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Abstract An inventory model with stock-dependent demand and non-instantaneous

deterioration is developed in this paper. It is assumed that the item starts deterio-

rating at a constant rate after a certain period of time from the instant of receiving

the delivery by the retailer. The retailer can reduce the rate of deterioration by

investing in preservation technology. Depending on the fact that the on-hand stock

may be finished before or after deterioration starts, two different inventory scenarios

have been considered and analyzed. Optimal length of an inventory cycle as well as

investment in preservation technology have been obtained in both the scenarios.

Certain conditions have also been derived to identify situations where the retailer

should or should not invest in preservation technology. The proposed model is

illustrated with a numerical example.
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1 Introduction

Market demand has been one of the major concerns of the managerial decision

makers as well as researchers over decades. In the literature, different demand

patterns have been assumed and studied for different types of products to reflect the

real world scenarios. There are certain parameters such as price, quality, post-

purchase support, credit facility, etc. on which the demand largely depends. On-

hand stock display is one such parameter which affects market demand. Display of

greater quantity of an item tends to attract more customers (Zhou and Yang 2005) in

practice. Such kind of demand is particularly observed in fashion apparel industries,

electronic items, supermarkets and convenience stores, etc. It is the visibility and

variety of products that attract more customers. Levin et al. (1972) mentioned that

large piles of consumer goods displayed would attract the customers to buy more.

Silver and Peterson (1985) showed that sales at the retail level tend to be

proportional to stock displayed. Baker and Urban (2009), Pal et al. (1993), and Giri

et al. (1966) studied inventory models where market demand is a function of on-

hand inventory. An order-level inventory model was developed by Ray et al. (1998)

assuming the demand rate to be stock-dependent and the retailer could use two

warehouses. Hwang and Hahn (2000) investigated an optimal procurement policy

for items with an inventory-level-dependent demand rate and fixed lifetime. Chang

(2004) discussed inventory models with stock-dependent demand and non-linear

holding cost for deteriorating items. Wu et al. (2006) developed optimal replen-

ishment policy incorporating the effects of deterioration and partial backlogging

under stock-dependent demand scenario. Ouyang et al. (2008) dealt with an

inventory problem for non-instantaneous deteriorating items with stock-dependent

demand when supplier offers an all-unit quantity discount. Sajadieh et al. (2010)

studied an integrated vendor-buyer model with stock-dependent demand. Pando

et al. (2012) and Yang (2014) developed inventory models with the assumption that

the holding cost is also stock-dependent. Yang et al. (2013) examined the effect of

credit incentives on a two-echelon supply chain with stock-dependent demand.

Ghiami et al. (2013) developed and analyzed inventory model for a deteriorating

item with stock-dependent demand under capacity constraint and partial backlog-

ging. Jiangtao et al. (2014) derived optimal ordering policy for multiple perishable

items under stock-dependent demand and two-level trade credit. Choudhury et al.

(2015) framed an inventory model considering stock-dependent demand rate with

allowable shortages. Singh et al. (2016a) developed an inventory model for

deteriorating items having seasonal and stock-dependent demand with allowable

shortages.

Deterioration is a natural phenomenon particularly for inventories of food items,

volatile liquids, agricultural products, pharmaceutical products, etc. The deteriora-

tion occurs due to evaporation, damage, spoilage, dryness, etc, and it reduces the

quality and/or quantity of stored items. In general, the items are considered to

deteriorate continuously with time, pharmaceutical products being exception as they

are considered to be of identical quality until their expiry dates, and completely

useless thereafter. Ghare and Schrader (1963) were the first to incorporate the idea
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of deterioration in inventory models. They studied an exponentially decaying

inventory model with constant demand. Since then numerous researches have been

carried out considering the effect of deterioration on on-hand stock. Tenga et al.

(2002) presented an optimal replenishment policy for deteriorating items with time-

varying demand and partial backlogging. Mandal et al. (2006) developed an

inventory model for deteriorating items under a constraint with a different approach

of Geometric Programming. Panda et al. (2008) considered an inventory model for

a seasonal product with ramp-type demand. Min et al. (2010) developed an

inventory model for deteriorating item under stock-dependent demand and two-

level trade credit. Liang and Zhou (2011) considered a different model for

deteriorating items with two warehouses under conditionally permissible delay in

payment. More works on deterioration have been done by Mirzazadeh et al. (2009),

Sicilia et al. (2014), Chakraborty et al. (2015), Annadurai and Uthayakumar (2015)

and many other researchers. We refer to Raafat (1991) and Goyal and Giri (2001)

for detailed review on the trends in modeling deteriorating inventory.

