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Abstract This paper deals with a bi-objective hybrid flow shop scheduling problem

minimizing the maximum completion time (makespan) and total tardiness, in which

we consider re-entrant lines, setup times and position-dependent learning effects.

The solution method based on genetic algorithm is proposed to solve the problem

approximately, which belongs to non-deterministic polynomial-time (NP)-hard

class. The solution procedure is categorized through methods where various solu-

tions are found and then, the decision-makers select the most adequate (a posteriori

approach). Taguchi method is applied to set the parameters of proposed algorithm.

To demonstrate the validation of proposed algorithm, the full enumeration algo-

rithm is used to find the Pareto-optimal front for special small problems. To show

the efficiency and effectiveness of the proposed algorithm in comparison with other

efficient algorithm in the literature (namely MLPGA) on our problem, the experi-

ments were conducted on three dimensions of problems: small, medium and large.

Computational results are expressed in terms of standard multi-objective metrics.

The results show that the proposed algorithm is able to obtain more diversified and

competitive Pareto sets than the MLPGA.
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1 Introduction

Scheduling is an important tool for manufacturing and engineering, where it can

have a major impact on the productivity of a process. Production scheduling is

management and allocation of resources, events and processes to create goods and

services. Production scheduling aims to maximize the efficiency of the operation

and to minimize the production time and costs, by telling a production facility when

to make, with which staff, and on which equipment.

In the literature, the notion of hybrid flow shop (HFS) scheduling problem has

emerged in 1970s (Arthanary and Ramaswamy 1971). The HFS can be found in

various types of industries. The most representative one is in electronics, such as

semiconductor wafer fabrication, printed circuit board (PCB) manufacturing, thin

film transistor-liquid crystal display (TFT-LCD) manufacturing, etc. In addition,

various traditional industries, such as food, oil, pharmaceutical, tobacco, textile,

chemical, steel, paper, and metallurgical industry, have various HFSs (or can be

modeled as a HFS). Ruiz and Rodrı́guez (2010) described the HFS problem in its

‘‘standard’’ form. This paper investigates an HFS problem in standard form with

additional features, including: setup times, re-entrant flows, and position-dependent

learning effects.

The literature of HFS is filled with different applied industrial assumptions to

better represent the real nature of scheduling environments. One of the most

prevailing and extremely favored assumptions by many researchers in real

scheduling configurations is the integration of sequence-dependent setup times into

different shop scheduling environments. The importance and applications of

scheduling models with explicit considerations of setup times (costs) have been

discussed in several studies (i.e. Chang et al. 2003; Andrés et al. 2005). One of the

underlying assumptions in this paper is to consider setup times in scheduling

configurations. The setup times considered in this problem are classified into two

types: (1) sequence-independent setup time (SIST); and (2) sequence-dependent

setup times (SDST). In the former, setup depends only on the job to be processed. In

the latter, setup depends on both the job to be processed and the immediate

preceding job. Allahverdi et al. (1999, 2008) provided a comprehensive review of

the literature on scheduling problems involving setup times (costs). The HFS

problem with setup times has been investigated in several studies (Jungwattanakit

et al. 2008, 2009; Behnamian et al. 2009; Davoudpour and Ashrafi 2009; Naderi

et al. 2009a, b; Rashidi et al. 2010; Karimi et al. 2010; Mousavi et al.

2011a, b, 2012a; b; Hakimzadeh Abyaneh and Zandieh 2012; Pargar and Zandieh

2012; Behnamian and Zandieh 2013; Fadaei and Zandieh 2013; Jolai et al. 2013;

Attar et al. 2014; Wang and Liu 2014). For example, Jungwattanakit et al.

(2008, 2009) considered the flexible flow shop with unrelated parallel machines and

sequence/machine dependent setup times, release date and due date constraints.

Davoudpour and Ashrafi (2009) focused on the SDST HFS problems with identical

parallel machines, and release date. Rashidi et al. (2010) investigated the HFS

problems with unrelated parallel machines, SDST and blocking processor. Mousavi

et al. (2011a, b, 2012a, b) studied the problem of scheduling n independent jobs in
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HFS environment with SDST. Fadaei and Zandieh (2013) investigated group

scheduling in the problem of HFS scheduling within the area of sequence-dependent

family setup times. Wang and Liu (2014) also found an integrated bi-objective

optimization problem with non-resumable jobs for production scheduling and

preventive maintenance in a two-stage HFS. They considered the SDST and

preventive maintenance on the first stage machine.

HFSs can be classified into two types according to product flows: (1) those with

unidirectional flows; and (2) those with re-entrant flows. The unidirectional flows

imply that each job starts at the first stage and finishes at the last stage. On the other

hand, in the reentrant flows, each job may visit a serial stage twice or more.

Therefore, the re-entrant HFS (RHFS) means that there are n jobs to be processed on

g stages and every job must be processed on stages in the order of stage 1, stage

2,…, stage g for l times (l is the number of repetition of jobs on the sequence of

stages). Lin and Lee (2011) provided a comprehensive review of the literature on

scheduling problems involving re-entrant flows. Also, Dugardin et al. (2010), Cho

et al. (2011) and Ying et al. (2014) considered the multi-objective HFS problem

with re-entrant flow.

The last underlying assumption in this paper is the consideration of learning

effects in scheduling configurations. In classical scheduling, job processing and

setup times are assumed to be constant from the first job to be processed until the

last job to be completed. Despite the effect of learning in a production environment,

the processing and setup times of a given job are shorter if it is scheduled later in the

production sequence. The learning effects considered in scheduling environments

are classified into two types: (1) position-based learning; and (2) the sum of

processing time. Regarding the last underlying assumption in this paper, processing

and setup times of a given job depend on its position in the sequence arrived to each

stage which means the learning effects are position-based learning. Biskup (2008)

provided a comprehensive review of the literature on scheduling problems involving

learning effects. The HFS problem with learning effects has been investigated in

several studies. For example, Pargar and Zandieh (2012) and Behnamian and

Zandieh (2013) investigated the HFS problems with SDST and position-dependent

learning effects.

The present study investigates scheduling problem with learning considerations,

using the learning curve introduced by Biskup (1999). The learning curve assumed

by Biskup (1999) reflects decrease in production time as a function of number of

repetitions. As shown in Biskup (1999), we assume that the processing time of job j

at stage t of layer l if scheduled in position r, is given by Eq. (1).

Pt
jrl ¼ Pt

jl � ðrtjlÞ
ðat

jl
Þ 8i; j; t; r; l ð1Þ

where �1� atjl � 0 is a constant learning index, given as the logarithm to the base 2

of the learning rate (LR). In this paper, we assume that all machines and jobs in each

stage and layer have the same learning rate ðatjl ¼ aÞ. Similarly, the setup time of

job i to job j if scheduled in position r at stage t of layer l, is given by Eq. (2).

Stijrl ¼ Stijl � ðrtjlÞ
ðat

jl
Þ 8i; j; t; r; l ð2Þ
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Pt
jl actual processing time for job j at stage t of layer l, Stijl actual setup time between

job j and job i at stage t of layer l while job j is scheduled immediately after job i,

Pt
jrl the processing time for job j in position r at stage t of layer l, Stijrl the setup time

of job i to job j, scheduled in position r at stage t of layer l.

