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Abstract This paper presents a new generalized vehicle routing problem with a
cross-dock. Basic features of the examined problem are the many-to-many rela-
tionship between the suppliers and customers, and the use of different vehicle fleets
for performing the inbound and outbound routes. An adaptive memory program-
ming method has been developed coupled with a Tabu Search algorithm. For
generating new provisional solutions, elite subroutes with varying lengths are
identified from the reference solutions and are used as building blocks, while
multiple strategies are applied to maintain an effective interplay between diversi-
fication and intensification. Various computational experiments are conducted on
existing as well as on new data sets with diverse features, regarding the geographic
distribution of the nodes and the density of supplier-customer links. Overall, the
proposed method performed very well and new best solutions have been found.
Lastly, new insights regarding the impact of split options are reported.
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1 Introduction

Transportation and product distribution costs often make up for a great portion of
the total operating and logistics costs of a company either upstream or downstream
in the supply chain. For this reason, it is important to focus on the design of
distribution networks aiming to optimize product flows in pursuit of cost savings. In
this context, cross-docking systems have been widely used in real-life distribution
networks. Cross-docks can be seen as intermediate transshipment facilities that
regulate the flow of products from origin to destination locations. The main role is to
collect products coming from multiple sources, to sort and consolidate the products,
and to arrange their shipping to the next echelon or to the final destinations. The
main difference between modern cross-docking systems and traditional single or
multi-echelon distribution network structures is that inbound products arrive at the
cross-dock and are directly loaded to outbound vehicles. Therefore, the cross-
docking system is lean and maintains little or no inventory. This paper presents a
new problem, the so-called many-to-many vehicle routing problem with cross-
docking, which according to our knowledge generalizes previous problem settings
that appear in the literature. Key feature is that each customer requests products
from multiple suppliers, while there is the restriction to visit each customer and
supplier only once during the planning horizon.

The problem introduced in this paper has numerous practical applications. It is
common for retailers located in urban areas to replenish their stock by receiving
goods from multiple production warehouses located around the city limits. This
situation emerges when a retailer receives different types of products from the same
logistics provider, and not all of them are available at a single supplier location. This
creates cargo consolidation opportunities, which can be exploited by the proposed
problem setting with major cost savings. Furthermore, the single visit requirement at
the supplier and customer nodes is essential in practice to minimize the
administrative, handling, and various types of setup costs and times (Tarantilis
et al. 2011). Finally, recent pro-environmental city logistics initiatives are aligned
with the use of cargo consolidation operations outside urban areas, in pursuit of
dispatching lighter, greener, or even electric vehicles in the city to minimize the
impact on the urban environment (Zachariadis et al. 2015). Interested readers may
also refer to the recent survey paper of Guastaroba et al. (2016) for vehicle routing
problems with intermediate facilities.

Cross-docking has several advantages compared to other product distribution
strategies both from the economic and environmental viewpoints. As it is discussed
in Ma et al. (2011), logistics carriers often offer discount prices for truck-load
orders; however, in practice it is common to have customers that raise less-than-
truckload orders. In these situations, cross-docking offers a straightforward cargo
consolidation opportunity, which enables products originated from various suppliers
to be combined in truckload shipments and, thus, to be shipped with the discounted
carrier rates. Moreover, this direct consolidation process avoids holding cargo in the
intermediate nodes until sufficient products for forming a truckload shipment has
arrived at the expense of inventory costs. In addition, the use of an intermediate
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node for consolidating products has been seen to reduce the total distance travelled
and, thus, the transportation costs incurred compared to the direct shipping
alternative, especially when the origin and destination points are located in different
geographic regions and the intermediate node is located between these regions
(Nikolopoulou et al. 2017). Another aspect that makes the cross-docking strategy an
attractive transportation logistics practice is that it promotes short cycle times, rarely
exceeding a single day. As a result, the service quality of the overall distribution
system increases. In fact, cross-docking is considered to follow the Just-In-Time
principle. Another favorable feature of the cross-docking strategy is that it enables
the use of different vehicle fleets for handling the inbound and outbound
transportation operations. This is of major importance when product flows are
originated from areas outside the city center and the destination points are located in
urban areas. In these cases, it is desirable to use large capacity heavy-duty vehicles
for moving products from the suppliers to the cross-dock. On the contrary, it is often
essential to use more compact vehicles for travelling within the core city road
network. This will allow traversing narrow streets and avoiding traffic congestion,
providing delivery service in confined customer spaces, and minimizing the
environmental impact in urban areas.

Cross-docking practice has received research attention, especially regarding the
operational aspects of the cross-dock. Focus is given on maximizing throughput by
examining the layout of the cross-docks (Bartholdi and Gue 2004), the positioning
of consolidated products inside the cross-dock (Vis and Roodbergen 2008), and the
assignment of vehicles to dock doors (Tsui and Chang 1992; Cohen and Keren
2009). Another important research stream is devoted to location problems for the
cross-dock facilities (Musa et al. 2010; Sung and Song 2003). In terms of the
inbound/outbound distribution operations, there is a group of papers that call for the
joint minimization of the total transportation and inventory costs incurred by cross-
docking logistics systems. The common characteristic of these works is that vehicle
trips are modeled as direct links between origin (suppliers) and destination
(customers) nodes, or direct links between the cross-dock and the origin and
destination locations. Under this setting, a vehicle cannot serve more than one
supplier (or customer) order. These models aim to identify the optimal balance
between the product flows directly shipped from suppliers to customers and the
flows passing through intermediate consolidation facilities (Ma et al. 2011).

The routing component of cross-docking distribution networks has been initially
examined by Lee et al. (2006). In this work the authors assume that vehicles may
visit more than one service locations along their trips, subject to capacity
constraints. The model introduced calls for the minimization of the routing costs
involved for transferring products between suppliers and customers. It also assumes
that all products collected from the suppliers are moved to the cross-dock, where
they are consolidated and loaded to outbound vehicles for the shipment of these
products to the customers. As far as the synchronization is concerned between the
inbound and outbound trips, the authors assume that all pickup routes arrive at the
cross-dock simultaneously. To solve the problem, Lee et al. (2006) propose a Tabu
Search algorithm that is tested on instances with up to 50 nodes. Later, Liao et al.
(2010) propose for the same problem an improved Tabu Search algorithm.
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4 A. 1. Nikolopoulou et al.

