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Abstract This paper presents a new generalized vehicle routing problem with a

cross-dock. Basic features of the examined problem are the many-to-many rela-

tionship between the suppliers and customers, and the use of different vehicle fleets

for performing the inbound and outbound routes. An adaptive memory program-

ming method has been developed coupled with a Tabu Search algorithm. For

generating new provisional solutions, elite subroutes with varying lengths are

identified from the reference solutions and are used as building blocks, while

multiple strategies are applied to maintain an effective interplay between diversi-

fication and intensification. Various computational experiments are conducted on

existing as well as on new data sets with diverse features, regarding the geographic

distribution of the nodes and the density of supplier-customer links. Overall, the

proposed method performed very well and new best solutions have been found.

Lastly, new insights regarding the impact of split options are reported.
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1 Introduction

Transportation and product distribution costs often make up for a great portion of

the total operating and logistics costs of a company either upstream or downstream

in the supply chain. For this reason, it is important to focus on the design of

distribution networks aiming to optimize product flows in pursuit of cost savings. In

this context, cross-docking systems have been widely used in real-life distribution

networks. Cross-docks can be seen as intermediate transshipment facilities that

regulate the flow of products from origin to destination locations. The main role is to

collect products coming from multiple sources, to sort and consolidate the products,

and to arrange their shipping to the next echelon or to the final destinations. The

main difference between modern cross-docking systems and traditional single or

multi-echelon distribution network structures is that inbound products arrive at the

cross-dock and are directly loaded to outbound vehicles. Therefore, the cross-

docking system is lean and maintains little or no inventory. This paper presents a

new problem, the so-called many-to-many vehicle routing problem with cross-

docking, which according to our knowledge generalizes previous problem settings

that appear in the literature. Key feature is that each customer requests products

from multiple suppliers, while there is the restriction to visit each customer and

supplier only once during the planning horizon.

The problem introduced in this paper has numerous practical applications. It is

common for retailers located in urban areas to replenish their stock by receiving

goods from multiple production warehouses located around the city limits. This

situation emerges when a retailer receives different types of products from the same

logistics provider, and not all of them are available at a single supplier location. This

creates cargo consolidation opportunities, which can be exploited by the proposed

problem setting with major cost savings. Furthermore, the single visit requirement at

the supplier and customer nodes is essential in practice to minimize the

administrative, handling, and various types of setup costs and times (Tarantilis

et al. 2011). Finally, recent pro-environmental city logistics initiatives are aligned

with the use of cargo consolidation operations outside urban areas, in pursuit of

dispatching lighter, greener, or even electric vehicles in the city to minimize the

impact on the urban environment (Zachariadis et al. 2015). Interested readers may

also refer to the recent survey paper of Guastaroba et al. (2016) for vehicle routing

problems with intermediate facilities.

Cross-docking has several advantages compared to other product distribution

strategies both from the economic and environmental viewpoints. As it is discussed

in Ma et al. (2011), logistics carriers often offer discount prices for truck-load

orders; however, in practice it is common to have customers that raise less-than-

truckload orders. In these situations, cross-docking offers a straightforward cargo

consolidation opportunity, which enables products originated from various suppliers

to be combined in truckload shipments and, thus, to be shipped with the discounted

carrier rates. Moreover, this direct consolidation process avoids holding cargo in the

intermediate nodes until sufficient products for forming a truckload shipment has

arrived at the expense of inventory costs. In addition, the use of an intermediate
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node for consolidating products has been seen to reduce the total distance travelled

and, thus, the transportation costs incurred compared to the direct shipping

alternative, especially when the origin and destination points are located in different

geographic regions and the intermediate node is located between these regions

(Nikolopoulou et al. 2017). Another aspect that makes the cross-docking strategy an

attractive transportation logistics practice is that it promotes short cycle times, rarely

exceeding a single day. As a result, the service quality of the overall distribution

system increases. In fact, cross-docking is considered to follow the Just-In-Time

principle. Another favorable feature of the cross-docking strategy is that it enables

the use of different vehicle fleets for handling the inbound and outbound

transportation operations. This is of major importance when product flows are

originated from areas outside the city center and the destination points are located in

urban areas. In these cases, it is desirable to use large capacity heavy-duty vehicles

for moving products from the suppliers to the cross-dock. On the contrary, it is often

essential to use more compact vehicles for travelling within the core city road

network. This will allow traversing narrow streets and avoiding traffic congestion,

providing delivery service in confined customer spaces, and minimizing the

environmental impact in urban areas.

Cross-docking practice has received research attention, especially regarding the

operational aspects of the cross-dock. Focus is given on maximizing throughput by

examining the layout of the cross-docks (Bartholdi and Gue 2004), the positioning

of consolidated products inside the cross-dock (Vis and Roodbergen 2008), and the

assignment of vehicles to dock doors (Tsui and Chang 1992; Cohen and Keren

2009). Another important research stream is devoted to location problems for the

cross-dock facilities (Musa et al. 2010; Sung and Song 2003). In terms of the

inbound/outbound distribution operations, there is a group of papers that call for the

joint minimization of the total transportation and inventory costs incurred by cross-

docking logistics systems. The common characteristic of these works is that vehicle

trips are modeled as direct links between origin (suppliers) and destination

(customers) nodes, or direct links between the cross-dock and the origin and

destination locations. Under this setting, a vehicle cannot serve more than one

supplier (or customer) order. These models aim to identify the optimal balance

between the product flows directly shipped from suppliers to customers and the

flows passing through intermediate consolidation facilities (Ma et al. 2011).

The routing component of cross-docking distribution networks has been initially

examined by Lee et al. (2006). In this work the authors assume that vehicles may

visit more than one service locations along their trips, subject to capacity

constraints. The model introduced calls for the minimization of the routing costs

involved for transferring products between suppliers and customers. It also assumes

that all products collected from the suppliers are moved to the cross-dock, where

they are consolidated and loaded to outbound vehicles for the shipment of these

products to the customers. As far as the synchronization is concerned between the

inbound and outbound trips, the authors assume that all pickup routes arrive at the

cross-dock simultaneously. To solve the problem, Lee et al. (2006) propose a Tabu

Search algorithm that is tested on instances with up to 50 nodes. Later, Liao et al.

(2010) propose for the same problem an improved Tabu Search algorithm.
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More recently, Wen et al. (2009) introduce a vehicle routing variant denoted as

Vehicle Routing Problem with Cross-Dock (VRPCD) that extends the model of Lee

et al. (2006). More specifically, time window constraints are imposed on both

suppliers and customers, while the simultaneous vehicle arrival restriction at the

cross-dock is dropped. Instead, more elaborate synchronization constraints are

introduced to bridge the timing of inbound and outbound vehicle routes. Another

important feature of the VRPCD model is that each transportation request is

associated with a specific origin and destination location, where every pickup

(supplier) node is paired with a single delivery (customer) node. Wen et al. (2009)

propose an Adaptive Memory Procedure applied on problem instances involving up

to 200 transportation orders. Later, Tarantilis (2013) studies the same problem and

also proposes extensions with respect to the route structure and the consolidation

activities at the cross-dock. In particular, an alternative scenario is examined where

different vehicles are used for the pickup and delivery routes. This scenario implies

that all products are unloaded to the cross-dock and reloaded onto the delivery leg

vehicles for being transported to the customer locations. In addition, Tarantilis

(2013) differentiates between closed and open route configurations for both inbound

and outbound routes. A multi-restart Tabu Search algorithm is proposed for solving

all aforementioned problem versions. Another work on the basic VRPCD is that of

Morais et al. (2014). In this work an iterative local search algorithm is proposed for

solving VRPCD instances of up to 500 customers. Another paper on the

transportation costs incurred when products must be transferred between origin

and destination points, is due to Nikolopoulou et al. (2017). In this work two

alternative transportation strategies are compared, namely direct shipping and cross-

docking. Several computational experiments are performed to gain insight on the

role of temporal and operational parameters on the relative effectiveness of each

strategy. Lastly, Santos et al. (2013) study a VRPCD variant with a hybrid network

structure. Instead of requiring all products to pass through the cross-dock, the

authors allow direct shipping between suppliers and customers. To solve the

problem, denoted as the Pickup and Delivery Problem with Cross-docking

(PDPCD), a branch and price algorithm is proposed and applied to instances with

up to 30 transportation requests.

