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Abstract The budgeted influence maximization problem is a challenging stochastic

optimization problem defined on social networks. In this problem, the objective is

identifying influential individuals who can influence the maximum number of

members within a limited budget. In this work an integer program that approximates

the original problem is developed and solved by a sample average approximation

(SAA) scheme. Experimental analyses indicate that SAA method provides better

results than the greedy method without worsening the solution time performance.

Keywords Budgeted influence maximization � Stochastic optimization � Sample

average approximation � Greedy method

Mathematics Subject Classification 90B15 � 90C11 � 90C15

1 Introduction

The budgeted influence maximization problem (BIMP) fmax rðSÞ : cðSÞ�B; S �
Vg is defined on a directed stochastic network, where V is the set of nodes, S is a

subset of V with a cost of c(S) which is limited by a budget B and lastly rðSÞ is a
function measuring the expected number of nodes activated in V when a cascade is

initialized by the seed set S. In BIMP the aim is to identify a subset of nodes

(representing individuals in a social network) with arbitrary costs such that when

selected they can activate (influence) the largest number of nodes in the network

within the available budget B.
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The research in the field of online social networks has attracted a great amount of

interest recently (Heidemann et al. 2012). The concept of using individuals in the

spreading process of a certain message, idea or a product is frequently exploited by

companies or marketers under the concept of ‘‘viral marketing’’ (Brown and Hayes

2008) and determining the most effective individuals (also called influentials) is of

great importance. Although the research on this topic started earlier, the first

mathematical optimization problem is provided by Kempe et al. (2003) and the

phenomenon is named as ‘‘Influence Maximization’’. By using various popular

mathematical diffusion models they formulate it as a discrete optimization problem.

Aside from its viral marketing applications, the same concept is studied in network

security, computer virus detection, infrastructure planning, habitat conservation and

wireless sensor networks (Leskovec et al. 2007; Lee et al. 2015; Sheldon et al.

2010; Chen et al. 2010).

BIMP is an extension of the traditional influence maximization problem (IMP).

Different than IMP, in BIMP activating each node i has an arbitrary cost ci. This

cost can be assumed to be the marketing cost spent or discount given for persuading

an individual to start spreading a viral message or advertisement to its peers. The

total cost of any initial set S is represented by the cost function c(S) and the total

available budget to be spent to recruit initial influentials is assumed to be B.

It is proven that the objective function rðSÞ is submodular under certain diffusion

models (Kempe et al. 2003) and the greedy algorithm guarantees a ð1� 1=eÞ
approximation to the optimal solution of IMP (Nemhauser et al. 1978). Similarly, an

approximation guarantee of 1=2ð1� 1=eÞ is proven for BIMP (Leskovec et al. 2007).

Krause and Guestrin (2005) show that this bound can be improved to ð1� 1=
ffiffiffi

e
p

Þwith
slight changes in the greedy algorithm. Finally a more inefficient and involved

algorithm can achieve the ð1� 1=eÞ approximation ratio (Khuller et al. 1999). The

objective function of BIMP cannot be evaluated exactly in a computationally

tractable way (see Sect. 2.1), so these constant factor results actually apply when the

objective function is submodular and when exact calculation is possible.

Although performing well, due to the requirement of computing the influence

function rðSÞ many times, the greedy algorithm is computationally unsatisfactory.

To overcome this, researchers focused on different heuristics that determine the

seed set faster. Nguyen and Zheng (2013) developed two algorithms that convert a

general network into a directed-acyclic network (DAG), whereas Han et al. (2014)

propose a balanced seed selection algorithm which utilizes three different selection

mechanisms. In Wang et al. (2013) a graphic-SEIR (susceptible, exposed, infected

and resistant) scheme is developed and four algorithms are provided to solve BIMP.

Another popular strategy is splitting the network into smaller sub-networks by

identifying communities using clustering techniques (Mandala et al. 2013).