More recently, Wen et al. (2009) introduce a vehicle routing variant denoted as
Vehicle Routing Problem with Cross-Dock (VRPCD) that extends the model of Lee
et al. (2006). More specifically, time window constraints are imposed on both
suppliers and customers, while the simultaneous vehicle arrival restriction at the
cross-dock is dropped. Instead, more elaborate synchronization constraints are
introduced to bridge the timing of inbound and outbound vehicle routes. Another
important feature of the VRPCD model is that each transportation request is
associated with a specific origin and destination location, where every pickup
(supplier) node is paired with a single delivery (customer) node. Wen et al. (2009)
propose an Adaptive Memory Procedure applied on problem instances involving up
to 200 transportation orders. Later, Tarantilis (2013) studies the same problem and
also proposes extensions with respect to the route structure and the consolidation
activities at the cross-dock. In particular, an alternative scenario is examined where
different vehicles are used for the pickup and delivery routes. This scenario implies
that all products are unloaded to the cross-dock and reloaded onto the delivery leg
vehicles for being transported to the customer locations. In addition, Tarantilis
(2013) differentiates between closed and open route configurations for both inbound
and outbound routes. A multi-restart Tabu Search algorithm is proposed for solving
all aforementioned problem versions. Another work on the basic VRPCD is that of
Morais et al. (2014). In this work an iterative local search algorithm is proposed for
solving VRPCD instances of up to 500 customers. Another paper on the
transportation costs incurred when products must be transferred between origin
and destination points, is due to Nikolopoulou et al. (2017). In this work two
alternative transportation strategies are compared, namely direct shipping and cross-
docking. Several computational experiments are performed to gain insight on the
role of temporal and operational parameters on the relative effectiveness of each
strategy. Lastly, Santos et al. (2013) study a VRPCD variant with a hybrid network
structure. Instead of requiring all products to pass through the cross-dock, the
authors allow direct shipping between suppliers and customers. To solve the
problem, denoted as the Pickup and Delivery Problem with Cross-docking
(PDPCD), a branch and price algorithm is proposed and applied to instances with
up to 30 transportation requests.

A real-life vehicle routing with cross-docking application is presented by
Petersen and Ropke (2011). They assume that vehicles depart from the cross-dock
and may visit both suppliers and customers before returning back to the cross-dock
facility. Each vehicle may visit the cross-dock several times for unloading/loading
operations and the cross-dock can serve as a short-term inventory holding point for
the products. More specifically, the products of a given request may be pickedup
along a morning route and shipped to the cross-dock, where they are held until
shipped to the destination point by means of an evening vehicle trip. Dondo et al.
(2011) develop an MILP formulation for scheduling the operations taking place in a
single cross-dock facility. Their model aims to maximize the cross-dock produc-
tivity by jointly designing the inbound/outbound vehicle trips and assigning vehicles
to cross-dock doors. The authors also consider cases where the number of cross-
dock doors is lower than the vehicles used, and thus, there is not always a free door
for every vehicle during the time horizon. Enderer (2014) introduces the combined
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Dock-Door Assignment and Vehicle Routing Problem (DAVRP). This model aims
to make decisions for the three distinct levels of a cross-dock system: (a) assignment
of suppliers to inbound doors; (b) internal cross-dock routing plans and assignment
of inbound products to outbound doors; and (c) vehicle routing plans for
transporting the requested products to the customers using the outbound doors.
Overall, the goal of the DAVRP is to minimize the total product handling and
transportation costs. Finally, Grangier (2016) in his dissertation presents a
matheuristic algorithm for the Vehicle Routing Problem with Dock Resource
Constraints (VRPCD-DR).

The contribution of this paper is three-fold. First, a new generalized vehicle
routing problem with a cross-dock is introduced. Most papers discussed above
assume that every supplier is connected with only one customer (one-to-one
VRPCD), while in most cases a common homogeneous fleet of vehicles is used for
both inbound and outbound routes. Contrary, in the examined problem a many-to-
many relationship between the suppliers and customers is considered, while
different vehicle fleets are used to perform the pick and delivery routes. Second, an
Adaptive Memory Programming method has been developed. Key characteristic is
the mechanism for identifying and selecting elite components from the reference
solutions. Particularly, the proposed mechanism assigns scores to all possible
subroutes with varying length and gradually selects those with the highest score in
terms of solution cost or diversity. A Tabu Search algorithm coupled with new long
term memory structures is applied as the main optimization block for improving the
quality of the new provisional solutions generated throughout the search process.
Third, various computational experiments have been performed. Using well-known
benchmark data sets for the one-to-one VRPCD, the proposed method proved to be
efficient and effective compared to the current state-of-the-art. Furthermore, new
best solutions have been found, while it seems that the method scales well with the
problem size. On the other hand, the proposed method has been also tested on new
data sets with diverse features regarding the geographic distribution of the network
nodes as well as the density of supplier-customer links. This set of results provides
several new insights regarding the effect of split options.

The remainder of the present paper is organized as follows: Sect. 2 describes the
examined problem. Section 3 introduces the mathematical formulation for the
problem. The proposed adaptive memory programming algorithm is presented in
Sect. 4 and all its components are discussed. Next, Sect. 5 presents our compu-
tational study and findings on various benchmark data sets. Finally, Sect. 6
concludes the paper.

2 Problem description

Let G = (V, A) be a graph, where V is the node set and A is the arc set. V is
composed of the cross-dock (node 0) and two node subsets S’ and D, representing
the supplier (pickup) and customer (delivery) locations, respectively. The arc set
A is considered to link every pair of nodes that belongs either to the set §” =
S"U {0} (pickup arcs), or to the set D" = D’ U {0} (delivery arcs).
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6 A. 1. Nikolopoulou et al.

Consider a set of transportation requests O. Each request o € O is associated with
a supplier i, € §', a customer j, € D’ and a demand d,. It calls for the transportation
of d, units of products from supplier i, to customer j,. There is also the demand
matrix d;; (i € §', j € D') that represents the quantity of goods customer j requires
from supplier i. Each non-zero d; (i € §', j € D') actually refers to a transportation
request contained in O. Note that the demand matrix may have multiple non-zero
entries in each row, meaning that each supplier may send products to more than one
customer. For each supplier i (i € §'), let p; be the total amount of products supplied
by i. In addition, each column may also have multiple non-zero values, and this
corresponds to cases where a customer receives products from more than one
suppliers. There is also a demand d, associated with each customer ¢ (¢ € D').

The set of transportation requests are to be fulfilled by two distinct fleets of
vehicles, denoted as Kg and Kp. The vehicles from the set Kg are considered to
travel the S” arcs, whereas vehicles from the K set traverse only D" arcs. The
capacity of each vehicle k € Ks is equal to Qg, whereas the capacity of each vehicle
l € Kp is equal to Qp. All pickup (or delivery) vehicles start and end their pickup (or
delivery) routes at the cross-dock. In addition, the delivery routes should return to
the cross-dock within a time limit 7. Lastly, note that each supplier or customer
must be visited only once.

The problem examined considers that vehicles of Kg, based at the cross-dock, are
dispatched to the suppliers §', in order to collect all products associated with the
transportation orders in O. These vehicles return to the cross-dock where the
products are unloaded, and appropriately consolidated to be loaded onto outbound
vehicles. For this purpose, vehicles from the K set are used. As soon as the
products for each delivery route reach the cross-dock, the delivery trip is performed
and the products are transported to the customer locations. All vehicles performing
delivery trips return to the cross-dock.

The objective is to design the set of pickup and delivery routes that minimize the
total travelled distance. The produced set of routes is subject to the following
constraints:

(a) All inbound and outbound routes originate from the cross-dock and terminate
at the cross-dock.

(b) Each supplier i € S’ must be visited once by exactly one pickup route and,
thus, all products from the corresponding transportation requests associated
with i must be assigned to the same vehicle.

