
ORIGINAL PAPER

A new hybrid ant colony algorithm for scheduling
of no-wait flowshop

Vahid Riahi1 • Morteza Kazemi2

Received: 8 May 2015 / Revised: 5 April 2016 / Accepted: 16 June 2016 /

Published online: 4 July 2016

� Springer-Verlag Berlin Heidelberg 2016

Abstract In this paper, the no-wait flow shop scheduling problem under makespan

and flowtime criteria is addressed. The no-wait flowshop is a variant of the well-

known flowshop scheduling problem where all processes follow the previous one

without any interruption for operations of a job. Owing to the problem is known to

be NP-hard for more than two machines, a hybrid meta-heuristic algorithm based on

ant colony optimization (ACO) and simulated annealing (SA) algorithm is

improved. First, at each step, due to the characteristic of ACO algorithm that include

solution construction and pheromone trail updating, some different areas of search

space are checked and best solution is selected. Then, to enhance the quality and

diversity of the solution and finding best neighbor of this solution, a novel SA is

presented. Moreover, a new principle is applied for global pheromone update based

on the probability function like SA algorithm. The proposed approach solution is

compared with several the state-of-the-art algorithms in the literature. The reported

results show that the proposed algorithms are effective and the new approach for

local search in ACO algorithm is efficient for solving the no-wait flow shop

problem. Then, we employed another hybrid ACO algorithm based on hybridization

of ACO with variable neighborhood search (VNS) and compare the results given by

two proposed algorithms. These results show that our new hybrid provides better

results than ACO-VNS algorithm.

& Vahid Riahi

Vahid.riahi@griffithuni.edu.au

Morteza Kazemi

kaazemi@sutech.ac.ir

1 Institute for Integrated and Intelligent Systems, Griffith University, Nathan Campus, Brisbane,

QLD 4111, Australia

2 Department of Computer and Information Technology Engineering, School of Industrial

Engineering, Shiraz University of Technology, Shiraz, Iran

123

Oper Res Int J (2018) 18:55–74

DOI 10.1007/s12351-016-0253-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s12351-016-0253-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12351-016-0253-x&domain=pdf

Keywords No-wait flow shop scheduling � Local search � Maximum completion

time � Variable neighborhood search � Simulated annealing

1 Introduction

The general assumption of majority of flow-shop applications is that the sequencing

of the jobs relies on buffers, otherwise they are considered as intermediate storage

between machines. The no-wait flow-shop scheduling problem (NWFSP) with

makespan criterion is considered in this paper. In NWFSP, each job has to be

processed from the first machine to the last without any interruption and the job

sequence is unique on all machines. In addition, each machine can handle no more

than one job at a time and each job has to visit each machine exactly once.

Therefore, the start of a job on the first machine may be delayed in order to meet the

no-wait requirement. Given that the release time of all jobs is zero and set-up time

on each machine is included in the processing time, the no-wait flow-shop problem

is to schedule jobs that minimize the makespan over all jobs. The no-wait flow shop

scheduling problem has important applications in modern industry. It has an

extensive background in industrial applications, including steel production, mining,

logistics, chemical industry and food processing. For example, in steel factories, to

avoid cooling and defects in steel, the liquid steel undergoes a chain of operations

such as molding into ingots, unmolding, and soaking. Similarly, in the food

processing, the canning operation must be operated after cooking operations

immediately to ensure freshness (Hall and Sriskandarajah 1996). A comprehensive

survey on the research and application of no-wait flow-shop scheduling problem can

be found in Hall and Sriskandarayah’s review paper (Hall and Sriskandarajah 1996).

In addition, Bagchi et al. (2006) showed that it can be transformed into the

asymmetric traveling salesman problem (ATSP) and presented some no-wait and

blocking scheduling models.

In the operation research literature, many elegant mathematical models and

methods have been developed to deal with the real-world problems. Some exact

approaches have been proposed to unravel the problems optimally that have the

limitation of solving only small-sized problems.