In this study, our first contribution is providing a mathematical formulation to

model the BIMP with independent cascade diffusion model as a mixed integer linear

program. Next, a sample average approximation (SAA) scheme is applied to solve

BIMP effectively. SAA method has been successfully used to solve stochastic

optimization problems efficiently (Shapiro 2008). It not only determines an

approximation of the optimal solution but also provides an upper bound on the
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optimal objective function value. Therefore, we provide results about the optimal

solution of BIMP and the actual performance of the greedy method on BIMP, both

of which have been open questions so far. SAA does not guarantee a worst-case

bound like the greedy method, however the quality of the approximation can be

quantified statistically (see Sect. 3). The organization of the paper is as follows: In

Sect. 2, the details of the BIMP and the mathematical formulation is provided. In

Sect. 3 the SAA Method is explained. In Sect. 4 experimental studies and results are

presented. The last section concludes the paper.

2 Budgeted influence maximization problem

BIMP is defined on a directed and weighted network N ¼ ðV ;A;WÞ. Here V is the

set of nodes, which are the individuals or members of the social network with a size

of jV j ¼ n. The set of arcs is shown by A and they correspond to any kind of a

connection scheme in a social network, e.g. being friends, followers, common-link

sharers. W represents the weights on arcs, where each arc ði; jÞ 2 A from node i to j

has a corresponding weight pij 2 W . These weights represent the influence

probabilities between individuals. So pij means the probability of i influencing j

when i takes an action in the social network. In general these probabilities are

assumed to be asymmetric, i.e. pij 6¼ pji. The number of arcs is jAj ¼ jW j ¼ m.

Finally each node has an arbitrary cost ci which incurs only if node i is included in

the seed set and a total budget of B is available to be spent. Given a seed set i.e., an

initial set of active nodes S, the expected number of activated or influenced nodes is

computed by the function rðSÞ. The BIMP tries to determine the optimal seed set

whose total cost cðSÞ ¼
P

i2S ci does not exceed the budget B and when the

diffusion starts with the nodes in S the influence function rðSÞ is maximized. We

assume that the information disseminates through the network according to

independent cascade (IC) diffusion model. More details on diffusion models can be

found in (Kempe et al. 2003) and (Chen et al. 2010).

2.1 Evaluation of influence

The influence of a seed set S � V is defined to be the expected number of active

nodes at the end of the diffusion process and it is denoted as rðSÞ, which is a real

valued function defined on the power set of V; i.e. r : 2V ! R. Chen et al. (2010)

show that it is #P-hard to calculate the influence function rðSÞ exactly. rðSÞ is

identical to the expected number of nodes that can be reached by the seed set S in a

corresponding uncertain graph. Similar to the computation of reliability or

reachability, there are two methods for exact evaluation of rðSÞ according to Hu

et al. (2014). The first is the graph-based method: For a given uncertain graph

N ¼ ðV ;A;WÞ with n nodes and m arcs, there are a total of 2m possible certain

graphs. Therefore, the cost of calculating rðSÞ where jSj ¼ K is in OðK � n� 2mÞ.
The second one is the path-based method which determines all the simple paths

from S to other nodes in uncertain graph N and it also has an exponential-time

complexity.
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2.2 Mathematical formulation of BIMP

The budgeted influence maximization problem can be formulated as

fmax rðSÞ : cðSÞ�B; S � Vg. Kempe et al. (2003) prove that the unit cost version,

i.e. IMP with the constraint Sj j ¼ K instead of cðSÞ�B is NP-hard by showing a

correspondence to the Stochastic Set Covering problem. When each ci ¼ 1 and

B ¼ Sj j, BIMP reduces to IMP so it is NP-hard as well. Thus, finding the optimal

solution for large problems within reasonable durations is difficult. Even exactly

calculating the objective function rðSÞ is proven to be #P-hard.

The above form of BIMP is not favorable for mathematical optimization

approaches. However, it can be reformulated as a discrete optimization problem by

considering all possible realizations of the network. Each realization corresponds to

a subset of active arcs in the network. An arc (i, j) is said to be active if it exists in

the network, which has a probability of pij. In the independent cascade diffusion

model each arc (i, j) is active with the given weight pij or inactive with probability

ð1� pijÞ. Since the network has finitely many arcs, the number of possible

realizations is also finite. Let r be the index representing a realization and let R be

the set of all realizations with an exponential size of jRj ¼ 2m. Also, let lr be the

probability of occurrence of realization r. It can be calculated by multiplying all the

pij values for the active arcs and 1� pij values for the inactive arcs of the given

realization r 2 R. Lastly, we define NrðiÞ � V as the set of neighbours (predeces-

sors) of node i for a given realization r.

