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Abstract This paper deals with a bi-objective hybrid flow shop scheduling problem
minimizing the maximum completion time (makespan) and total tardiness, in which
we consider re-entrant lines, setup times and position-dependent learning effects.
The solution method based on genetic algorithm is proposed to solve the problem
approximately, which belongs to non-deterministic polynomial-time (NP)-hard
class. The solution procedure is categorized through methods where various solu-
tions are found and then, the decision-makers select the most adequate (a posteriori
approach). Taguchi method is applied to set the parameters of proposed algorithm.
To demonstrate the validation of proposed algorithm, the full enumeration algo-
rithm is used to find the Pareto-optimal front for special small problems. To show
the efficiency and effectiveness of the proposed algorithm in comparison with other
efficient algorithm in the literature (namely MLPGA) on our problem, the experi-
ments were conducted on three dimensions of problems: small, medium and large.
Computational results are expressed in terms of standard multi-objective metrics.
The results show that the proposed algorithm is able to obtain more diversified and
competitive Pareto sets than the MLPGA.
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1 Introduction

Scheduling is an important tool for manufacturing and engineering, where it can
have a major impact on the productivity of a process. Production scheduling is
management and allocation of resources, events and processes to create goods and
services. Production scheduling aims to maximize the efficiency of the operation
and to minimize the production time and costs, by telling a production facility when
to make, with which staff, and on which equipment.

In the literature, the notion of hybrid flow shop (HFS) scheduling problem has
emerged in 1970s (Arthanary and Ramaswamy 1971). The HFS can be found in
various types of industries. The most representative one is in electronics, such as
semiconductor wafer fabrication, printed circuit board (PCB) manufacturing, thin
film transistor-liquid crystal display (TFT-LCD) manufacturing, etc. In addition,
various traditional industries, such as food, oil, pharmaceutical, tobacco, textile,
chemical, steel, paper, and metallurgical industry, have various HFSs (or can be
modeled as a HFS). Ruiz and Rodriguez (2010) described the HFS problem in its
“standard” form. This paper investigates an HFS problem in standard form with
additional features, including: setup times, re-entrant flows, and position-dependent
learning effects.

The literature of HFS is filled with different applied industrial assumptions to
better represent the real nature of scheduling environments. One of the most
prevailing and extremely favored assumptions by many researchers in real
scheduling configurations is the integration of sequence-dependent setup times into
different shop scheduling environments. The importance and applications of
scheduling models with explicit considerations of setup times (costs) have been
discussed in several studies (i.e. Chang et al. 2003; Andrés et al. 2005). One of the
underlying assumptions in this paper is to consider setup times in scheduling
configurations. The setup times considered in this problem are classified into two
types: (1) sequence-independent setup time (SIST); and (2) sequence-dependent
setup times (SDST). In the former, setup depends only on the job to be processed. In
the latter, setup depends on both the job to be processed and the immediate
preceding job. Allahverdi et al. (1999, 2008) provided a comprehensive review of
the literature on scheduling problems involving setup times (costs). The HFS
problem with setup times has been investigated in several studies (Jungwattanakit
et al. 2008, 2009; Behnamian et al. 2009; Davoudpour and Ashrafi 2009; Naderi
et al. 2009a, b; Rashidi et al. 2010; Karimi et al. 2010; Mousavi et al.
2011a, b, 2012a; b; Hakimzadeh Abyaneh and Zandieh 2012; Pargar and Zandieh
2012; Behnamian and Zandieh 2013; Fadaei and Zandieh 2013; Jolai et al. 2013;
Attar et al. 2014; Wang and Liu 2014). For example, Jungwattanakit et al.
(2008, 2009) considered the flexible flow shop with unrelated parallel machines and
sequence/machine dependent setup times, release date and due date constraints.
Davoudpour and Ashrafi (2009) focused on the SDST HFS problems with identical
parallel machines, and release date. Rashidi et al. (2010) investigated the HFS
problems with unrelated parallel machines, SDST and blocking processor. Mousavi
et al. (2011a, b, 2012a, b) studied the problem of scheduling n independent jobs in
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HFS environment with SDST. Fadaei and Zandieh (2013) investigated group
scheduling in the problem of HES scheduling within the area of sequence-dependent
family setup times. Wang and Liu (2014) also found an integrated bi-objective
optimization problem with non-resumable jobs for production scheduling and
preventive maintenance in a two-stage HFS. They considered the SDST and
preventive maintenance on the first stage machine.

HFSs can be classified into two types according to product flows: (1) those with
unidirectional flows; and (2) those with re-entrant flows. The unidirectional flows
imply that each job starts at the first stage and finishes at the last stage. On the other
hand, in the reentrant flows, each job may visit a serial stage twice or more.
Therefore, the re-entrant HFS (RHFS) means that there are n jobs to be processed on
g stages and every job must be processed on stages in the order of stage 1, stage
2,..., stage g for [ times (/ is the number of repetition of jobs on the sequence of
stages). Lin and Lee (2011) provided a comprehensive review of the literature on
scheduling problems involving re-entrant flows. Also, Dugardin et al. (2010), Cho
et al. (2011) and Ying et al. (2014) considered the multi-objective HFS problem
with re-entrant flow.

The last underlying assumption in this paper is the consideration of learning
effects in scheduling configurations. In classical scheduling, job processing and
setup times are assumed to be constant from the first job to be processed until the
last job to be completed. Despite the effect of learning in a production environment,
the processing and setup times of a given job are shorter if it is scheduled later in the
production sequence. The learning effects considered in scheduling environments
are classified into two types: (1) position-based learning; and (2) the sum of
processing time. Regarding the last underlying assumption in this paper, processing
and setup times of a given job depend on its position in the sequence arrived to each
stage which means the learning effects are position-based learning. Biskup (2008)
provided a comprehensive review of the literature on scheduling problems involving
learning effects. The HFS problem with learning effects has been investigated in
several studies. For example, Pargar and Zandieh (2012) and Behnamian and
Zandieh (2013) investigated the HFS problems with SDST and position-dependent
learning effects.

The present study investigates scheduling problem with learning considerations,
using the learning curve introduced by Biskup (1999). The learning curve assumed
by Biskup (1999) reflects decrease in production time as a function of number of
repetitions. As shown in Biskup (1999), we assume that the processing time of job j
at stage ¢ of layer [ if scheduled in position r, is given by Eq. (1).
=P, x(r 4)(5") Vi j,t,r,l (1)

jrl

where —1 < a <0 is a constant learning index, given as the logarithm to the base 2

of the learnmg rate (LR). In this paper, we assume that all machines and jobs in each
stage and layer have the same learning rate (d/, = = a). Similarly, the setup time of

job i to job j if scheduled in position r at stage ¢ of layer /, is given by Eq. (2).
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Pj’.l actual processing time for job j at stage ¢ of layer /, Sﬁjl actual setup time between
job j and job i at stage ¢ of layer [ while job j is scheduled immediately after job i,
PJ’-rl the processing time for job j in position r at stage ¢ of layer /, Sﬁj,, the setup time
of job i to job j, scheduled in position r at stage ¢ of layer I.