On the other hand, heuristics which are based on polynomial time algorithms are

the most suitable methods for solving large scheduling problems. In general,

heuristics attain good solutions in a reasonable time interval. Additionally, in the

recent years meta-heuristics with techniques such as bee colony algorithm

(Khorramizadeh and Riahi 2015), genetic algorithm (GA) (Guo et al. 2005),

memetic algorithm (MA) (Frutos and Tohmé 2013), particle swarm optimization

(PSO) (Marinakis et al. 2009), Electromagnetism-like Mechanism (SEM) (Bonyadi

and Li 2010), and ant colony optimization (ACO) (Riahi and Kazemi 2015) have

been developed to generate competitive results for many combinatorial optimization

problems.

In the recent years, several ant colony algorithms have developed for various

kinds of problems including the scheduling problem. Kashan and Karimi (2008)

proposed two ACO algorithms with two different visibility functions for total

56 V. Riahi, M. Kazemi

123

weighted tardiness single machine environment with formation of processing

batches. To minimize total completion time in a no-wait two-machine flow-shop,

Shyu et al. (2004) designed some specific features including a heuristic for

initializing the initial pheromone, a hybrid state transition rule and a hybrid local

search. Li et al. (2011) dealt with the minimization of the sum of completion time in

a sequence-dependent setups permutational flowshop. The authors used a time-

limited dynamic programming algorithm to perform a post-optimization strategy.

Mirabi (2011) proposed an ant colony optimization technique for the sequence-

dependent flowshop scheduling problem. The proposed algorithm contained a new

pheromone initialization procedure and a local search method. Rui et al. (2014)

presented an ant colony algorithm to solve the integrated job shop scheduling

problem with tool flow in flexible manufacturing system. Huang et al. (Huang et al.

2015) proposed a no-wait FSMP problem with time window constraint which a new

ant colony optimization (ACO), known as ant colony optimization with flexible

update (ACOFU), is presented to solve the problem. The results show that ACOFU

is superior to ACO when applied to small-scale problems. Recently, due to these

insights, ACO is selected to solve this problem based on its ability and performance

in solving scheduling problems. This is our incentive to employ ACO for solving the

presented research problem.

On the other side, however SA usually is considered as one of the best algorithms

that applied as a local search to improve the quality of solutions (Jolai et al. 2013;

Wang et al. 2011; Xiao et al. 2015; Elmi et al. 2011; Mirsanei et al. 2011), a wide

range of research on the literature review indicates that research with hybridization

of ACO and SA is very rare. Behnamian et al. (2009) considered a scheduling

problem with parallel machine and setup times. The authors combined ACO

algorithm with the VNS and SA to balance exploration and exploitation.

In this paper, we develop an effective hybrid ant colony algorithm where the new

approach to simulated annealing as a local search algorithm is presented as an

improvement phase. To show its performance, we use another method based on one

popular method, VNS, as a local search in proposed ACO. In addition, based on the

main characteristics of the considered problem, we propose a new approach for

global update that takes advantage of increasing diversity by a probability criterion.

The computational comparison demonstrated the effectiveness of the presented

hybrid ACO algorithm and shows that our algorithm is able to provide competitive

results in reasonable CPU times and our new simulated annealing method has a

better performance than VNS algorithm for a local search.

This paper is structured as follows: the no-wait flow shop problem is described

Sect. 2. Section 3 introduced new ant colony optimization algorithm, whereas the

experimentation is given in Sect. 4. The paper is concluded in Sect. 5.

2 The no-wait flowshop scheduling problem

In this Section, we first define the NWFSP with a makespan criterion. Then, we

review the relevant literature.

A new hybrid ant colony algorithm for scheduling of… 57

123

2.1 Problem formulation

The NWFSP can be defined as: a set of jobs is available for processing on machines.

Each job has a sequence of operations. Each machine can process one job at a time

and each job must be performed only on one machine at a time. All jobs must be

completed without interruption and the jobs should not wait to be scheduled

between two successive machines. The problem is finding a schedule in a way that

the processing order of jobs is the same on each machine and the maximum

completion time is minimized.

