b1 � � t ln

1
at
� 1

Ymax

 !
ð24Þ

Therefore,
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b1 � min
t

�t ln

1
at
� 1

Ymax

 !( )
ð25Þ

The larger ot1 is, the better it is, and likewise, the larger b1 is, the better it is.

Therefore, it is reasonable to set

b�1 ¼ min
t

�t ln

1
at
� 1

Ymax

 !( )
ð26Þ

Theorem 1 is proved.

Theorem 2 A reasonable choice of b3 is max
t

�t ln
1
at
�1

Ymin

� �n o
if the asymptotic yield

is expected to be greater than Ymin.

Proof This theorem can be proved according to Property 1, with a proof similar to

that of Theorem 1.

Theorem 3 After determining the value of b1, a reasonable choice of h3 is

lnmaxt
1
at
� 1

� �
e
b�
1
t

� 	
.

Proof According to (21)

Y03e
�

b�
1
t � 1

at
� 1 ð27Þ

Y03 �
1

at
� 1

� �
e
b�
1
t ð28Þ

Y03 � max
t

1

at
� 1

� �
e
b�
1
t

� 	
ð29Þ

The smaller Y03 is, the better it is. Therefore, it is reasonable to set

Y�
03 ¼ max

t

1

at
� 1

� �
e
b�
1
t

� 	
ð30Þ

h�3 ¼ lnðY�
03Þ ¼ lnmax

t

1

at
� 1

� �
e
b�
1
t

� 	
ð31Þ

Theorem 3 is proved.
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Theorem 4 After determining the value of b3, a reasonable choice of h1 is

lnmint
1
at
� 1

� �
e
b�
3
t

� 	
.

Proof This theorem can be proved in a manner similar to that of Theorem 3.

3.2 Training algorithm

The network parameters ~h and ~w are constrained to be nonpositive and nonnegative,

respectively. However, previously published algorithms for training an ANN, such

as the gradient descent algorithm, the conjugate gradient algorithm, the scaled

conjugate gradient algorithm, and the Levenberg–Marquardt (LM) algorithm,

assume that parameters are unconstrained real numbers. For this reason, previously

published training algorithms cannot be directly applied to train the ANN used in

the FCI approach. Instead, the following algorithm is proposed to train the ANN:

1. Determine the number of epochs, the SSE threshold for the network

convergence, and the learning rate 0� g� 1.

2. Estimate the lower and upper bounds on the asymptotic yield as Ymin and Ymax,

respectively.

3. Specify the initial values of the network parameters (w1 � 0; h3 � 0).

4. Input the next example xt1 ¼ 1=t to the ANN and derive the output ~ot according
to (15).

5. Calculate the deviation between the network output and the actual value as

follows:

dt ¼ at � ot2 ¼
1

1þ Yt
� ot2 ð32Þ

6. Calculate the additional modifications that must be made to the network

parameters as follows:

Dwt2 ¼ �gdtxt ð33Þ

Dht2 ¼ �gdt ð34Þ

7. If all examples have been learned, proceed to Step 8; otherwise, return to

Step 4.

8. Evaluate the learning performance in terms of SSE:

SSE ¼
XT

t¼1

d2t ð35Þ
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9. Add the modifications to the corresponding network parameters:

Neww2 ¼ w2 þ
XT

t¼1

Dwt2 ð36Þ

New h2 ¼ h2 þ
XT

t¼1

Dht2 ð37Þ

10. Record the values of the network parameters if

(i) w3 �w2 �w1 � 0; and

(ii) h1 � h2 � h3 � 0; and

(iii) The SSE is lower than the smallest SSE that has been recorded.

11. If the number of epochs has been reached or the SSE is already lower than the

SSE threshold, proceed to Step (12); otherwise, return to Step (4).

12. Modify w1 and w3 as

Neww1 ¼ min
t

�t ln

1
at
� 1

Ymax

 !( )
ð38Þ

Neww3 ¼ max
t

�t ln

1
at
� 1

Ymin

 !( )
ð39Þ

13. Modify h1 and h3 as

New h1 ¼ lnmin
t

1

at
� 1

� �
e
b3
t

� 	
ð40Þ

New h3 ¼ lnmax
t

1

at
� 1

� �
e
b1
t

� 	
ð41Þ

3.3 Aggregation

FI is a well-known function for deriving a consensus of fuzzy judgements. For

example, the widely applied Mamdani fuzzy inference system (Mamdani 1974) uses

FI to aggregate the results of satisfying multiple conditions. In the viewpoint of

Silvert (2000), FI can integrate different types of observations in a manner that

permits a good balance between favorable and unfavorable observations. Recently,

Parreiras et al. (2012) mentioned that FI can obtain a global consensus when solving
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multicriteria problems. FI has been extensively applied in FCI (Chen and Wang

2013, 2014; Chen and Chiu 2015; Chen and Lin 2008; Parreiras et al. 2012).