Nowadays, because of the intensely competitive markets and limited
resources, many manufacturers have come to appreciate the importance of
scheduling by attempting to reduce their production expenses and the final costs
of their products. The scheduling objective in such industries may vary. Three
types of decision-making goals are prevalent in scheduling: (1) efficient
utilization of resources; (2) rapid response to demands, or minimizing the
work-in-progress; and (3) close conformance to prescribed deadlines (Pinedo
2008). According to just-in-time (JIT) concept, production managers should
consider more than one criterion in scheduling problems. Therefore, simulta-
neous minimization of two conflicted objective functions that are makespan and
total tardiness. In fact, minimizing the makespan causes internal efficiency and
maintains the work-in-process inventory at a low level. Minimizing the total
tardiness causes external efficiency and reduces the penalties incurred for late
jobs.

According to the best of our knowledge, bi-objective RHFS with SDST and
learning effect problem have never been investigated in the scheduling problems.
Therefore, the aim of this paper is to develop a solution method for the proposed
problem that search a set of non-dominated solutions.

It has been shown in several studies that some of scheduling problems are
belong to NP-hard class; for example, a single machine SDST scheduling
problem is equivalent to a traveling salesman problem (TSP) and is NP-hard
(Pinedo 1995). The HFS problem is significantly more complex than the regular
single machine scheduling. On the other hand, Gupta (1988) showed the flow
shop with multiple processors (FSMP) problem with only two stages to be NP-
hard even when one of the two stages contains a single machine. The FSMP
problem can be considered as a specific case of the HFS. Also, the re-entrant
permutation flowshop scheduling problem for minimizing makespan has already
been proven to be NP-hard (Wang et al. 1997). According to the research
presented, we can easily conclude that our proposed problem is also an NP-hard
problem which is not easy to solve by a traditional mathematical model. The
exact methods are unable to render feasible solutions even for small instances of
this problem in a reasonable computational time. Therefore, this inability
justifies the need for employment of a variety of heuristics and meta-heuristics
to solve these problems to optimality or near optimality. In this paper, we are
going to use a meta-heuristic algorithm to solve scheduling problem. The
proposed meta-heuristic and the details of it are explained in Sect. 2. The rest of
the paper is organized as follows: Sect. 3 presents the computational results and
numerical comparisons. Finally, Sect. 4 is devoted to conclusion and future
works.
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2 The proposed algorithm

In this paper, a genetic algorithm is proposed for solving bi-objective optimization
problem. The main reason for using this approach is that the problem under study is
NP-hard and genetic algorithm approach has been demonstrated cost- effective for
solving this kind of problem.

The term “genetic algorithm”, almost universally abbreviated to GA, was first
used by Holland (1975). Different approaches of GA appear in the literature of
multi-objective optimization problem (MOP), some of them are Vector Evaluated
Genetic Algorithm (VEGA) (Schaffer 1985), Multi-Objective Genetic Algorithm
(MOGA) (Fonseca and Fleming 1993), Niched Pareto Genetic Algorithm (NPGA)
(Horn et al. 1994), Non-dominated Sorting Genetic Algorithm (NSGA & NSGA-II)
(Srinivas and Deb 1995; Deb et al. 2002), Pareto Stratum-Niche Cubicle Genetic
Algorithm (PS-NC GA) (Hyun et al. 1998), Multiple Objective Genetic Local
Search (MOGLS) (Ishibuchi and Murata 1998), Strength Pareto Evolutionary
Algorithm (SPEA & SPEA-II) (Zitzler and Thiele 1999; Zitzler et al. 2001), Pareto
Archive Evolution Strategy (PAES) (Knowles and Corne 1999), Elitist Non-
dominated Sorting Genetic Algorithm (ENGA) (Bagchi 1999), The Pareto Envelope
based Selection Algorithm (PESA & PESA-II) (Corne et al. 2000, 2001), and so on.

Although many studies have provided valuable developments and applications
for GA, improvements still can be made in designing GA for MOPs. In this paper,
the proposed algorithm is somewhat similar to the NSGA-II. The NSGA-II
algorithm has been developed by Deb et al. (2002) as a fast and efficient multi-
objective genetic algorithm. The aim of this algorithm is to find a set of non-
dominated solutions based on the Pareto dominance relationship. The main concept
of the NSGA-II is the creation of an initial population, the selection of parents, the
creation of children and the finding of non-dominated solutions. In the following,
we extensively describe the structure and details of the proposed algorithm.

2.1 The structure of the proposed algorithm

The steps of proposed algorithm are shown below.

Step 1: Encoding The application of an algorithm requires the representation of a
solution. We apply a scheme using integers that shows the number of job. In this
kind of representation, a single row array of the size equals to the number of the jobs
to be scheduled. The value of the first element of the array shows which job is
scheduled first. The second value shows a job which is scheduled secondly and so
on. For example, consider a problem with five jobs (n = 5), two stages (g = 2), two
machines at stage one (m' = 2), and three machines at stage two (m* = 3). Suppose
a solution is generated according to integer coding as [3 1 4 2 5]. It is known that the
machines in parallel are identical in capability and processing rate. Therefore, job 3
is process on machine 1 and job 1 is process on machine 2 at stage one. Then, the
job 4 is assigned to the machine of which the completion time is smaller than other
machines. This process continues like this, until all jobs are assigned to the first
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stage machines. For determining the order of jobs in the second stage, first in first
out (FIFO) rule is used.

Step 2: Initialization

(i) Initialize the number of initial population (N,,,), Probability of crossover
(P.), Probability of mutation (P,,), Number of generation (N,).
(i) Initialize an initial population (Py) randomly.

Step 3: Non-dominated sorting and ranking procedure First, the objective
values of all chromosomes in the current population (P;) is evaluated, then the
population of solutions is classified into successive non-dominated fronts (primary
rank), F, is the set of non-dominated solutions in P; which is the first frontier and F,
is the set of non-dominated solutions in P;\F; which is the second frontier and so on,
F, is the set of non-dominated solutions in the last frontier, and finally, the crowding
distance of each solution with respect to every other solution on the same front
(secondary rank) will computed.

Step 4: Dividing the population The current population is divided into 3
categories: (1) Set ‘A’ contains the non-dominated solutions in F;, and the size of A
(IF1l) is Na. (2) Set ‘B’ contains the non-dominated solutions in Fy, F,, ..., and F,
and the size of B (IF;l + IF,l + -+ + IFgl) is Ng. (3) Set ‘C’ contains the non-
dominated solutions in Fq,i, Fyyo, ..., F, and the size of C (IFgyl + [Fg ol
+ --- + IF{) is Nc. If  fronts are obtained by primary rank, then q is half of fronts. It
is known that the number of fronts (#) is different in each generation.