(c) The total amount of products assigned to a pickup route should not exceed
vehicle capacity Qg, and similarly the total amount of products assigned to a
delivery route should not exceed vehicle capacity Qp.

(d) Each customer i € D' must be visited once by exactly one vehicle and, thus,
all products from all transportation requests associated with i must be
assigned to the same vehicle.

(e) There is a maximum route duration 7 which refers to the total time required
for completing all pickup and delivery operations. More specifically, every
delivery route must terminate at the cross-dock no later than time 7. Note that
we do not apply any duration length restrictions on individual pickup or
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delivery routes, we only apply a maximum time limit 7 that all delivery
vehicles should be back at the cross-dock.

(f) A delivery vehicle cannot leave the cross-dock, until all products from the
connected pickup routes arrive at the cross-dock.

Let a set RS to denote all pickup routes. Each pickup route r (r € RS) visits a
subset of suppliers S, and it is assumed to leave the cross-dock at time zero. The
time RT7, that the vehicle performing the pickup route r is “released” (i.e., has
finished its pickup route and has unloaded all products) at the cross-dock, is equal to
the total traveling time plus the service time (sp,) spent at the location of each
supplier s € S, plus the time spent for unloading operations () at the cross-dock. At
the customer level, let RD be the set of delivery routes. Each » € RD visits a subset
of customers D,. For every delivery route 7, the total traveling time plus the service
time (sd.) spent at each customer location ¢ € D, is represented by ¢,. In addition, let
DT, denote the departing time from the cross-dock of a delivery route r. On this
basis, the duration constraint (e) for every delivery route r can be expressed as
DT, +t, <T. Constraint (f) is associated with the temporal characteristics of the
examined problem, and dictates the synchronization between the pickup and
delivery routes. Necessary condition for the departure of a delivery route is that all
products requested by each of the customers (c € D,) of the route must be available
at the cross-dock in order to be sorted and loaded onto the delivery vehicle.
Therefore, for every route r € RD, DT, = a, + I, where a, is equal to the maximum
release time at the cross dock of all the relevant pickup routes that contain the
products requested by the D, customers. This is explained in detail in the example
that follows (illustrated in Fig. 1). Finally, parameter [ denotes the time for
unloading operations that take place at the cross-dock.

Figure 1 illustrates a problem instance with four suppliers and six customers. The
link between a supplier and a customer node indicates that there is a transportation
request for moving products between this node pair. Figure 1 also provides the
demand matrix for the corresponding product flows. Supplier A sends products to
customers / and 2, Supplier B send products to customers / and 6, and so on.

An example solution to the problem instance of Fig. 1 is shown in Fig. 2.
Observe that there are two routes at the supplier level, and three vehicle routes at the
customer level. The suppliers and customers are served by different vehicle types
(kl, k2 € Ks and k3, k4, k5 € Kp). The pickup route assigned to vehicle kI visits
suppliers A and B and collects the products requested by customers /, 2, and 6,
whereas the pickup route performed by k2 visits suppliers C and D to pickup the
products destined to customers 2, 3, 4, and 5. The capacity constraints for the
inbound routes kI and k2 ensure that ds; + ds> + dg; + dps < Qs and dc» +
dcs + deq + dpy + dps + dps + dps < Qs, respectively. For the outbound routes
k3, k4, and k5, the capacity constraints are dy; + dg; + dps < Op, da> + dcz +
dpy + dcs + dps < Op, and d¢y + dpy + dps < QOp, respectively. Regarding the
synchronization constraints discussed earlier, the release time for the products of
delivery route k3 is agzs = RTy; + L. This is because k3 serves customers / and 6 who
receive products from suppliers A and B, both of them visited by k/. Similarly, the
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8 A. 1. Nikolopoulou et al.

Customers
1 2 3 4 5
day day O 0 0
dg; O 0 0 0 dg
0 de; ds deg O
0 dDZ dD3 dD4 dDS 0

Suppliers

O 0N w P>

[ Y a

Cross-Dock

Fig. 2 Example solution for the problem instance of Fig. 1

release times for routes k4 and k5 are aw = max{RTy,RTi2} +! and
ars = RTyy + 1, respectively.

The problem described above is closely related to the so-called Vehicle Routing
Problem with Cross-Docking (VRPCD). As mentioned in the introduction section,
the VRPCD has been introduced by Wen et al. (2009) and it assumes one-to-one
relationships between suppliers and customers (i.e., each supplier is connected with
only one customer and vice versa). Instead, in this paper a more generalized
distribution network structure is considered with many-to-many relationships
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between the suppliers and the customers. Notably, many-to-many relationships can
also be captured within a one-to-one VRPCD setting if we assume that collocated
node copies are generated for every endpoint of the various transportation links. For
example, consider the problem instance presented in Fig. 1. The many-to-many
association between customers and suppliers can be translated into multiple one-to-
one relations by generating a supplier-customer pair for each non-zero element in
the demand matrix. As such, the resulting problem will contain 11 suppliers and 11
customer nodes. Besides the fact that the dimension of the problem increases, this
setting would permit multiple visits per node (i.e., copies of the original supplier or
customer nodes can be assigned to different vehicle routes). In practice, this is often
undesirable given that the resulting service times from the multiple visits are
typically higher due to the multiple setup times (e.g. for security procedures or for
exchange of paperwork). On the contrary, in our model each supplier and customer
node is served only once by exactly one vehicle.

3 Mathematical formulation

In this section we present and describe in detail the mathematical model for the
many-to-many Vehicle Routing Problem with Cross-docking (many-to-many
VRPCD) as described above. In addition to the notation introduced in Sect. 2, let
us denote the set of pickup nodes by S = {0, 1,..., n + 1} and the set of delivery
nodes by D = {0, 1,..., n’+1}. The cross-dock is represented by the nodes 0, n + 1
and n'+1, where the nodes 0 and n + 1 in S represent the starting and ending points
for the pickup routes, while the nodes 0 and n’'+1 in D represent the starting and
ending points for the delivery routes, respectively. Note that these four nodes are
associated with a zero amount of supply/demand and with zero service time. The set
E denotes all the feasible arcs for the pickup operations. It consists of the arcs {(i, j):
i,je€S,i # j}. The set E' denotes all the feasible arcs for the delivery operations
and consists of the arcs {(h, ): h, fe D, h # f}. Each arc (i, j) € E is associated with
a known non-negative distance cs;;, that represents the travel distance from pickup
node i to pickup node j. Similarly, each arc (h, f) € E' is associated with a known
non-negative distance ccyy, that represents the travel distance from delivery node
h to delivery node f. In addition, M is an arbitrarily large constant.