A real-life vehicle routing with cross-docking application is presented by

Petersen and Ropke (2011). They assume that vehicles depart from the cross-dock

and may visit both suppliers and customers before returning back to the cross-dock

facility. Each vehicle may visit the cross-dock several times for unloading/loading

operations and the cross-dock can serve as a short-term inventory holding point for

the products. More specifically, the products of a given request may be pickedup

along a morning route and shipped to the cross-dock, where they are held until

shipped to the destination point by means of an evening vehicle trip. Dondo et al.

(2011) develop an MILP formulation for scheduling the operations taking place in a

single cross-dock facility. Their model aims to maximize the cross-dock produc-

tivity by jointly designing the inbound/outbound vehicle trips and assigning vehicles

to cross-dock doors. The authors also consider cases where the number of cross-

dock doors is lower than the vehicles used, and thus, there is not always a free door

for every vehicle during the time horizon. Enderer (2014) introduces the combined
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Dock-Door Assignment and Vehicle Routing Problem (DAVRP). This model aims

to make decisions for the three distinct levels of a cross-dock system: (a) assignment

of suppliers to inbound doors; (b) internal cross-dock routing plans and assignment

of inbound products to outbound doors; and (c) vehicle routing plans for

transporting the requested products to the customers using the outbound doors.

Overall, the goal of the DAVRP is to minimize the total product handling and

transportation costs. Finally, Grangier (2016) in his dissertation presents a

matheuristic algorithm for the Vehicle Routing Problem with Dock Resource

Constraints (VRPCD-DR).

The contribution of this paper is three-fold. First, a new generalized vehicle

routing problem with a cross-dock is introduced. Most papers discussed above

assume that every supplier is connected with only one customer (one-to-one

VRPCD), while in most cases a common homogeneous fleet of vehicles is used for

both inbound and outbound routes. Contrary, in the examined problem a many-to-

many relationship between the suppliers and customers is considered, while

different vehicle fleets are used to perform the pick and delivery routes. Second, an

Adaptive Memory Programming method has been developed. Key characteristic is

the mechanism for identifying and selecting elite components from the reference

solutions. Particularly, the proposed mechanism assigns scores to all possible

subroutes with varying length and gradually selects those with the highest score in

terms of solution cost or diversity. A Tabu Search algorithm coupled with new long

term memory structures is applied as the main optimization block for improving the

quality of the new provisional solutions generated throughout the search process.

Third, various computational experiments have been performed. Using well-known

benchmark data sets for the one-to-one VRPCD, the proposed method proved to be

efficient and effective compared to the current state-of-the-art. Furthermore, new

best solutions have been found, while it seems that the method scales well with the

problem size. On the other hand, the proposed method has been also tested on new

data sets with diverse features regarding the geographic distribution of the network

nodes as well as the density of supplier-customer links. This set of results provides

several new insights regarding the effect of split options.

The remainder of the present paper is organized as follows: Sect. 2 describes the

examined problem. Section 3 introduces the mathematical formulation for the

problem. The proposed adaptive memory programming algorithm is presented in

Sect. 4 and all its components are discussed. Next, Sect. 5 presents our compu-

tational study and findings on various benchmark data sets. Finally, Sect. 6

concludes the paper.

2 Problem description

Let G = (V, A) be a graph, where V is the node set and A is the arc set. V is

composed of the cross-dock (node 0) and two node subsets S0 and D0, representing
the supplier (pickup) and customer (delivery) locations, respectively. The arc set

A is considered to link every pair of nodes that belongs either to the set S00 ¼
S0 [ 0f g (pickup arcs), or to the set D00 ¼ D0 [ 0f g (delivery arcs).
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Consider a set of transportation requests O. Each request o [ O is associated with

a supplier io [ S0, a customer jo [ D0 and a demand do. It calls for the transportation

of do units of products from supplier io to customer jo. There is also the demand

matrix dij (i [ S0, j [ D0) that represents the quantity of goods customer j requires

from supplier i. Each non-zero dij (i [ S0, j [ D0) actually refers to a transportation

request contained in O. Note that the demand matrix may have multiple non-zero

entries in each row, meaning that each supplier may send products to more than one

customer. For each supplier i (i [ S0), let pi be the total amount of products supplied

by i. In addition, each column may also have multiple non-zero values, and this

corresponds to cases where a customer receives products from more than one

suppliers. There is also a demand dc associated with each customer c (c [ D0).
The set of transportation requests are to be fulfilled by two distinct fleets of

vehicles, denoted as KS and KD. The vehicles from the set KS are considered to

travel the S00 arcs, whereas vehicles from the KC set traverse only D00 arcs. The
capacity of each vehicle k [ KS is equal to QS, whereas the capacity of each vehicle

l [ KD is equal to QD. All pickup (or delivery) vehicles start and end their pickup (or

delivery) routes at the cross-dock. In addition, the delivery routes should return to

the cross-dock within a time limit T. Lastly, note that each supplier or customer

must be visited only once.

The problem examined considers that vehicles of KS, based at the cross-dock, are

dispatched to the suppliers S0, in order to collect all products associated with the

transportation orders in O. These vehicles return to the cross-dock where the

products are unloaded, and appropriately consolidated to be loaded onto outbound

vehicles. For this purpose, vehicles from the KD set are used. As soon as the

products for each delivery route reach the cross-dock, the delivery trip is performed

and the products are transported to the customer locations. All vehicles performing

delivery trips return to the cross-dock.

The objective is to design the set of pickup and delivery routes that minimize the

total travelled distance. The produced set of routes is subject to the following

constraints:

(a) All inbound and outbound routes originate from the cross-dock and terminate

at the cross-dock.

(b) Each supplier i [ S0 must be visited once by exactly one pickup route and,

thus, all products from the corresponding transportation requests associated

with i must be assigned to the same vehicle.

(c) The total amount of products assigned to a pickup route should not exceed

vehicle capacity QS, and similarly the total amount of products assigned to a

delivery route should not exceed vehicle capacity QD.

(d) Each customer i [ D0 must be visited once by exactly one vehicle and, thus,

all products from all transportation requests associated with i must be

assigned to the same vehicle.

(e) There is a maximum route duration T which refers to the total time required

for completing all pickup and delivery operations. More specifically, every

delivery route must terminate at the cross-dock no later than time T. Note that

we do not apply any duration length restrictions on individual pickup or
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delivery routes, we only apply a maximum time limit T that all delivery

vehicles should be back at the cross-dock.