Step 5: Selection scheme The binary-tournament selection is employed at the
selection operation to reproduce the next generation. According to this selection
scheme, between two solutions with differing non-domination ranks (primary rank),
we prefer the solution with the lower rank. Otherwise, if both solutions belong to the
same front, then the solution located in a lesser crowded region is preferred
(secondary rank).

Step 6: Neighborhood operator First, a neighborhood relation on the search
space is defined, and then k-neighborhood solutions (k = 2) of each solution in set
‘A’ are generated. Inversion, swap, shift and k-exchange moves are applied in this
paper. In each generation, neighborhood operator is selected randomly among
introduced operators.

Step 7: Crossover operator Select (N,,, — (k + 1) x N,) x P, pairs of parents
from set ‘B’ based on the binary-tournament selection, and perform crossover on the
parents. Order crossover (OX) is applied in this paper.

Step 8: Mutation operator Select (N,,, — (k + 1) x Ny) x P, parents from set
‘C’ based on the binary-tournament selection, and perform mutation on the parents.
Inversion, swap, and k-exchange moves are applied in this paper. In each
generation, mutation operator is selected randomly among introduced operators.
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Step 9: Replacement Set A (include F;) with solutions obtained from the
previous steps (include steps 6, 7 and 8) are combined as new population (P;, ).

Step 10: Stopping Rule If there is not improvement in F; obtained of two
successive generations (P; and P; ), then U count increases by one. If counter U
equals to the pre-specified number (Ng) then stop, otherwise go to step 3. Data
envelopment analysis (DEA) is used to design the stopping criterion.

Graphically, the proposed algorithm so-called NSGA-DEA can be presented as in
Fig. 1. In the following subsections, we describe the details of the computation of
crowding distance and stopping criterion.

2.2 Crowding distance

The introduced method by Pasupathy et al. (2007) is used for the computation of
crowding distance for a bi-objective problem. The crowding distance of the ith
solution in its front, called cd; is computed as given in Eq. (3). In order to compute
the cd; first the “normalized Euclidean-distance based on crowding distance”
(NEDCD) between solutions i and j, called D, is computed as given in Eq. (4).

> Dy (3)
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Fig. 1 Flowchart of proposed algorithm
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In Eq. (3), f; denotes the front on which solution i lies, and [F ﬁ] denotes the set of
solutions that lie on the same front as that of solution i. In Eq. (4), Z; and Z; denote
the values with respect to the bth objective function for solutions i and j,
respectively. The solution with the largest value of crowding distance is assigned
with the highest secondary rank (i.e., rank 1) in comparison to other solutions on the
same front.

2.3 Proposed stop criterion

Suppose F; and F/ are the first frontier of two successive generations. Two cases
can be expected of comparison between F; and F| which are as follows: (1) F is
better than F, (2) F} and F; are the same. In order to compare two sets of F; and F
quantitatively, the introduced method by Ruiz-Torres and Lopez (2004) is applied.
They used free disposal hull (FDH) formulation that is a particular case of DEA. In
this subsection, only the stages of method are briefly described. It is noted that each
scheduling solution is a decision making unit (DMU), and inputs are the makespan
and the total tardiness.

1. The scheduling solutions (or DMUs) of F| and F| are combined in one single
data set to generate an ‘FDH problem’ set.

2. In this stage, each DMU is comparable to the other DMUs on a one-to-one
basis. DMUs which dominate the others but do not dominate themselves are
efficient DMUs that are collected in a set so-called 7. Efficient DMUs (or
scheduling solutions) always have a degree of efficiency equal to one. Now, we
want to calculate the degree of efficiency for DMU G, which is inefficient.

Fiand F Set of DMUs provided by two successive generations
|F1| and |F;| Number of DMUs in sets F; and F

G Makespan corresponding to DMU S

T* Total tardiness corresponding to DMU S

Wi Relative weight of criteria i, with 212:1 w; =1

T Set of all efficient DMUs

0° Set of DMUs in T that make schedule G inefficient
EC Degree of efficiency of DMU G

The degree of efficiency of any DMU (efficient or inefficient) is computed as
given in Eq. (5).

1 s i, if Gisefficient
G _ C T
E” = Maxgego {w1 ( ma") + wy (F) } if Gisinefficient (5)

CcG

max
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3. The ‘efficiency’ of F; and F are calculated as given in Eq. (6) (called A; and
A respectively).

ZGGF; E¢
|71

_ ZGEF[ EG

Al = and A =
|Fi| !

(6)

Two cases can be expected of comparison between A; and A} which are as
follows: (1) A} value is bigger than A;. (2) A} value is equal to A. In the first case,
improvement has been observed in the process. In the second, this result shows that
no improvement has been reported. Therefore, U count increases by one. The
stopping criterion for algorithm is terminated while counter U is equal to N, (pre-
specified number).

2.4 Discussion on the structure of algorithm

In this subsection, ideas used in the structure of algorithm are discussed in the form
of questions and answers. The most important questions can be expressed as
follows: (1) Why is a new operator so-called neighborhood operator added to search
the neighborhood first frontier (F;) in each generation? (2) Why are several
neighborhood and mutation operators introduced to select among alternatives
randomly in each generation? (3) Why is crossover operator on solutions in high
level fronts applied? (4) Why is mutation operator on solutions in low level fronts
applied? (5) Why is stop condition as stated in Sect. 2.3 considered?

Now we will respond to questions. In response to the first question, solutions
belonging to the best non-dominant set F; are of best solutions in the population and
must be emphasized more than any other solutions in the population. In fact, set F
is the closest front to the Pareto-optimal front. We make slight changes in solutions
of set F'; with the hope to find better results (closest to the Pareto-optimal set). These
slight changes are done through neighborhood operator. This corresponds to the
concept of the exploitation.

In response to the second question, the main reason for using this approach is that
the algorithm is able to guide the search to another promising region through
different types of moves. Therefore, the performance of algorithm with cited
characteristic can be better. This corresponds to the concept of the diversification.

Concerning the third question, genetic algorithms have a recombination
operation so-called crossover which is probably closest to the natural paragon.
The crossover operator is used to mimic biological recombination between two
single chromosome organisms. Therefore, offspring has the information from two
parents. According to nature, competition among individuals for scanty resources
results in the fittest individuals dominating over the weaker ones. Therefore, the
population is modified with the natural law. We are going to modify population
more quickly. In order to increase the selection probability of fittest individuals,
crossover operator is applied to the solutions in high level fronts.

Regarding the fourth question, the main concept of the mutation is the changing
of the structure of a gene, resulting in a variant form which may be transmitted to
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subsequent generations, caused by the alteration of single base units in DNA, or the
deletion, insertion, or rearrangement of larger sections of genes or chromosomes. In
the nature, mutation is usually employed to eliminate defects occurred in
individuals. The defects here are considered to be as equivalent solutions in low
level fronts. Therefore, mutation operator is applied on the solutions in low-level
fronts.