Althoughmost of the researchers assumed that deterioration starts as soon as the the

items are produced or those are received by the retailer, the reality reveals something

different. In practice, most of the items start deteriorating after certain time period,

which is termed as ‘non-instantaneous deterioration’. For example, fresh fruits or

vegetables do not deteriorate during the early stage of storage. The time period after

which deterioration would start plays an important role while setting optimal

strategies. Wu et al. (2006) derived an optimal replenishment policy for items with

non-instantaneous deterioration, stock-dependent demand and partial backlogging,

which was further extended by Geetha and Uthayakumar (2010) by considering

reciprocal time-dependent partial backlogging rate. Ouyang et al. (2006) developed

an inventorymodel for non-instantaneously deteriorating itemswith permissible delay

in payment which was later extended by Maihami and Kamalabadi (2012) by

considering price- and time-dependent demand. Rabbani et al. (2015) developed

coordinated replenishment and marketing policies for non-instantaneous stock

deterioration problem. However, in all these works, the deterioration rate was

assumed to be an exogenous variable. In reality, the deterioration rate may be

controlled by taking certain measures in preserving the items. As higher deterioration

rate has considerable impact on system profit, supply chain managers may think of

using technology to reduce the effective deterioration. To the best of authors’

knowledge, Hsu et al. (2010) first derived an inventory policy allowing the retailer to

invest in preservation technology when the demand and deterioration rates were both

constant. Dye and Hsieh (2012) extended Hsu et al.’s (2010) work by considering

time-varying deterioration rate and partial backlogging. Lee and Dye (2012)

considered an inventorymodel for deteriorating items under stock-dependent demand

and controllable deterioration rate. Hsieh and Dye (2013) developed inventory model

under time-dependent demand rate and constant deterioration rate. Dye (2013)

generalized non-instantaneous deteriorating inventory system with constant demand

and time-dependent deterioration with allowable shortages and waiting time-

dependent partial backlogging. He and Huang (2013) studied the effect of investment

in preservation technology in a price-dependent demand and constant deterioration

rate scenario. Singh and Sharma (2013) provided a global optimizing policy for
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constantly decaying items with ramp-type demand under two-level trade credit

financing. Mishra (2014) developed an inventory model with controllable deteriora-

tion rate under time-dependent demand and time-varying holding cost. Liu et al.

(2015) provided joint dynamic pricing and investment strategy for foods perishing at a

constant rate with price and quality dependent demand. Singh and Rathore (2015)

developed a model with preservation technology investment for constantly deterio-

rating inventory permitting shortage under the effect of inflation and trade credit with

time-varying demand. Yang et al. (2015) examined an optimal dynamic decision

making problem under trade credit and preservation technology allocation for a

deteriorating item, the demand rate of which varies simultaneously with time.

Recently Singh et al. (2016b) developed an economic order quantity (EOQ)model for

deteriorating products having stock-dependent demand with trade credit period and

preservation technology.

Shah and Shah (2014) developed an inventory model with price- and stock-

dependent demand. However, they couldn’t prove the existence of the optimal

solution analytically. Moreover, they considered deterioration to start from the very

beginning of replenishment time (i.e. instantaneous deterioration) which is a

simplified assumption. There are products for which price is not that much influential

parameter compared to the variety or quality; a stock-dependent demand pattern is

more appropriate to reflect the realistic scenario. The decision of investing (or not

investing) in preservation technology in order to reduce deterioration rate is always a

concern for the retailer, particularly when the selling season is sufficiently short. The

retailer may shorten the replenishment period in order to reduce deterioration in his

inventory, and thereby bears less preservation cost. The effects of uncontrollable

parameters such as stock-sensitivity, holding cost or production cost on the investment

as well as business period would also be interesting to examine as those will help the

decision maker to have a better overview of the whole system dynamics. We aim to

study all these aspects in this paper. We have developed and analyzed an inventory

model with exponentially stock-dependent demand where the item starts perishing

after a certain time period. The present work is a two-step generalization of Hsu et al.

(2010) as setting stock sensitivity to zerowould convert the demand to be constant, and

setting ‘non-deterioration time period’ to zero would turn the item into an

instantaneously deteriorating one. It is also a generalization of Lee and Dye (2012)

where they considered stock-dependency to be linear, since very small values of the

exponent produces curves almost identical with straight lines. It may somewhat be

considered as a partial extension of the work of Dye (2013) too, where the demand rate

has been considered constant.

In this paper, we have considered the deterioration rate to be constant for ease of

calculation. We have allowed the retailer to invest in preservation technology to

reduce the deterioration. We have considered the stock-dependent demand scenario

with exponential form of dependence. We have examined how the optimal decisions

change in order to cope up with the variation of other uncontrollable parameters.

The contribution of the present work with respect to the existing literature is shown

in Table 1. The rest of the paper is designed as follows. Section 2 provides the

notations and assumptions used to formulate the model. The model is formulated

and analyzed in Sect. 3. The proposed model is illustrated through a numerical
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example in Sect. 4. Finally, conclusions are made and future research directions are

suggested in Sect. 5.