The following notations are used to formulate the no-wait flow-shop problems:

n Number of jobs,

m Number of machines,

pij Processing time for the job i on the machine j

p[i]j Processing time for the job in the position i on the machine j

dik Minimum delay between the start of job i and job kon the first machine due to

the no-wait restriction,

C[i] The completion time of the job located on position i

The minimum delay time dik and completion time C i½ � can be calculated using the

following equations:

dik ¼ pi1 þmax max
2� j�m

Xj

l¼2

pil �
Xj�1

l¼1

pkl

 !
; 0

()
ð1Þ

C 1½ � ¼
Xm

j¼1

p 1½ �j ð2Þ

C i½ � ¼
Xi

l¼2

d l�1½ � l½ � þ
Xm

j¼1

p i½ �ji¼2;3;::;n ð3Þ

So, the maximum completion time (makespan) can be obtained as follows:

Cmax ¼ max
1� i� n

C i½ �
� �

: ð4Þ

2.2 Literature review

According to Garay and Johnson (1979), the no-wait flow-shop scheduling problem

is NP-hard. Therefore, heuristic procedures due to their polynomial time complexity

are preferred as the most suitable optimization methods to solve these scheduling

problems. Important heuristics for the no-wait flowshop to minimize the makespan

are slope index (Bonney and Gundry 1976), Minimum covering level (MCL) (King

and Spachis 1980), Raj (Gangadharan and Rajendran 1994), Framinan-Nagano

heuristic (FN) (Framinan et al. 2010), Fast composite heuristic (FCH) (Li and Wu

58 V. Riahi, M. Kazemi

123

2008), Li-Wang-Wu heuristic (LWW) (Li et al. 2008) and Laha-Chakraborty

heuristic (LCH) (Laha and Chakraborty 2009).

In addition, it has been examined by some researchers applying different meta-

heuristics. Aldowaisan and Allahverdi (2003) designed methods based on simulated

annealing and genetic algorithm. Schuster and Framinan (2003) implemented a

variable neighborhood search algorithm (VNS) and a hybrid algorithm GASA to

solve the no-wait job shop scheduling problems. Grabowski and Pempera (2005)

presented five heuristic algorithms for NWFSP, where three Tabu Search (TS) based

algorithms (TS, TS ? M, TS ? MP) were developed by using the TS with multi-

moves and the other were based on descending search (DS) and descending search

with multi-moves (DS ? M). Revealed by experimental results, these tabu search

methods outperform the VNS and the GASA. Liu et al. (2007) proposed an effective

algorithm based on hybrid particle swarm optimization (HPSO) and Nawaz-

Enscore-Ham (NEH) heuristic (Nawaz et al. 1983) to minimize makespan. Pan et al.

(2008) presented a DPSO algorithm for the NWFSP. They also hybridized the

variable neighborhood descent (VND) algorithm and discrete particle swarm

optimization (DPSO) to further enhance its searching ability. The results show that

the presented algorithm was effectiveness and is better than other algorithms both

heuristic and meta-heuristic in the literature.

Pan et al. (2008) applied an improved iterated greedy algorithm (IIGA) to solve

NWFSP. In that paper, they introduced a speed-up method for insert neighborhood

and a new heuristic algorithm based on NEH heuristic algorithm. In 2009, Qian

et al. (2009) proposed a hybrid differential evolution (HDE) approach with a new

local search to solve NWFSP. Tseng and Lin (2010) proposed a hybrid GA (HGA),

which hybridizes a GA and a novel local search scheme which combines two local

search methods: the Insertion Search (IS) and a novel local search method called the

Insertion Search with Cut-and-Repair (ISCR). Samarghandi and ElMekkawy (2012)

proposed a hybrid TS and PSO algorithm and utilized a new coding and decoding

technique to improve its efficiency. Ding et al. (2015) proposes a Tabu-mechanism

improved iterated greedy (TMIIG) algorithm with a Tabu reconstruction strategy

which improves the exploitation ability of the algorithm and leads to better

performance.