In response to the last question, suppose our aim is to solve a single-objective
minimization problem with GA. The objective value of the best solution in each
generation will improve/remain constant when the algorithm is running. The
relative difference (A) between the best solutions in two successive generations is
simply calculated. Two cases can occur as follows: (1) A =0, (2) A < 0. In the
first, the best solutions remain constant in two successive generations (improvement
has not been observed). In the second case, the algorithm has found a better solution
for the next generation (improvement has been observed). The A value can be used
to design two stop conditions as follows: (1) algorithm has reached a plateau such
that successive iterations no longer produce better results (i.e. A = 0 in successive
iterations for the pre-specified number), (2) in non-consecutive U-generation,
improvement has not been observed (i.e. A = 0 in non-consecutive U iterations for
the pre-specified number). Now, our aim is to solve a MOP with GA. In a MOP,
non-dominated solutions in each generation will improve/remain constant as the
algorithm is running. However, there is no straightforward manner such as A.
Therefore, the terminating condition is proposed based on DEA to express the
improvement or lack of improvement in the non-dominated solutions of two
successive generations. The proposed approach is similar to A. The proposed stop
condition is a new approach in the design of the stop condition.

3 Computational experiments

This section contains the method of generating data sets, performance criteria, the
parameter setting with Taguchi method, validation of the proposed algorithm,
running data sets by proposed algorithm and algorithm in the literature, and then
expresses the results of the comparisons.

3.1 Test problems

The numerical data should be created to test the performance of the algorithm. Data
required for a problem consists of number of jobs, number of stages, number of
machines per stage, number of re-entrants, processing times, setup times, due dates,
and learning indices. Note that, the largest number of machines in a stage must be
less than the number of jobs (n > max{m';t € g}). Designing range of levels of
each factor is illustrated in Table 1. The number of machines, processing times and
setup times (20-40 % of the mean of the processing time) are randomly generated
from a discrete uniform distribution as described in Table 1. This table is divided
into four categories: (1) special small problems, (2) small problems, (3) medium
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Table 1 Factors and their levels

Factor Levels

Special small Small Medium Large
Number of jobs (n) 5; 7; and10 10; 15; and 20 25; 30; and 35 40; 50; and 60
Number of stages (g) 1; and 2 5; 7; and 10 10; 12; and 15 15; 17; and 20
Number of re-entrants (/) 1; and 2 1; and 2 2; and 3 3; and 4
Number of machines (m') 1; and 3 Uniform (1, 3) Uniform (1, 6) Uniform (1, 9)
Processing times (p) Uniform (10, 20) Uniform (10, 20) Uniform (10, 40) Uniform (10, 100)
Setup times (s) Uniform (3, 6) Uniform (3, 6) Uniform (5, 10)  Uniform (11, 22)

problems, and (4) large problems. Special small problems are designed to assess the
validity of the proposed algorithm. The term “specific” is given to these problems
because they cover small problems of single machine, parallel machine, flow shop,
and two-stage HFS. To demonstrate the effectiveness of proposed NSGA-DEA
compared to algorithm in the literature, the experiments were conducted on three
sizes of problems: small, medium and large. Due to levels of factor, the twenty-four
problems are produced for the special small problems. The eighteen problems of
multiplication levels of factors (n x g x L) are produced for the small, medium,
and large problems. Learning indices —0.152 and —0.514 were selected with respect
to the learning curve of 90 and 70 %, respectively. Also, we consider RHFS with
SDST scheduling problems with no learning effect (aﬁ =0). In general, all
problems are tested with regard to the level of learning indices. To generate due
dates of all n jobs, we proposed the following steps:
Compute total processing time of each job on all g stages.

Pi=> 3P, Vjen (7)
=1 t=1

Compute average setup time for all possible subsequent jobs and sum it for all g
stages.

Gy s (S e 5

== n T :
=1 =

Determine a due date for each job.

t
max ({gg)

di = (P +S;) x X (1 +random x3) VjeEn 9)

where random is a random number from a uniform distribution over range (0, 1).
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3.2 Performance criteria

In the literature of multi-objective optimization problems, several performance
criteria have been presented to evaluate the quality of the obtained non-dominated
front and to assess the performance of multi-objective optimizers. Each criterion has
its advantages and disadvantages. There is no agreement as to which criteria should
be used. In general, the quality of the approximated sets must be measured by
qualitative and quantitative criteria. The following performance criteria are applied
to compare the results of multi-objective algorithms quantitatively.
A. Qualitative metrics

1. Number of Pareto solutions (NPS): This performance criterion presents the
number of non-dominated solutions obtained from each algorithm. The larger
the number, the better the performance of the algorithm will be.

2. Quality metric 1 (QM1): To calculate the value of this criterion, first, the net
non-dominated solutions (NDS) are generated by a set of all non-dominated
solutions obtained from all algorithms (whose members should be also non-
dominated in relation to one another) and then the percentage of non-dominated
solutions of each algorithm in NDS to NPS is calculated. The larger the number,
the better the performance of the algorithm will be.

3. Quality metric 2 (QM2): To calculate the value of this criterion, the percentage
of non-dominated solutions of each algorithm in NDS to the number of NDS is
calculated. The third metric signifies the percentage of the solutions in the net
non-dominated Pareto set obtained by a certain algorithm. The larger the
number, the better the performance of the algorithm will be.

B. Quantitative metrics

1. Mean ideal distance (MID): This measure presents the closeness between Pareto
solution and ideal point (0, 0) which can be shown as Eq. (10).

Z?:l Ci

n

MID = (10)
where 7 is the number of non-dominated set and ¢; = \/z3; + z3;. The lower
value of MID, the better of solutions quality we have.

2. Spread of non-dominated solution (SNS): This metric indicates the measure of
diversity of Pareto-solutions, and more diversity of solutions is desirable. The
value of SNS is measured as Eq. (11).

SNS = \/2?1 (MID — c.)’ (11)

n—1

3. Triangle method (TM): This measure presents the area under linear regression
curve which can be calculated as Eq. (12) (Mousavi et al. 2012).

a=b+axzn (12)
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where a and b are calculated as Eqs. (13) and (14):
a=71—bx2 (13)

_ Z:;l (z2i — 22)(z1ii — 21)
b= Yo (22 — ) (14)

Therefore, a smaller value of this metric for an algorithm proves to be better.

(B-4) Free Disposal Hull approach (FDH): In order to calculate this metric, all
non-dominated solutions obtained by the algorithms are combined and the
efficiency of these points is obtained by the FDH approach, which was proposed
by Ruiz-Torres and Lopez (2004).

3.3 Parameter setting

Algorithm parameter values vary depending on different problem types when
applying algorithm to achieve efficient solutions, so appropriate value selection has
significant impact on the efficiency of algorithm. In this paper, the existing
parameters in algorithm are determined by Taguchi method. Taguchi’s method
applies the quality loss function to evaluate product quality along with an
orthogonal array to reduce the number of experiments.

In parameter setting, you first choose control factors and their levels and choose
an orthogonal array appropriate for these control factors. The control factors
comprise the inner array. In this paper, the parameters and their levels are shown in
Table 2. The square matrix with 4 parameters in 3 levels used in the Taguchi
method is Lo, which is given in Table 3.