(f) A delivery vehicle cannot leave the cross-dock, until all products from the

connected pickup routes arrive at the cross-dock.

Let a set RS to denote all pickup routes. Each pickup route r (r [ RS) visits a

subset of suppliers Sr and it is assumed to leave the cross-dock at time zero. The

time RTr that the vehicle performing the pickup route r is ‘‘released’’ (i.e., has

finished its pickup route and has unloaded all products) at the cross-dock, is equal to

the total traveling time plus the service time (sps) spent at the location of each

supplier s [ Sr plus the time spent for unloading operations (u) at the cross-dock. At

the customer level, let RD be the set of delivery routes. Each r [ RD visits a subset

of customers Dr. For every delivery route r, the total traveling time plus the service

time (sdc) spent at each customer location c [ Dr is represented by tr. In addition, let

DTr denote the departing time from the cross-dock of a delivery route r. On this

basis, the duration constraint (e) for every delivery route r can be expressed as

DTr þ tr � T . Constraint (f) is associated with the temporal characteristics of the

examined problem, and dictates the synchronization between the pickup and

delivery routes. Necessary condition for the departure of a delivery route is that all

products requested by each of the customers (c [ Dr) of the route must be available

at the cross-dock in order to be sorted and loaded onto the delivery vehicle.

Therefore, for every route r [ RD, DTr ¼ ar þ l, where ar is equal to the maximum

release time at the cross dock of all the relevant pickup routes that contain the

products requested by the Dr customers. This is explained in detail in the example

that follows (illustrated in Fig. 1). Finally, parameter l denotes the time for

unloading operations that take place at the cross-dock.

Figure 1 illustrates a problem instance with four suppliers and six customers. The

link between a supplier and a customer node indicates that there is a transportation

request for moving products between this node pair. Figure 1 also provides the

demand matrix for the corresponding product flows. Supplier A sends products to

customers 1 and 2, Supplier B send products to customers 1 and 6, and so on.

An example solution to the problem instance of Fig. 1 is shown in Fig. 2.

Observe that there are two routes at the supplier level, and three vehicle routes at the

customer level. The suppliers and customers are served by different vehicle types

(k1, k2 [ KS and k3, k4, k5 [ KD). The pickup route assigned to vehicle k1 visits

suppliers A and B and collects the products requested by customers 1, 2, and 6,

whereas the pickup route performed by k2 visits suppliers C and D to pickup the

products destined to customers 2, 3, 4, and 5. The capacity constraints for the

inbound routes k1 and k2 ensure that dA1 ? dA2 ? dB1 ? dB6 B QS and dC2 ?

dC3 ? dC4 ? dD2 ? dD3 ? dD4 ? dD5 B QS, respectively. For the outbound routes

k3, k4, and k5, the capacity constraints are dA1 ? dB1 ? dB6 B QD, dA2 ? dC2 ?

dD2 ? dC3 ? dD4 B QD, and dC4 ? dD4 ? dD5 B QD, respectively. Regarding the

synchronization constraints discussed earlier, the release time for the products of

delivery route k3 is ak3 ¼ RTk1 þ l. This is because k3 serves customers 1 and 6 who

receive products from suppliers A and B, both of them visited by k1. Similarly, the
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release times for routes k4 and k5 are ak4 ¼ max RTk1;RTk2f g þ l and

ak5 ¼ RTk2 þ l, respectively.

The problem described above is closely related to the so-called Vehicle Routing

Problem with Cross-Docking (VRPCD). As mentioned in the introduction section,

the VRPCD has been introduced by Wen et al. (2009) and it assumes one-to-one

relationships between suppliers and customers (i.e., each supplier is connected with

only one customer and vice versa). Instead, in this paper a more generalized

distribution network structure is considered with many-to-many relationships

A

B
C

D

1

6

5

43

2

Cross-Dock

Fig. 1 Problem instance with four suppliers and six customers
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D

1

6

5
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Cross-Dock

k2

k3

k4 k5

Fig. 2 Example solution for the problem instance of Fig. 1
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between the suppliers and the customers. Notably, many-to-many relationships can

also be captured within a one-to-one VRPCD setting if we assume that collocated

node copies are generated for every endpoint of the various transportation links. For

example, consider the problem instance presented in Fig. 1. The many-to-many

association between customers and suppliers can be translated into multiple one-to-

one relations by generating a supplier-customer pair for each non-zero element in

the demand matrix. As such, the resulting problem will contain 11 suppliers and 11

customer nodes. Besides the fact that the dimension of the problem increases, this

setting would permit multiple visits per node (i.e., copies of the original supplier or

customer nodes can be assigned to different vehicle routes). In practice, this is often

undesirable given that the resulting service times from the multiple visits are

typically higher due to the multiple setup times (e.g. for security procedures or for

exchange of paperwork). On the contrary, in our model each supplier and customer

node is served only once by exactly one vehicle.

3 Mathematical formulation

In this section we present and describe in detail the mathematical model for the

many-to-many Vehicle Routing Problem with Cross-docking (many-to-many

VRPCD) as described above. In addition to the notation introduced in Sect. 2, let

us denote the set of pickup nodes by S = {0, 1,…, n ? 1} and the set of delivery

nodes by D = {0, 1,…, n0?1}. The cross-dock is represented by the nodes 0, n ? 1

and n0?1, where the nodes 0 and n ? 1 in S represent the starting and ending points

for the pickup routes, while the nodes 0 and n0?1 in D represent the starting and

ending points for the delivery routes, respectively. Note that these four nodes are

associated with a zero amount of supply/demand and with zero service time. The set

E denotes all the feasible arcs for the pickup operations. It consists of the arcs {(i, j):

i, j [ S, i = j}. The set E0 denotes all the feasible arcs for the delivery operations

and consists of the arcs {(h, f): h, f [ D, h = f}. Each arc (i, j) [ E is associated with

a known non-negative distance csij, that represents the travel distance from pickup

node i to pickup node j. Similarly, each arc (h, f) [ E0 is associated with a known

non-negative distance cchf, that represents the travel distance from delivery node

h to delivery node f. In addition, M is an arbitrarily large constant.

Indices and sets

i, j Index for pickup nodes (suppliers)

h, f Index for delivery nodes (customers)

k Index for pickup vehicles

l Index for delivery vehicles

Parameters

KS Number of available pickup vehicles

KD Number of available delivery vehicles

QS Capacity of the pickup vehicles

QD Capacity of the delivery vehicles
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csij Travel distance between pickup node i and pickup node j ((i, j): i, j [ S,

i = j})

cchf Travel distance between delivery node h and delivery node f ((h, f): h, f [ D,

h = f})

CVih 1, if pickup node i (i [ S \ {0, n ? 1}) supplies (is connected to) delivery

node h (h [ D \ {0, n0?1}); 0, otherwise

pi Amount supplied by pickup node i (i [ S)

dh Amount delivered to delivery node h (h [ D)

spi Service time spent at pickup node i (i [ S)

sdh Service time spent at delivery node h, (h [ D)

u Time for unloading operations at the cross-dock

l Time for loading operations at the cross-dock

T Maximum route duration

Binary variables

xij
k 1, if vehicle k (k [ KS) travels from pickup node i to pickup node j (i, j [ S); 0,

otherwise

zhf
l 1, if vehicle l (l [ KD) travels from delivery node h to delivery node f (h, f [ D);

0, otherwise

yi
k 1, if pickup node i (i [ S) is serviced by vehicle k (k [ KS); 0, otherwise

vh
l 1, if delivery node h (h [ D) is serviced by vehicle l (l [ KD); 0, otherwise

Continuous non-negative variables

tpi
k Time at which vehicle k leaves pickup node i (i [ S, k [ KS)

tdh
l Time at which vehicle l leaves delivery node h (h [ D, l [ KD)

RTk Release time of pickup vehicle k at the cross-dock (k [ KS)

DTl Starting time of delivery vehicle l at the cross dock (l [ KD)

Below we present the mathematical formulation of the many-to-many VRPCD as

a mixed-integer linear programming model. The objective is to minimize total

transportation costs.