Nowadays, because of the intensely competitive markets and limited

resources, many manufacturers have come to appreciate the importance of

scheduling by attempting to reduce their production expenses and the final costs

of their products. The scheduling objective in such industries may vary. Three

types of decision-making goals are prevalent in scheduling: (1) efficient

utilization of resources; (2) rapid response to demands, or minimizing the

work-in-progress; and (3) close conformance to prescribed deadlines (Pinedo

2008). According to just-in-time (JIT) concept, production managers should

consider more than one criterion in scheduling problems. Therefore, simulta-

neous minimization of two conflicted objective functions that are makespan and

total tardiness. In fact, minimizing the makespan causes internal efficiency and

maintains the work-in-process inventory at a low level. Minimizing the total

tardiness causes external efficiency and reduces the penalties incurred for late

jobs.

According to the best of our knowledge, bi-objective RHFS with SDST and

learning effect problem have never been investigated in the scheduling problems.

Therefore, the aim of this paper is to develop a solution method for the proposed

problem that search a set of non-dominated solutions.

It has been shown in several studies that some of scheduling problems are

belong to NP-hard class; for example, a single machine SDST scheduling

problem is equivalent to a traveling salesman problem (TSP) and is NP-hard

(Pinedo 1995). The HFS problem is significantly more complex than the regular

single machine scheduling. On the other hand, Gupta (1988) showed the flow

shop with multiple processors (FSMP) problem with only two stages to be NP-

hard even when one of the two stages contains a single machine. The FSMP

problem can be considered as a specific case of the HFS. Also, the re-entrant

permutation flowshop scheduling problem for minimizing makespan has already

been proven to be NP-hard (Wang et al. 1997). According to the research

presented, we can easily conclude that our proposed problem is also an NP-hard

problem which is not easy to solve by a traditional mathematical model. The

exact methods are unable to render feasible solutions even for small instances of

this problem in a reasonable computational time. Therefore, this inability

justifies the need for employment of a variety of heuristics and meta-heuristics

to solve these problems to optimality or near optimality. In this paper, we are

going to use a meta-heuristic algorithm to solve scheduling problem. The

proposed meta-heuristic and the details of it are explained in Sect. 2. The rest of

the paper is organized as follows: Sect. 3 presents the computational results and

numerical comparisons. Finally, Sect. 4 is devoted to conclusion and future

works.
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2 The proposed algorithm

In this paper, a genetic algorithm is proposed for solving bi-objective optimization

problem. The main reason for using this approach is that the problem under study is

NP-hard and genetic algorithm approach has been demonstrated cost- effective for

solving this kind of problem.

The term ‘‘genetic algorithm’’, almost universally abbreviated to GA, was first

used by Holland (1975). Different approaches of GA appear in the literature of

multi-objective optimization problem (MOP), some of them are Vector Evaluated

Genetic Algorithm (VEGA) (Schaffer 1985), Multi-Objective Genetic Algorithm

(MOGA) (Fonseca and Fleming 1993), Niched Pareto Genetic Algorithm (NPGA)

(Horn et al. 1994), Non-dominated Sorting Genetic Algorithm (NSGA & NSGA-II)

(Srinivas and Deb 1995; Deb et al. 2002), Pareto Stratum-Niche Cubicle Genetic

Algorithm (PS-NC GA) (Hyun et al. 1998), Multiple Objective Genetic Local

Search (MOGLS) (Ishibuchi and Murata 1998), Strength Pareto Evolutionary

Algorithm (SPEA & SPEA-II) (Zitzler and Thiele 1999; Zitzler et al. 2001), Pareto

Archive Evolution Strategy (PAES) (Knowles and Corne 1999), Elitist Non-

dominated Sorting Genetic Algorithm (ENGA) (Bagchi 1999), The Pareto Envelope

based Selection Algorithm (PESA & PESA-II) (Corne et al. 2000, 2001), and so on.

Although many studies have provided valuable developments and applications

for GA, improvements still can be made in designing GA for MOPs. In this paper,

the proposed algorithm is somewhat similar to the NSGA-II. The NSGA-II

algorithm has been developed by Deb et al. (2002) as a fast and efficient multi-

objective genetic algorithm. The aim of this algorithm is to find a set of non-

dominated solutions based on the Pareto dominance relationship. The main concept

of the NSGA-II is the creation of an initial population, the selection of parents, the

creation of children and the finding of non-dominated solutions. In the following,

we extensively describe the structure and details of the proposed algorithm.

2.1 The structure of the proposed algorithm

The steps of proposed algorithm are shown below.

Step 1: Encoding The application of an algorithm requires the representation of a

solution. We apply a scheme using integers that shows the number of job. In this

kind of representation, a single row array of the size equals to the number of the jobs

to be scheduled. The value of the first element of the array shows which job is

scheduled first. The second value shows a job which is scheduled secondly and so

on. For example, consider a problem with five jobs (n = 5), two stages (g = 2), two

machines at stage one (m1 = 2), and three machines at stage two (m2 = 3). Suppose

a solution is generated according to integer coding as [3 1 4 2 5]. It is known that the

machines in parallel are identical in capability and processing rate. Therefore, job 3

is process on machine 1 and job 1 is process on machine 2 at stage one. Then, the

job 4 is assigned to the machine of which the completion time is smaller than other

machines. This process continues like this, until all jobs are assigned to the first
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stage machines. For determining the order of jobs in the second stage, first in first

out (FIFO) rule is used.

Step 2: Initialization

(i) Initialize the number of initial population (Npop), Probability of crossover

(Pc), Probability of mutation (Pm), Number of generation (Ng).

(ii) Initialize an initial population (P0) randomly.

Step 3: Non-dominated sorting and ranking procedure First, the objective

values of all chromosomes in the current population (Pi) is evaluated, then the

population of solutions is classified into successive non-dominated fronts (primary

rank), F1 is the set of non-dominated solutions in Pi which is the first frontier and F2
is the set of non-dominated solutions in Pi\F1 which is the second frontier and so on,

Ft is the set of non-dominated solutions in the last frontier, and finally, the crowding

distance of each solution with respect to every other solution on the same front

(secondary rank) will computed.

Step 4: Dividing the population The current population is divided into 3

categories: (1) Set ‘A’ contains the non-dominated solutions in F1, and the size of A

(|F1|) is NA. (2) Set ‘B’ contains the non-dominated solutions in F1, F2, …, and Fq,

and the size of B (|F1| ? |F2| ? _ ? |Fq|) is NB. (3) Set ‘C’ contains the non-

dominated solutions in Fq?1, Fq?2, …, Ft, and the size of C (|Fq?1| ? |Fq?2|

? _ ? |Ft|) is NC. If t fronts are obtained by primary rank, then q is half of fronts. It

is known that the number of fronts (t) is different in each generation.

Step 5: Selection scheme The binary-tournament selection is employed at the

selection operation to reproduce the next generation. According to this selection

scheme, between two solutions with differing non-domination ranks (primary rank),

we prefer the solution with the lower rank. Otherwise, if both solutions belong to the

same front, then the solution located in a lesser crowded region is preferred

(secondary rank).

Step 6: Neighborhood operator First, a neighborhood relation on the search

space is defined, and then k-neighborhood solutions (k = 2) of each solution in set

‘A’ are generated. Inversion, swap, shift and k-exchange moves are applied in this

paper. In each generation, neighborhood operator is selected randomly among

introduced operators.