The experiment is carried out by running several times each combination of
control factor settings. The response data from each run in the outer array are
usually aligned in a row, next to the factors settings for that run of the control factors
in the inner array. Then, measured values are transferred in the form of S/N value.

Now, let us confirm the research characteristic-anticipating minimizing the
makespan and total tardiness of jobs; namely, the smaller the cost values the better.
Therefore, S/N ratio must be calculated using lower-is-better formula as Eq. (15).

S/N =—10 1og(%1yfz> (15)

Table 2 Algorithm parameters

and their levels Level Controllable factors
A (Npop) B (N,) C(P.) D (P,)
60 0.60 0.85 0.05
2 80 0.70 0.95 0.10
100 0.80 1 0.15
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Table 3 The orthogonal array

Lo Experiments A B C D
1 A (1) B (1) C (1) D (1)
2 A (1) B (2) C(2) D (2)
3 A (1) B (3) Cc @3 D (3)
4 A Q) B (1) C®2 D (3)
5 A(2) B (2) Cc@3) D (1)
6 A(2) B (3) c@m D (2)
7 A(3) B (1) Cc @3 D (2)
8 A(3) B (2) c@m D (3)
9 A (3) B (3) C(2) D (1)
;I;ab?:e 4 S/N ratio response Level A (Nyop) B (V,) c e D (P,)
1 —80.5326 —80.5091 —80.5090 —80.4138
2 —80.4959 —80.5199 —80.3834 —80.5029
3 —80.3966 —80.3961 —80.5327 —80.5084
Delta 0.1360 0.1238 0.1492 0.0947
Rank 2 3 1 4
A B c D
-80.38
-80.42
E -80.46
5
-80.50
-80.54

Fig. 2 Diagram of mean effect of the S/N ratio

The problem is that the response data from each run in MOPs are usually as set
(non-dominated solutions). Since the Taguchi function should be assessed by one
criterion, then a function which has shown the combination of all indexes is defined.
The introduced utility function by Jolai et al. (2013) is used as follows (Eq. 16):

Utility function = \/ (NPS)' +(OM1)' +(QM2)" +(MID)*+(SNS)*+(TM)*+(FDH)*

(16)

This utility function is comprised of three qualitative and four quantitative
criteria. The weight of 1 is allocated to qualitative criteria and the weight of 2 is
allocated to quantitative criteria. This function has the role of a variable Y in

Eq. (15).
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Table 5 Details special small problems and results of the full enumeration and proposed algorithm

Test nxgxL m d Number of NPS NPS in CPU time (s)
problem Pareto optimal Pareto
solutions optimal Enumeration = NSGA-
algorithm DEA

TSS1 Sx1x1 1 —-0.152 3 3 3 0.0936 26.4266
—-0514 6 6 6

TSS2 Tx1x1 1 —-0.152 6 6 6 1.3572 27.7370
—-0.514 5 5 5

TSS3 0x1x1 1 —0.152 4 4 4 1051.8679 28.9382
—-0.514 12 12 12

TSS4 Sx1x2 1 —-0.152 2 2 2 0.0936 29.3126
—-0.514 5 5 5

TSS5 Tx1x2 1 —-0.152 5 5 5 1.7784 33.4154
—-0.514 2 2 2

TSS6 10x1x2 1 —-0.152 6 4 3 1450.0448 38.0018
—-0.514 3 2 1

TSS7 Sx1x1 3 —-0.152 2 2 2 0.0780 33.8210
—-0.514 1 1 1

TSS8 Tx1x1 3 —-0.152 5 5 5 1.4664 30.1394
—-0.514 4 4 4

TSS9 I0x1x1 3 —0.152 12 11 11 1154.5790 30.5450
—-0514 6 6 6

TSS10 Sx1x2 3 —-0.152 1 1 1 0.1092 36.2546
—-0514 1 1 1

TSS11 7x1x2 3 —-0.152 5 5 5 2.0748 31.2158
—-0514 3 3 3

TSS12 10x1x2 3 —-0.152 5 5 5 1654.4686 34.5074
—-0.514 4 4 4

TSS13 Sx2x1 1-1 —-0.152 12 12 12 0.0936 28.4234
—-0.514 5 5 5

TSS14 7x2x1 1-1 —-0.152 3 3 3 1.8720 31.4342
—-0.514 4 4 4

TSSIS 10x2x1 1-1 —0.152 10 8 7 1458.6249 34.3046
—-0.514 9 7 7

TSS16 5x2x2 1-1 —-0.152 2 2 2 0.1248 32.7602
—-0514 3 3 3

TSS17 7x2x2 1-1 —-0.152 4 4 4 2.6988 39.8895
-0514 1 1 1

TSS18 10x2x2 1-1 —-0.152 2 2 2 2238.1931 39.4839
—-0514 5 4 4

TSS19 S5x2x1 33 —-0.152 3 3 3 0.1092 29.1324
—-0514 3 3 3

TSS20 7x2x1 33 —-0.152 5 5 5 2.0592 31.5122
—-0514 3 3 3
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Table 5 continued

Test nxgxL m d Number of NPS NPS in CPU time (s)
problem Pareto optimal Pareto -
solutions optimal Enumeration ~ NSGA-
algorithm DEA