Indices and sets

i,j Index for pickup nodes (suppliers)
h, f Index for delivery nodes (customers)
k Index for pickup vehicles

l Index for delivery vehicles

Parameters

Kg  Number of available pickup vehicles
Kp  Number of available delivery vehicles
Os Capacity of the pickup vehicles

Op  Capacity of the delivery vehicles
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10 A. 1. Nikolopoulou et al.

cs;  Travel distance between pickup node i and pickup node j ((i, j): i, j € S,
i #j})

ccye  Travel distance between delivery node 4 and delivery node f ((h, f): h, fe D,
h # f})

CVy, 1, if pickup node i (i € S N {0, n + 1}) supplies (is connected to) delivery
node h (h € D N {0, n'+1}); 0, otherwise

Di Amount supplied by pickup node i (i € S)

d, Amount delivered to delivery node i (h € D)

Sp; Service time spent at pickup node i (i € S)

sd,  Service time spent at delivery node A, (h € D)
u Time for unloading operations at the cross-dock
l Time for loading operations at the cross-dock

T Maximum route duration

Binary variables

y

;i 1, if vehicle k (k € Ky) travels from pickup node i to pickup node j (i, j € S); 0,

otherwise

zf,f 1, if vehicle / (I € Kp) travels from delivery node 4 to delivery node f (h, f € D);
0, otherwise

yf‘ 1, if pickup node i (i € S) is serviced by vehicle k (k € Ks); 0, otherwise

VZ 1, if delivery node h (h € D) is serviced by vehicle I (I € Kp); 0, otherwise

Continuous non-negative variables

tpf—‘ Time at which vehicle k leaves pickup node i (i € S, k € Kg)
tdi, Time at which vehicle / leaves delivery node h (h € D, Il € Kp)
RT; Release time of pickup vehicle k at the cross-dock (k € Kg)
DT, Starting time of delivery vehicle [ at the cross dock (I € Kp)

Below we present the mathematical formulation of the many-to-many VRPCD as
a mixed-integer linear programming model. The objective is to minimize total
transportation costs.

Minimize Z ch,] x + Z chhf (3.1)

(ij)€E k€K (hf)€E" l€KD
Subject to
S =3k viesn{on+1}keKs (3.2)
JES:i#]
Y dy=v, VheDN{07 +1},1€Kp (33)
fED:h#f
k=1 viesn{on+1} (3.4)
keKyg
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d vi=1 VheDn{0,n' +1} (3.5)
leKp
Z x'gj =1 VkeKs (3.6)
jesn{o}
Y dy=1 Viekp (3.7)
febn{o}
Y M =1 VkeKs (3.8)
iesn{n+1}
G =1 VIEKD (3.9)
heDN{n'+1}
=0 VkeKs 3.10
i0
icS
ZZZOZ 0 VicKp (3.11)
heD
fom,j =0 VkeKs (3.12)
JjeS
Y dy,=0 Viekp (3.13)
feD
Yoxp= D % VieSn{0n+1}keKs (3.14)
JES:i# €S
S ody= > &, vhebDn{on +1},1€kp (3.15)
feD:h#f fED:hAf
> pi- ¥ <05 VkeEKs (3.16)
ieS
Zdh -V, <Qp VIEKp (3.17)
heD

-+ s+ — pf—M(1 —x) <0 Viesjesn {0n+1}keKs
(3.18)

15+ Csin +u —RTk—M(l —xﬁn+1) <0 VieSn{n+1},keKs (3.19)

RT < CVyDT, + M(—yt — CVypv, +2) Vi€ S,k€Ks,heD,1€Kp (3.20)
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12 A. 1. Nikolopoulou et al.

DT,+1+cch+s4f—rd}—M(1 —z})f) <0 YfeDn {04 +1},1€Kp
(3.21)

tdfl + cepr + sdf — l‘d; —M(l _Z;zf) <0 V(hf)eDn {O,I”ll +1},1€Kp
(3.22)

1+ copr =ty =M (17, ) SO VheDN{0hIe Ky  (323)

iy, <T VIeKp (3.24)
pf <My* Vi€ SkeKs (3.25)
td, <MV, YheD,l<Kp (3.26)
RT=M(1 = b)) SOV € Ks (3.27)
DT=M(1 = 2h)) SO VIEKp (3.28)
> y=0 (3.29)
kEKs
> V=0 (3.30)
keKs
> =0 (3.31)
leKp
S v =0 (3.32)
leKp

The objective (3.1) is to minimize the total distance traveled. Constraints (3.2)
and (3.3) ensure that each node is visited once by one vehicle. Constraints (3.4)
and (3.5) guarantee that each request is pickedup or delivered in only one pickup
or delivery route, respectively. Constraints (3.6)—(3.10) guarantee that every route
leaves the corresponding starting point and returns to the ending point. There are
also constraints to guarantee that routes do not return to the starting points nor
leave the ending points (3.11)—(3.13). Constraints (3.14) and (3.15) are flow
conservation constraints. Constraints (3.16) and (3.17) ensure that for each
vehicle, the load on the pickup route and the delivery route does not exceed the
vehicle capacity. Constraint (3.18) computes the time a pickup vehicle k arrives at
pickup node j after visiting pickup node i. Constraint (3.19) computes the time at
which vehicle k arrives at the cross-dock from pickup route for unloading.
Constraint (3.20) is the connectivity constraint among pickup and delivery routes.
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This constraint states that the delivery route / of an order /& cannot start until the
corresponding request has been picked up, arrived at the cross-dock and been
unloaded from pickup vehicle k. Next (3.21)—(3.24) are time constraints for the
delivery routes. In particular, constraint (3.21) computes the arrival time at the
first delivery node visited on route /. Constraint (3.22) computes the arrival time at
delivery node j which is visited after node i on route /. Constraint (3.23) computes
the arrival time of vehicle [ at the cross-dock and it is ensured that this time is
within the maximum route duration limit 7 (3.24). We have also added constraints
(3.25) and (3.26) to keep the starting time of pickup/delivery nodes not visited on
a pickup/delivery route at 0. Similarly, constraints (3.27) and (3.28) keep the
finishing/starting time of a not-driven pickup/delivery route at 0. Constraints
(3.29)—(3.32) ensure that the starting and ending points (cross-dock) are not
serviced by any pickup or delivery vehicle.

The above MILP model was solved using IBM ILOG CPLEX 12.5. Compu-
tational experiments for small scale problem instances and implementation details
are reported in Sect. 5.3.

4 Solution method

An Adaptive Memory Programming (AMP) metaheuristic algorithm has been
developed for solving the many-to-many VRPCD. AMP is a general-purpose
solution framework that focuses on the exploitation of strategic memory structures
(Glover 1997). The adaptive memory rationale was introduced by Taillard et al.
(2001). The main goal is to identify solution characteristics frequently found in the
search history and use this information to produce high-quality solutions. AMP
frameworks have also been developed to efficiently solve vehicle routing problems
(Repoussis and Tarantilis 2010; Tarantilis 2005). Gounaris et al. (2014) presents an
AMP framework to address the robust capacitated vehicle routing problem.
Cardona-Valdés et al. (2014) have developed an AMP framework to address the
design of a two-echelon production distribution network. Lastly, Paraskevopoulos
et al. (2016) are among the first to present an AMP framework for the Resource-
Constrained Project Scheduling Problem (RCPSP).