Two sets of decision variables are required; one for capturing the initial seed

set and the next for representing all activated nodes throughout the diffusion

process. Let y be a 0� 1 vector of nodes in V and when node i is selected as an

initial influential yi becomes one and zero otherwise. Also let X(y) be the set of

random variables showing the outcome of the diffusion process initiated by

y. Each XiðyÞ is again a 0� 1 variable indicating whether node i is activated in

the diffusion process or not. The elements of X(y) consist of the initially active

nodes plus the nodes that are activated later during the diffusion process and the

probability distribution that governs the activation of the arcs (therefore the latter

nodes) does not depend on y. The objective function rðSÞ can be equivalently

written as rðSÞ ¼ f ðyÞ ¼
P

i2V E½XiðyÞ� ¼
P

r2R
P

i2V lrXirðyÞ. Here the function

f has the same meaning with r but its domain is the set 0; 1f gm. Now XirðyÞ shows
if node i is reachable from the initially activated nodes in y through active arcs in

realization r.

Given these definitions, the budgeted influence maximization binary integer

program (BIMBP) with independent cascade diffusion model is presented below:

BIMBP:

max z ¼
X

r2R

X

i2V

X

t2T ir

lrxirt ð1Þ

s:t:
P

i2V
ciyi �B ð2Þ
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xir1 � yi i 2 V ; r 2 R ð3Þ

xirt �
P

j2NrðiÞ
xjrðt�1Þ i 2 V; r 2 R; t 2 T ir � f1g ð4Þ

P

t2T ir

xirt � 1 i 2 V ; r 2 R ð5Þ

xirt; yi 2 f0; 1g i 2 V ; r 2 R; t 2 T ir ð6Þ

In BIMBP yi are binary variables showing if the i-th node is selected as an initial

influential node or not. xirt are again binary decision variables, and if node i is

activated at the t-th step of the independent cascade diffusion process in network

realization r, then it is equal to one and otherwise equal to zero. Since the cascading

process runs iteratively a new index t 2 T ir is introduced to identify the step in

which a node is activated. The maximum number of steps to activate a node is equal

to the depth of the r-th realization of the network. Therefore, a node can be activated

only in one of the steps between 1 (meaning it is selected as an influential at the

initial step) and Tmax
ir , where Tmax

ir is the maximum number of steps (arcs) to access

every reachable node through active arcs starting from node i. The set T ir contains

the time index from 1 to Tmax
ir and can be determined by running a breadth-first

search initiated at node i for each realization r. The objective function (1)

maximizes the expected number of activated nodes. The first constraint (2) limits

the amount spent on initially activated nodes to the available budget B. The second

set of constraints (3) show that the nodes that are activated in the beginning of the

diffusion process which will trigger the cascade are those nodes that are selected as

the initial influentials. The constraints (4) dictate that to activate node i in step t of

the cascade, at least one of its neighbours should be activated in the previous step.

Observe that these constraints exist only when Tmax
ir [ 1. Also notice that in each

realization the members of the neighbourhood may change depending whether the

arcs connecting node i to its neighbours are active or not. The constraints (5) tell

that a node can be activated only in one of the steps of cascade. The formulation

ends with binary restrictions on the decision variables (6).