The fuzzy yield estimates by various experts are aggregated using FI (i.e., the

minimal T-norm) ~Iðf ~YtðgÞjg ¼ 1�GgÞ:

l~Iðf ~YtðgÞjg¼1�GgÞðxÞ ¼ minðl ~Ytð1ÞðxÞ; . . .; l ~YtðGÞðxÞÞ; ð42Þ

where ~YtðgÞ is the yield estimate for period t by expert g. Because these fuzzy yield

estimates are given in TFNs, the fuzzy intersection is a polygon-shaped fuzzy

number (Fig. 3), the width of which determines the narrowest range of the yield.

To derive a single representative (crisp) value from the aggregation result,

another ANN is constructed with the following configuration:

1. Inputs are the corners of the polygon-shaped fuzzy number.

2. A single hidden layer has twice as many nodes as the number of inputs.

Independent inputs to the ANN are aggregated on each node in the hidden layer.

In this way, interactions between them can be considered.

3. The training algorithm is the Levenberg–Marquardt (LM) algorithm (Bonnans

et al. 2006). The LM algorithm is a well-known algorithm for fitting a nonlinear

relationship to minimize the SSE. The LM algorithm trains an ANN at a

second-order speed without computation of the Hessian matrix; the LM

algorithm is much faster than various other algorithms, such as the gradient

descent algorithm.

4 A DRAM product case

A DRAM product case was used to illustrate the applicability of the proposed

methodology. The data were collected from a DRAM factory in Hsinchu Science

Park, Taiwan. The data specify the yields of the DRAM product during 10 periods

(see Table 1). The first seven periods of the collected data were used to train the

ANN. The remaining three periods were used to evaluate the estimation

performance.

Three domain experts convened to estimate the future yield of the DRAM

product collaboratively. We did not invite more experts because the collaboration

process would have been prolonged and hostile experts would probably have been

involved.

yield

µ

Fuzzy
Intersection

Fig. 3 Result of fuzzy
intersection
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The experts assigned different initial values to the ANN parameters and

established different lower and upper bounds for the asymptotic yield, as

summarized in Table 2.

The stopping criteria were established as follows:

1. Mean squared error (MSE)\10-4; or

2. 100 epochs have been run; or

3. The training process has become stuck in a local optimum.

The first criterion was chosen because it corresponded to an RMSE of 0.01 or

1%, which was obviously adequate. Because a small data set was involved and the

relationship was not expected to be very complicated, 100 epochs were run.

Nevertheless, more epochs could have been run if the estimation performance had

not been adequate. In addition, when the training was stuck in a local optimum, the

most practical action was to restart the training process.

The fuzzy yield learning models fitted by the experts were as follows: (Expert A)

~Yt ¼ ð0:870; 0:876; 1:000Þe�
ð0:986; 1:072; 1:718Þ

t ð43Þ

(Expert B)

~Yt ¼ ð0:900; 0:960; 0:980Þe�
ð0:966; 1:490; 1:888Þ

t ð44Þ

(Expert C)

~Yt ¼ ð0:920; 0:926; 0:960Þe�
ð0:945; 1:294; 1:998Þ

t ð45Þ

Table 1 DRAM product case
t Yt (%)

1 37.3

2 58.5

3 54.1

4 74.1

5 61.7

6 80.0

7 71.2

8 71.7

9 59.0

10 72.4

Table 2 Initial settings by the experts

Expert g ~w ~h Ymin (%) Ymax (%)

A 0.15 (0.70, 0.90, 1.10) (-0.80, -0.50, -0.20) 87.0 100.0

B 0.20 (0.94, 1.27, 1.68) (-0.72, -0.47, -0.13) 90.0 98.0

C 0.10 (0.55, 1.05, 1.43) (-0.95, -0.77, -0.43) 92.0 96.0
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For the training data, all fuzzy yield estimates generated by these fuzzy yield

learning models contained the actual values. The fuzzy yield estimates by the three

experts were aggregated using FI to determine the narrowest range of yield. The

results are summarized in Table 3. According to the experimental results, each

aggregation result; that is, each polygon-shaped fuzzy number, at the most, had

seven corners. Therefore, the aggregation result was fed into an ANN with the

following configuration to derive the representative (crisp) value:

1. The fourteen inputs included the values and memberships of the corners.

2. A single hidden layer had 28 nodes.

3. The training algorithm was the LM algorithm.

4. The learning rate was (g) = 0.2.

5. The stopping criteria were MSE\ 5 9 10-3 or when 1000 epochs had been

run.

The results are shown in Fig. 4.

The three fitted fuzzy yield learning models were applied to the testing data, and

the results are shown in Table 4. The fuzzy yield estimates by the three experts were

then aggregated using FI and defuzzified with the ANN defuzzifier to evaluate the

estimation accuracy in terms of MAE, MAPE, and root mean squared error

(RMSE). In addition, five existing methods, Gruber’s crisp yield learning method

(1994), Tanaka and Watada’s FLR method (Chen and Wang 1999), Peters’s FLR

method (1994), the FLR method of Donoso et al. (2006), and Chen and Lin’s FCI

method (2008) were also applied to the collected data for a comparison.