2 Notations and assumptions

We use the following notations throughout the paper:

I(t) Inventory level at time t

h Constant deterioration rate at time t, 0� h\1

n Preservation technology cost per unit time for reducing the deterioration rate

mðnÞ Proportion of reduced deterioration rate, 0�mðnÞ� 1

Q Total ordered quantity

Qd Total quantity of deteriorated items in a cycle

Qs Total number of items sold in a cycle

cd Unit deterioration cost of the retailer per unit time

h Unit holding cost per unit time ($/unit item/ year)

k Ordering cost per order ($/order)

c Unit purchase cost

p Unit selling price

T Length of a cycle

td Time length during which the product has no deterioration

P1ðn;TÞ Average profit when deterioration starts before stock-out occurs

P2ðTÞ Average profit when stock-out occurs before deterioration starts

Table 1 A comparison of the present article with the existing literature on preservation technology

Authors Demand pattern Shortage Deterioration

Hsu et al. (2010) Constant Yes Instantaneous

Dye and Hsieh (2012) Constant Yes Instantaneous

Lee and Dye (2012) Stock-dependent (linear form) Yes Instantaneous

Dye (2013) Constant Yes Non-instantaneous

He and Huang (2013) Price-dependent No Instantaneous

Hsieh and Dye (2013) Time-dependent No Instantaneous

Dye and Hsieh (2013) Time-dependent No Instantaneous

Singh and Sharma (2013) Ramp-type Yes Instantaneous

Mishra (2014) Time-dependent Yes Non-instantaneous

Shah and Shah (2014) Price and inventory dependent No Instantaneous

Urvashi et al. (2014) Time-dependent No Instantaneous

Liu et al. (2015) Quality and price dependent No Instantaneous

Singh and Rathore (2015) Time-dependent Yes Instantaneous

Yang et al. (2015) Time and credit period No Instantaneous

Singh et al. (2016b) Stock-dependent (linear form) Yes Instantaneous

Present paper Stock dependent (non-linear form) No Non-instantaneous
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Assumptions

To develop the proposed model, we make the following assumptions:

(i) The market demand is completely deterministic, and it is of the form

D ¼ a½IðtÞ�b, a[ 0, 0� b\1, where I(t) denotes the inventory level of the

buyer at time t, a is the scale parameter, and b is the shape parameter which

is a measure of responsiveness of the demand rate to changes in the

inventory level. Some of the advantages of this kind of demand pattern, as

mentioned in Baker and Urban (2009), are diminishing returns (marginal

increment in demand rate decreases for larger values of inventory level),

richness (good approximate demand in many practical situations), and

intrinsic linearity (linear regression can be used for parameter estimation

after taking logarithm).

(ii) No deterioration takes place during the time period [0; td]. After the period,

the product deteriorates at a constant rate h of the on-hand inventory.

(iii) There is no repair or replacement of deteriorated units during the inventory

cycle.

(iv) The proportion of reduced deterioration rate mðnÞ is a continuous, concave,
increasing function of retailer’s capital investment n, with mð0Þ ¼ 0 and

limn!1 mðnÞ ¼ 1. We assume m0ðnÞ[ 0 so as to make the retailer lean to

invest in it, and m00ðnÞ\0 to ensure diminishing return from capital

investment in preservation.

(v) There is no information asymmetry among the channel members.

(vi) Lead time is deterministic and we assume it as zero.

(vii) Shortages are not allowed in inventory.

Note 1. Here we make the assumption of demand pattern similar to Zhou et al.

(2008), and that of preservation technology investment similar to Dye

(2013).

Note 2. Unlike most of the existing research works done considering the effect

of preservation technology, we do not put any restriction on the

maximum amount of money to be spent on preservation technology.

The reason is that if the retailer has budget constraint, i.e. capital limit

W (say), he may just choose the optimal preservation investment as

minfW ; n�g, where n� is the optimal cost obtained under unrestricted

scenario.

3 Model formulation

As the time point td at which the deterioration starts is exogenous, the profit

function will take different forms depending on whether the on-hand stock reaches

352 S. Bardhan et al.

123



zero level after or before deterioration starts. We shall obtain and analyze the profit

functions in both cases separately (Fig. 1).

Case 1: td\T

In this case, the time period during which the product has no deterioration is

shorter than the length of in-stock period. During the interval ð0; tdÞ, the inventory is
depleted due to the demand only, whereas during ðtd; TÞ, the inventory level

decreases due to the combined effect of demand and deterioration. As per the

assumption, spending n amount of money on preservation technology reduces the

effective deterioration rate to ð1� mðnÞÞh. The variation of inventory with time t

can thus be described by the following differential equation:

dIðtÞ
dt

¼ �aIðtÞb; 0� t\td

�aIðtÞb � ð1� mðnÞÞhIðtÞ; td � t\T

(
ð1Þ

with the condition IðTÞ ¼ 0. Solving (1) and writing m instead of mðnÞ for sim-

plicity, we get the inventory level at any time t as

Fig. 1 Schematic diagram of the inventory level
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IðtÞ ¼

a
ð1� mÞh eð1�mÞð1�bÞhðT�tdÞ � 1

n o
þ aðtd � tÞð1� bÞ

� � 1
1�b

; 0� t\td

a
ð1� mÞh eð1�mÞð1�bÞhðT�tÞ � 1

n o� � 1
1�b

; td � t� T

8>>>><
>>>>:

ð2Þ

See Appendix 1 for detailed calculation.