Following the earlier works of Taillard et al. (2001), Tarantilis (2005) and
Gounaris et al. (2014), the proposed framework consists of two phases. During the
initialization phase, the goal is to generate a reference set of high quality solutions.
Subsequently, the exploitation phase is triggered, that incorporates adaptive
memory mechanisms for identifying elite solution components that are used to
generate new provisional solutions. In both phases, a Tabu Search algorithm is
employed as a local search method applied for further improvement and for
reaching high quality local optimal solutions.
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Algorithm 1. AMP framework

Input parameters (4, A, & 7 O, t;n)
1 Pe@xPfeg
//Initialization phase
while (|P| < p)
Xy < Send one vehicle to each supplier and customer node
x < Generalized savings heuristic (x,, 1)
x" « Tabusearch (x,¢,{)
iff(x" ) < f(x?) then
xB «x"
end if
PePUXx"
end while
//Exploitation phase
11  while ( CPU time < t;,,) do

W WONDU A WN

=
o

12 xelite  Selection of Elite components (P, 9)
13 x' « Generalized savings heuristic (x°'t¢, 1)
14 x" « Tabusearch (x',£,9)

15 iff(x" ) < f(x®) then

16 xBx"

17 end if

18 P « Reference Set Update Method (P,x")

19  end while
20  returnx?

The pseudocode of the proposed AMP algorithm is depicted in Algorithm 1.
Starting from an empty reference set P, p high quality solutions are generated
during the initialization phase (Lines 2—10). A generalized savings heuristic (Line 4)
is employed to generate random initial solutions. This is achieved via a greedy
randomized mechanism controlled via parameter A (see Sect. 4.1). All initial
solutions are locally improved via a Tabu Search metaheuristic algorithm (Line 5)
that is controlled through parameters & and {, described in Sect. 4.4. Subsequently,
the exploitation phase is triggered (Lines 11-19). During this phase, elite solution
components from the reference set P are extracted according to a deterministic set
of criteria that make use of the parameter 0. Given these components, an
intermediate solution x°/*¢ is generated (Line 12) based on which the final
provisional solution x’ is constructed via the saving construction heuristic (Line 13).
The criteria of extracting solution components and generating the provisional
solution x' are described in Sect. 4.3. Next, the provisional solution x’ is further
improved by the Tabu Search metaheuristic algorithm (Line 14), and after this local
search process is completed the improved solution x” is used to update the reference
set P (Line 18). The improvement phase terminates whenever a pre-specified time
limit 7, is reached (Line 11), and the best feasible solution x® encountered
throughout the AMP framework (Line 20) is returned.

4.1 Greedy randomized savings construction heuristic algorithm

A generalized savings heuristic algorithm similar to that proposed in Gounaris et al.
(2014) is adopted in this paper. The construction framework starts from an initial
intermediate feasible solution (x). During the initialization phase, this is a solution
where one pickup or delivery vehicle is assigned to each pickup or delivery node,
respectively. On the other hand, during the exploitation phase, this is a solution

@ Springer



Adaptive memory programming for the many-to-many vehicle... 15

where one pickup or delivery vehicle is assigned to an elite component/subset of
connected pickup or delivery nodes, respectively. In any case, all pickup and
delivery routes originate and terminate at the cross-dock, while all nodes are
assigned to vehicle routes. Furthermore, only feasible combinations of pickup and
delivery routes are considered with respect to the maximum route duration and
synchronization constraints. Lastly, note that no limit is imposed on the total
number of pickup or delivery routes.

Given the initial intermediate solution, at each iteration two pickup (or delivery)
routes are selected and merged according to the following generalized savings
scheme. Let two routes r = {0, .. .,i,j,...,0} and ¥ = {0,7,...,j,0}. The savings
function evaluates to ¢; + coy + cjo — civ — ¢jy, where ¢;; is the travel distance for
traversing arc (i, j). The merging of route pairs is repeated either until all merging
combinations in all possible positions produce negative savings or no feasible
merging combination can be found with respect to the capacity, duration and
synchronization constraints. Note that both pickup and delivery routes are consider
during the construction process.

In an effort to diversify the reference set P, a probabilistic mechanism is added
during the solution construction process similar to that proposed by Tarantilis et al.
(2013). Particularly, a restricted candidate list of feasible merging combinations
between pickup or delivery routes with positive saving is maintained at each
iteration, which contains the route pairs with the highest saving. To that end, one
route pair from the list is selected at random, and the corresponding vehicle routes
are merged. In our implementation, the restricted savings list is fixed to a predefined
size 4.

4.2 Reference set update method

In both initialization and exploitation phases the reference set P contains a
maximum number of solutions p. It is well documented in the literature that one
essential element for the performance of population-based approaches is to maintain
the diversity of the population during the search. This need intensifies for methods
with relatively small populations, such as scatter search, path relinking and AMP
approaches. In the proposed solution method, the reference set P is updated with
solutions that are not only attractive in terms of the total transportation costs, but
also in terms of diversity (measured in terms of total number of different arcs with
respect to the best encountered solution). From the implementation viewpoint, an
elitist strategy is adopted. Let x denote the candidate solution for insertion into P, x”
any reference solution of P, and x2 and x" the best and the worst solutions of P,
respectively. If x performs better than x® in terms of cost, f(x) <f(x®), then
x replaces x"; otherwise, if f{x) < f(x"), then x replaces x” only if d(x, x*) > d(x', x®),
v&;here d(x, x%) represents the total number of different arcs between solutions x and
X"
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4.3 Generation of provisional solutions

The goal of the exploitation phase is to generate new provisional solutions by
combining elite components encountered in the reference solutions. An elite
component refers to a subroute, i.e., an ordered subset of nodes (either pickup or
delivery nodes) that appears frequently in the reference solutions. The first step is to
select and isolate these subroutes considering both pickup and delivery routes. Let /,
denote the length, i.e., the number of nodes (either suppliers or customers), of a
subroute z. A component z may be as large as a complete route and as short as an
individual arc connecting two nodes, therefore [, > 2 (i.e., singleton nodes do not
qualify as components).

During the scoring and selection process, the final set of extracted components
should consist of non-overlapping node sets in order to be suitable for recombi-
nation in a new solution. Furthermore, we always make sure that it is feasible to
send one vehicle to serve all selected pickup and delivery subroutes with respect to
the capacity, route duration and synchronization constraints. For scoring the
subroutes, the metric introduced by Gounaris et al. (2014) is adopted and each elite
(5 )

(1-9)572
solution score and I, is a binary indicator taking the value of 1, if the subroute

component z is assigned a score H; as follows: H, = , where w, is the

appears in the solution x, and O otherwise. The term (1 — 19)11’2 quantifies the
adoption of longer subroutes at the expense of their shorter subsets, where 6 € (0, 1).
Two strategies are followed to calculate the weight factor w, that are used
interchangeably with equal selection probability. The first strategy takes into
account the dissimilarity ds(x,x’), i.e., number of different arcs, between two
solutions x and x’ and is calculated as follows [see also Tarantilis et al. (2013):
ds(x,x') = Z(i DA hij, where h;; is a binary indicator taking the value of 1, if (i, j) is
an edge of either solution x or x’ (but not both), and 0 otherwise]. In this strategy, the
weight factor is calculated as w, = ds(x,x?)/max,cpd(x",xP), where x® is the
current best reference solution. Contrary, the second strategy takes into account only
the cost. In this case, the weight factor w, is calculated as:
wx = (maxyepf (X") = f(x))/ (maxecpf (x) — ming cpf (x7)).