3 Description of the proposed ACO algorithm

In this section, we described the proposed ACO algorithm for the no-wait flowshop

scheduling problem. The ACO algorithm is utilized to generate initial scheduling.

Then the ACO solutions are improved by using a new local search method. The

explanations of these algorithms are as follows:

The ACO meta-heuristics algorithm, was introduced by Colorni et al. (1991) for

the first time, and has been successfully applied to a large number of combinatorial

optimization problems. This algorithm is inspired by the behavior of real ants in

finding the shortest path from a food source to the nest.

In ACO algorithm a feasible solution is usually shown as a path in a graph. In

NWFSP, the graph of the problem is shown with a complete graph where the

A new hybrid ant colony algorithm for scheduling of… 59

123

vertices correspond to the activities. Each sequence of scheduling the jobs can be

shown as a directed path which includes all the vertices in the graph of the problem.

Therefore, finding a feasible solution lead to find such directed path.

According to previous studies, ACO can work effectively to find good solutions

in scheduling problems if it benefits from effective local search and constructive

pheromone updating rule. This inspired us to develop a new ACO to solve no-wait

flowshop problem. Flowshop scheduling problem can be regarded as a hard

optimization problem. As a result, simple ACO with traditional pheromone updating

trail and completely random search methods to find following values may not

perform efficiently in an appropriate time. Consequently, the ACO developed in this

paper has been benefited of a new approach to Global update of pheromone trail and

applies effective local search based on a new simulated annealing algorithm.

The general structure of the proposed ACO algorithm is then represented as

follows (the details are presented in the remainder of this section):

Step 1. Set parameter; generate an initial solution and initialize the pheromone trails

Step 2. While the termination condition is not met, do the following:

Step 2.1 For each ant in the colony, do:

a. Construct a solution by repeatedly applying the transition rule

b. Apply the pheromone local update rule;

Step 2.2. Find the best solution generated in step 2.1 and improve the solution quality by the local

search;

Step 2.3. Modify the pheromone trails according to the global updating rule;

Step 2.4. Update the minimum and maximum trail bounds, and limit the pheromone trails.

Step 3. Return the best solution found.

3.1 Pheromone initialization

sij is considered as the intensity of assigning ith job in jth position. This desirability

is changed during the running of the ACO algorithm. So, there is a pheromone value

for every job i for every feasible position j that can be updated at each iteration of

ACO algorithm.

In this paper, like PACO proposed by Rajendran and Ziegler (2004), an initial

differential setting of the trail intensities is considered. In this paper we consider an

upper bound smax and a lower bound smin for the trail pheromone that calculated by

the following formulas:

smax ¼ 1� qð ÞZbestð Þ�1 ð5Þ

smin ¼ bsmax ð6Þ

where Zbest denotes the best makespan obtained so far and qð0� q� 1Þ is the

parameter of the algorithm and for initially, it equals the makespan of Rajendran’s

heuristic (1993), so, the initial pheromone are chosen as sij ¼ smax ¼
1� qð ÞZbestð Þ�1

for all i and j.

60 V. Riahi, M. Kazemi

123

The Raj heuristic is a variant of the NEH heuristic (1983) that is regarded as the

best heuristic for the flow shop. It has three phases which are explained as follows:

Step 1 Calculate the value of T ið Þ defined by Eq. (7) for each job i. Then, obtain

a sequence p = (p1, p2, …pi, …pn) by sorting jobs according to their

increasing T ið Þ

T ið Þ ¼
Xm

j¼1

m� jþ 1ð Þtij
� �

ð7Þ

Step 2 The first two jobs of p are taken, and the two possible subsequences of

these two jobs are evaluated, and then select the better one as the current

sequence s. Set k = 2.

Step 3 Set k = k ? 1. Take the kth job of p and insert it into p (p 2 [1, k - 1])

possible positions of the current sequence s; we obtain p subsequences.

Select the subsequence with the minimum makespan as the current

sequence s for the next generation. Repeat this step until all jobs are

sequenced, and the final sequence is found.