Step 7: Crossover operator Select (Npop - (k ? 1) 9 NA) 9 Pc pairs of parents

from set ‘B’ based on the binary-tournament selection, and perform crossover on the

parents. Order crossover (OX) is applied in this paper.

Step 8: Mutation operator Select (Npop - (k ? 1) 9 NA) 9 Pm parents from set

‘C’ based on the binary-tournament selection, and perform mutation on the parents.

Inversion, swap, and k-exchange moves are applied in this paper. In each

generation, mutation operator is selected randomly among introduced operators.
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Step 9: Replacement Set A (include F1) with solutions obtained from the

previous steps (include steps 6, 7 and 8) are combined as new population (Pi?1).

Step 10: Stopping Rule If there is not improvement in F1 obtained of two

successive generations (Pi and Pi?1), then U count increases by one. If counter U

equals to the pre-specified number (Ng) then stop, otherwise go to step 3. Data

envelopment analysis (DEA) is used to design the stopping criterion.

Graphically, the proposed algorithm so-called NSGA-DEA can be presented as in

Fig. 1. In the following subsections, we describe the details of the computation of

crowding distance and stopping criterion.

2.2 Crowding distance

The introduced method by Pasupathy et al. (2007) is used for the computation of

crowding distance for a bi-objective problem. The crowding distance of the ith

solution in its front, called cdi is computed as given in Eq. (3). In order to compute

the cdi first the ‘‘normalized Euclidean-distance based on crowding distance’’

(NEDCD) between solutions i and j, called Dij, is computed as given in Eq. (4).

cdi ¼
X

j2fFfi
g

i6¼j

Dij ð3Þ

Dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

b¼1

Zbi � Zbj

maxfZbi0 g �minfZbi0 g

� �2

vuut

i0 2 Ffi0

� �
ð4Þ

Next  population Current  population 
and evaluate 

objectives 

Primary     and 
secondary     ranks

Dividing       the
population  into  3 

sets

Transfer  set  A 

Neighborhood operator

Yes

Terminate?

No

End 

Replacement

Crossover operator

Mutation operator

Fig. 1 Flowchart of proposed algorithm
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In Eq. (3), fi denotes the front on which solution i lies, and Ffi

� �
denotes the set of

solutions that lie on the same front as that of solution i. In Eq. (4), Zbi and Zbj denote

the values with respect to the bth objective function for solutions i and j,

respectively. The solution with the largest value of crowding distance is assigned

with the highest secondary rank (i.e., rank 1) in comparison to other solutions on the

same front.

2.3 Proposed stop criterion

Suppose F1 and F0
1 are the first frontier of two successive generations. Two cases

can be expected of comparison between F1 and F0
1 which are as follows: (1) F0

1 is

better than F1, (2) F
0
1 and F1 are the same. In order to compare two sets of F1 and F

0
1

quantitatively, the introduced method by Ruiz-Torres and Lopez (2004) is applied.

They used free disposal hull (FDH) formulation that is a particular case of DEA. In

this subsection, only the stages of method are briefly described. It is noted that each

scheduling solution is a decision making unit (DMU), and inputs are the makespan

and the total tardiness.

1. The scheduling solutions (or DMUs) of F1 and F0
1 are combined in one single

data set to generate an ‘FDH problem’ set.

2. In this stage, each DMU is comparable to the other DMUs on a one-to-one

basis. DMUs which dominate the others but do not dominate themselves are

efficient DMUs that are collected in a set so-called T. Efficient DMUs (or

scheduling solutions) always have a degree of efficiency equal to one. Now, we

want to calculate the degree of efficiency for DMU G, which is inefficient.

The degree of efficiency of any DMU (efficient or inefficient) is computed as

given in Eq. (5).

EG ¼
1 if G is efficient

MaxS2QG w1

CS
max

CG
max

� �
þ w2

�TS

�TG

� �� �
if G is inefficient

8
<

: ð5Þ

F1and F0
1 Set of DMUs provided by two successive generations

F1j j and F0
1

		 		 Number of DMUs in sets F1 and F0
1

Cs
max Makespan corresponding to DMU S

�Ts Total tardiness corresponding to DMU S

wi Relative weight of criteria i, with
P2

i¼1 wi ¼ 1

T Set of all efficient DMUs

QG Set of DMUs in T that make schedule G inefficient

EG Degree of efficiency of DMU G
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3. The ‘efficiency’ of F1 and F0
1 are calculated as given in Eq. (6) (called A1 and

A0
1 respectively).

A1 ¼
P

G2F1
EG

F1j j and A0
1 ¼

P
G2F0

1
EG

F0
1

		 		 ð6Þ

Two cases can be expected of comparison between A1 and A0
1 which are as

follows: (1) A0
1 value is bigger than A1. (2) A

0
1 value is equal to A1. In the first case,

improvement has been observed in the process. In the second, this result shows that

no improvement has been reported. Therefore, U count increases by one. The

stopping criterion for algorithm is terminated while counter U is equal to Ng (pre-

specified number).

2.4 Discussion on the structure of algorithm

In this subsection, ideas used in the structure of algorithm are discussed in the form

of questions and answers. The most important questions can be expressed as

follows: (1) Why is a new operator so-called neighborhood operator added to search

the neighborhood first frontier (F1) in each generation? (2) Why are several

neighborhood and mutation operators introduced to select among alternatives

randomly in each generation? (3) Why is crossover operator on solutions in high

level fronts applied? (4) Why is mutation operator on solutions in low level fronts

applied? (5) Why is stop condition as stated in Sect. 2.3 considered?

Now we will respond to questions. In response to the first question, solutions

belonging to the best non-dominant set F1 are of best solutions in the population and

must be emphasized more than any other solutions in the population. In fact, set F1

is the closest front to the Pareto-optimal front. We make slight changes in solutions

of set F1 with the hope to find better results (closest to the Pareto-optimal set). These

slight changes are done through neighborhood operator. This corresponds to the

concept of the exploitation.

In response to the second question, the main reason for using this approach is that

the algorithm is able to guide the search to another promising region through

different types of moves. Therefore, the performance of algorithm with cited

characteristic can be better. This corresponds to the concept of the diversification.

Concerning the third question, genetic algorithms have a recombination

operation so-called crossover which is probably closest to the natural paragon.

The crossover operator is used to mimic biological recombination between two

single chromosome organisms. Therefore, offspring has the information from two

parents. According to nature, competition among individuals for scanty resources

results in the fittest individuals dominating over the weaker ones. Therefore, the

population is modified with the natural law. We are going to modify population

more quickly. In order to increase the selection probability of fittest individuals,

crossover operator is applied to the solutions in high level fronts.

Regarding the fourth question, the main concept of the mutation is the changing

of the structure of a gene, resulting in a variant form which may be transmitted to
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subsequent generations, caused by the alteration of single base units in DNA, or the

deletion, insertion, or rearrangement of larger sections of genes or chromosomes. In

the nature, mutation is usually employed to eliminate defects occurred in

individuals. The defects here are considered to be as equivalent solutions in low

level fronts. Therefore, mutation operator is applied on the solutions in low-level

fronts.