We obtain the total inventory during the interval (0, T) as given below:

I1 ¼
Z T

0

IðtÞdt

¼
Z td

0

a
ð1� mÞh eð1�mÞð1�bÞhðT�tdÞ � 1

n o
þ aðtd � tÞð1� bÞ

� � 1
1�b

dt

þ
Z T

td

a
ð1� mÞh eð1�mÞð1�bÞhðT�tÞ � 1

n o� � 1
1�b

dt:

Total number of items ordered is obtained as

Q ¼ Ið0Þ ¼ að1� bÞ 1

ð1� bÞð1� mÞh eð1�mÞð1�bÞhðT�tdÞ � 1
� �

þ td

� �� � 1
1�b

:

Total number of items deteriorated during ðtd; TÞ is

Qd ¼ ð1� mÞh
Z T

td

a
ð1� mÞh ðe

ð1�mÞð1�bÞhðT�tÞ � 1Þ
� � 1

1�b

dt:

Total number of items sold is thus Qs ¼ Q � Qd, and the average profit of the

retailer is obtained as

P1ðT ;nÞ ¼
1

T
pQs � k�Tn� hI1� cQ� cdQdð Þ

¼ 1

T
ðp� cÞ að1�bÞ 1

ð1�bÞð1�mÞh eð1�mÞð1�bÞhðT�tdÞ � 1
� �

þ td

� �� � 1
1�b

"

�ðpþ cdÞð1�mÞh
Z T

td

a
ð1�mÞh ðe

ð1�mÞð1�bÞhðT�tÞ � 1Þ
� � 1

1�b

dt

� k�Tn� h

Z td

0

a
ð1�mÞh eð1�mÞð1�bÞhðT�tdÞ � 1

n o
þ aðtd � tÞð1�bÞ

� � 1
1�b

dt

�h

Z T

td

a
ð1�mÞh eð1�mÞð1�bÞhðT�tÞ � 1

n o� � 1
1�b

dt

#
:

Approximating eð1�mÞð1�bÞhðT�tdÞ by 1þð1�mÞð1�bÞhðT � tdÞ and eð1�mÞð1�bÞhðT�tÞ

by 1þð1�mÞð1�bÞhðT � tÞ, and neglecting the higher order terms, the average

profit function can be simplified as (see Appendix 2 for detailed calculation)

354 S. Bardhan et al.

123



P1ðT ;nÞ ¼
1

T
ðp� cÞ að1�bÞf g

1
1�bT

1
1�b �ðpþ cdÞð1�mÞhfað1�bÞg

2�b
1�b

að2�bÞ ðT � tdÞ
2�b
1�b

"

�k�Tn� h
fað1�bÞg

2�b
1�b

að2�bÞ T
2�b
1�b

#
: ð3Þ

The following proposition can be stated straightforwardly.

Proposition 1 For any given feasible T, P1ðnjTÞis strictly concave in n.

Proof We have, from (3),

oP1ðnjTÞ
on

¼ 1

T
m0ðnÞ ðp þ cdÞhfað1� bÞg

2�b
1�b

að2� bÞ ðT � tdÞ
2�b
1�b � 1;

and
o2P1ðnjTÞ

on2
¼ 1

T
m00ðnÞ ðp þ cdÞhfað1� bÞg

2�b
1�b

að2� bÞ ðT � tdÞ
2�b
1�b\0;

since m00ðnÞ\0. Hence the proposition is proved. h

Before proceeding to prove the concavity of the average profit function, let us

recall the definition of fractional program given in Dye (2013).

Definition For the ratio qðxÞ ¼ f ðxÞ
gðxÞ over a set S ¼ fx 2 X : hðxÞ� 0g, if g(x) is

positive on X, then the nonlinear program

(P) supfqðxÞ : x 2 Sg is called a fractional program. If f ðxÞð� 0Þ is concave and
both gðxÞð[ 0Þ and h(x) are convex, then (P) is called a concave fractional

program.

We now state the following propositions which are due to Schaible (1983) and

Cambini and Martein (1988):

Proposition 2 If f(x) and g(x) are differentiable in a concave fractional program

then the objective function q(x) is pseudoconcave on S. It is strictly pseudoconcave

if either f(x) is strictly concave or g(x) is strictly convex.

Proposition 3 In a concave fractional program (P), any local maximum is a

global maximum, and (P) has at most one maximum if f(x) is strictly concave or

g(x) is strictly convex. In a differentiable concave fractional program, a solution of

the Karush–Kuhn–Tucker (KKT) conditions is a maximum of (P).

In light of the definition of fractional program and Propositions 2 and 3, we see

that for given feasible n, maximizing P1ðT jnÞ ¼ TP1ðT jnÞ
T

is a fractional program with

hðTÞ ¼ td � T . If TP1ðTjnÞ is (strictly) concave on a set S1 � S, the problem is a

concave fractional one, and from Proposition 2,P1ðT jnÞ is (strictly) pseudoconcave
on S1, because of the differentiability of TP1 and T. Now, we have, from (3),
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oTP1ðTjnÞ
oT