Minimize
X

i;jð Þ2E

X

k2KS

csij � xkij þ
X

h;fð Þ2E0

X

l2KD

cchf � zlhf ð3:1Þ

Subject to
X

j2S:i 6¼j

xkij ¼ yki 8i 2 S \ 0; nþ 1f g; k 2 KS
ð3:2Þ

X

f2D:h6¼f

zlhf ¼ vlh 8h 2 D \ f0; n0 þ 1g; l 2 KD ð3:3Þ

X

k2KS

yki ¼ 1 8i 2 S \ 0; nþ 1f g ð3:4Þ
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X

l2KD

vlh ¼ 1 8h 2 D \ f0; n0 þ 1g ð3:5Þ

X

j2S\ 0f g
xk0j ¼ 1 8k 2 KS ð3:6Þ

X

f2D\ 0f g
zl0f ¼ 1 8l 2 KD ð3:7Þ

X

i2S\ nþ1f g
xki;nþ1 ¼ 1 8k 2 KS ð3:8Þ

X

h2D\ n0þ1f g
zlh;n0þ1 ¼ 1 8l 2 KD ð3:9Þ

X

i2S
xki0 ¼ 0 8k 2 KS ð3:10Þ

X

h2D
zlh0 ¼ 0 8l 2 KD ð3:11Þ

X

j2S
xknþ1;j ¼ 0 8k 2 KS ð3:12Þ

X

f2D
zlnþ1;f ¼ 0 8l 2 KD ð3:13Þ

X

j2S:i 6¼j

xkij ¼
X

j2S:i 6¼j

xkji 8i 2 S \ 0; nþ 1f g; k 2 KS ð3:14Þ

X

f2D:h 6¼f

zlhf ¼
X

f2D:h 6¼f

zlfh 8h 2 D \ f0; n0 þ 1g; l 2 KD ð3:15Þ

X

i2S
pi � yki �QS 8k 2 KS ð3:16Þ

X

h2D
dh � vlh �QD 8l 2 KD ð3:17Þ

tpki þ csij þ spj � tpkj�M 1 � xkij

� �
� 0 8i 2 S; j 2 S \ 0; nþ 1f g; k 2 KS

ð3:18Þ

tpki þ csi;nþ1 þ u� RTk�M 1� xki;nþ1

� �
� 0 8i 2 S \ nþ 1f g; k 2 KS ð3:19Þ

RTk �CVihDTl þM �yki � CVihv
l
h þ 2

� �
8i 2 S; k 2 KS; h 2 D; l 2 KD ð3:20Þ
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DTl þ lþ cc0f þ sdf � tdlf�M 1� zl0f

� �
� 0 8f 2 D \ 0; n0 þ 1f g; l 2 KD

ð3:21Þ

tdlh þ cchf þ sdf � tdlf �M 1� zlhf

� �
� 0 8 h; fð Þ 2 D \ f0; n0 þ 1g; l 2 KD

ð3:22Þ

tdlh þ cch;n0þ1 � tdln0þ1ð Þ�M 1� zlh;n0þ1

� �
� 0 8h 2 D \ f0g; l 2 KD ð3:23Þ

tdln0þ1ð Þ � T 8l 2 KD ð3:24Þ

tpki �Myki 8i 2 S; k 2 KS ð3:25Þ

tdlh �Mvlh 8h 2 D; l 2 KD ð3:26Þ

RTk�M 1� xk0 nþ1ð Þ

� �
� 0 8k 2 KS ð3:27Þ

DTl�M 1� zl0 n0þ1ð Þ

� �
� 0 8l 2 KD ð3:28Þ

X

k2KS

yk0 ¼ 0 ð3:29Þ

X

k2KS

yknþ1 ¼ 0 ð3:30Þ

X

l2KD

vl0 ¼ 0 ð3:31Þ

X

l2KD

vlnþ1 ¼ 0 ð3:32Þ

The objective (3.1) is to minimize the total distance traveled. Constraints (3.2)

and (3.3) ensure that each node is visited once by one vehicle. Constraints (3.4)

and (3.5) guarantee that each request is pickedup or delivered in only one pickup

or delivery route, respectively. Constraints (3.6)–(3.10) guarantee that every route

leaves the corresponding starting point and returns to the ending point. There are

also constraints to guarantee that routes do not return to the starting points nor

leave the ending points (3.11)–(3.13). Constraints (3.14) and (3.15) are flow

conservation constraints. Constraints (3.16) and (3.17) ensure that for each

vehicle, the load on the pickup route and the delivery route does not exceed the

vehicle capacity. Constraint (3.18) computes the time a pickup vehicle k arrives at

pickup node j after visiting pickup node i. Constraint (3.19) computes the time at

which vehicle k arrives at the cross-dock from pickup route for unloading.

Constraint (3.20) is the connectivity constraint among pickup and delivery routes.

12 A. I. Nikolopoulou et al.
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This constraint states that the delivery route l of an order h cannot start until the

corresponding request has been picked up, arrived at the cross-dock and been

unloaded from pickup vehicle k. Next (3.21)–(3.24) are time constraints for the

delivery routes. In particular, constraint (3.21) computes the arrival time at the

first delivery node visited on route l. Constraint (3.22) computes the arrival time at

delivery node j which is visited after node i on route l. Constraint (3.23) computes

the arrival time of vehicle l at the cross-dock and it is ensured that this time is

within the maximum route duration limit T (3.24). We have also added constraints

(3.25) and (3.26) to keep the starting time of pickup/delivery nodes not visited on

a pickup/delivery route at 0. Similarly, constraints (3.27) and (3.28) keep the

finishing/starting time of a not-driven pickup/delivery route at 0. Constraints

(3.29)–(3.32) ensure that the starting and ending points (cross-dock) are not

serviced by any pickup or delivery vehicle.

The above MILP model was solved using IBM ILOG CPLEX 12.5. Compu-

tational experiments for small scale problem instances and implementation details

are reported in Sect. 5.3.

4 Solution method

An Adaptive Memory Programming (AMP) metaheuristic algorithm has been

developed for solving the many-to-many VRPCD. AMP is a general-purpose

solution framework that focuses on the exploitation of strategic memory structures

(Glover 1997). The adaptive memory rationale was introduced by Taillard et al.

(2001). The main goal is to identify solution characteristics frequently found in the

search history and use this information to produce high-quality solutions. AMP

frameworks have also been developed to efficiently solve vehicle routing problems

(Repoussis and Tarantilis 2010; Tarantilis 2005). Gounaris et al. (2014) presents an

AMP framework to address the robust capacitated vehicle routing problem.