In response to the last question, suppose our aim is to solve a single-objective

minimization problem with GA. The objective value of the best solution in each

generation will improve/remain constant when the algorithm is running. The

relative difference (D) between the best solutions in two successive generations is

simply calculated. Two cases can occur as follows: (1) D = 0, (2) D\ 0. In the

first, the best solutions remain constant in two successive generations (improvement

has not been observed). In the second case, the algorithm has found a better solution

for the next generation (improvement has been observed). The D value can be used

to design two stop conditions as follows: (1) algorithm has reached a plateau such

that successive iterations no longer produce better results (i.e. D = 0 in successive

iterations for the pre-specified number), (2) in non-consecutive U-generation,

improvement has not been observed (i.e. D = 0 in non-consecutive U iterations for

the pre-specified number). Now, our aim is to solve a MOP with GA. In a MOP,

non-dominated solutions in each generation will improve/remain constant as the

algorithm is running. However, there is no straightforward manner such as D.
Therefore, the terminating condition is proposed based on DEA to express the

improvement or lack of improvement in the non-dominated solutions of two

successive generations. The proposed approach is similar to D. The proposed stop

condition is a new approach in the design of the stop condition.

3 Computational experiments

This section contains the method of generating data sets, performance criteria, the

parameter setting with Taguchi method, validation of the proposed algorithm,

running data sets by proposed algorithm and algorithm in the literature, and then

expresses the results of the comparisons.

3.1 Test problems

The numerical data should be created to test the performance of the algorithm. Data

required for a problem consists of number of jobs, number of stages, number of

machines per stage, number of re-entrants, processing times, setup times, due dates,

and learning indices. Note that, the largest number of machines in a stage must be

less than the number of jobs n[max mt; t 2 gf gð Þ. Designing range of levels of

each factor is illustrated in Table 1. The number of machines, processing times and

setup times (20–40 % of the mean of the processing time) are randomly generated

from a discrete uniform distribution as described in Table 1. This table is divided

into four categories: (1) special small problems, (2) small problems, (3) medium
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problems, and (4) large problems. Special small problems are designed to assess the

validity of the proposed algorithm. The term ‘‘specific’’ is given to these problems

because they cover small problems of single machine, parallel machine, flow shop,

and two-stage HFS. To demonstrate the effectiveness of proposed NSGA-DEA

compared to algorithm in the literature, the experiments were conducted on three

sizes of problems: small, medium and large. Due to levels of factor, the twenty-four

problems are produced for the special small problems. The eighteen problems of

multiplication levels of factors (n 9 g 9 L) are produced for the small, medium,

and large problems. Learning indices -0.152 and -0.514 were selected with respect

to the learning curve of 90 and 70 %, respectively. Also, we consider RHFS with

SDST scheduling problems with no learning effect ðatjl ¼ 0Þ. In general, all

problems are tested with regard to the level of learning indices. To generate due

dates of all n jobs, we proposed the following steps:

Compute total processing time of each job on all g stages.

Pj ¼
XL

l¼1

Xg

t¼1

Pt
jl 8 j 2 n ð7Þ

Compute average setup time for all possible subsequent jobs and sum it for all g

stages.

Sj ¼
XL

l¼1

Xg

t¼1

Pn
k¼1 S

t
kjl

n

� �
8 j 2 n ð8Þ

Determine a due date for each job.

dj ¼ ðPj þ SjÞ �
max ðmt

t2g
Þ

g

0
@

1
A� ð1þ random � 3Þ 8 j 2 n ð9Þ

where random is a random number from a uniform distribution over range (0, 1).

Table 1 Factors and their levels

Factor Levels

Special small Small Medium Large

Number of jobs (n) 5; 7; and10 10; 15; and 20 25; 30; and 35 40; 50; and 60

Number of stages (g) 1; and 2 5; 7; and 10 10; 12; and 15 15; 17; and 20

Number of re-entrants (l) 1; and 2 1; and 2 2; and 3 3; and 4

Number of machines (mt) 1; and 3 Uniform (1, 3) Uniform (1, 6) Uniform (1, 9)

Processing times (p) Uniform (10, 20) Uniform (10, 20) Uniform (10, 40) Uniform (10, 100)

Setup times (s) Uniform (3, 6) Uniform (3, 6) Uniform (5, 10) Uniform (11, 22)
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3.2 Performance criteria

In the literature of multi-objective optimization problems, several performance

criteria have been presented to evaluate the quality of the obtained non-dominated

front and to assess the performance of multi-objective optimizers. Each criterion has

its advantages and disadvantages. There is no agreement as to which criteria should

be used. In general, the quality of the approximated sets must be measured by

qualitative and quantitative criteria. The following performance criteria are applied

to compare the results of multi-objective algorithms quantitatively.

A. Qualitative metrics

1. Number of Pareto solutions (NPS): This performance criterion presents the

number of non-dominated solutions obtained from each algorithm. The larger

the number, the better the performance of the algorithm will be.

2. Quality metric 1 (QM1): To calculate the value of this criterion, first, the net

non-dominated solutions (NDS) are generated by a set of all non-dominated

solutions obtained from all algorithms (whose members should be also non-

dominated in relation to one another) and then the percentage of non-dominated

solutions of each algorithm in NDS to NPS is calculated. The larger the number,

the better the performance of the algorithm will be.

3. Quality metric 2 (QM2): To calculate the value of this criterion, the percentage

of non-dominated solutions of each algorithm in NDS to the number of NDS is

calculated. The third metric signifies the percentage of the solutions in the net

non-dominated Pareto set obtained by a certain algorithm. The larger the

number, the better the performance of the algorithm will be.

B. Quantitative metrics

1. Mean ideal distance (MID): This measure presents the closeness between Pareto

solution and ideal point (0, 0) which can be shown as Eq. (10).

MID ¼
Pn

i¼1 ci

n
ð10Þ

where n is the number of non-dominated set and ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21i þ z22i

p
. The lower

value of MID, the better of solutions quality we have.

2. Spread of non-dominated solution (SNS): This metric indicates the measure of

diversity of Pareto-solutions, and more diversity of solutions is desirable. The

value of SNS is measured as Eq. (11).

SNS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðMID� ciÞ2

n� 1

s

ð11Þ

3. Triangle method (TM): This measure presents the area under linear regression

curve which can be calculated as Eq. (12) (Mousavi et al. 2012).

z1 ¼ bþ a� z2 ð12Þ
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where a and b are calculated as Eqs. (13) and (14):

a ¼ �z1 � b� �z2 ð13Þ

b ¼
Pn

i¼1 ðz2i � �z2Þðz1i � �z1ÞPn
i¼1 ðz2i � �z2Þ

ð14Þ

Therefore, a smaller value of this metric for an algorithm proves to be better.

(B-4) Free Disposal Hull approach (FDH): In order to calculate this metric, all

non-dominated solutions obtained by the algorithms are combined and the

efficiency of these points is obtained by the FDH approach, which was proposed

by Ruiz-Torres and Lopez (2004).

3.3 Parameter setting

Algorithm parameter values vary depending on different problem types when

applying algorithm to achieve efficient solutions, so appropriate value selection has

significant impact on the efficiency of algorithm. In this paper, the existing

parameters in algorithm are determined by Taguchi method. Taguchi’s method

applies the quality loss function to evaluate product quality along with an

orthogonal array to reduce the number of experiments.