This formulation is valid even for networks with circuits. In such networks, when

no precautions are taken in the formulation, a solution may contain some nodes

becoming active without any of them being connected to an initial active node

because of the circuits. Such solutions are unacceptable and it can be avoided by

including a time index as done in this formulation. When the underlying stochastic

network N is a directed acyclic graph (DAG), then there is no risk of having

solutions with circuits and the formulation can be simplified by dropping the time

index. Also constraints (5) are not necessary any more. A similar formulation to the

simplified version of our mathematical model for the IMP on DAGs with

independent cascade diffusion model is given in (Sheldon et al. 2010) to determine

the best locations to be purchased in habitat conservation planning of endangered

species.
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3 A sample average approximation approach to solve BIMP

Solving BIMBP to optimality is almost impossible for even small networks because

of the excessive number of possible realizations jRj. One remedy is approximating

rðSÞ by creating random realizations of the network through sampling. In other

words, by flipping a biased coin for each arc (i, j) in the IC diffusion model, an

instance of the networkN is obtained. As a result, the r-th realization of the network

N r ¼ ðV ;ArÞ contains only the active arcs according to the sampling outcome. Let

R0 be the set of the realizations through sampling and let frðyÞ be the expected

number of nodes reachable in network realization N r given the seed vector y. One

can create a total of r ¼ 1; . . .;R realizations of the network N1; . . .;NR by sampling

as described above and define fRðyÞ ¼ 1
R

PR
r¼1 frðyÞ, which is an unbiased estimate of

the original objective function rðSÞ. Notice that we interchangeably use the seed set

S and the seed vector y both containing the initially active nodes.

Then the optimization problem BIMBP becomes:

BIMBP-SAA:

max z ¼ 1

R

X

r2R0

X

i2V

X

t2T ir

xirt ð7Þ

s:t: ð2Þ�ð6Þ ð8Þ

Note that in all the constraints (2)–(6) of BIMBP-SAA, the index r 2 R0 (not R),

which is the set of realizations created by sampling. The quality of approximations

of fRðyÞ depends on the number of realizations R as well as how they are created.

Applying crude Monte Carlo simulation, which has been the classical method for

most of the previous research, requires huge values for R. Kempe et al. (2003)

report that the solutions of the greedy method stabilize when R ¼ 10;000 for the co-

authorship network they tested in their experimental analysis, which results in long

computation times.

Using crude Monte Carlo sampling with R ¼ 10;000 for BIMBP-SAA leads to a

very large integer program and makes it difficult to solve. Therefore, it is preferred

to use the SAA scheme, which solves many number of integer programs with much

smaller sample sizes. Also the SAA method provides both an approximate upper

bound and a feasible (hopefully near optimal) solution with a good lower bound on

the true optimal solution. In the following subsections the details of determining

these bounds are explained. The general SAA procedure presented is adopted from

the independent random number streams procedure provided by Mak et al. (1999)

but the estimation of the lower bounds use the extended procedure provided in

Linderoth et al. (2006).

3.1 Estimation of upper bounds

Let z	 and f 	R be the optimal objective values of the original problem (BIMBP) and

the SAA problem (BIMBP-SAA), respectively. Norkin et al. (1998) proved that

z	 �E½f 	R � by using the notion of expectation relaxation. Therefore, the solution of
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BIMBP-SAA can be used in estimating an upper bound for the true optimum. For

this purpose, M independent BIMBP-SAA samples (or sometimes called replica-

tions (Cao et al. 2014) are created, each of which has a sample size of R1. Each of

these M integer programs are solved using deterministic optimization techniques to

obtain M separate solutions. Let these solutions be ŷi, i ¼ 1; . . .;M with

corresponding objective function values f1i. The average of these M solutions;

i.e., �f 1 ¼ 1
M

PM
i¼1 f1i is an unbiased estimator of E½f 	R � and it converges to E½f 	R � with

probability one when M ! 1 (Shapiro 2008). Also, when these M samples are iid,

by the Central Limit Theorem
ffiffiffiffiffi

M
p

ð�f 1 � E½f 	R �Þ ¼) Nð0; m2Þ asM ! 1: ð9Þ

Here m2 is the variance of f 	R and ‘‘¼)’’ denotes convergence in distribution. The

variance m2 can be estimated by using s2M ¼ 1
M�1

PM
i¼1ðf1i � �f 1Þ2. In addition, a

ð1� aÞ-confidence interval for E½f 	R � can be constructed by

�f 1 �
za=2sM

ffiffiffiffiffi

M
p ; �f 1 þ

za=2sM
ffiffiffiffiffi

M
p

� �

ð10Þ

Observe that the confidence interval is also approximate because of the asymptotic

result (9) and for small values of M one can use the t-distribution statistic instead of

z with M � 1 degrees of freedom (Linderoth et al. 2006).