¼ðp � cÞfað1� bÞg
1

1�b

1� b
T

b
1�b � ðp þ cdÞð1� mÞhfað1� bÞg

2�b
1�b

að1� bÞ ðT � tdÞ
1

1�b

� n� h
fað1� bÞg

2�b
1�b

að1� bÞ T
1

1�b ð4Þ

¼B1T
b

1�b � B2ðT � tdÞ
1

1�b � n� B3T
1

1�b (say), so that

o2TP1ðT jnÞ
oT2

¼ B1b
1� b

T
2b�1
1�b � B2

1� b
ðT � tdÞ

b
1�b � B3

1� b
T

b
1�b

¼ T
b

1�b

1� b
B1b
T

� B2 1� td

T

� � b
1�b�B3

" #
:

ð5Þ

Note that the function B1b
T

� B2 1� td
T

� 	 b
1�b�B3 is strictly decreasing in T, all Bi’s

being positive. We have, from (5),
o2TP1ðT jnÞ

oT2 ! �1 as T ! 1. Also,

o2TP1ðT jnÞ
oT2 jT¼td

\0 if and only if B1b
td

� B3\0, i.e. if
ðp�cÞb
hð1�bÞ\td. For td\

ðp�cÞb
hð1�bÞ, the

existence of T ð[ tdÞ, the unique (guaranteed by the strictness in T) solution of the

equation B1b
T

� B2 1� td
T

� 	 b
1�b�B3 ¼ 0 is ensured due to continuity of

o2TP1ðT jnÞ
oT2 in any

positive domain. Hence TP1ðT jnÞ is strictly concave.

The finding is summarized in the following proposition.

Proposition 4 For any given feasible n, if
ðp�cÞb
hð1�bÞ\td,P1ðTjnÞ is strictly concave in

ðtd;1Þ; otherwise, it is strictly concave in ðT;1Þ, where T is the only solution of (5).

We are now in a position to prove the concavity of the average profit function.

Let us write P1ðT ; nÞ ¼ TP1ðT ;nÞ
T

. We shall first show that TP1ðT; nÞ is jointly

concave in T and n. We have

o2TP1ðT; nÞ
oT2

¼ðp � cÞbfað1� bÞg
1

1�b

ð1� bÞ2
T

2b�1
1�b � h

fað1� bÞg
1

1�b

ð1� bÞ T
b

1�b

� ðp þ cdÞð1� mðnÞÞhfað1� bÞg
1

1�b

ð1� bÞ ðT � tdÞ
b

1�b

o2TP1ðT; nÞ
on2

¼m00ðnÞ ðp þ cdÞhfað1� bÞg
2�b
1�b

að2� bÞ ðT � tdÞ
2�b
1�b

o2TP1ðT; nÞ
onoT

¼m0ðnÞðp þ cdÞhfað1� bÞg
1

1�bðT � tdÞ
1

1�b � 1:

For the Hessian matrix

o2TP1ðT; nÞ
on2

o2TP1ðT ; nÞ
oTon

o2TP1ðT; nÞ
onoT

o2TP1ðT ; nÞ
oT2

0
BB@

1
CCA, jH1j\0, following

Proposition 1.
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Before calculating jH2j, let us simplify the above second order partial derivatives

as follows:

o2TP1ðT; nÞ
oT2

¼A2T
2b�1
1�b � A3ðT � tdÞ

b
1�b � A4T

b
1�b;

o2TP1ðT; nÞ
on2

¼m00ðnÞA1ðT � tdÞ
2�b
1�b;

and
o2TP1ðT; nÞ

onoT
¼m0ðnÞA5ðT � tdÞ

1
1�b � 1;

where A1 ¼ ðpþcdÞhfað1�bÞg
2�b
1�b

að2�bÞ , A2 ¼ ðp�cÞbfað1�bÞg
1

1�b

ð1�bÞ2 , A3 ¼ ðpþcdÞð1�mðn1ÞÞhfað1�bÞg
1

1�b

1�b ,

A4 ¼ hfað1�bÞg
1

1�b

1�b , and A5 ¼ ðp þ cdÞhfað1� bÞg
1

1�b, so that

jH2j ¼m00ðnÞA1ðT � tdÞ
2�b
1�b A2T

2b�1
1�b � A3ðT � tdÞ

b
1�b � A4T

b
1�b

h i
� fm0ðnÞA5ðT � tdÞ

1
1�b � 1g2

¼m00ðnÞA1A2T
1þb
1�b 1� td

T

� �2�b
1�b�m00ðnÞA1A3T

2
1�b 1� td

T

� � 2
1�b�m00ðnÞA1A4T

2
1�b 1� td

T

� �2�b
1�b

� m0ðnÞ2A2
5T

2
1�b 1� td

T

� � 2
1�bþ2m0ðnÞA5T

1
1�b 1� td

T

� � 1
1�b�1

¼ T
2

1�b m00ðnÞA1A2

T
1� td

T

� �2�b
1�b�m00ðnÞA1A3 1� td

T

� � 2
1�b�m00ðnÞA1A4 1� td

T

� �2�b
1�b

"

�m0ðnÞ2A2
5 1� td

T

� � 2
1�bþ2m0ðnÞA5

1

T
� td

T2


 � 1
1�b

#
� 1

¼ T
2

1�bf ðTÞ � 1;

where

f ðTÞ ¼m00ðnÞA1A2

T
1� td

T

� �2�b
1�b

�m00ðnÞA1A3 1� td

T

� � 2
1�b

�m00ðnÞA1A4 1� td

T

� �2�b
1�b

� m0ðnÞ2A2
5 1� td

T

� � 2
1�bþ2m0ðnÞA5

1

T
� td

T2


 � 1
1�b

:

ð6Þ

Clearly, f ðtdÞ ¼ 0, so that jH2j ¼ �1\0 at T ¼ td. Also,

lim
T!1

f ðTÞ ¼ �m00ðnÞA1A3 � m00ðnÞA1A4 � m0ðnÞ2A2
5;

which means jH2j ! 1 as T ! 1 if and only if

�m00ðnÞA1A3 � m00ðnÞA1A4 � m0ðnÞ2A2
5 [ 0,

or M

m0ðnÞ2 [
A2
5

A1ðA3þA4Þ, where Mð¼ �m00ðnÞÞ[ 0. Simple calculation reveals that
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A2
5

A1ðA3 þ A4Þ
¼ ðp þ cdÞhð2� bÞ
ðp þ cdÞhð1� mÞ þ h

; so that

if
M

m0ðnÞ2
[

ðp þ cdÞhð2� bÞ
ðp þ cdÞhð1� mÞ þ h

or if
m0ðnÞ2

M
þ m

2� b
\

1

2� b
þ h

ðp þ cdÞhð2� bÞ ;

ð7Þ

jH2j ! 1 as T increases. It is easy to deduce that o
on

m0ðnÞ2
M

þ m
2�b

h i
¼ � ð3�2bÞm0

2�b �
M0m02

M2 \0 when M0 [ 0, so that there exists a particular value �n of n such that

equation (7) is satisfied whenever n[ �n. Therefore, jH2j ! 1 with T, whenever

n[ �n. If f(T) is strictly increasing in T, there exists a value of T, say �T , such that

jH2jð�TÞ ¼ 0, and jH2j[ 0 for all T 2 ð�T ;1Þ. Therefore, P1ðT; nÞ is strictly

pseudoconcave due to Proposition 2, and has at most one maximum due to

Proposition 3.

We shall now provide an iterative search method to find optimal values of T and

n (say T� and n�) with the help of propositions 1 and 4. Numerical example proves

that the method is a convergent one, providing optimal values for both the decision

variables. As mð0Þ ¼ 0 and limn!1 mðnÞ ¼ 1, we choose initial value of n to be

such that mðnÞ ¼ 0:5.

Algorithm

Step 1: Start with j ¼ 0 and the initial trial value of n0, where mðn0Þ ¼ 0:5.
Step 2: For given nj, find optimal T (by virtue of Proposition 4).

Step 3: Using the result obtained from Step 2, determine optimal value of njþ1 (by

virtue of Proposition 1).

Step 4: If the difference between nj and njþ1 is sufficiently small, set n� ¼ njþ1

and T� ¼ T . Then ðT�; n�Þ is the optimal solution and stop. Otherwise, set

j ¼ j þ 1 and return to Step 2.

We summarize the findings in the following proposition:

Proposition 5 If m000ðnÞ[ 0, then the average profit function is jointly concave in

T and n on S ¼ fð �T ;1Þ 	 ð�n;1Þg, where �n is the least value of n satisfying (7),

and �T is the only solution of f ðTÞ ¼ 0 of Eq. (6). The optimal solution ðT�
1 ; n

�Þ is

given by

ðT�
1 ; n

�Þ ¼

ðT�; n�Þ; if �T\T� and �n\n�;

ð�T; n�Þ; if T�\�T and �n\n�;

ðT�; �nÞ; if �T\T� and n�\�n;

ð�T ; �nÞ; if T�\�T and n�\�n:

8>>><
>>>:
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Case 2: T\td

Under this assumption, the stock-in-hand will be depleted totally before

deterioration starts. Hence there is no need to invest in preserving the items, so

that we may set n ¼ 0. Also, the change in inventory level during (0, T) is due to

demand only, with boundary condition IðTÞ ¼ 0. The average profit takes the form

P2ðTÞ ¼
1

T
ðp � cÞfað1� bÞg

1
1�bT

1
1�b � k � h

fað1� bÞg
2�b
1�b

að2� bÞ T
2�b
1�b

" #
: ð8Þ

We have, from (8),

dP2ðTÞ
dT

¼� 1

T2
ðp � cÞfað1� bÞg

1
1�bT

1
1�b � k � h

fað1� bÞg
2�b
1�b

að2� bÞ T
2�b
1�b

" #

þ 1

T
ðp � cÞ fað1� bÞg

1
1�bT

1
1�b�1

1� b
� hfað1� bÞg

2�b
1�bT

2�b
1�b�1

að1� bÞ

" #
:

Let the solution of the equation
dP2ðTÞ

dT
¼ 0 be T2. We then have

d2P2

dT2
¼� 2

T

oP2

oT
þ 1

T
ðp � cÞfað1� bÞg

1
1�b

1

1� b
b

1� b
Tð 1

1�b�1�1Þ
�

� hfað1� bÞg
2�b
1�b

að1� bÞ
1

1� b
T ð 1

1�b�1Þ

#
;

so that d2P2

dT2 jT¼T2
¼ 1

T2
ðp � cÞa 1

1�bbð1� bÞ
2b�1
1�b T

2b�1
1�b

2 � ha
1

1�bð1� bÞ
b

1�bT2

b
1�b

� �
. Clearly,

d2P2

dT2 jT¼T2
\0 if and only if T2 [ p�c

h

� 	 b
1�b. Also, as per the assumption, T2\td . The

finding is summarized in the following proposition.