In parameter setting, you first choose control factors and their levels and choose

an orthogonal array appropriate for these control factors. The control factors

comprise the inner array. In this paper, the parameters and their levels are shown in

Table 2. The square matrix with 4 parameters in 3 levels used in the Taguchi

method is L9, which is given in Table 3.

The experiment is carried out by running several times each combination of

control factor settings. The response data from each run in the outer array are

usually aligned in a row, next to the factors settings for that run of the control factors

in the inner array. Then, measured values are transferred in the form of S/N value.

Now, let us confirm the research characteristic-anticipating minimizing the

makespan and total tardiness of jobs; namely, the smaller the cost values the better.

Therefore, S/N ratio must be calculated using lower-is-better formula as Eq. (15).

S=N ¼ �10 log

Pn
i¼1 Y

2
i

n

� �
ð15Þ

Table 2 Algorithm parameters

and their levels
Level Controllable factors

A (Npop) B (Ng) C (Pc) D (Pm)

1 60 0.60 0.85 0.05

2 80 0.70 0.95 0.10

3 100 0.80 1 0.15
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The problem is that the response data from each run in MOPs are usually as set

(non-dominated solutions). Since the Taguchi function should be assessed by one

criterion, then a function which has shown the combination of all indexes is defined.

The introduced utility function by Jolai et al. (2013) is used as follows (Eq. 16):

Utility function ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NPSð Þ1þ QM1ð Þ1þ QM2ð Þ1þ MIDð Þ2þ SNSð Þ2þ TMð Þ2þ FDHð Þ211

q

ð16Þ

This utility function is comprised of three qualitative and four quantitative

criteria. The weight of 1 is allocated to qualitative criteria and the weight of 2 is

allocated to quantitative criteria. This function has the role of a variable Y in

Eq. (15).

Table 3 The orthogonal array

L9
Experiments A B C D

1 A (1) B (1) C (1) D (1)

2 A (1) B (2) C (2) D (2)

3 A (1) B (3) C (3) D (3)

4 A (2) B (1) C (2) D (3)

5 A (2) B (2) C (3) D (1)

6 A (2) B (3) C (1) D (2)

7 A (3) B (1) C (3) D (2)

8 A (3) B (2) C (1) D (3)

9 A (3) B (3) C (2) D (1)

Table 4 S/N ratio response

table
Level A (Npop) B (Ng) C (Pc) D (Pm)

1 -80.5326 -80.5091 -80.5090 -80.4138

2 -80.4959 -80.5199 -80.3834 -80.5029

3 -80.3966 -80.3961 -80.5327 -80.5084

Delta 0.1360 0.1238 0.1492 0.0947

Rank 2 3 1 4

Fig. 2 Diagram of mean effect of the S/N ratio
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Table 5 Details special small problems and results of the full enumeration and proposed algorithm

Test

problem

n 9 g 9 L mt at Number of

Pareto optimal

solutions

NPS NPS in

Pareto

optimal

CPU time (s)

Enumeration

algorithm

NSGA-

DEA

TSS1 5 9 1 9 1 1 -0.152 3 3 3 0.0936 26.4266

-0.514 6 6 6

TSS2 7 9 1 9 1 1 -0.152 6 6 6 1.3572 27.7370

-0.514 5 5 5

TSS3 10 9 1 9 1 1 -0.152 4 4 4 1051.8679 28.9382

-0.514 12 12 12

TSS4 5 9 1 9 2 1 -0.152 2 2 2 0.0936 29.3126

-0.514 5 5 5

TSS5 7 9 1 9 2 1 -0.152 5 5 5 1.7784 33.4154

-0.514 2 2 2

TSS6 10 9 1 9 2 1 -0.152 6 4 3 1450.0448 38.0018

-0.514 3 2 1

TSS7 5 9 1 9 1 3 -0.152 2 2 2 0.0780 33.8210

-0.514 1 1 1

TSS8 7 9 1 9 1 3 -0.152 5 5 5 1.4664 30.1394

-0.514 4 4 4

TSS9 10 9 1 9 1 3 -0.152 12 11 11 1154.5790 30.5450

-0.514 6 6 6

TSS10 5 9 1 9 2 3 -0.152 1 1 1 0.1092 36.2546

-0.514 1 1 1

TSS11 7 9 1 9 2 3 -0.152 5 5 5 2.0748 31.2158

-0.514 3 3 3

TSS12 10 9 1 9 2 3 -0.152 5 5 5 1654.4686 34.5074

-0.514 4 4 4

TSS13 5 9 2 9 1 1–1 -0.152 12 12 12 0.0936 28.4234

-0.514 5 5 5

TSS14 7 9 2 9 1 1–1 -0.152 3 3 3 1.8720 31.4342

-0.514 4 4 4

TSS15 10 9 2 9 1 1–1 -0.152 10 8 7 1458.6249 34.3046

-0.514 9 7 7

TSS16 5 9 2 9 2 1–1 -0.152 2 2 2 0.1248 32.7602

-0.514 3 3 3

TSS17 7 9 2 9 2 1–1 -0.152 4 4 4 2.6988 39.8895

-0.514 1 1 1

TSS18 10 9 2 9 2 1–1 -0.152 2 2 2 2238.1931 39.4839

-0.514 5 4 4

TSS19 5 9 2 9 1 3–3 -0.152 3 3 3 0.1092 29.1324

-0.514 3 3 3

TSS20 7 9 2 9 1 3–3 -0.152 5 5 5 2.0592 31.5122

-0.514 3 3 3
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Table 5 continued

Test

problem

n 9 g 9 L mt at Number of

Pareto optimal

solutions

NPS NPS in

Pareto

optimal

CPU time (s)

Enumeration

algorithm

NSGA-

DEA

TSS21 10 9 2 9 1 3–3 -0.152 7 6 6 1687.0104 34.7726

-0.514 5 4 4

TSS22 5 9 2 9 2 3–3 -0.152 1 1 1 0.1248 39.2187

-0.514 1 1 1

TSS23 7 9 2 9 2 3–3 -0.152 8 8 8 3.0576 35.3186

-0.514 3 3 3

TSS24 10 9 2 9 2 3–3 -0.152 13 12 12 2713.5281 43.2903

-0.514 7 7 6

Table 6 The results of qualitative metrics for small problems

Test

problem

at NSGA-DEA MLPGA No.