3.2 Estimation of the optimal solution

The solutions ŷi, i ¼ 1; . . .;M are all feasible solutions for BIMBP. Therefore, they

can be used to estimate lower bounds to the original problem. When ŷi is fixed, then

computing fRðyÞ is a very simple process and it just involves counting the number of

reachable nodes through the active nodes in the network starting from the seed set

ŷi. Similar to the estimation of the upper bounds, we create T independent batches of

samples but this time with a much larger sample size R2 and the objective function

value for each fixed solution ŷi is evaluated. Formally, we compute f2ijðŷiÞ for the
fixed solutions ŷi using R2 
 R1 realizations and j ¼ 1; . . .; T .

With the greatly increased sample size R2, the objective function values are more

accurately calculated compared to the upper bound estimates. The averages �f 2iðŷÞ ¼
1
T

PT
j¼1 f2ijðŷiÞ are calculated for each solution ŷi. Next, the solution yielding the

highest objective function value among �f 2iðŷÞ is identified. Let this solution be ŷ	. It
is the best estimate of the SAA procedure to the optimal solution of the original

problem. In the last step of the SAA procedure, the objective function value is re-

evaluated for only the solution ŷ	 one more time by using T independent batches of

samples with a sample size of R3, which is usually taken close to R2 (Linderoth

et al. 2006). The average �f 3ðŷ	Þ ¼ 1
T

PT
j¼1 f3jðŷ	Þ is computed. The final objective

function value �f 3ðŷ	Þ is the output of the SAA method as an approximation to the

true optimal value z	.
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Note that we use T batches, each of which have R2 or R3 replications within each

batch. As we sample in an i.i.d. manner, we could simply use sample means with a

total of T � R2 and T � R3 realizations, respectively. However, we prefer to state the

procedure in this manner because it allows for non-i.i.d. sampling with each batch,

as is explored using Latin hypercube sampling in Linderoth et al. (2006).

Since all ŷi are feasible solutions to BIMBP then so is ŷ	. Therefore, the relation

E½�f 3ðŷ	Þ� � z	 �E½�f 1� holds as the sample size converges to infinity. The difference,
�f 1 � �f 3ðŷ	Þ is a statistical upper bound on the true optimality gap z	 � E½�f 3ðŷ	Þ� and
as the number of samples and realizations increase the estimated optimality gap

converges to the true optimality gap. Consequently, the choice for the values of M,

T, R1, R2 and R3 becomes an important issue as it effects the trade-off between

solution quality and solution time performance. Notice one more time that, in the

SAA procedure, only in the first step integer programs are solved. In the second and

third steps, f2ijðŷiÞ and f3jðŷ	Þ are algorithmically computed by simulating the

diffusion process, which is computationally less costly then solving an integer

program with the same sample size. The steps of the SAA algorithm are

summarized in Algorithm 1.

Algorithm 1 SAA Algorithm
1: Use M batches of samples with R1 realizations to obtain the solutions ŷi and objective

function values f1i, i = 1, ..,M . Let f̄1 = 1
M

M∑

i=1
f1i.

2: Compute the influence values f̄2ij(ŷi) algorithmically, for the solutions ŷi, i = 1, ...,M and
j = 1, ..., T with a larger sample size R2. Identify the solution with the best objective
function value i.e., ŷ∗ = argmaxŷi{f̄2i(ŷi)}.

3: Compute f̄3(ŷ∗) algorithmically with a batch size of T and sample size of R3.

4 Experimental results

In this section details of the experimental results are provided. First, information

about the data set is presented. Next, we provide SAA upper bounds and make an

analysis on the closeness of both Greedy and SAA methods to optimality. To the

best of our knowledge this is the first study to provide such information on the

BIMP. We also provide the comparison of the solution qualities of the greedy

method and SAA method. Finally, the computation time performance of both

methods are compared.