3.2 Make feasible solution

A set of artificial ants is initially created. Each ant starts with an empty sequence

and then successively appends an unscheduled job to the partial sequence until a

feasible solution is constructed (or all jobs are scheduled). In choosing the next job j

to be appended after job i, the ant applies the following state transition rule:

j ¼ argmax sij
� �

; if q� q0
S; otherwise

�
ð8Þ

q is a random number uniformly distributed in [0,1], and q0 is a parameter between 0

and 1. If q B q0, the unscheduled job j with maximum value is placed after job i;

otherwise, a job is chosen according to S. the random variable S is selected

according to the probability distribution given in Eq. 9.

Pk
ij ¼

sijP
j2Nk

j
sij

; i 2 Nk
j ð9Þ

where Nj
k is the set of unscheduled jobs.

3.3 Local update of pheromone trail

To avoid premature convergence, a local trail update is performed. The local update

reduces the pheromone amount of a new component so that the following ants have

a less probability to choose this job in the same place. This is achieved by the

following local updating rule:

A new hybrid ant colony algorithm for scheduling of… 61

123

snewij ¼ 1� qð Þsoldij þ q
Ck
max

ð10Þ

where q 0� q� 1ð Þ is the parameter of the algorithm. And Cmax
k is the makespan of

the complete sequence of ant k.

3.4 Local search

Once a complete sequence of jobs has been generated by all ants, the performance

quality of the solution is improved by means of a local search procedure. In this

paper, two algorithms are proposed based on the simulated annealing algorithm and

variable neighborhood search method are used for the local search.

3.4.1 A variable neighborhood search for the local search

VNS (Mladenovíc and Hansen 1997) is a stochastic algorithm in which, first, a set

of neighborhood structures Nk k ¼ 1; :::; nð Þ are defined. Then, each iteration of the

algorithm is composed of three steps: shaking, local search, and change.

In this paper, a modified variable neighborhood search (VNS) that is incorporated

into Liu and Liu (2013) algorithm as a hybrid strategy is used. In Liu and Liu

(2013), they used two neighborhood structures called swap and insert local search

respectively. Insert move that operates on sequence of jobs p and removes the job

p(x) from its original position x, and next insert it in a position y in p, whereas Swap
move in which the jobs p(x) and p(y), x 6¼ y, are interchanged in some positions

x and y in p. In presented VNS, each job is considered for possible insertion in all

other positions after considering all possible swaps of pairs of job’s positions. At

used VNS, the best individual of ants is selected as the seed permutation. In fact,

searching neighborhood for the best local optimum is repeated with first

neighborhood structure until no improvement appears: the seed permutation is

updated if the new solution is better than the seed permutation and search is

continued; otherwise the neighborhood is changed, and search is continue with

second neighborhood structure until no possible improvement.

3.4.2 The simulated annealing (SA) as a local search

SA is one of the most popular meta-heuristics for addressing combinatorial

optimization problems over the past two decades.

SA method differs from the most local search heuristics because it uses two or

more neighborhoods, instead of one, in its structure. In particular, they are based on

the principle of systematic change of neighborhood during the search. A standard

SA algorithm begins with generating an initial random solution. Then, iteratively

produce a neighbor solution. The new solution will be accepted as the new current

solution if it has a lower or equal cost; otherwise its acceptance is based on a

probability function. The process is repeated until the termination condition is

satisfied (Low et al. 2004).

62 V. Riahi, M. Kazemi

123

In presented SA, in order to increase the quality of the solution, some

neighborhood generation structures are used and to increase the searching speed of

the proposed SA, some additional termination criteria are presented.

To start the procedure, SA generates an initial solution as the incumbent

solution and after that SA proceeds in several iterations. After setting parameter,

at each iteration, a random neighbor is generated. Moves that improve the

objective function are always accepted. Otherwise, the neighbor is selected with a

given probability that depends on the current temperature and the amount of

degradation DE of the objective function. DE represents the difference in the

objective value between the current solution and the generated neighboring

solution. As the algorithm progresses, the probability that such moves are

accepted decreases.