NDS

No.

subscriber

solutions in

NDS

NPS NDS QM1

(%)

QM2

(%)

NPS NDS QM1

(%)

QM2

(%)

TS1 0 9 9 100 100 8 4 50 44.4 9 4

-0.152 12 12 100 100 9 8 88.8 66.6 12 8

-0.514 7 7 100 100 7 7 100 100 7 7

TS2 0 7 3 42.8 60 3 2 66.6 40 5 0

-0.152 6 6 100 100 4 0 0 0 6 0

-0.514 13 12 92.3 92.3 10 5 50 38.4 13 4

TS3 0 3 3 100 100 3 0 0 0 3 0

-0.152 14 14 100 93.3 9 1 11.1 6.6 15 0

-0.514 7 6 85.7 66.6 6 3 50 33.3 9 0

TS4 0 5 5 100 100 3 2 66.6 40 5 2

-0.152 12 12 100 100 11 9 81.8 75 12 9

-0.514 11 11 100 100 8 5 62.5 45.4 11 5

TS5 0 3 2 66.6 66.6 2 1 50 33.3 3 0

-0.152 5 5 100 100 9 0 0 0 5 0

-0.514 16 16 100 94.1 12 3 25 17.6 17 2

TS6 0 5 4 80 80 2 1 50 20 5 0

-0.152 4 4 100 80 1 1 100 20 5 0

-0.514 8 7 87.5 77.7 5 2 40 22.2 9 0

TS7 0 2 2 100 100 2 1 50 50 2 1

-0.152 3 3 100 100 3 3 100 100 3 3

-0.514 14 14 100 100 14 13 92.8 92.8 14 13

TS8 0 5 5 100 100 3 1 33.3 20 5 1

-0.152 11 10 90.9 90.9 4 2 50 18.1 11 1

-0.514 16 13 81.2 86.6 10 3 30 20 15 1
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Table 6 continued

Test

problem

at NSGA-DEA MLPGA No.

NDS

No.

subscriber

solutions in

NDS

NPS NDS QM1

(%)

QM2

(%)

NPS NDS QM1

(%)

QM2

(%)

TS9 0 7 7 100 100 3 0 0 0 7 0

-0.152 3 1 33.3 33.3 3 2 66.6 66.6 3 0

-0.514 8 4 50 40 9 6 66.6 60 10 0

TS10 0 5 3 60 75 2 1 50 25 4 0

-0.152 14 14 100 100 14 14 100 100 14 14

-0.514 13 10 76.9 90.9 10 8 80 72.7 11 7

TS11 0 3 0 0 0 6 6 100 100 6 0

-0.152 6 6 66.6 100 4 0 0 0 6 0

-0.514 20 18 90 78.2 14 7 50 30.4 23 2

TS12 0 6 4 66.6 80 1 1 100 20 5 0

-0.152 1 1 100 100 2 0 0 0 1 0

-0.514 2 2 100 100 5 0 0 0 2 0

TS13 0 6 6 100 100 6 6 100 100 6 6

-0.152 9 9 100 100 9 9 100 100 9 9

-0.514 11 9 81.8 90 9 9 100 90 10 8

TS14 0 9 9 100 90 5 1 20 10 10 0

-0.152 6 3 50 60 6 2 33.3 40 5 0

-0.514 10 9 90 64.2 12 12 100 85.7 14 7

TS15 0 7 7 100 100 6 0 0 0 7 0

-0.152 3 0 0 0 2 2 100 100 2 0

-0.514 4 1 25 20 8 4 50 80 5 0

TS16 0 7 7 100 100 6 5 83.3 71.4 7 5

-0.152 3 3 100 100 2 2 100 66.6 3 2

-0.514 5 5 100 100 5 5 100 100 5 5

TS17 0 7 0 0 0 5 5 100 100 5 0

-0.152 4 4 100 100 4 0 0 0 4 0

-0.514 6 6 100 100 5 1 20 16.6 6 1

TS18 0 5 5 100 100 3 0 0 0 5 0

-0.152 6 6 100 85.7 4 1 25 14.2 7 0

-0.514 5 5 100 100 6 0 0 0 5 0
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Table 7 The results of qualitative metrics for medium problems

Test

problem

at NSGA-DEA MLPGA No.

NDS

No.

subscriber

solutions in

NDS

NPS NDS QM1

(%)

QM2

(%)

NPS NDS QM1

(%)

QM2

(%)

TM1 0 1 1 100 100 8 0 0 0 1 0

-0.152 21 19 90.4 76 10 6 60 24 25 0

-0.514 11 11 100 100 7 0 0 0 11 0

TM2 0 5 5 100 100 4 0 0 0 5 0

-0.152 16 15 93.7 83.3 8 3 37.5 16.7 18 0

-0.514 11 11 100 100 11 0 0 0 11 0

TM3 0 4 3 75 60 3 2 66.36 40 5 0

-0.152 8 8 100 100 4 0 0 0 8 0

-0.514 14 14 100 100 20 0 0 0 14 0

TM4 0 5 3 60 42.8 5 4 80 57.2 7 0

-0.152 6 6 100 75 8 2 25 25 8 0

-0.514 9 9 100 100 6 0 0 0 9 0

TM5 0 2 2 100 66.6 6 1 16.6 33.4 3 0

-0.152 7 7 100 70 5 3 60 30 10 0

-0.514 10 10 100 100 9 0 0 0 10 0

TM6 0 2 2 100 100 6 0 0 0 2 0

-0.152 6 5 83.3 83.3 5 1 20 16.7 6 0

-0.514 13 13 100 100 8 0 0 0 13 0

TM7 0 3 3 100 100 2 0 0 0 3 0

-0.152 3 3 100 60 5 2 40 40 5 0

-0.514 22 19 86.3 95 11 1 9 5 20 0

TM8 0 5 0 0 0 3 3 100 100 3 0

-0.152 2 2 100 100 7 0 0 0 2 0

-0.514 12 12 100 100 14 0 0 0 12 0

TM9 0 5 5 100 100 6 0 0 0 5 0

-0.152 3 3 100 100 4 0 0 0 3 0

-0.514 26 18 69.2 81.8 8 4 50 18.2 22 0

TM10 0 4 4 100 100 3 0 0 0 4 0

-0.152 12 10 83.3 71.4 8 4 50 28.6 14 0

-0.514 20 11 55 55 12 9 75 45 20 0

TM11 0 2 2 100 100 1 0 0 0 2 0

-0.152 5 5 100 100 7 0 0 0 5 0

-0.514 7 7 100 100 9 0 0 0 7 0

TM12 0 14 10 71.4 76.9 3 3 100 23.1 13 0

-0.152 5 5 100 100 8 0 0 0 5 0

-0.514 9 9 100 100 10 0 0 0 9 0

TM13 0 8 8 100 100 3 0 0 0 8 0

-0.152 6 2 33.3 66.6 3 1 33.3 33.4 3 0

-0.514 20 20 100 100 9 0 0 0 20 0
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Table 7 continued

Test

problem

at NSGA-DEA MLPGA No.

NDS

No.

subscriber

solutions in

NDS

NPS NDS QM1

(%)

QM2

(%)

NPS NDS QM1

(%)

QM2

(%)

TM14 0 6 3 50 42.8 4 4 100 57.2 7 0

-0.152 6 6 100 100 5 0 0 0 6 0

-0.514 10 10 100 83.3 6 2 33.3 16.7 12 0

TM15 0 3 2 66.6 50 2 2 100 50 4 0

-0.152 7 7 100 100 10 0 0 0 7 0

-0.514 15 15 100 100 8 0 0 0 15 0

TM16 0 5 0 0 0 1 1 100 100 1 0

-0.152 12 12 100 100 5 0 0 0 12 0

-0.514 16 15 93.7 83.3 14 3 21.4 16.7 18 0

TM17 0 2 2 100 100 6 0 0 0 2 0

-0.152 6 6 100 100 7 0 0 0 6 0

-0.514 5 5 100 100 6 0 0 0 5 0

TM18 0 1 1 100 50 5 1 20 50 2 0

-0.152 6 5 83.3 83.3 5 1 20 16.7 6 0

-0.514 8 8 100 100 9 0 0 0 8 0

Table 8 The results of qualitative metrics for large problems

Test

problem

at NSGA-DEA MLPGA No.