Cardona-Valdés et al. (2014) have developed an AMP framework to address the

design of a two-echelon production distribution network. Lastly, Paraskevopoulos

et al. (2016) are among the first to present an AMP framework for the Resource-

Constrained Project Scheduling Problem (RCPSP).

Following the earlier works of Taillard et al. (2001), Tarantilis (2005) and

Gounaris et al. (2014), the proposed framework consists of two phases. During the

initialization phase, the goal is to generate a reference set of high quality solutions.

Subsequently, the exploitation phase is triggered, that incorporates adaptive

memory mechanisms for identifying elite solution components that are used to

generate new provisional solutions. In both phases, a Tabu Search algorithm is

employed as a local search method applied for further improvement and for

reaching high quality local optimal solutions.
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The pseudocode of the proposed AMP algorithm is depicted in Algorithm 1.

Starting from an empty reference set P, l high quality solutions are generated

during the initialization phase (Lines 2–10). A generalized savings heuristic (Line 4)

is employed to generate random initial solutions. This is achieved via a greedy

randomized mechanism controlled via parameter k (see Sect. 4.1). All initial

solutions are locally improved via a Tabu Search metaheuristic algorithm (Line 5)

that is controlled through parameters n and f, described in Sect. 4.4. Subsequently,

the exploitation phase is triggered (Lines 11–19). During this phase, elite solution

components from the reference set P are extracted according to a deterministic set

of criteria that make use of the parameter h. Given these components, an

intermediate solution xelite is generated (Line 12) based on which the final

provisional solution x0 is constructed via the saving construction heuristic (Line 13).

The criteria of extracting solution components and generating the provisional

solution x0 are described in Sect. 4.3. Next, the provisional solution x0 is further

improved by the Tabu Search metaheuristic algorithm (Line 14), and after this local

search process is completed the improved solution x00 is used to update the reference

set P (Line 18). The improvement phase terminates whenever a pre-specified time

limit tlm is reached (Line 11), and the best feasible solution xB encountered

throughout the AMP framework (Line 20) is returned.

4.1 Greedy randomized savings construction heuristic algorithm

A generalized savings heuristic algorithm similar to that proposed in Gounaris et al.

(2014) is adopted in this paper. The construction framework starts from an initial

intermediate feasible solution (x0). During the initialization phase, this is a solution

where one pickup or delivery vehicle is assigned to each pickup or delivery node,

respectively. On the other hand, during the exploitation phase, this is a solution

14 A. I. Nikolopoulou et al.
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where one pickup or delivery vehicle is assigned to an elite component/subset of

connected pickup or delivery nodes, respectively. In any case, all pickup and

delivery routes originate and terminate at the cross-dock, while all nodes are

assigned to vehicle routes. Furthermore, only feasible combinations of pickup and

delivery routes are considered with respect to the maximum route duration and

synchronization constraints. Lastly, note that no limit is imposed on the total

number of pickup or delivery routes.

Given the initial intermediate solution, at each iteration two pickup (or delivery)

routes are selected and merged according to the following generalized savings

scheme. Let two routes r ¼ 0; . . .; i; j; . . .; 0f g and r0 ¼ 0; i0; . . .; j0; 0f g. The savings
function evaluates to cij þ c0i0 þ cj00 � cii0 � cjj0 , where cij is the travel distance for

traversing arc (i, j). The merging of route pairs is repeated either until all merging

combinations in all possible positions produce negative savings or no feasible

merging combination can be found with respect to the capacity, duration and

synchronization constraints. Note that both pickup and delivery routes are consider

during the construction process.

In an effort to diversify the reference set P, a probabilistic mechanism is added

during the solution construction process similar to that proposed by Tarantilis et al.

(2013). Particularly, a restricted candidate list of feasible merging combinations

between pickup or delivery routes with positive saving is maintained at each

iteration, which contains the route pairs with the highest saving. To that end, one

route pair from the list is selected at random, and the corresponding vehicle routes

are merged. In our implementation, the restricted savings list is fixed to a predefined

size k.

4.2 Reference set update method

In both initialization and exploitation phases the reference set P contains a

maximum number of solutions l. It is well documented in the literature that one

essential element for the performance of population-based approaches is to maintain

the diversity of the population during the search. This need intensifies for methods

with relatively small populations, such as scatter search, path relinking and AMP

approaches. In the proposed solution method, the reference set P is updated with

solutions that are not only attractive in terms of the total transportation costs, but

also in terms of diversity (measured in terms of total number of different arcs with

respect to the best encountered solution). From the implementation viewpoint, an

elitist strategy is adopted. Let x denote the candidate solution for insertion into P, xr

any reference solution of P, and xB and xW the best and the worst solutions of P,

respectively. If x performs better than xB in terms of cost, f(x)\ f(xB), then

x replaces xW; otherwise, if f(x)\ f(xr), then x replaces xr only if d(x, xB)[ d(xr, xB),

where d(x, xB) represents the total number of different arcs between solutions x and

xB.
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4.3 Generation of provisional solutions

The goal of the exploitation phase is to generate new provisional solutions by

combining elite components encountered in the reference solutions. An elite

component refers to a subroute, i.e., an ordered subset of nodes (either pickup or

delivery nodes) that appears frequently in the reference solutions. The first step is to

select and isolate these subroutes considering both pickup and delivery routes. Let lz
denote the length, i.e., the number of nodes (either suppliers or customers), of a

subroute z. A component z may be as large as a complete route and as short as an

individual arc connecting two nodes, therefore lz C 2 (i.e., singleton nodes do not

qualify as components).

During the scoring and selection process, the final set of extracted components

should consist of non-overlapping node sets in order to be suitable for recombi-

nation in a new solution. Furthermore, we always make sure that it is feasible to

send one vehicle to serve all selected pickup and delivery subroutes with respect to

the capacity, route duration and synchronization constraints. For scoring the

subroutes, the metric introduced by Gounaris et al. (2014) is adopted and each elite

component z is assigned a score Hz as follows: Hz ¼
P

x2P wxIx;z

� �

1�#ð Þlz�2 , where wx is the

solution score and Ix;z is a binary indicator taking the value of 1, if the subroute

appears in the solution x, and 0 otherwise. The term 1� #ð Þlz�2 quantifies the

adoption of longer subroutes at the expense of their shorter subsets, where h [ (0, 1).
Two strategies are followed to calculate the weight factor wx that are used

interchangeably with equal selection probability. The first strategy takes into

account the dissimilarity ds x; x0ð Þ, i.e., number of different arcs, between two

solutions x and x0 and is calculated as follows [see also Tarantilis et al. (2013):

ds x; x0ð Þ ¼
P

i;jð Þ2A hij, where hij is a binary indicator taking the value of 1, if (i, j) is

an edge of either solution x or x0 (but not both), and 0 otherwise]. In this strategy, the

weight factor is calculated as wx ¼ ds x; xBð Þ=maxxr2Pd xr; xBð Þ, where xB is the

current best reference solution. Contrary, the second strategy takes into account only

the cost. In this case, the weight factor wx is calculated as:

wx ¼ maxxr2Pf xrð Þ � f xð Þð Þ=ðmaxxr2Pf xrð Þ � minxr2Pf xrð ÞÞ.
Having scored each possible delivery and pickup subroute extracted from all

reference solutions, the subroutes are sorted according to their score with

decreasing order. Once a subroute is selected from the list as elite component,

all remaining subroutes that share at least one supplier or customer with the

selected subroute are removed from the sorted subroute list. The selection is

repeated until either the list is empty or there is no way with the remaining

subroute to generate a feasible solution. A feasible intermediate solution (xelite) is

then generated by assigning a vehicle to each of the selected elite components as

well as to any singleton supplier or customer that does not participate in any of

the selected elite components. At this point, the greedy randomized savings

construction heuristic algorithm described in Sect. 4.1 is employed to obtain the

new improved provisional solution. Notably, the provisional solution will often

16 A. I. Nikolopoulou et al.
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provide different combinations of the elite components since it goes through the

route merging procedure.