In our algorithm, contrast to the most other studies in literature (Ying et al.

2012; Dai et al. 2013; Rabiee et al. 2014) that just use temperature, T, as a

stopping criterion, some additional termination criteria are presented. In this

paper, the proposed SA is similar to the SA developed by Low (2005). The main

difference between the proposed SA and those developed by Low (2005) is that in

proposed algorithm, to increase the quality of solution and the speed of algorithm,

different termination criteria have been considered. This difference allows the

algorithm to find the final solution from fairly diversified solutions and relies more

on solutions with good qualities. In addition, we’ve used a Moving List (ML) that

is empty first (ML / [) and after insertion and swap operators, find the eight

operators that result in the smallest amount of makespan. Put these eight operators

in ML.

For more clarification algorithms, steps are explained in Algorithm 1.

Algorithm 1. Simulated Annealing algorithm

Step 1 Initialization
 Step 1.1 Set the initial temperature, parameters, T, final temperature, Tf , and cooling rate, β,
 Step 1.2 Obtain an initial solution, S, and set S* =S.
 Step 1.3 Set counter=0, temp=0.
Step 2 While not yet frozen, T>Tf ,do the following:
 Step 2.1 While (temp<tempf) or (counter < counterf) do the following :
 Step 2.1.1 Neighborhood search. Select a neighbor Snew of S.
 Step 2.1.2 Compute ∆E=Obj (Snew) - Obj (S) and update ML.
 Step 2.1.3 If ∆E≤0 , set S =Snew ;
 Step 2.1.3.1 Compute ∆E=Obj (Snew) - Obj (S*);
 Step 2.1.3.2 If ∆E≤0, set S* =Snew and temp=temp+1.
 Step 2.1.4 If ∆E>0, generate random number, L, from the interval, (0, 1); If L< e-∆E/T, set Snew =S and

counter = counter +1.
 Step 2.1.5 Set T=T* β and counter=0, temp=0.
Step 3 Return the best solution found for (S*).

Based on the generic SA algorithm, the details of the proposed SA algorithm for

the no-wait flow shop scheduling problem are given below.

A new hybrid ant colony algorithm for scheduling of… 63

123

3.4.2.1 Initial solution and neighborhood The best randomly solution generated

by ants is used as an initial solution. Given a sequence S, a new sequence can be

obtained for S using one of the swap or insertion operations described in the

proposed VNS algorithm.

3.4.2.2 Move acceptance In order to escape from local minima, the probabilistic

acceptance of a non-improving neighbor is used. The probability of accepting a non-

improving neighbor is proportional to the temperature T and inversely proportional

to the change of the objective function DE. So that, the probability of replacing one

solution with its neighbor, when DE[0, is e-DE/T. In fact, the non-improving

solution will be accepted if L, a random number between zero and one, was lower

than e-DE/T.

3.4.2.3 Cooling schedule The cooling schedule temperature Tk has a great impact

on the success of the SA optimization algorithm. It decrease after each iteration

according to the formula Tk = b * Tk - 1, where 0\ b\ 1.

3.4.2.4 Termination conditions In this paper, stopping criteria may be used are the

following:

• Reaching a final temperature Tk (if Tk is lower than a pre-specified final

temperature).

• Achieving a predetermined number of iterations with improvement in the best

found solution.

• Reaching a fixed number of iterations that solutions are accepted with

probability acceptance.

4 Global update of pheromone trail

The global updating rule is applied after all ants generate their solutions and the

local search applied. Unlike most other studies that apply global update just on the

best solution so far Ahmadizar (2012), Xu et al. (2012), in this paper, based on the

idea of SA algorithm, global update is applied for all of ML’s solutions with a

probabilistic acceptance. The pheromone trails are modified according to the

following global updating rule to make the search more directed:

snewij ¼ qsoldij þ Dsij for all solutions in moving List

qsoldij Otherwise

(
ð11Þ

where Dsij is controlled by probability criterion.