4.1 Dataset and experiment setup

Our testbed consists of the available data from arXiv, which is the same source used

in the experimental studies of (Kempe et al. 2003; Chen et al. 2010). In this data set

each node is an author and the arcs show the co-authorship relation. Although the

network is undirected, we assumed the arcs to be directed and the first authors are

assumed to be tails and second authors are assumed to be heads.
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There are 37,153 nodes (authors) and 231,507 arcs (co-authorship relationships)

in the network. As seen in Fig. 1, the co-authorship network’s characteristics are

similar to that of a typical scale-free network, where a few nodes (authors) have

high number of connections and most nodes have low number of connections (Yan

and Ding 2009). The average out-degree of the network is 4.86 and the maximum

out-degree is 152. Also the relationship between the outdegree of a node and its

frequency matches a decay function and its log-log graph displays the power-law

relationship on the degree distribution (Barabasi 2016).

We create different size networks by randomly selecting arcs from this master

data set. Since the complexity depends on number of arcs, the size of the sample

networks are fixed with respect to the number of arcs, i.e.

m ¼ 500; 1000; 2000; 5000; 10;000; 20;000; 50;000. Also 16 different budget levels

B ¼ 5; 10; 15; 20; 25; 30; 40; 50; 60; 70; 80; 90; 100; 125; 150; 200 are used resulting

in a total of 112 different scenario combinations and each scenario is repeated 5

times and the averages are reported.

The weights on arcs (influence probabilities) are sampled uniformly from [0, 1]

and the activation costs ci are randomly selected from [0,100]. For the SAA method

M ¼ 25, T ¼ 100 and R1 ¼ 100, R2 ¼ R3 ¼ 10;000. For the greedy method two

different settings are tested. In the first case, to have a fair comparison with the SAA

method, the greedy method is applied with a similar setting of the SAA approach,

where the seeds sets are determined M ¼ 25 times with R ¼ 100 samples. Next, the

best of these 25 solutions’ objective function values are re-evaluated with R2 ¼
10;000 samples. Finally, the solution with the best objective function value is re-

evaluated on more time with R3 samples. In the second setting the classical

approach used by other authors is used, where the greedy algorithm is run a single

time with a sample size of R ¼ 10;000 and the solution is reported. We

implemented the CELF (cost-effective lazy forward) version of the greedy method,

which is much efficient than the naive one (Leskovec et al. 2007).

All experiments are carried out on Dell PowerEdge 2400 with two 64-bit, 2.66-GHz

Xeon 5355 Quad Core processors and 28GB SD Ram memory, operating within

Windows 2008 Server environment. CPLEX 12.6 is used with default settings for

solving the integer programs of the first step of SAA method (ILOG-CPLEX 2013).

Fig. 1 Frequency versus outdegree graph of arXiv co-authorship network. (a) Normal graph, (b) Log-log
graph
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The case n ¼ 12;133;m ¼ 50;000 leads to the largest integer programs. Because

of the scale free network structure, Tmax
ir are only large for very few nodes

(maximum observed value is 30) and very low for most of the nodes. In the largest

problem there are approximately 2.33 million variables and 2.85 million constraints,

meaning that average size for the set T ir is about 2. All the integer programs are

solved to optimality, where none of them run longer than 1 h.

4.2 Analysis of solution quality

The lower and upper bounds on the optimal objective function value of the original

problem for various different scenarios are presented in Table 1. The first two

columns display the number of nodes and arcs in the sample network, whereas the

Table 1 Lower and upper bound estimates for z	

n m Budget UB (95% CI) ZSA (95% CI) Optimality Gap (%)