4.4 Tabu search

All generated solutions are subject to local search via a Tabu Search metaheuristic

algorithm. The latter explores the solution space by performing search trajectories

based on edge-exchange moves from a current solution to the best admissible

neighboring solution. The overall procedure iterates for a number of iterations and

the best solution is returned. Below, each major component is described.

4.4.1 Neighborhood structures

The edge-exchange neighborhood structures considered are 0–1 node relocation, 1–

1 node exchanges and 2-Opt exchanges (Zachariadis and Kiranoudis 2010). A

lexicographic neighborhood evaluation scheme is adopted, while only feasible

solutions are considered. The size of 0–1 Relocation and 2-Opt is O n2ð Þ, while the

size of 1–1 Exchange is O n4ð Þ. All of them involve a constant number of edge

exchanges.

The 0–1 node relocation removes any supplier (or customer) node from its

current position, and reinserts this node into any other available position. Note that

both intra- and inter-route node relocation moves are considered. The 1–1

exchanges any two supplier (or customer) nodes served by two different pickup

(or delivery) routes. More specifically, the first supplier (or customer) node can be

pushed in any available insertion position in the route originally serving the second

supplier (or customer) node. Similarly, the second supplier (or customer) node can

be inserted in any available insertion position combination of the route originally

serving the first supplier (or customer) node. Note that both intra- and inter-route

exchange can be performed. Obviously, the two nodes involved in the exchange

must be of the same type (pickup or delivery). Lastly, the 2-Opt exchange removes a

pair of edges and replaces them by a new pair in the solution. 2-Opt can be applied

on the same route (the visiting sequence of a subroute is reversed) and between a

pair of routes (subroute segments each including the cross-dock are swapped).

4.4.2 Short-term memory, aspiration conditions and diversification mechanism

Our Tabu Search framework operates according to the best admissible local move

scheme. Specifically, all neighborhood structures of the current incumbent solution

are exhaustively explored, and the highest quality feasible neighboring solution is

selected at each iteration. To avoid an over-intensified search, a diversification

mechanism is introduced similar to the Attribute Hill Climber presented by Whittley

and Smith (2004). Each arc (i, j) [ A is associated with a threshold tag ta. Every time

a move m is applied to a solution x with objective value f(x), the threshold tags of

the eliminated arcs (Em) are set equal to f(x), i.e., ta = f(x), V a [ Em. Any move

m that forms a solution x’ is considered admissible only if the cost tags of the
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generated arcs (Cm) exceed the objective value of the modified solution x0, i.e.,
ta[ f(x0), V a [ Cm. Note that the threshold tags are re-initialized to a large value

after a number of iterations n, while a maximum number of iterations f is imposed

as termination condition.

5 Computational experiments

5.1 Experimental settings and parameter values

Various computational experiments have been performed to examine the inherent

characteristics of the many-to-many VRPCD, as well as to access the

performance of the proposed AMP solution method. At first, focus is given on

the one-to-one VRPCD; the benchmark data set of Wen et al. (2009) and Morais

et al. (2014) are used to compare our method with respect to the current state-of-

the-art approaches of the literature. The results of the comparative performance

analysis are reported in Sect. 5.2. Next, attention is given on the new generalized

problem setting, and new benchmark data sets are generated with up to 200

nodes considering different geographical distributions and varying supplier-to-

customer connection densities. The data generation method of the new

benchmark data sets as well as the discussion of the computational results are

reported in Sects. 5.3 and 5.4.

Regarding the experimental setup, the proposed AMP method was implemented

in C# and the MILP was solved using the CPLEX 12.5 callable library. All

experiments for each problem instance were executed on a single core of a computer

system equipped with an Intel Xeon CPU E5-2650 v2 (2.60 GHz) and 16 GB of

RAM under Windows Server 2012. A CPU time limit of 6 h was imposed for the

execution of CPLEX. During the branch and cut process nodes were selected

according to the best-bound criterion and all CPLEX heuristics were disabled. Note

also that the best found solution from the AMP metaheuristic algorithm was used as

the initial MIP start solution (upper bound) for CPLEX. On the other hand, for the

AMP all computational times reported are in seconds. Unless otherwise stated, 10

simulation runs are performed for each problem instance, and the best out of the 10

runs is reported in the tables. All best solutions obtained for the new benchmark data

sets are reported in ‘‘Appendix’’.

Regarding the AMP parameter settings, a single set has been used for all

experiments. Although better results could be in principle obtained by varying the

parameters for each individual problem instance, we selected to adopt after minor

tuning the parameter set that seemed to perform well for the majority of problems.

In particular, we set k = 12, l = 12, h = 0.4, n = 2*(total number of requests) and

f = 600. Unless otherwise stated, the maximum time limit tlim for each run is set to

3600 s.
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5.2 Assessment of the method and discussion of results for the one-to-one
VRPCD

At first, the proposed AMP method is applied for the one-to-one VRPCD using the

benchmark data set of Wen et al. (2009) with up to 200 requests as well as the data

set of Morais et al. (2014) involving up to 500 requests. Previous algorithms solve

these instances considering variable times for the unloading and loading operations

taking place at the cross-dock as well as time windows for both suppliers and

customers. In order to ensure a common and fair basis for comparison, we have

modified our AMP algorithm accordingly to take into account all necessary

operational realities, and in particular, we followed the so-called CS1 consolidation

scenario for the cross-dock operations as described by Tarantilis (2013). This

scenario assumes that the same vehicle fleet is utilized for both pickups and

deliveries. In this case, only the pickup products that will be delivered to their

corresponding customers by another vehicle will be unloaded from the pickup

vehicles at the cross-dock, and subsequently they must be sorted and reloaded to the

corresponding delivery vehicles. In addition, this scenario assumes that both

suppliers and customers have to be serviced within predefined time windows.

The computational results obtained for the Wen et al. (2009) and Morais et al.

(2014) instances are summarized in Tables 1 and 2, respectively. Our algorithm

exhibits a reliable performance. In particular, for the Wen et al. (2009) instances, it

managed to find one new best solution (50b instance). For the rest of the instances,

the algorithm is close to the best known solutions (BKS)—which are highlighted in

bold font- and it has a worst case performance of 1.00%, with an average deviation

from the BKS of 0.24%. No significant variations with respect to the solution cost

are observed over the 10 runs for each instance. Finally, it is worth noticing that the

proposed method scales-up well in terms of solution quality and computational

times with respect to the problem size. Better are the figures for the larger data set of

Morais et al. (2014). The proposed AMP in this data set consistently improves the

best solutions for 15 out of 16 instances. The average improvement on the best

known solutions is -0.12%, ranging from ?0.30 to -0.31%.