TSS21 10x2x1 33 —-0.152 7 6 6 1687.0104 34.7726
—-0.514 5 4 4

TSS22 5x2x2 33 —-0.152 1 1 1 0.1248 39.2187
—-0.514 1 1 1

TSS23 7x2x2 33 —-0.152 8 8 8 3.0576 35.3186
—0.514 3 3 3

TSS24 10 x2x2 3-3 —-0.152 13 12 12 2713.5281 43.2903
—0.514 7 7 6

Table 6 The results of qualitative metrics for small problems

Test a NSGA-DEA MLPGA No. No.
problem NDS  subscriber
NPS NDS QM1 QM2 NPS NDS QM1 QM2 solutions in
%) (%) (%) (%) NDS
TS1 0 9 9 100 100 8 4 50 444 9 4
—-0.152 12 12 100 100 9 8 88.8  66.6 12 8
-0.514 7 7 100 100 7 7 100 100 7 7
TS2 0 7 3 428 60 3 2 66.6 40 5 0
—-0.152 6 6 100 100 4 0 0 0 0
—-0.514 13 12 923 923 10 5 50 384 13 4
TS3 0 3 3 100 100 3 0 0 0 3 0
—-0.152 14 14 100 93.3 9 1 11.1 6.6 15 0
-0.514 7 6 857  66.6 6 3 50 333 0
TS4 0 5 5 100 100 3 2 66.6 40 5 2
—0.152 12 12 100 100 11 9 81.8 75 12 9
—0.514 11 11 100 100 8 5 62.5 454 11 5
TSS 0 3 2 66.6  66.6 2 1 50 333 3 0
—-0.152 5 5 100 100 9 0 0 0 5 0
—0.514 16 16 100 94.1 12 3 25 17.6 17 2
TS6 0 5 4 80 80 2 1 50 20 5 0
—-0.152 4 4 100 80 1 1 100 20 5 0
-0.514 8 7 875 717 5 2 40 22.2 9 0
TS7 0 2 2 100 100 2 1 50 50 2 1
—-0.152 3 3 100 100 3 3 100 100 3 3
—-0.514 14 14 100 100 14 13 92.8  92.8 14 13
TS8 0 5 5 100 100 3 1 333 20 5 1
—0.152 11 10 90.9  90.9 4 2 50 18.1 11 1
—0.514 16 13 812  86.6 10 3 30 20 15 1
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Table 6 continued
Test d NSGA-DEA MLPGA No. No.
problem NDS  subscriber
NPS NDS QM1 QM2 NPS NDS QMI QM2 solutions in
(%) (%) (%) (%) NDS
TS9 0 7 7 100 100 3 0 0 0 7 0
—0.152 3 1 333 333 3 2 66.6  66.6 3 0
—-0.514 8 4 50 40 9 6 66.6 60 10 0
TS10 0 5 3 60 75 2 1 50 25 4 0
—0.152 14 14 100 100 14 14 100 100 14 14
—-0.514 13 10 769  90.9 10 8 80 72.7 11 7
TS11 0 3 0 0 0 6 6 100 100 6 0
—0.152 6 6 66.6 100 4 0 0 0 6 0
—0.514 20 18 90 78.2 14 7 50 304 23 2
TS12 0 6 4 66.6 80 1 1 100 20 5 0
—0.152 1 1 100 100 2 0 0 0 1 0
—-0514 2 2 100 100 5 0 0 0 2 0
TS13 0 6 6 100 100 6 6 100 100 6 6
—-0.152 9 9 100 100 9 9 100 100 9 9
—-0.514 11 9 81.8 90 9 9 100 90 10 8
TS14 0 9 9 100 90 5 1 20 10 10 0
—-0.152 6 3 50 60 6 2 333 40 5 0
—-0.514 10 9 90 64.2 12 12 100 85.7 14 7
TS15 0 7 7 100 100 6 0 0 0 7 0
—-0.152 3 0 0 0 2 2 100 100 2 0
—-0.514 4 1 25 20 8 4 50 80 5 0
TS16 0 7 7 100 100 6 5 833 714 7 5
—-0.152 3 3 100 100 2 2 100 66.6 3 2
—-0.514 5 5 100 100 5 5 100 100 5 5
TS17 0 7 0 0 0 5 5 100 100 5 0
—-0.152 4 4 100 100 4 0 0 0 4 0
—-0514 6 6 100 100 5 1 20 16.6 [§ 1
TS18 0 5 5 100 100 3 0 0 0 5 0
—-0.152 6 6 100 85.7 4 1 25 14.2 7 0
—-0514 5 5 100 100 6 0 0 0 5 0
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Table 7 The results of qualitative metrics for medium problems

Test a NSGA-DEA MLPGA No. No.
problem NDS subscriber
NPS NDS QM1 QM2 NPS NDS QM1 QM2 solutions in
(%) (%) (%) (%) NDS
TM1 0 1 1 100 100 8 0 0 0 1 0
—0.152 21 19 904 76 10 6 60 24 25 0
-0.514 11 11 100 100 0 0 0 11 0
T™M2 0 5 5 100 100 0 0 0 5 0
—0.152 16 15 93.7 83.3 3 375 16.7 18 0
-0.514 11 11 100 100 11 0 0 0 11 0
T™M3 0 4 3 75 60 3 2 66.36 40 5 0
—-0.152 8 8 100 100 4 0 0 0 8 0
-0.514 14 14 100 100 20 0 0 0 14 0
TM4 0 5 3 60 42.8 5 4 80 57.2 7 0
—-0.152 6 6 100 75 8 2 25 25 8 0
-0.514 9 9 100 100 6 0 0 0 9 0
TMS 0 2 2 100 66.6 6 1 16.6 334 3 0
—-0.152 7 7 100 70 5 3 60 30 10 0
—0.514 10 10 100 100 9 0 0 10 0
TM6 0 2 2 100 100 6 0 0 0
—-0.152 6 5 83.3 83.3 5 1 20 16.7 0
—-0.514 13 13 100 100 8 0 0 13 0
™7 0 3 3 100 100 2 0 0 3 0
—-0.152 3 3 100 60 5 2 40 40 5 0
—-0.514 22 19 863 95 11 1 9 5 20 0
T™M8 0 5 0 0 0 3 3 100 100 3 0
—-0.152 2 2 100 100 7 0 0 2 0
-0.514 12 12 100 100 14 0 0 12 0
™9 0 5 5 100 100 6 0 0 0 5 0
—-0.152 3 3 100 100 4 0 0 0 3 0
—0.514 26 18 69.2  81.8 8 4 50 182 22 0
TM10 0 4 4 100 100 3 0 0 0 4 0
—0.152 12 10 833 714 8 4 50 28.6 14 0
—-0.514 20 11 55 55 12 9 75 45 20 0
TM11 0 2 2 100 100 1 0 0 0 0
—-0.152 5 5 100 100 7 0 0 0 5 0
-0.514 7 7 100 100 9 0 0 0 7 0
TM12 0 14 10 714 769 3 3 100 23.1 13 0
—-0.152 5 5 100 100 8 0 0 0 5 0
-0.514 9 9 100 100 10 0 0 0 0
T™M13 0 8 8 100 100 3 0 0 0 8 0
—-0.152 6 2 333 66.6 3 1 333 334 3 0
—-0.514 20 20 100 100 9 0 0 0 20 0
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Table 7 continued

Test d NSGA-DEA MLPGA No. No.
problem NDS  subscriber
NPS NDS QM1 QM2 NPS NDS QM1 QM2 solutions in
(%) (%) (%) (%) NDS
™14 0 6 3 50 42.8 4 4 100 57.2 7 0
—-0.152 6 6 100 100 5 0 0 0 6 0
—0.514 10 10 100 83.3 6 2 333 16.7 12 0
TM15 0 3 2 66.6 50 2 2 100 50 4 0
—-0.152 7 7 100 100 10 0 0 0 7 0
—0.514 15 15 100 100 8 0 0 0 15 0
TM16 0 5 0 0 0 1 1 100 100 1 0
—-0.152 12 12 100 100 5 0 0 0 12 0
—0.514 16 15 937 833 14 3 21.4 16.7 18 0
T™17 0 2 2 100 100 6 0 0 0 2 0
—-0.152 6 6 100 100 7 0 0 0 6 0
—-0.514 5 5 100 100 6 0 0 0 5 0
TM18 0 1 1 100 50 5 1 20 50 2 0
—-0.152 6 5 833 833 5 1 20 16.7 6 0
—-0.514 8 8 100 100 9 0 0 0 8 0
Table 8 The results of qualitative metrics for large problems
Test d NSGA-DEA MLPGA No. No.
problem NDS  subscriber
NPS NDS QM1 QM2 NPS NDS QM1 QM2 solutions in
(%) (%) (%) (%) NDS
TL1 0 5 5 100 83.3 4 1 25 16.7 6 0
—0.152 3 3 100 100 6 0 0 0 3 0
—-0.514 12 12 100 100 8 0 0 0 12 0
TL2 0 2 2 100 100 6 0 0 0 2 0
—-0.152 12 11 916 916 4 1 25 8.4 12 0
—-0.514 11 11 100 100 8 0 0 0 11 0
TL3 0 1 1 100 100 2 0 0 0 1 0
—0.152 11 11 100 100 12 0 0 0 11 0
—0.514 23 23 100 100 8 0 0 0 23 0
TL4 0 8 8 100 100 13 0 0 0 8 0
—-0.152 12 12 100 100 9 0 0 0 12 0
-0.514 12 12 100 100 8 0 0 0 12 0
TL5 0 6 6 100 66.6 4 3 75 33.7 9 0
—-0.152 4 4 100 100 6 0 0 0 4 0
-0.514 8 8 100 100 5 0 0 0 8 0
TL6 0 3 3 100 100 7 0 0 0 3 0
—-0.152 8 8 100 100 6 0 0 0 8 0
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Table 8 continued