Having scored each possible delivery and pickup subroute extracted from all
reference solutions, the subroutes are sorted according to their score with
decreasing order. Once a subroute is selected from the list as elite component,
all remaining subroutes that share at least one supplier or customer with the
selected subroute are removed from the sorted subroute list. The selection is
repeated until either the list is empty or there is no way with the remaining
subroute to generate a feasible solution. A feasible intermediate solution (x¢/*) is
then generated by assigning a vehicle to each of the selected elite components as
well as to any singleton supplier or customer that does not participate in any of
the selected elite components. At this point, the greedy randomized savings
construction heuristic algorithm described in Sect. 4.1 is employed to obtain the
new improved provisional solution. Notably, the provisional solution will often
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provide different combinations of the elite components since it goes through the
route merging procedure.

4.4 Tabu search

All generated solutions are subject to local search via a Tabu Search metaheuristic
algorithm. The latter explores the solution space by performing search trajectories
based on edge-exchange moves from a current solution to the best admissible
neighboring solution. The overall procedure iterates for a number of iterations and
the best solution is returned. Below, each major component is described.

4.4.1 Neighborhood structures

The edge-exchange neighborhood structures considered are O—1 node relocation, 1—
1 node exchanges and 2-Opt exchanges (Zachariadis and Kiranoudis 2010). A
lexicographic neighborhood evaluation scheme is adopted, while only feasible
solutions are considered. The size of 0-1 Relocation and 2-Opt is O(n?), while the
size of 1-1 Exchange is O(n*). All of them involve a constant number of edge
exchanges.

The 0-1 node relocation removes any supplier (or customer) node from its
current position, and reinserts this node into any other available position. Note that
both intra- and inter-route node relocation moves are considered. The 1-1
exchanges any two supplier (or customer) nodes served by two different pickup
(or delivery) routes. More specifically, the first supplier (or customer) node can be
pushed in any available insertion position in the route originally serving the second
supplier (or customer) node. Similarly, the second supplier (or customer) node can
be inserted in any available insertion position combination of the route originally
serving the first supplier (or customer) node. Note that both intra- and inter-route
exchange can be performed. Obviously, the two nodes involved in the exchange
must be of the same type (pickup or delivery). Lastly, the 2-Opt exchange removes a
pair of edges and replaces them by a new pair in the solution. 2-Opt can be applied
on the same route (the visiting sequence of a subroute is reversed) and between a
pair of routes (subroute segments each including the cross-dock are swapped).

4.4.2 Short-term memory, aspiration conditions and diversification mechanism

Our Tabu Search framework operates according to the best admissible local move
scheme. Specifically, all neighborhood structures of the current incumbent solution
are exhaustively explored, and the highest quality feasible neighboring solution is
selected at each iteration. To avoid an over-intensified search, a diversification
mechanism is introduced similar to the Attribute Hill Climber presented by Whittley
and Smith (2004). Each arc (i, j) € A is associated with a threshold tag ¢,. Every time
a move m is applied to a solution x with objective value f{x), the threshold tags of
the eliminated arcs (E,,) are set equal to f(x), i.e., t, = f(x), V a € E,,. Any move
m that forms a solution x’ is considered admissible only if the cost tags of the
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generated arcs (C,,) exceed the objective value of the modified solution X/, i.e.,
t, > f(x), ¥ a € C,,. Note that the threshold tags are re-initialized to a large value
after a number of iterations &, while a maximum number of iterations { is imposed
as termination condition.

5 Computational experiments
5.1 Experimental settings and parameter values

Various computational experiments have been performed to examine the inherent
characteristics of the many-to-many VRPCD, as well as to access the
performance of the proposed AMP solution method. At first, focus is given on
the one-to-one VRPCD; the benchmark data set of Wen et al. (2009) and Morais
et al. (2014) are used to compare our method with respect to the current state-of-
the-art approaches of the literature. The results of the comparative performance
analysis are reported in Sect. 5.2. Next, attention is given on the new generalized
problem setting, and new benchmark data sets are generated with up to 200
nodes considering different geographical distributions and varying supplier-to-
customer connection densities. The data generation method of the new
benchmark data sets as well as the discussion of the computational results are
reported in Sects. 5.3 and 5.4.

Regarding the experimental setup, the proposed AMP method was implemented
in C# and the MILP was solved using the CPLEX 12.5 callable library. All
experiments for each problem instance were executed on a single core of a computer
system equipped with an Intel Xeon CPU E5-2650 v2 (2.60 GHz) and 16 GB of
RAM under Windows Server 2012. A CPU time limit of 6 h was imposed for the
execution of CPLEX. During the branch and cut process nodes were selected
according to the best-bound criterion and all CPLEX heuristics were disabled. Note
also that the best found solution from the AMP metaheuristic algorithm was used as
the initial MIP start solution (upper bound) for CPLEX. On the other hand, for the
AMP all computational times reported are in seconds. Unless otherwise stated, 10
simulation runs are performed for each problem instance, and the best out of the 10
runs is reported in the tables. All best solutions obtained for the new benchmark data
sets are reported in “Appendix”.

Regarding the AMP parameter settings, a single set has been used for all
experiments. Although better results could be in principle obtained by varying the
parameters for each individual problem instance, we selected to adopt after minor
tuning the parameter set that seemed to perform well for the majority of problems.
In particular, we set A = 12, u = 12, 0 = 0.4, ¢ = 2*(total number of requests) and
{ = 600. Unless otherwise stated, the maximum time limit #;,, for each run is set to
3600 s.
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5.2 Assessment of the method and discussion of results for the one-to-one
VRPCD

At first, the proposed AMP method is applied for the one-to-one VRPCD using the
benchmark data set of Wen et al. (2009) with up to 200 requests as well as the data
set of Morais et al. (2014) involving up to 500 requests. Previous algorithms solve
these instances considering variable times for the unloading and loading operations
taking place at the cross-dock as well as time windows for both suppliers and
customers. In order to ensure a common and fair basis for comparison, we have
modified our AMP algorithm accordingly to take into account all necessary
operational realities, and in particular, we followed the so-called CS1 consolidation
scenario for the cross-dock operations as described by Tarantilis (2013). This
scenario assumes that the same vehicle fleet is utilized for both pickups and
deliveries. In this case, only the pickup products that will be delivered to their
corresponding customers by another vehicle will be unloaded from the pickup
vehicles at the cross-dock, and subsequently they must be sorted and reloaded to the
corresponding delivery vehicles. In addition, this scenario assumes that both
suppliers and customers have to be serviced within predefined time windows.

The computational results obtained for the Wen et al. (2009) and Morais et al.
(2014) instances are summarized in Tables 1 and 2, respectively. Our algorithm
exhibits a reliable performance. In particular, for the Wen et al. (2009) instances, it
managed to find one new best solution (50b instance). For the rest of the instances,
the algorithm is close to the best known solutions (BKS)—which are highlighted in
bold font- and it has a worst case performance of 1.00%, with an average deviation
from the BKS of 0.24%. No significant variations with respect to the solution cost
are observed over the 10 runs for each instance. Finally, it is worth noticing that the
proposed method scales-up well in terms of solution quality and computational
times with respect to the problem size. Better are the figures for the larger data set of
Morais et al. (2014). The proposed AMP in this data set consistently improves the
best solutions for 15 out of 16 instances. The average improvement on the best
known solutions is —0.12%, ranging from +0.30 to —0.31%.