Proposition 6 In absence of investment on preservation, the profit function is

concave if T2 [ p�c
h

� 	 b
1�b, where T2 is the solution of first order condition. The

optimal cycle length is given by

T�
2 ¼

p � c

h

� � b
1� b

; if T2\
p � c

h

� � b
1� b

;

T2; if
p � c

h

� � b
1� b

\T2\td;

td; if td\T2:

8>>><
>>>:

From propositions 5 and 6, the optimal average profit of the retailer is given by

PðT; nÞ ¼ maxfP1ðT�
1 ; n

�Þ;P2ðT�
2 Þg, i.e., the retailer should separately calculate

the cases to take the decision whether to invest in preservation technology or not.

However, there are certain situations where one has limited option for judgement.

For example, if deterioration starts too early, the retailer is almost bound to invest in

preservation in order to reduce deterioration.
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Proposition 7 It is always beneficiary for the retailer to invest in preservation

technology if td\ p�c
h

� 	 b
1�b.

The proof follows directly from Proposition 6. Proposition 7 has a valuable

managerial insight for the retailer. It provides a lower limit for the non-deterioration

time period, violation of which would lead to considerable amount of loss due to

spoilage.

4 Numerical illustration

In this section, we aim to illustrate the proposed model by a numerical example. The

following parameter-values are considered: c ¼ 20, h ¼ 3, td ¼ 0:0417, k ¼ 120,

p ¼ 35, a ¼ 1000, b ¼ 0:1, cd ¼ 0:2, h ¼ 0:2 in appropriate units. The reduced

deterioration rate is mðnÞ ¼ 1� e�an with a ¼ 0:01, where a is the simulation

coefficient representing the change in the reduced deterioration rate per unit change

in capital (Dye 2013).

Using the algorithm provided in the earlier section, we obtain Table 2 starting

with n0 ¼ 69:3147, from which it is easy to deduce that the optimal values of the

decision variables in the first case are n� ¼ 367:35, T�
1 ¼ 1:052 and P1 ¼ 25446:4.

Also, we obtain T�
2 ¼ 0:0417 and P2 ¼ 17238:5 in the second case, so that the

retailer would bag more profit if he invests in preservation technology.

We now examine the effects of changes in the parameter-values on the optimal

decision variables as well as on the average profit. We change the value of one

parameter at a time while keeping the other parameter-values unchanged. In all the

Figs. 2, 3, 4, 5 and 6, results obtained from case 1 (td\T) is compared with the

results obtained by setting n ¼ 0, i.e. a situation when the opportunity to invest in

preservation technology is not available, or the retailer is simply unwilling to spend

on it. Based on the behavioral changes as reflected in Figs. 2, 3, 4, 5 and 6, we

derive the following managerial insights.

Table 2 Computational results
Number of steps n T Average profit

1 69.3147 0.6364 24,373.3

2 303.637 0.6364 25,098.3

3 303.637 1.0192 25,422.6

4 363.391 1.0192 25,444.7

5 363.391 1.0505 25,446.3

6 367.167 1.0505 25,446.4

7 367.167 1.0519 25,446.4

8 367.34 1.0519 25,446.4

9 367.34 1.052 25,446.4

10 367.35 1.052 25,446.4
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1. The more the demand is stock-sensitive, the more is the need of investment in

preservation, as the difference between optimal profits obtained in two cases

increases (Fig. 2b). The higher value of b makes the retailer lean to order more;

eventually, he is bound to spend more on preservation to reduce the effect of

deterioration (Fig. 2c). Higher preservation technology investment as well as

higher stock-sensitivity make a good sales volume, resulting in increment in

profit. Also, the initial order quantity being larger, the cycle length increases in

order to allow the inventory level to reach zero (Fig. 2a).

2. Increasing deterioration rate has negative effect on the total profit, which is

obvious; however, in presence of investment in preservation, the optimal cycle

length as well as profit are less vulnerable compared to the case of zero

preservation investment (Fig. 3a, b). The reduced vulnerability comes at a

higher cost which is due to higher investment in preservation technology.

Higher deterioration rate enforces the retailer to invest more in preservation
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Fig. 2 Sensitivity of optimal results w.r.t. b. a b versus cycle length, b b versus total profit, c b versus
preservation investment
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technology in order to keep the profit margin unaffected as much as possible

(Fig. 3c). With higher deterioration rate, the retailer should realign his business

strategy to sell the product as soon as possible which results in reduced cycle

length.