NDS

No.

subscriber

solutions in

NDS

NPS NDS QM1

(%)

QM2

(%)

NPS NDS QM1

(%)

QM2

(%)

TL1 0 5 5 100 83.3 4 1 25 16.7 6 0

-0.152 3 3 100 100 6 0 0 0 3 0

-0.514 12 12 100 100 8 0 0 0 12 0

TL2 0 2 2 100 100 6 0 0 0 2 0

-0.152 12 11 91.6 91.6 4 1 25 8.4 12 0

-0.514 11 11 100 100 8 0 0 0 11 0

TL3 0 1 1 100 100 2 0 0 0 1 0

-0.152 11 11 100 100 12 0 0 0 11 0

-0.514 23 23 100 100 8 0 0 0 23 0

TL4 0 8 8 100 100 13 0 0 0 8 0

-0.152 12 12 100 100 9 0 0 0 12 0

-0.514 12 12 100 100 8 0 0 0 12 0

TL5 0 6 6 100 66.6 4 3 75 33.7 9 0

-0.152 4 4 100 100 6 0 0 0 4 0

-0.514 8 8 100 100 5 0 0 0 8 0

TL6 0 3 3 100 100 7 0 0 0 3 0

-0.152 8 8 100 100 6 0 0 0 8 0
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Table 8 continued

Test

problem

at NSGA-DEA MLPGA No.

NDS

No.

subscriber

solutions in

NDS

NPS NDS QM1

(%)

QM2

(%)

NPS NDS QM1

(%)

QM2

(%)

-0.514 7 7 100 100 7 0 0 0 7 0

TL7 0 2 2 100 33.3 5 4 80 66.7 6 0

-0.152 5 4 80 50 6 4 66.6 50 8 0

-0.514 7 7 100 100 7 0 0 0 7 0

TL8 0 2 2 100 50 3 2 66.6 50 4 0

-0.152 4 4 100 100 6 0 0 0 4 0

-0.514 3 3 100 100 8 0 0 0 3 0

TL9 0 3 3 100 100 6 0 0 0 3 0

-0.152 3 3 100 100 4 0 0 0 3 0

-0.514 6 6 100 100 8 0 0 0 6 0

TL10 0 1 1 100 100 2 2 100 0 3 0

-0.152 6 6 100 100 1 0 100 0 6 0

-0.514 11 11 100 100 4 0 0 0 11 0

TL11 0 1 1 100 50 4 1 25 50 2 0

-0.152 6 6 100 100 4 0 0 0 6 0

-0.514 8 8 100 100 10 0 0 0 8 0

TL12 0 3 3 100 75 2 1 50 25 4 0

-0.152 6 6 100 100 4 0 0 0 6 0

-0.514 10 10 100 100 8 0 0 0 10 0

TL13 0 8 4 50 57.1 3 3 100 42.9 7 0

-0.152 14 12 85.7 75 4 4 100 25 16 0

-0.514 11 0 0 0 5 5 100 100 5 0

TL14 0 6 2 33.3 40 3 3 100 60 5 0

-0.152 6 6 100 100 4 0 0 0 6 0

-0.514 6 6 100 100 9 0 0 0 6 0

TL15 0 5 5 100 100 5 0 0 0 5 0

-0.152 8 8 100 100 2 0 0 0 8 0

-0.514 4 4 100 50 5 4 80 50 8 0

TL16 0 5 5 100 100 7 0 0 0 5 0

-0.152 7 7 100 100 1 0 0 0 7 0

-0.514 12 12 100 100 6 0 0 0 12 0

TL17 0 5 5 100 100 4 0 0 0 5 0

-0.152 3 3 100 100 4 0 0 0 3 0

-0.514 3 3 100 100 14 0 0 0 3 0

TL18 0 4 4 100 100 2 0 0 0 4 0

-0.152 5 5 100 100 4 0 0 0 5 0

-0.514 19 4 21 44.4 10 5 50 55.6 9 0
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Table 4 shows the data which is transformed into S/N value. The rate of S/N is

shown in Fig. 2. As it can be seen in Table 4, factor C (probability of crossover) is

prominent in the execution process of determining NSGA-DEA. In addition, the

influence of four factors on minimizing makespan and the total tardiness in NSGA-

DEA is, in the order of: probability of crossover, number of initial population,

number of generation, and probability of mutation. As it can be seen in Fig. 2, the

optimal factors are: A (3), B (3), C (2), and D (1).

3.4 The validation of proposed algorithm

To demonstrate the validation of proposed algorithm, the experiments were

conducted on special small problems. It is impossible to find the Pareto-optimal

solutions using the enumeration algorithm because of extreme complexity of the

problems. The full enumeration algorithm is used to find the Pareto-optimal

solutions for only several special small problems. The total of possible states of

problems with n = 5, 7 and 10 is the 120, 5040 and 3,628,800 solutions to explore

the full enumeration algorithm, respectively. Details special small size problems and

the results are shown in Table 5. In there, the first column indicates the abbreviation

codes of each test problem, the second and third columns describe the details

problems (number of jobs 9 number of stages 9 number of re-entrants, and

number of machines per stage), the fourth describes learning indices, the fifth and

sixth columns describe number of Pareto-optimal solutions and the number of non-

dominated solutions obtained from algorithm respectively, the seventh describes the

number of non-dominated solutions obtained from algorithm in Pareto-optimal

solutions, and the last column describes the average CPU time (second unit). Based

on the results of given in Table 5, the following observations can be made.

Due to the fifth and seventh columns, the proposed algorithm is able to find all

solutions in Pareto-optimal in 62.5 % cases (the Pareto-optimal solutions exactly).

In other cases, more solutions were found, except for one or two. This result

indicates that the proposed algorithm has a very high reliability (excellent

performance) to solve the problems. Due to the sixth and seventh columns, the

all solutions obtained of proposed algorithm are efficient in 83.3 % cases, because

they exist at Pareto-optimal. Due to the last column, the proposed algorithm is able

to solve the problems in the length of the interval from 26.4266 to 41 s. The full

enumeration algorithm has spent the interval from 0.0780 to 2713.5281 s. This

result indicates that the proposed algorithm has a shorter range in solving problem.

3.5 Numerical result

The performance of the proposed NSGA-DEA is compared with a MLPGA

algorithm proposed by Cho et al. (2011). It is noticeable that all of algorithms are

implemented in MATLAB 2009a, and run on a PC with 2.30 GHz Intel Core and

4 GB of RAM memory. To show the efficiency and effectiveness of the proposed

algorithm in comparison with a MLPGA, computational experiments were done on

various test problems (i.e. small, medium and large). For each algorithm, we run

each test problem ten times and four qualitative metrics and four quantitative
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metrics are computed for each of them. The comparisons are performed on the basis

of the sets of non-dominant solutions obtained by each algorithm.