64 V. Riahi, M. Kazemi

123

That is, if

CMLi
max ¼ Cbest

maxor exp �DC=Rð Þ[rand 0; 1ð Þ ð12Þ

Dsij ¼
1

CMLi
max

ð13Þ

In above equation, R is a constant and DC ¼ CMLi
max � Cbest

max where CMLi
max is the

makespan of the MLi i ¼ 1; . . .; 8ð Þ solution and Cbest
max is the best makespan obtained

so far. If criterion is not satisfied Dsij ¼ 0.

With proposed procedure, the immature homology can be effectively avoided

and the diversity of solutions in later iterations increased as well.

After modifying the pheromone trail intensities according to the above global

updating rule, upper bound and lower bound are updated Then, any pheromone trail

out of this range (smax and smin) should be adjusted, so, in case of sij
new[smax or

sij
new\ smin, the sij

new is set to smax or smin respectively.

5 Computational result comparisons

The proposed modified ant colony optimization algorithm is implemented in Delphi

7.0. Tests are run on a dual core 3.6 GH, CPU with 2 GB memory.

All of the parameters in this study were determined experimentally. The

parameter settings for the presented SS are listed in Table 1.

We conducted experiments on 29 benchmark problems which consists of eight

problems (car1, car2… car8) provided by Carlier (1978) and 21 problems provided

by Reeves (1995). As the optimal solution is unknown for the larger instances, the

performance of the proposed algorithm is evaluated with a distance from the

Rajendran heuristic algorithm (1994). t denotes the average CPU time (in second) of

20 runs (R = 20).

The performance in this paper, to report the statistics based on the percentage of

relative deviations from Rajendran, they were denoted as RAJ. To be more specific

percentage relative difference (PRD) was computed as follows:

PRD ¼
Mi �Mref

� �

Mref

� 100 ð14Þ

where Mi and Mref, were the makespan generated by algorithms and the reference

makespan generated by RAJ.

The proposed algorithms are compared with 7 other heuristics which can be seen

in Table 2. TS, TS ? M and TS ? MP are three local search algorithms based on

Table 1 Parameter settings for the ACO–SA algorithm

Number of ants ¼ 10 Iteration number ¼ 50 q0 ¼ n� 4ð Þq=n Tempf = 6

q = 0.8 b = 0.2 T = 40 Counterf = 22

Tempf = 7 Tf = 0.1 R = n/2

A new hybrid ant colony algorithm for scheduling of… 65

123

several variants of descending search and tabu search algorithms employed by

Garbowski and Pempera (2005), the VNS and GA-SA of Schuster and Framinan

(2003), HPSO represents the results of Liu et al. (2007), HGA of Tseng and Lin

(2010) and TS/PSO of the Samarghandi and ElMekkawy (2012). Due to the fact that

the computational time consumed by these tested algorithms generally does not

exceed one second on average, time consumption is not the main issue for this

problem. Consequently, we conclude that the proposed ACO–SA algorithm can

outperform these advanced algorithms for the NWFSP in minimizing the makespan.

The comparison is based on the instances of Carlier and reeves. Table 2 shows

the experimental results for the nine algorithms in comparison. As shown in

Tables 2, our ACO–SA algorithm is competitive with all both local search-based

algorithms and population-based algorithms. In fact, Analysis of Table 2 reveals

that the searching quality of proposed ACO–SA is superiorly relative to other

algorithms with respect of quality of solutions. As can be observed in the Table 2,

the total average of RPD by the proposed ACO–SA algorithm is -4.85, which is

superior to the corresponding values of -3.81, -1.2, -4.52, -4.76, -4.74, -4.6,

-4.82 and -4.67 obtained by the VNS, GASA, TS, TS ? M, TS ? MP, HPSO,

HGA and TS/PSO, respectively. By comparing our algorithm with HGA that have a

better performance than others, in 6 instances, it has a better results than ours.

However, in these instances solutions were close. But in 6 instances, our algorithm

has a superiority than HGA algorithm.

In addition, for proving the efficiency of presented SA and its importance in

proposed algorithm, we used VNS as another method of local search. Table 3

summarizes the computational results for our algorithm without any local search,

ACO-VNS and ACO–SA algorithms.