12133 50,000 200 218.819 ± 0.756 218.195 ± 0.089 0.285

12133 50,000 100 145.628 ± 0.503 144.931 ± 0.069 0.479

12133 50,000 50 93.134 ± 0.691 92.471 ± 0.082 0.712

12133 50,000 10 38.675 ± 0.554 38.789 ± 0.066 -0.297

5847 20,000 200 153.319 ± 0.399 152.682 ± 0.063 0.416

5847 20,000 100 102.257 ± 0.469 102.142 ± 0.063 0.112

5847 20,000 50 69.317 ± 0.481 69.173 ± 0.046 0.198

5847 20,000 10 24.156 ± 0.346 24.017 ± 0.054 0.577

3107 10,000 200 111.349 ± 0.472 111.17 ± 0.041 0.161

3107 10,000 100 74.894 ± 0.415 74.545 ± 0.061 0.465

3107 10,000 50 49.406 ± 0.309 49.118 ± 0.059 0.583

3107 10,000 10 18.286 ± 0.328 18.603 ± 0.043 -1.716

1157 5000 200 88.982 ± 0.303 88.871 ± 0.044 0.124

1157 5000 100 64.381 ± 0.308 64.347 ± 0.039 0.054

1157 5000 50 46.946 ± 0.419 46.552 ± 0.042 0.840

1157 5000 10 20.034 ± 0.328 20.028 ± 0.052 0.028

378 2000 200 53.237 ± 0.288 53.065 ± 0.045 0.322

378 2000 100 38.694 ± 0.181 38.563 ± 0.043 0.354

378 2000 50 28.124 ± 0.309 27.901 ± 0.039 0.790

378 2000 10 9.163 ± 0.264 9.119 ±0.034 0.481

378 1000 200 39.906 ± 0.136 39.868 ± 0.024 0.092

378 1000 100 26.155 ± 0.171 26.022 ± 0.016 0.506

378 1000 50 16.627 ± 0.169 16.649 ± 0.019 -0.136

378 1000 10 4.429 ± 0.023 4.408 ± 0.004 0.469

212 500 200 26.865 ± 0.089 26.847 ± 0.011 0.067

212 500 100 18.012 ± 0.067 18.003 ± 0.008 0.055

212 500 50 10.922 ± 0.047 10.855 ± 0.007 0.609

212 500 10 4.209 ± 0.017 4.217 ± 0.002 -0.196
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third column displays the available budget. Column four displays the upper bound

estimates �f 1ðyÞ (shown as UB) together with a 95% confidence interval. Since

M ¼ 25, we used t-distribution values with degrees of freedom 24. Similarly, lower

bound estimates, which are also the best feasible solutions of the SAA procedure,
�f 3ðŷ	Þ (shown as ZSA), are displayed again with a 95% confidence interval in column

five. The last column provides the estimated optimality gap using the formula:

100� ðUB� ZSAÞ=UB.
The results show that, using SAA method one can obtain promising results for

the BIMP. Notice that in almost all problems the optimality gap is within 1% and

the lower bound estimate is always inside the 95% confidence interval of the upper

bound. In some of the results, the optimality gap is negative which is not uncommon

in SAA analysis (Linderoth et al. 2006; Mak et al. 1999). This is due to the larger

variance in the estimation of the upper bound.

Next, as presented in Fig. 2, the seed set sizes at the best SAA solutions are

displayed. They vary from 2 (for three cases when B = 5 and m = 500, 2000,

5000) to 111 (B = 200 and m = 50,000). Note that the seed set size is directly

dependent on the choice of budget B and node activation costs ci. In Kempe et al.

(2003) the seed set sizes vary from 1 to 30 and in Chen et al. (2010) it is from 1 to

50. In Nguyen and Zheng (2013) budget levels range from 10 to 100. Therefore our

choice for B and ci are reasonable.

Lastly, the mean of the best lower bounds of the SAA method are compared with

the results obtained by the two different settings of the greedy method. Figure 3

shows the optimality gaps, i.e., the average optimality gap of SAA method and

average optimality gaps of the two greedy methods are shown. In the figure, CELF-

100x25 represents the average optimality gaps with respect to the Greedy method

with SAA setting and CELF-10K show the results obtained by the Greedy method

with the classical setting. They are determined by averaging over seven different

Fig. 2 Optimal seed set sizes with respect to budget and network size
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network sizes’ optimality gap values for each budget level. It is clear that in most

cases SAA method outperforms the greedy method with an average optimality gap

ranging between 0.18 and 0:79%. Notice that the best objective function values

obtained by the greedy method is also very close to the estimated upper bound with

an average optimality gap range of 0.32–1.40% for CELF-10K and 0.45–2.34% for

CELF-100x25, respectively.