5.3 Small-scale many-to-many VRPCD instances

For the initial assessment of the proposed AMP algorithm we have generated 8
instances derived from the well-known data sets of Li and Lim (2001) originally
introduced for the Pickup-and-Delivery Problem (PDP). The instances generated are
from the Random class set of instances (Ir100) involving cases where the suppliers
and customers are randomly distributed. All of the instances involve 5 suppliers and
15 customers whose locations were randomly selected from the Ir100 data set of Li
and Lim (2001). Furthermore, in the first four instances (Ir2_) customers request
products from up to 2 suppliers, while in the last four instances (Ir3_) customers
request products from up to 3 suppliers. Note that for all instances we consider a
common fixed service time for each supplier and customer location (as obtained
from the original instances) as well as fixed times for the unloading and loading
operations at the cross-dock. Table 3 reports the computational results produced by
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Table 3 Computational experiments on small-scale many-to-many VRPCD problem instances

Instance AMP CPLEX
bst AMP_t RootLB #Nodes CPLEX t LB Yogap

Ir2_1 445.50 6 378.28 1,548,119 1216 445.50%* -
Ir2_2 504.53 5 351.67 6,776,700 2438 504.53* -
Ir2_3 504.44 5 388.92 2,169,564 1069 504.44%* -
Ir2_4 406.42 6 311.54 3,175,782 1175 406.42* -
Ir3_1 580.53 9 493.04 3,779,824 1925 580.53* -
Ir3_2 520.64 9 340.55 3,584,689 21,600 502.80 343
Ir3_3 633.09 8 460.49 13,119,000 21,600 617.34 2.54
Ir3_4 653.70 9 548.36 9,719,103 4116 653.70%* -

bst, the best solution found from the AMP; AMP_t, the average time required by the AMP for generating
the best solutions (s); Root LB, lower bound at the root node; #Nodes, number of CPLEX nodes explored;
CPLEX_t, total time required by CPLEX (s) to close the gap; LB, Lower bound. The * sign is added when
CPLEX closed the gap with respect to the best found solution obtained by the AMP with a 0.01%
optimality tolerance, %gap: Gap between the best AMP solution and the LB obtained by CPLEX (=100/
(bst — LB)/bst)

the AMP metaheuristic algorithm compared to the optimal solutions or lower
bounds obtained from CPLEX.

The AMP algorithm exhibited a very stable performance. For all 8 problems, all
ten runs obtained the same final solution (bst). In terms of the computational time,
the average time required by the AMP for reaching the final solution of each of the
ten runs ranged from 5.5 up to 8.75 CPU seconds for the 1r2_ and Ir_3 instance
series, respectively. Concerning the MILP CPLEX runs, the smaller problems
appeared to be easier to solve: for all 4 instances of the Ir2_ instance series, CPLEX
managed to close the gap and find the best solution obtained initially by the AMP
(optimality tolerance was set equal to 0.01%), whereas for the Ir_3 instance series,
CPLEX found the best solution obtained initially by the AMP for 2 out of 4
instances.

5.4 Medium- and large-scale many-to-many VRPCD instances
5.4.1 Data set generation method

A new data set of benchmark problem instances has been generated. Similarly to the
set of instances described in Sect. 5.3, these problem instances are also derived from
the data sets of Li and Lim (2001). Three main classes of instances are developed,
namely Random, Random-Clustered and Clustered referring to the geographic
distribution of supplier and customer nodes. The Random class involves cases where
the suppliers and customers are randomly located in the same geographic region,
whereas the Clustered class involves cases where suppliers and customers are
located in different areas (clusters). In the Random-Clustered case only some
suppliers and customers are located in the same area. The Random and Random-
Clustered instances are produced by modifying the following sets: 1r100; lrc100;
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LR1_2, and LRCI1_2, respectively. The Clustered instances are produced by
modifying the following sets: 1c100 and LCI1_2. Initially, collocated nodes are
removed from the graphs. The cross-dock is set to be the original depot node. Then,
the sets of suppliers and customers are generated from the nodes of the original
instance. Let n,,, be the number of pickup and delivery nodes of the original nodes
after the collocated points have been removed. Obviously, ISl 4+ ID'l = n,,,. Three
ratios of supplier participation ¢ = |§'l/n,,,, are considered: 10, 30 and 40%. For the
Random and Random-Clustered instances, the number of suppliers IS'l is randomly
picked out of the n,,, vertices. On the contrary, for the Clustered instances, the
number of suppliers IS’l is manually picked to be concentrated into different regions
compared to the rest of the node population. The remaining n,,, — IS'l nodes are
included in the set of customers.

To quantify the distribution of the node locations for the generated sets, the
Nearest Neighbor Index (NNI) is used (Clark and Evans 1954). The NNI is defined
as the ratio Vps/V,an, where the observed distance V,; represents the average over
all distances between each point and its nearest neighbor, and the random distance
Vian 1S the expected average distance that would occur, if the distribution was
random. The former is given by Vip, = (> _,c.p Minjesup,iz(dij))/Norg- The latter

can obtained as V,,, = 0.5,/Y/ Norg, Where Y is the area of the grid. NNI values <1,
indicate some degree of clustering. In Table 4, we provide the NNI values for the
three geographic distribution classes.

After separating the set of nodes into customers and suppliers, the transportation
request flows are identified. At first, the demand of each customer c is set equal to
d., where d. is the absolute value of the original demand of node ¢ (note that in the
original data set a node could be either a delivery or a pickup node). Next, we define
the maximum number of suppliers serving each customer node c. For this purpose,
we have used four different “supplier-customer connection density” classes ¢ with
1, 2, 3, and 4 number of connections, respectively. To that end, the total d. quantity
is randomly allocated to the ¢ supplier nodes. Special care is given so that each
supplier is associated with at least one customer node. From the demand matrix
perspective  presented in Sect. 2, note that ), ¢dj=d.VjeD and
ZjeDdij >0,VieS.

In terms of the capacities of the inbound and outbound vehicles, we used Qs =
5% epdc/|D| and Qp = 0.5Qs rounded down to the nearest ten. If these values
cannot guarantee feasibility, they are set to the minimum capacity levels adequate
for serving every supplier or customer node. Regarding the time characteristics of
the problem, for all pickup/delivery nodes the service time s, is common and is
equal to the original value used by Li and Lim (2001). In terms of the loading and

Table 4 Nearest neighbor index (NNI) for the three geographic distribution classes

Instance size (n,,,) R RC C
100 1.50 1.04 0.61
200 1.05 0.97 0.51
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unloading operations taking place at the cross-dock, we set u = [ = 2s,. For each
problem instance and o-class combination, all four e-class instances are associated
with a common maximum route duration (7) value. This T value is heuristically
obtained so as to ensure both a challenging interplay with the capacity constraints as
well as the feasibility of the instances. In total, 708 instances are generated (59
original PDP problem instances x 3 ¢ classes x 4 ¢ classes).