Gruber’s model was built by fitting a logistic regression, and the result was

Ŷt ¼ 0:810e�
0:773
t ð46Þ

Tanaka and Watada’s FLR method tried to minimize the sum of spreads of fuzzy

yield estimates, subject to the premise that the membership of each actual value in

Table 3 The narrowest range

of yield determined using FI
t Range of Yt

1 [15.6%,

37.3%]

2 [36.9%,

59.9%]

3 [49.1%,

70.1%]

4 [56.6%,

75.8%]

5 [61.9%,

79.5%]

6 [65.9%,

82.0%]

7 [69.2%,

83.9%]
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the corresponding fuzzy yield estimate was greater than a threshold that was set to

0.3 here. Conversely, Peters’s FLR methods maximized the sum of the memberships

of the actual values by requesting the average spread of fuzzy yield estimates to be

less than another threshold that was set to 1.0. Combining the previous two

viewpoints, Donoso et al.’s FLR method minimized the weighted sum of the square

of the deviation from the core and the square of the spread. Here the two weights

were set to be equal. Chen and Lin’s FCI method was based on the collaboration of

multiple experts. Each expert configured two NLP problems with different settings

to generate fuzzy yield estimates that were not the same and were aggregated using

FI. The settings by the experts were shown in Table 5. The aggregation result was

then defuzzified with an ANN to arrive at a representative value. The performances

of various methods were compared in Table 6.
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Fig. 4 The representative
values

Table 4 Results of applying the method to the testing data

t Yt1ðAÞ
(%)

Yt2ðAÞ
(%)

Yt3ðBÞ
(%)

Yt1ðBÞ
(%)

Yt2ðBÞ
(%)

Yt3ðBÞ
(%)

Yt1ðCÞ
(%)

Yt2ðCÞ
(%)

Yt3ðCÞ
(%)

8 70.2 76.6 88.4 71.1 79.7 86.9 71.7 78.8 85.3

9 71.9 77.8 89.6 73.0 81.4 88.0 73.7 80.2 86.4

10 73.3 78.7 90.6 74.5 82.7 89.0 75.3 81.4 87.3

Table 5 The settings by the

experts
K o(k) s(k) m(k) d(k)

1 1 0.65 2 0.30

2 2 0.50 2 0.25

3 3 0.75 1 0.27
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According to the experimental results,

1. The estimation accuracy using the proposed methodology, in terms of MAE or

MAPE, was clearly better than that using the existing methods. Regarding

RMSE, the proposed methodology also achieved a fair level of performance.

2. The most notable advantage occurred when the estimation accuracy was

measured in terms of MAE. In this respect, the proposed methodology

surpassed the existing methods by 26% on average.

3. FCI methods, including Chen and Lin’s method and the proposed methodology,

achieved better performances than noncollaborative methods did, which

revealed the importance of analyzing uncertain yield data from various

viewpoints.

However, the proposed methodology was not compared with agent-based FCI

methods, such as in Chen and Wang (2014), where the values of parameters were set

arbitrarily and might not be valuable in practice.

5 Conclusions

Optimizing the yield of each product is a critical task for green manufacturing; it

reduces waste and increases profitability. Every factory strives to estimate the future

yield of each product in order to optimize yield. Therefore, this study proposed an

FCI approach to estimate the future yield of a product in a wafer fab. The FCI

approach starts from the modeling of an uncertain yield learning process with an

ANN, which is a novel attempt in this field. In the FCI approach, a group of domain

experts is formed. Each expert constructs a separate ANN to estimate the future

yield with a fuzzy value. The fuzzy yield estimates from the experts are aggregated

using FI. The aggregation result is then defuzzified with another ANN.

After utilizing a real DRAM case to validate the effectiveness of the proposed

methodology, the following conclusions were drawn:

1. The proposed methodology was superior to five existing methods in improving

the accuracy of the future yield estimates of the DRAM product.

2. The FCI methods demonstrated noteworthy advantages over noncollaborative

methods in coping with the uncertainty of a yield learning process.

Table 6 Comparison of the

performances of various

methods

Method MAE MAPE (%) RMSE

Gruber (1994) 0.062 10.1 0.089

Tanaka and Watada (1988) 0.072 12.2 0.098

Peters (1994) 0.065 10.5 0.073

Donoso et al. (2006) 0.061 10.0 0.087

Chen and Lin (2008) 0.054 8.6 0.066

The proposed methodology 0.045 7.5 0.074
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3. Fitting a yield learning process with an ANN was shown to be a meaningful

effort.

However, the algorithm used to train the ANN is essentially a modification of the

gradient descent algorithm, and can be improved to accelerate the ANN

convergence process. Further, the ANN used in the proposed FCI approach has a

simple architecture. A more sophisticated ANN, with hidden layers to portray the

interactions among factors, may be employed in the future.
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