Given these results we can comment on an open question in the literature: For the

social network samples used in this study, the greedy algorithm performs very well

and provides close-to-optimum solutions. Remember that the worst-case bound for

the greedy method is 1=2ð1� 1=eÞ, which is approximately 36:78%. A similar

conclusion is available in Lee et al. (2015). In their study, they formulate a slightly

different problem where the aim is minimizing the detection time of a virus in a

network. After re-formulating the problem into a maximization form with a sub-

modular objective function, they test the performances of the greedy algorithm and

SAA method. In their results, in most of the cases greedy outperforms the SAA

method with close-to-optimal solutions.

When the solutions (seed sets) obtained by the two methods (SAA and greedy)

are analyzed, in 83% of the cases the seed sets of SAA and Greedy-10K are exactly

the same. This value drops to 21% when the seed sets of SAA method are compared

with that of Greedy-100x25. For the cases where the seed sets are exactly the same,

the estimates of the optimality gap of both methods are very close to each other and

the difference is a result due to sampling, where each method use their own stream

of samples. Although one can never be sure of the real optimum seed set without

enumerating 2m realizations, we provide statistical statements ensuring that the

solutions are near optimal. For the remaining 17% (SAA vs Greedy-10K) and 79%

Fig. 3 Comparison of optimality gaps
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(SAA vs Greedy-100x25) of the cases, the seed sets do not match and the solution

with the higher objective function can be considered as a better solution. However,

its statistical significance should be tested via statistical (paired) t-test (Linderoth

et al. 2006) and it is planned as a future research topic.

4.3 Analysis of solution time performance

The average CPU time performances of both methods are provided in Fig. 4. Here,

the CPU times are calculated by taking the average over 16 CPU values of the

corresponding budget levels and displayed for each one of the seven network sizes.

For small size problems SAA method is much faster than the greedy method. In

small networks SAA is almost 2–10 times faster than the Greedy method. This is a

promising result and needs further discussion.

The benefit of the SAA method over greedy comes from various facts. First, due

to the essence of the SAA method integer programs are constructed with

considerably smaller number of samples and they are solved very fast when the

network size is small. The second fact is related to the structure of simulation of the

diffusion process. Both the greedy and SAA methods have to carry out a costly

objective function estimation subroutine that simulates the diffusion process of a

given seed set. However, the number of calls of greedy method is much more than

that of SAA. The number of calls for SAA method is constant at (M ? 1)T times

((25 ? 1) 9 100 = 2600 times in our setting) to calculate f2ijðŷiÞ and f3jðŷ	Þ.
However greedy calls it in O(nkT) times where k is the number of nodes in the

optimal seed set. The increase in CPU time due to increased budget (therefore seed

set size) is larger for greedy compared to SAA. Lastly the network structure may

have an effect on CPU times. The co-authorship network resembles a typical scale-

free network. Here, few nodes have high number of connections (high outdegree)

and most nodes have a small number of connections. This results in a sparse matrix

structure and probably CPLEX benefits from it and solves the integer programs very

efficiently.

Fig. 4 Comparison of solution times
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As a summary, when the network is small the integer programs are solved very

quickly and the time spent on objective function evaluation subroutine dominates

the overall CPU time. In this case SAA performs better than greedy. However, when

the network size increases and the solution time to solve the integer programs grows

faster and it starts to dominate the overall CPU time. In that latter case SAA

method’s performance decreases drastically and greedy method starts to outperform.

5 Conclusion

In this work the budgeted influence maximization problem is studied. Contrary to

most studies in the literature we focus on the solution quality rather than solution

time performance of BIMP. We provide a binary-integer program to formulate

BIMP assuming the Independent Cascade diffusion model. Since the original

problem is too complicated to be solved exactly, a sample average approximation

(SAA) scheme is proposed. Experimental results over different size networks and

budget levels show that SAA works very well and provide approximate optimal

solutions. We also observed that the greedy method can find approximately optimal

solutions for BIMP, which has been an open question until now. As for the future

research directions, different versions of BIMP can be tested with different diffusion

models and different type of networks such as random or small world networks.

Finally, the SAA method can be further fine-tuned to improve both the solution

quality and solution time performance.
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