5.4.2 Assessment of the proposed method on the new benchmark instances

Table 5 summarizes the average results obtained for the many-to-many VRPCD on
the new benchmark data sets (detailed solutions for all problem instances can be
found in “Appendix”). The problem instances are initially divided in two sections
referring to instances with 100 and 200 nodes. Furthermore, the problem instances
are grouped according to their characteristics. In particular, each result represents
the average solution costs for all problem instances of the same geographic
distribution (R, RC, C) class, supplier-customer density (¢) class and supplier
participation ratio (o).

One main observation is that the transportation costs increase for all cases as the
supplier participation ratio increases from 10 to 40%. This is not surprising as the
problem instances with higher supplier participation ratio, involve vehicles with low
capacities, and therefore, more pickup and delivery routes are required to serve all
requests. Table 5 also reveals reduced costs for the clustered distribution class
(C) for all instances with 100 and 200 nodes, compared to the random classes (R and
RC). We observe that the average costs decrease as the geographic distribution of
the nodes becomes more clustered, for the cases where the supplier participation
ratio is 10 and 30%. This indicates that the cross-docking operations might be more
beneficial when the customers are clustered. However, this is not the case for
instances where the supplier participation is high (40%). This is possibly due to the
fact that the original Li and Lim (2001) instances of the C class have larger T values,
and larger cross-dock preparation times compared to the instances of the R and RC
classes. Therefore, when the supplier participation increases, vehicles perform
routes to more isolated/distant nodes, and the loading and unloading operations
taking place at the cross-dock are more time-consuming.

Considering the implications on transportation costs with respect to the supplier-
customer density class, a rather unexpected result occurs. We observe reduced
transportation costs when customers are associated with more than one suppliers,
compared to cases where there is a one-to-one relationship between suppliers and
customers. More specifically, for all the groups of problems where the supplier
participation ratio is low (10%), transportation costs decrease for the more dense
groups (¢ = 4), compared to the problem groups with ¢ = 1. The same finding is
also observed for the R and RC classes of all instances with 30% supplier
participation ratio. This shows that cost savings can be achieved when customers are
able to receive the total delivery quantity by multiple suppliers, not just one. Similar
are the findings for the average solutions obtained for problem instances with 200
nodes among the R, RC and C classes.
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5.4.3 Computational experiments with collocated nodes and split options

In this section, the benefit of splitting requests by alleviating the restriction that each
node should be visited only once is examined. For this purpose, we transform the
many-to-many data sets presented in Sect. 5.4.1 so as to consider a one-to-one
mapping between suppliers and customers (as such different requests may involve
collocated suppliers and customers).

To make this transformation, we generate for each supplier node i that is
connected with more than one customers, collocated supplier nodes that are copies
of the original i node. Obviously, the total number of collocated suppliers generated
for supplier i is equal to the total number of non-zero entries in row i of the demand
matrix. Similarly, the total number of collocated customers generated for customer
Jj of the original problem instance, is equal to the total number of non-zero entries in
column j of the demand matrix. To generate the service times for each node of the
modified instance, we divide the original service time value s, by the number of
node copies generated. In what follows, we denote as Data Set I the transformed
data set with originally 100 nodes and as Data Set II the transformed data set with
originally 200 nodes.

Table 6 summarizes the average results obtained for all groups of problems on
the transformed data set. Detailed solutions for all problem instances can be found
in “Appendix”. Similar to Table 5, the problem instances are initially divided into
two sections with respect to the problem size, i.e., 100 and 200 nodes. Note that for
all problem instances of the same geographic distribution (R, RC or C) class,
supplier-customer density (¢) class and supplier participation ratio (o), Table 6
presents the average solution costs for each group of problems as well as the average
number of split requests #s, including both pickups and deliveries. Let k; be the total
number of vehicle routes serving the node copies of supplier i. Then, the number of
split pickup requests for supplier i is defined as s; = (> _,.gk;) — 1. Similarly, let k;
be the total number of vehicle routes serving the node copies of customer j. Then,
the number of split delivery requests for customer j is defined as s; = (Z/E pki) — 1.

Compared to Table 5, we can clearly observe that better on average costs can be
obtained when splitting of the transportation requests is allowed. This is not
surprising, as splitting yields more opportunities for cost improvement through
combined pickup and/or delivery routes. Another observation from Table 6 is that
for the cases where the supplier participation ratio is low (10%), splitting requests
does not improve the overall costs. However, this is not the case for the clustered
instances (C class). As shown in Table 6, allowing requests that belong to C class to
be split, results in reduced average transportation costs for all classes of the supplier
participation ratio. Lastly, Table 6 reveals that the average number of split requests
is higher for the random (R) distribution class, and in particular for the larger
supplier-customer connection density instance (&) classes. Allowing requests to be
split in this case, may yield substantial savings. Note that the total service time of
each pickup (or delivery) node in the transformed data set is divided by the number
of customers (or suppliers) connected to this node so that the comparison between
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the two data sets is fair. However, in practice we often need to add extra setup time
the service at each node, and this is the trade-off we need to consider.

6 Conclusions

This paper examined a new vehicle routing problem with pickups, deliveries and a
cross-dock facility. Key feature of the examined problem was that each customer
might request products from multiple suppliers, while there is the restriction to visit
each customer and supplier node only once by exactly one vehicle. To our
knowledge this many-to-many relationship for the VRPCD appears for the first time
in the literature, and it can be seen as a generalization of one-to-one settings with
and without collocated nodes. A mathematical formulation was introduced that
captures all the critical characteristics of the problem considered. For solving the
problem, an Adaptive Memory Programming method was proposed. Key method-
ological component was the procedure followed for identifying and selecting elite
subroutes of varying length from the reference solutions.

Various computational experiments were conducted to assess the performance of
the proposed method and to examine the characteristics of the new problem. On
existing benchmark data sets for the one-to-one VRPCD, the AMP performed very
well compared to the current state-of-the-art approaches of the literature. On the
other hand, computational results on new data sets provided new useful insights. For
example, the solution costs increased as the supplier participation ratio increased.
The solution costs decreased as the geographic distribution became more clustered
for all cases with supplier participation ratio <30%. Significant savings may also be
observed if splitting is allowed for the R and RC classes combined with cases where
the supplier participation ratio is >30%. Finally, more splits are observed for the
cases where supplier and customers are randomly distributed in a geographic region
with large supplier-customer connection density.
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studies in Greece—Siemens program, as well as by the Research Center of the Athens University of
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Appendix

Detailed solutions for all problem instances of the new benchmark data sets are
reported in Tables 7, 8, 9 and 10. In particular, Tables 7 and 8 present the solutions
obtained for the many-to-many VRPCD with no split options with up to 100 and
200 nodes, respectively. Note that the average results for these problem instances
are reported in Table 4. Tables 9 and 10 present the solution obtained for the
transformed VRPCD with collocated nodes and split options, with up to 100 and
200 nodes, respectively. In both cases the problem instances are grouped according
to the geographic distribution class, supplier-customer density (¢) class, and supplier
participation ratio (o).
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