Test d NSGA-DEA MLPGA No. No.
problem NDS  subscriber
NPS NDS QM1 QM2 NPS NDS QMI QM2 solutions in
(%) (%) (%) (%) NDS
—-0.514 7 7 100 100 7 0 0 0 7 0
TL7 0 2 2 100 333 5 4 80 66.7 6 0
—0.152 5 4 80 50 6 4 66.6 50 8 0
—-0.514 7 7 100 100 7 0 0 0 7 0
TL8 0 2 2 100 50 3 2 66.6 50 4 0
—-0.152 4 4 100 100 6 0 0 0 4 0
—-0514 3 3 100 100 8 0 0 0 3 0
TL9 0 3 3 100 100 6 0 0 0 3 0
—-0.152 3 3 100 100 4 0 0 0 3 0
—-0514 6 6 100 100 8 0 0 0 6 0
TL10 0 1 1 100 100 2 2 100 0 3 0
—0.152 6 6 100 100 1 0 100 0 6 0
—-0.514 11 11 100 100 4 0 0 0 11 0
TL11 0 1 1 100 50 4 1 25 50 2 0
—-0.152 6 6 100 100 4 0 0 0 6 0
—-0.514 8 8 100 100 10 0 0 0 8 0
TL12 0 3 3 100 75 2 1 50 25 4 0
—0.152 6 6 100 100 4 0 0 0 6 0
—0.514 10 10 100 100 8 0 0 0 10 0
TL13 0 8 4 50 57.1 3 3 100 429 7 0
—0.152 14 12 857 75 4 4 100 25 16 0
—-0.514 11 0 0 0 5 5 100 100 5 0
TL14 0 6 2 333 40 3 3 100 60 5 0
—0.152 6 6 100 100 4 0 0 0 6 0
—-0514 6 6 100 100 9 0 0 0 6 0
TLI15 0 5 5 100 100 5 0 0 0 5 0
—0.152 8 8 100 100 2 0 0 0 8 0
—-0.514 4 4 100 50 5 4 80 50 8 0
TL16 0 5 5 100 100 7 0 0 0 5 0
—0.152 7 7 100 100 1 0 0 0 7 0
—-0.514 12 12 100 100 6 0 0 0 12 0
TL17 0 5 5 100 100 4 0 0 0 5 0
—-0.152 3 3 100 100 4 0 0 0 3 0
—-0514 3 3 100 100 14 0 0 0 3 0
TL18 0 4 4 100 100 2 0 0 0 4 0
—-0.152 5 5 100 100 4 0 0 0 5 0
—0.514 19 4 21 444 10 5 50 55.6 9 0
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Table 4 shows the data which is transformed into S/N value. The rate of S/N is
shown in Fig. 2. As it can be seen in Table 4, factor C (probability of crossover) is
prominent in the execution process of determining NSGA-DEA. In addition, the
influence of four factors on minimizing makespan and the total tardiness in NSGA-
DEA is, in the order of: probability of crossover, number of initial population,
number of generation, and probability of mutation. As it can be seen in Fig. 2, the
optimal factors are: A (3), B (3), C (2), and D (1).

3.4 The validation of proposed algorithm

To demonstrate the validation of proposed algorithm, the experiments were
conducted on special small problems. It is impossible to find the Pareto-optimal
solutions using the enumeration algorithm because of extreme complexity of the
problems. The full enumeration algorithm is used to find the Pareto-optimal
solutions for only several special small problems. The total of possible states of
problems with n = 5, 7 and 10 is the 120, 5040 and 3,628,800 solutions to explore
the full enumeration algorithm, respectively. Details special small size problems and
the results are shown in Table 5. In there, the first column indicates the abbreviation
codes of each test problem, the second and third columns describe the details
problems (number of jobs x number of stages x number of re-entrants, and
number of machines per stage), the fourth describes learning indices, the fifth and
sixth columns describe number of Pareto-optimal solutions and the number of non-
dominated solutions obtained from algorithm respectively, the seventh describes the
number of non-dominated solutions obtained from algorithm in Pareto-optimal
solutions, and the last column describes the average CPU time (second unit). Based
on the results of given in Table 5, the following observations can be made.

Due to the fifth and seventh columns, the proposed algorithm is able to find all
solutions in Pareto-optimal in 62.5 % cases (the Pareto-optimal solutions exactly).
In other cases, more solutions were found, except for one or two. This result
indicates that the proposed algorithm has a very high reliability (excellent
performance) to solve the problems. Due to the sixth and seventh columns, the
all solutions obtained of proposed algorithm are efficient in 83.3 % cases, because
they exist at Pareto-optimal. Due to the last column, the proposed algorithm is able
to solve the problems in the length of the interval from 26.4266 to 41 s. The full
enumeration algorithm has spent the interval from 0.0780 to 2713.5281 s. This
result indicates that the proposed algorithm has a shorter range in solving problem.

3.5 Numerical result

The performance of the proposed NSGA-DEA is compared with a MLPGA
algorithm proposed by Cho et al. (2011). It is noticeable that all of algorithms are
implemented in MATLAB 2009a, and run on a PC with 2.30 GHz Intel Core and
4 GB of RAM memory. To show the efficiency and effectiveness of the proposed
algorithm in comparison with a MLPGA, computational experiments were done on
various test problems (i.e. small, medium and large). For each algorithm, we run
each test problem ten times and four qualitative metrics and four quantitative
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metrics are computed for each of them. The comparisons are performed on the basis
of the sets of non-dominant solutions obtained by each algorithm.