5.3 Small-scale many-to-many VRPCD instances

For the initial assessment of the proposed AMP algorithm we have generated 8

instances derived from the well-known data sets of Li and Lim (2001) originally

introduced for the Pickup-and-Delivery Problem (PDP). The instances generated are

from the Random class set of instances (lr100) involving cases where the suppliers

and customers are randomly distributed. All of the instances involve 5 suppliers and

15 customers whose locations were randomly selected from the lr100 data set of Li

and Lim (2001). Furthermore, in the first four instances (lr2_) customers request

products from up to 2 suppliers, while in the last four instances (lr3_) customers

request products from up to 3 suppliers. Note that for all instances we consider a

common fixed service time for each supplier and customer location (as obtained

from the original instances) as well as fixed times for the unloading and loading

operations at the cross-dock. Table 3 reports the computational results produced by
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the AMP metaheuristic algorithm compared to the optimal solutions or lower

bounds obtained from CPLEX.

The AMP algorithm exhibited a very stable performance. For all 8 problems, all

ten runs obtained the same final solution (bst). In terms of the computational time,

the average time required by the AMP for reaching the final solution of each of the

ten runs ranged from 5.5 up to 8.75 CPU seconds for the lr2_ and lr_3 instance

series, respectively. Concerning the MILP CPLEX runs, the smaller problems

appeared to be easier to solve: for all 4 instances of the lr2_ instance series, CPLEX

managed to close the gap and find the best solution obtained initially by the AMP

(optimality tolerance was set equal to 0.01%), whereas for the lr_3 instance series,

CPLEX found the best solution obtained initially by the AMP for 2 out of 4

instances.

5.4 Medium- and large-scale many-to-many VRPCD instances

5.4.1 Data set generation method

A new data set of benchmark problem instances has been generated. Similarly to the

set of instances described in Sect. 5.3, these problem instances are also derived from

the data sets of Li and Lim (2001). Three main classes of instances are developed,

namely Random, Random-Clustered and Clustered referring to the geographic

distribution of supplier and customer nodes. The Random class involves cases where

the suppliers and customers are randomly located in the same geographic region,

whereas the Clustered class involves cases where suppliers and customers are

located in different areas (clusters). In the Random-Clustered case only some

suppliers and customers are located in the same area. The Random and Random-

Clustered instances are produced by modifying the following sets: lr100; lrc100;

Table 3 Computational experiments on small-scale many-to-many VRPCD problem instances

Instance AMP CPLEX

bst AMP_t RootLB #Nodes CPLEX_t LB %gap

lr2_1 445.50 6 378.28 1,548,119 1216 445.50* –

lr2_2 504.53 5 351.67 6,776,700 2438 504.53* –

lr2_3 504.44 5 388.92 2,169,564 1069 504.44* –

lr2_4 406.42 6 311.54 3,175,782 1175 406.42* –

lr3_1 580.53 9 493.04 3,779,824 1925 580.53* –

lr3_2 520.64 9 340.55 3,584,689 21,600 502.80 3.43

lr3_3 633.09 8 460.49 13,119,000 21,600 617.34 2.54

lr3_4 653.70 9 548.36 9,719,103 4116 653.70* –

bst, the best solution found from the AMP; AMP_t, the average time required by the AMP for generating

the best solutions (s); Root LB, lower bound at the root node; #Nodes, number of CPLEX nodes explored;

CPLEX_t, total time required by CPLEX (s) to close the gap; LB, Lower bound. The * sign is added when

CPLEX closed the gap with respect to the best found solution obtained by the AMP with a 0.01%

optimality tolerance, %gap: Gap between the best AMP solution and the LB obtained by CPLEX (=100/

(bst - LB)/bst)
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LR1_2, and LRC1_2, respectively. The Clustered instances are produced by

modifying the following sets: lc100 and LC1_2. Initially, collocated nodes are

removed from the graphs. The cross-dock is set to be the original depot node. Then,

the sets of suppliers and customers are generated from the nodes of the original

instance. Let norg be the number of pickup and delivery nodes of the original nodes

after the collocated points have been removed. Obviously, |S0| ? |D0| = norg. Three

ratios of supplier participation r = |S0|/norg are considered: 10, 30 and 40%. For the

Random and Random-Clustered instances, the number of suppliers |S0| is randomly

picked out of the norg vertices. On the contrary, for the Clustered instances, the

number of suppliers |S0| is manually picked to be concentrated into different regions

compared to the rest of the node population. The remaining norg - |S0| nodes are

included in the set of customers.

To quantify the distribution of the node locations for the generated sets, the

Nearest Neighbor Index (NNI) is used (Clark and Evans 1954). The NNI is defined

as the ratio Vobs=Vran, where the observed distance Vobs represents the average over

all distances between each point and its nearest neighbor, and the random distance

Vran is the expected average distance that would occur, if the distribution was

random. The former is given by Vobs ¼ ð
P

i2S[D minj2S[D;i 6¼jðdijÞÞ=norg. The latter

can obtained as Vran ¼ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Y=norg

p
, where Y is the area of the grid. NNI values\1,

indicate some degree of clustering. In Table 4, we provide the NNI values for the

three geographic distribution classes.

After separating the set of nodes into customers and suppliers, the transportation

request flows are identified. At first, the demand of each customer c is set equal to

dc, where dc is the absolute value of the original demand of node c (note that in the

original data set a node could be either a delivery or a pickup node). Next, we define

the maximum number of suppliers serving each customer node c. For this purpose,

we have used four different ‘‘supplier-customer connection density’’ classes e with
1, 2, 3, and 4 number of connections, respectively. To that end, the total dc quantity

is randomly allocated to the e supplier nodes. Special care is given so that each

supplier is associated with at least one customer node. From the demand matrix

perspective presented in Sect. 2, note that
P

i2S dij ¼ dc; 8j 2 D andP
j2D dij [ 0; 8i 2 S.

In terms of the capacities of the inbound and outbound vehicles, we used QS ¼
5
P

c2D dc= Dj j and QD ¼ 0:5QS rounded down to the nearest ten. If these values

cannot guarantee feasibility, they are set to the minimum capacity levels adequate

for serving every supplier or customer node. Regarding the time characteristics of

the problem, for all pickup/delivery nodes the service time st is common and is

equal to the original value used by Li and Lim (2001). In terms of the loading and

Table 4 Nearest neighbor index (NNI) for the three geographic distribution classes

Instance size (norg) R RC C

100 1.50 1.04 0.61

200 1.05 0.97 0.51
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unloading operations taking place at the cross-dock, we set u = l = 2st. For each

problem instance and r-class combination, all four e-class instances are associated

with a common maximum route duration (T) value. This T value is heuristically

obtained so as to ensure both a challenging interplay with the capacity constraints as

well as the feasibility of the instances. In total, 708 instances are generated (59

original PDP problem instances x 3 r classes x 4 e classes).