Tables 6, 7 and 8 represent the values of the four qualitative metrics for various

problems. The value of NPS, NDS, QM1 and QM2 are shown in these tables. Now,

the first line of Table 6 is explained. The results shown in NPS column only

evaluate the number of non-dominated solutions found by each algorithm, not their

quality. However, the quality of solutions can be measured by NDS, QM1 and QM2,

as summarized in Tables. The values of NPS of NSGA-DEA and MLPGA are equal

to 9 and 8 respectively. Consequently, the NSGA-DEA front has more non-

dominated solutions than MLPGA front, corresponding the value of NPS. The

values of NDS of NSGA-DEA and MLPGA are equal to 9 and 4 respectively. It

shows number of the net non-dominated solutions (NDS) of each algorithm. The

larger value of NDS, the better of solution quality we have. The values of QM1 of

NSGA-DEA and MLPGA are equal to 100 and 50 % respectively. The value of

QM1 of NSGA-DEA is calculated by divided NDS = 9 with the NPS = 9. It means

that all solutions obtained of the NSGA-DEA are efficient. Consequently, there are

none solutions in NSGA-DEA front that are dominated by at least one solution from

MLPGA front. The value of QM1 of MLPGA is calculated by divided NDS = 4

with the NPS = 8. It means that four solutions of the MLPGA are efficient.

Consequently, four solutions on the MLPGA front are dominated by at least one

solution on the NSGA-DEA front. The values of QM2 of NSGA-DEA and MLPGA

are equal to 100 and 44.4 % respectively. The value of QM2 of NSGA-DEA is

calculated by divided ‘‘NDS of algorithm = 9’’ with the ‘‘NDS = 9’’. It means that

the all solutions in NSGA-DEA front have been included in net non-dominated

solutions. The value of QM2 of MLPGA is calculated by divided ‘‘NDS of

algorithm = 4’’ with the ‘‘NDS = 9’’. It means that the four solutions in MLPGA

front have been included in net non-dominated solutions. It is notable that, net non-

dominated solutions may be both algorithms. For example, 4 solutions of net non-

dominated solutions (NDS) are both algorithms.

As it can be observed, four metrics (NDS, NPS, QM1 and QM2) have better

values for NSGA-DEA in comparing with other algorithm in more cases. The

averages and summarized results of these experiments are shown in Table 12. As it

can be seen in average row in Table 12, the number of non-dominated solutions of

MLPGA is less than that of NSGA-DEA, 79 % of Pareto members of NSGA-DEA

are efficient. Also, 87.1 % of the net Pareto set members made by members of the

Pareto set which belongs to NSGA-DEA, while the solutions of MLPGA only cover

8.6 % of the members of the Pareto set. As shown in Table 12, the proposed

algorithm is more effective than the MLPGA algorithm in terms NDS, NPS, QM1

and QM2 for small, medium and large-sized problems.

Tables 9, 10 and 11 present the values of four quantitative metrics on all test

problems for each algorithm. The averages and summarized results of these

experiments are shown in Table 12. As it can be seen in average row in Table 12,

algorithm NSGA-DEA can obtain better performances on metrics MID and TM than

other algorithm. The values of MID and TM of NSGA-DEA are less than that of

other algorithm in 75.3 and 49.4 % cases respectively. It indicates that the obtained

solutions of NSGA-DEA converge towards the ideal point (0, 0). It is closer to the
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ideal point. Consequently, the Pareto set of NSGA-DEA algorithm is better than the

other one. The values of SNS of NSGA-DEA are also more than that of other

algorithm in 51.2 % cases. It indicates that the non-dominated solutions of NSGA-

DEA are compacted in greater space than that of other algorithm. Similarly, the

values of FDH of NSGA-DEA are also more than that of other algorithm in 81.5 %

cases. It indicates that the non-dominated solutions of NSGA-DEA dominate some

members of the Pareto set which belongs to MLPGA. These results show that the

proposed algorithm works effectively in all size of problems. Therefore, the average

values of all the metrics in Table 12 show that the NSGA-DEA is able to obtain

more diversified and competitive Pareto sets than the MLPGA.

Table 12 The summarized results of qualitative and quantitative metrics (%)

Test problem Algorithm NPS NDS QM1 QM2 MID SNS TM FDH

Small problem NSGA-DEA 63.0 75.9 64.8 87.0 53.7 50.0 42.6 64.8

MLPGA 14.8 11.1 20.4 11.1 35.2 38.9 46.3 20.4

Equal 22.2 13.0 14.8 1.9 11.1 11.1 11.1 14.8

Medium problem NSGA-DEA 59.3 88.9 85.2 88.9 79.6 55.6 50.0 90.7

MLPGA 37.0 7.4 13.0 7.4 20.4 44.4 50.0 9.3

Equal 3.7 3.7 1.8 3.7 0.0 0.0 0.0 0.0

Large problem NSGA-DEA 51.9 83.3 87.0 85.2 92.6 48.1 55.6 88.9

MLPGA 42.6 9.3 9.3 7.4 7.4 51.9 44.4 9.3

Equal 5.5 7.4 3.7 7.4 0.0 0.0 0.0 1.8

Average NSGA-DEA 58.1 82.7 79.0 87.1 75.3 51.2 49.4 81.5

MLPGA 31.5 9.3 14.2 8.6 21.0 45.1 46.9 13.0

Equal 10.4 8.0 6.8 4.3 23.7 3.7 3.7 5.5

328 330 332 334 336 338 340
520

540

560

580

600

620

640

Makespan

To
ta

l t
ar

di
ne

ss

NSGA-DEA
MLPGA

Fig. 3 Plot of the obtained non-dominated solutions for NSGA-DEA and MLPGA in a small problem
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Graphical representation is provided to demonstrate output results of the NSGA-

DEA and MLPGA. Figures 3, 4 and 5 represent the non-dominated solutions of a

single run by proposed algorithm and MLPGA for problems of small, medium and

large size respectively. It is obvious that the solutions obtained in Pareto-front by

the NSGA-DEA algorithm are more desirable. Also, we plot the initial set and the

final set of solutions obtained by each algorithm for an instance in Fig. 6. The initial

set is the same for all algorithms. This figure shows that NSGA-DEA generates

more efficient solutions. Therefore, these figures illustrate and confirm the

conclusion derived from the numerical results based on the performance criteria.
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Fig. 4 Plot of the obtained non-dominated solutions for NSGA-DEA and MLPGA in a medium problem
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Fig. 5 Plot of the obtained non-dominated solutions for NSGA-DEA and MLPGA in a large problem
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4 Conclusion and further researches

This paper considers the problem of scheduling n independent jobs in a hybrid flow

shop with the objectives of minimizing both the makespan and the total tardiness.

There are considerable numbers of practical assumptions in real world scheduling

settings. To address the realistic assumptions of the proposed problem, three

additional traits were added to the scheduling problem. These include re-entrant

lines, setup times and position-dependent learning effects. A genetic algorithm is

proposed for solving this bi-objective optimization problem. The performance of the

proposed algorithm is compared with a genetic algorithm proposed in the literature

on a set of test problems. Several computational tests are used to evaluate the

effectiveness and efficiency of the proposed algorithm in finding good quality

schedules. Computational results show that the proposed algorithm provides better

results than genetic algorithm in the literature by qualitative and quantitative

criteria. For future study, the scheduling with other system characteristics, which

have not been included in this paper, such as release date, limited intermediate

buffers, machine availability constraints, and unrelated parallel machines at each

stage can be a practical extension, although the problem would be very difficult to

solve.
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