Tables 6, 7 and 8 represent the values of the four qualitative metrics for various
problems. The value of NPS, NDS, QM1 and QM2 are shown in these tables. Now,
the first line of Table 6 is explained. The results shown in NPS column only
evaluate the number of non-dominated solutions found by each algorithm, not their
quality. However, the quality of solutions can be measured by NDS, QM1 and QM2,
as summarized in Tables. The values of NPS of NSGA-DEA and MLPGA are equal
to 9 and 8 respectively. Consequently, the NSGA-DEA front has more non-
dominated solutions than MLPGA front, corresponding the value of NPS. The
values of NDS of NSGA-DEA and MLPGA are equal to 9 and 4 respectively. It
shows number of the net non-dominated solutions (NDS) of each algorithm. The
larger value of NDS, the better of solution quality we have. The values of QM1 of
NSGA-DEA and MLPGA are equal to 100 and 50 % respectively. The value of
QM1 of NSGA-DEA is calculated by divided NDS = 9 with the NPS = 9. It means
that all solutions obtained of the NSGA-DEA are efficient. Consequently, there are
none solutions in NSGA-DEA front that are dominated by at least one solution from
MLPGA front. The value of QM1 of MLPGA is calculated by divided NDS = 4
with the NPS = 8. It means that four solutions of the MLPGA are efficient.
Consequently, four solutions on the MLPGA front are dominated by at least one
solution on the NSGA-DEA front. The values of QM2 of NSGA-DEA and MLPGA
are equal to 100 and 44.4 % respectively. The value of QM2 of NSGA-DEA is
calculated by divided “NDS of algorithm = 9 with the “NDS = 9”. It means that
the all solutions in NSGA-DEA front have been included in net non-dominated
solutions. The value of QM2 of MLPGA is calculated by divided “NDS of
algorithm = 4” with the “NDS = 9”. It means that the four solutions in MLPGA
front have been included in net non-dominated solutions. It is notable that, net non-
dominated solutions may be both algorithms. For example, 4 solutions of net non-
dominated solutions (NDS) are both algorithms.

As it can be observed, four metrics (NDS, NPS, QM1 and QM2) have better
values for NSGA-DEA in comparing with other algorithm in more cases. The
averages and summarized results of these experiments are shown in Table 12. As it
can be seen in average row in Table 12, the number of non-dominated solutions of
MLPGA is less than that of NSGA-DEA, 79 % of Pareto members of NSGA-DEA
are efficient. Also, 87.1 % of the net Pareto set members made by members of the
Pareto set which belongs to NSGA-DEA, while the solutions of MLPGA only cover
8.6 % of the members of the Pareto set. As shown in Table 12, the proposed
algorithm is more effective than the MLPGA algorithm in terms NDS, NPS, QM1
and QM2 for small, medium and large-sized problems.

Tables 9, 10 and 11 present the values of four quantitative metrics on all test
problems for each algorithm. The averages and summarized results of these
experiments are shown in Table 12. As it can be seen in average row in Table 12,
algorithm NSGA-DEA can obtain better performances on metrics MID and TM than
other algorithm. The values of MID and TM of NSGA-DEA are less than that of
other algorithm in 75.3 and 49.4 % cases respectively. It indicates that the obtained
solutions of NSGA-DEA converge towards the ideal point (0, 0). It is closer to the

@ Springer



154

S. M. Mousavi et al.

Table 12 The summarized results of qualitative and quantitative metrics (%)

Test problem Algorithm NPS NDS QMI QM2 MID SNS TM FDH
Small problem NSGA-DEA  63.0 759 64.8 87.0 53.7 500 426 648
MLPGA 148 11.1 20.4 11.1 352 389 463 204
Equal 222 13.0 14.8 1.9 11.1 11.1 11.1 14.8
Medium problem  NSGA-DEA 593 889 85.2 88.9 79.6 556 500 90.7
MLPGA 37.0 74 13.0 74 204 444 500 9.3
Equal 3.7 3.7 1.8 3.7 0.0 0.0 0.0 0.0
Large problem NSGA-DEA 519 833 87.0 85.2 926  48.1 556 889
MLPGA 42.6 9.3 9.3 74 7.4 519 444 9.3
Equal 5.5 7.4 3.7 74 0.0 0.0 0.0 1.8
Average NSGA-DEA  58.1 82.7 79.0 87.1 753 512 494 815
MLPGA 315 9.3 14.2 8.6 210 451 469 130
Equal 104 8.0 6.8 43 23.7 3.7 3.7 55
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Fig. 3 Plot of the obtained non-dominated solutions for NSGA-DEA and MLPGA in a small problem

ideal point. Consequently, the Pareto set of NSGA-DEA algorithm is better than the
other one. The values of SNS of NSGA-DEA are also more than that of other
algorithm in 51.2 % cases. It indicates that the non-dominated solutions of NSGA-
DEA are compacted in greater space than that of other algorithm. Similarly, the
values of FDH of NSGA-DEA are also more than that of other algorithm in 81.5 %
cases. It indicates that the non-dominated solutions of NSGA-DEA dominate some
members of the Pareto set which belongs to MLPGA. These results show that the
proposed algorithm works effectively in all size of problems. Therefore, the average
values of all the metrics in Table 12 show that the NSGA-DEA is able to obtain

more diversified and competitive Pareto sets than the MLPGA.
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Fig. 4 Plot of the obtained non-dominated solutions for NSGA-DEA and MLPGA in a medium problem
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Fig. 5 Plot of the obtained non-dominated solutions for NSGA-DEA and MLPGA in a large problem

Graphical representation is provided to demonstrate output results of the NSGA-
DEA and MLPGA. Figures 3, 4 and 5 represent the non-dominated solutions of a
single run by proposed algorithm and MLPGA for problems of small, medium and
large size respectively. It is obvious that the solutions obtained in Pareto-front by
the NSGA-DEA algorithm are more desirable. Also, we plot the initial set and the
final set of solutions obtained by each algorithm for an instance in Fig. 6. The initial
set is the same for all algorithms. This figure shows that NSGA-DEA generates
more efficient solutions. Therefore, these figures illustrate and confirm the
conclusion derived from the numerical results based on the performance criteria.
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Fig. 6 Initial and final sets for NSGA-DEA and MLPGA in a medium problem

4 Conclusion and further researches

This paper considers the problem of scheduling n independent jobs in a hybrid flow
shop with the objectives of minimizing both the makespan and the total tardiness.
There are considerable numbers of practical assumptions in real world scheduling
settings. To address the realistic assumptions of the proposed problem, three
additional traits were added to the scheduling problem. These include re-entrant
lines, setup times and position-dependent learning effects. A genetic algorithm is
proposed for solving this bi-objective optimization problem. The performance of the
proposed algorithm is compared with a genetic algorithm proposed in the literature
on a set of test problems. Several computational tests are used to evaluate the
effectiveness and efficiency of the proposed algorithm in finding good quality
schedules. Computational results show that the proposed algorithm provides better
results than genetic algorithm in the literature by qualitative and quantitative
criteria. For future study, the scheduling with other system characteristics, which
have not been included in this paper, such as release date, limited intermediate
buffers, machine availability constraints, and unrelated parallel machines at each
stage can be a practical extension, although the problem would be very difficult to
solve.
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