5.4.2 Assessment of the proposed method on the new benchmark instances

Table 5 summarizes the average results obtained for the many-to-many VRPCD on

the new benchmark data sets (detailed solutions for all problem instances can be

found in ‘‘Appendix’’). The problem instances are initially divided in two sections

referring to instances with 100 and 200 nodes. Furthermore, the problem instances

are grouped according to their characteristics. In particular, each result represents

the average solution costs for all problem instances of the same geographic

distribution (R, RC, C) class, supplier-customer density (e) class and supplier

participation ratio (r).
One main observation is that the transportation costs increase for all cases as the

supplier participation ratio increases from 10 to 40%. This is not surprising as the

problem instances with higher supplier participation ratio, involve vehicles with low

capacities, and therefore, more pickup and delivery routes are required to serve all

requests. Table 5 also reveals reduced costs for the clustered distribution class

(C) for all instances with 100 and 200 nodes, compared to the random classes (R and

RC). We observe that the average costs decrease as the geographic distribution of

the nodes becomes more clustered, for the cases where the supplier participation

ratio is 10 and 30%. This indicates that the cross-docking operations might be more

beneficial when the customers are clustered. However, this is not the case for

instances where the supplier participation is high (40%). This is possibly due to the

fact that the original Li and Lim (2001) instances of the C class have larger T values,

and larger cross-dock preparation times compared to the instances of the R and RC

classes. Therefore, when the supplier participation increases, vehicles perform

routes to more isolated/distant nodes, and the loading and unloading operations

taking place at the cross-dock are more time-consuming.

Considering the implications on transportation costs with respect to the supplier-

customer density class, a rather unexpected result occurs. We observe reduced

transportation costs when customers are associated with more than one suppliers,

compared to cases where there is a one-to-one relationship between suppliers and

customers. More specifically, for all the groups of problems where the supplier

participation ratio is low (10%), transportation costs decrease for the more dense

groups (e = 4), compared to the problem groups with e = 1. The same finding is

also observed for the R and RC classes of all instances with 30% supplier

participation ratio. This shows that cost savings can be achieved when customers are

able to receive the total delivery quantity by multiple suppliers, not just one. Similar

are the findings for the average solutions obtained for problem instances with 200

nodes among the R, RC and C classes.
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5.4.3 Computational experiments with collocated nodes and split options

In this section, the benefit of splitting requests by alleviating the restriction that each

node should be visited only once is examined. For this purpose, we transform the

many-to-many data sets presented in Sect. 5.4.1 so as to consider a one-to-one

mapping between suppliers and customers (as such different requests may involve

collocated suppliers and customers).

To make this transformation, we generate for each supplier node i that is

connected with more than one customers, collocated supplier nodes that are copies

of the original i node. Obviously, the total number of collocated suppliers generated

for supplier i is equal to the total number of non-zero entries in row i of the demand

matrix. Similarly, the total number of collocated customers generated for customer

j of the original problem instance, is equal to the total number of non-zero entries in

column j of the demand matrix. To generate the service times for each node of the

modified instance, we divide the original service time value st by the number of

node copies generated. In what follows, we denote as Data Set I the transformed

data set with originally 100 nodes and as Data Set II the transformed data set with

originally 200 nodes.

Table 6 summarizes the average results obtained for all groups of problems on

the transformed data set. Detailed solutions for all problem instances can be found

in ‘‘Appendix’’. Similar to Table 5, the problem instances are initially divided into

two sections with respect to the problem size, i.e., 100 and 200 nodes. Note that for

all problem instances of the same geographic distribution (R, RC or C) class,

supplier-customer density (e) class and supplier participation ratio (r), Table 6

presents the average solution costs for each group of problems as well as the average

number of split requests #s, including both pickups and deliveries. Let ki be the total

number of vehicle routes serving the node copies of supplier i. Then, the number of

split pickup requests for supplier i is defined as si ¼ ð
P

i2S kiÞ � 1. Similarly, let kj
be the total number of vehicle routes serving the node copies of customer j. Then,

the number of split delivery requests for customer j is defined as sj ¼ ð
P

j2D kjÞ � 1.

Compared to Table 5, we can clearly observe that better on average costs can be

obtained when splitting of the transportation requests is allowed. This is not

surprising, as splitting yields more opportunities for cost improvement through

combined pickup and/or delivery routes. Another observation from Table 6 is that

for the cases where the supplier participation ratio is low (10%), splitting requests

does not improve the overall costs. However, this is not the case for the clustered

instances (C class). As shown in Table 6, allowing requests that belong to C class to

be split, results in reduced average transportation costs for all classes of the supplier

participation ratio. Lastly, Table 6 reveals that the average number of split requests

is higher for the random (R) distribution class, and in particular for the larger

supplier-customer connection density instance (e) classes. Allowing requests to be

split in this case, may yield substantial savings. Note that the total service time of

each pickup (or delivery) node in the transformed data set is divided by the number

of customers (or suppliers) connected to this node so that the comparison between
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the two data sets is fair. However, in practice we often need to add extra setup time

the service at each node, and this is the trade-off we need to consider.

6 Conclusions

This paper examined a new vehicle routing problem with pickups, deliveries and a

cross-dock facility. Key feature of the examined problem was that each customer

might request products from multiple suppliers, while there is the restriction to visit

each customer and supplier node only once by exactly one vehicle. To our

knowledge this many-to-many relationship for the VRPCD appears for the first time

in the literature, and it can be seen as a generalization of one-to-one settings with

and without collocated nodes. A mathematical formulation was introduced that

captures all the critical characteristics of the problem considered. For solving the

problem, an Adaptive Memory Programming method was proposed. Key method-

ological component was the procedure followed for identifying and selecting elite

subroutes of varying length from the reference solutions.

Various computational experiments were conducted to assess the performance of

the proposed method and to examine the characteristics of the new problem. On

existing benchmark data sets for the one-to-one VRPCD, the AMP performed very

well compared to the current state-of-the-art approaches of the literature. On the

other hand, computational results on new data sets provided new useful insights. For

example, the solution costs increased as the supplier participation ratio increased.

The solution costs decreased as the geographic distribution became more clustered

for all cases with supplier participation ratio\30%. Significant savings may also be

observed if splitting is allowed for the R and RC classes combined with cases where

the supplier participation ratio is[30%. Finally, more splits are observed for the

cases where supplier and customers are randomly distributed in a geographic region

with large supplier-customer connection density.
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Appendix

Detailed solutions for all problem instances of the new benchmark data sets are

reported in Tables 7, 8, 9 and 10. In particular, Tables 7 and 8 present the solutions

obtained for the many-to-many VRPCD with no split options with up to 100 and

200 nodes, respectively. Note that the average results for these problem instances

are reported in Table 4. Tables 9 and 10 present the solution obtained for the

transformed VRPCD with collocated nodes and split options, with up to 100 and

200 nodes, respectively. In both cases the problem instances are grouped according

to the geographic distribution class, supplier-customer density (e) class, and supplier
participation ratio (r).
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Dondo R, Mèndez CA, Cerdá J (2011) The multi-echelon vehicle routing problem with cross-docking in

supply chain management. Comput Chem Eng 35(12):3002–3024

Enderer F (2014) Integrating dock-door assignment and vehicle routing in cross-docking. MSc Thesis,

Concordia University

Glover F (1997) Tabu search and adaptive memory programming—advances, applications and

challenges. In: Barr RS, Helgason RV, Kennington JL (eds) Interfaces in computer science and

operation research: advances in metaheuristics. Kluwer, Boston, pp 1–75

Gounaris CE, Repoussis PP, Tarantilis CD, Wiesemann W, Floudas C (2014) An Adaptive memory

programming framework for the robust capacitated vehicle routing problem. Transp Sci. doi:10.

1287/trsc.2014.0559
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