3. With higher values of td , i.e. longer ‘no deterioration period’, cycle length

decreases in case 1. On the contrary, due to the fact that deterioration starts at a

later time-point which eventually implies lower deterioration cost as well as

lesser amount of spoilage, the retailer earns some extra profit by widening cycle

length when there is zero investment in preservation (Fig. 4a). Both the cases

produce higher profit as td increases (Fig. 4b). It is also seen that when td

crosses a threshold value, it is not profitable to invest in preservation, so that

investment amount becomes zero then, which is evident from Fig. 4c. Also, if

the deterioration starts at a later time, lesser preservation investment is then

necessary, indicating that preservation cost should decrease significantly with

increasing td , which is corroborated by Fig. 4c.
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4. With higher holding cost, the order quantity aswell as cycle lengthdecrease (Fig. 5a),

resulting in lesser profit (Fig. 5b).However, due to lower order level and shorter cycle

length, the retailer has to invest lesser in preservation technology (Fig. 5c).

5. With higher selling price, increase in total profit is obvious (Fig. 6b). The order

level is also increased aiming to gain more profit, resulting in longer cycle

length (Fig. 6a) and higher investment in preservation to fight against

deterioration for longer time period (Fig. 6c).

5 Discussion and conclusion

The present paper develops an inventory model for non-instantaneously deterio-

rating item with preservation technology investment under stock-dependent demand

scenario. Two cases depending on whether stock out occurs before or after
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preservation investment
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deterioration starts are considered, and optimal values of the decision variables are

determined. The paper suggests that the retailer should maximize average profit in

both cases in order to determine which of the schemes should be adopted. We have

derived a condition on td which acts as a lower bound. If td goes down beyond that

lower limit indicating ‘too early occurrence’ of deterioration, we see that it is always

beneficial to invest in reducing deterioration. The proposed model is illustrated

through a numerical example and the optimal cycle length and investment for

preservation are obtained. The sensitivity analysis exhibits that the solution of the

model is quite stable. The numerical results demonstrate that investing in

preservation technology substantially aids managers in developing a competitive

advantage and improves their total profit. The results provide managerial insights

towards determining optimal strategies with changed market scenario.

The present model may be extended in various ways. One can incorporate into

the model some other parameters such as food quality or price, on which demand

depends. The model may also be extended to two-echelon scenario where the
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vendor may allow permissible delay in payments. Another interesting direction

would be to consider variable lead time which can be controlled through extra

investment. Extending the model under stock-dependent stochastic demand scenario

would be a challenging task but worth studying.

Appendix 1

During td � t � T , we have

dIðtÞ
dt

¼ � aIðtÞb � ð1� mÞhIðtÞ

or,
dIðtÞ

dt
þ ð1� mÞhIðtÞ ¼ � aIðtÞb

Substituting y ¼ IðtÞ1�b
and using the boundary condition yðTÞ ¼ 0, we get
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y ¼ a
ð1� mÞh eð1�mÞð1�bÞhðT�tÞ � 1

h i

or; IðtÞ ¼ a
ð1� mÞh eð1�mÞð1�bÞhðT�tÞ � 1

n o� � 1
1�b

:

At t ¼ td, we have IðtdÞ ¼ a
ð1�mÞh eð1�mÞð1�bÞhðT�tdÞ � 1

� h i 1
1�b

During 0� t\td , we have,

dIðtÞ
dt

¼�afIðtÞgb

so that fIðtÞg1�b ¼fIðtdÞg1�b þ aðtd � tÞð1� bÞ

¼ a
ð1� mÞh eð1�mÞð1�bÞhðT�tdÞ � 1

n o
þ aðtd � tÞð1� bÞ:

Hence Eq. (2) is obtained.

Appendix 2

Substituting eð1�mÞð1�bÞhðT�tdÞ ¼ 1þ ð1� mÞð1� bÞhðT � tdÞ and

eð1�mÞð1�bÞhðT�tÞ ¼ 1þ ð1� mÞð1� bÞhðT � tÞ, and neglecting higher order terms,

we get

P1ðT ;nÞ ¼
1

T
ðp� cÞ að1�bÞ 1

ð1�bÞð1�mÞhð1�bÞð1�mÞhðT � tdÞþ td

� �� � 1
1�b

"

�ðpþ cdÞð1�mÞh
Z T

td

a
ð1�mÞh ð1�bÞð1�mÞhðT � tÞ

� � 1
1�b

dt� k�Tn

� h

Z td

0

a
ð1�mÞh ð1�bÞð1�mÞhðT � tdÞþ að1�bÞðtd � tÞ

� � 1
1�b

dt

�h

Z T

td

a
ð1�mÞh ð1�bÞð1�mÞhðT � tÞ

� � 1
1�b

dt

#

¼ 1

T
ðp� cÞfað1�bÞTg

1
1�b �ðpþ cdÞð1�mÞh

Z T

td

fað1�bÞðT � tÞg
1

1�bdt

�

� k�Tn� h

Z T

0

fað1�bÞðT � tÞg
1

1�bdt

¼ 1

T
ðp� cÞ að1�bÞf g

1
1�bT

1
1�b �ðpþ cdÞð1�mÞhfað1�bÞg

2�b
1�b

að2�bÞ ðT � tdÞ
2�b
1�b

"

�k�Tn� h
fað1�bÞg

2�b
1�b

að2�bÞ T
2�b
1�b

#
:
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