In addition, it is observed from Table 3 that the ACO–SA has better performance

than ACO-VNS in both CPU times and the quality of solutions, besides it has a

significant effect on our algorithm. It is clear that the new approach for simulated

annealing as a local search and hybridization with ACO increases its quality of

searching and decreases its CPU Times especially in large size benchmarks rather

than VNS.

The comparison results of Tables 2 and 3 prove that our algorithm without local

search (ACO) is competitive and better than some local search-based algorithms

(GASA, DS, DS ? M). In addition, we can see that the ACO-VNS is competitive as

well compared to other algorithms in literature.

In the procedure, there is a parameter includes q, which may has great effect on

the performance of the presented ACO–SA algorithm. Therefore, we further

investigate the effect of q by experiments. We vary q from 0.1 to 0.9. The

contrastive results are presented in Fig. 1. From Fig. 1, different percent of average

PRD values was showed based on different values of q produce that revealed this

fact that the parameter q affects the searching quality of the presented algorithm.

Indeed, presented algorithm had its best performance when the parameter q is equal

to 0.8 due to its minimum average PRD value.

On the other hand, we evaluate another experiment to test the performance of the

proposed algorithm on the 110 problems presented by Taillard (1993). The results of

algorithms after 10 runs are given in Table 4. Due to the efficiency of ACO-VNS

66 V. Riahi, M. Kazemi

123

T
a
b
le

2
R
es
u
lt
s
o
f
b
es
t
al
g
o
ri
th
m
s

In
st
an
ce

M
*
J

O
p
t

R
A
J

V
N
S

G
A
S
A

T
S

T
S
?

M
T
S
?

M
P

N
am

e
P
R
D

t
P
R
D

t
P
R
D

t
P
R
D

t
P
R
D

t

C
ar
0
1

5
*
1
1

8
1
4
2

0
.7
0

0
0
.0
0

1
0
.0
0

0
.1

0
.0
0

0
.1

0
.0
0

0
.1

C
ar
0
2

4
*
1
3

8
2
4
2

0
.2
0

0
0
.0
0

1
0
.0
0

0
.1

0
.0
0

0
.1

0
.0
0

0
.1

C
ar
0
3

5
*
1
2

8
8
6
6

0
.0
0

0
0
.0
0

1
0
.0
0

0
.1

0
.0
0

0
.1

0
.0
0

0
.1

C
ar
0
4

4
*
1
4

9
1
9
5

1
.6
0

0
0
.0
0

2
0
.0
0

0
.1

0
.0
0

0
.1

0
.0
0

0
.1

C
ar
0
5

4
*
1
0

9
1
5
9

3
.5
0

0
0
.0
0

1
0
.0
0

0
.1

0
.0
0

0
.1

0
.0
0

0
.1

C
ar
0
6

9
*
8

9
6
9
0

0
.0
0

0
0
.0
0

1
0
.0
0

0
.1

0
.0
0

0
.1

0
.0
0

0
.1

C
ar
0
7

7
*
7

7
7
0
5

0
.0
0

0
0
.0
0

0
0
.0
0

0
.1

0
.0
0

0
.1

0
.0
0

0
.1

C
ar
0
8

8
*
8

9
3
7
2

0
.0
0

0
0
.0
0

1
0
.0
0

0
.1

0
.0
0

0
.1

0
.0
0

0
.1

R
E
C
0
1

5
*
2
0

1
5
9
0

-
2
.7
7

0
-
3
.9
6

6
-
4
.0
3

0
.2

-
3
.9
6

0
.2

-
3
.9
6

0
.2

R
E
C
0
3

5
*
2
0

1
4
5
7

-
4
.3
2

0
-
4
.4
6

6
-
6
.5
9

0
.2

-
6
.5
9

0
.2

-
6
.5
9

0
.2

R
E
C
0
5

5
*
2
0

1
6
3
7

-
7
.0
3

0
-
6
.9

7
-
7
.3
9

0
.2

-
7
.6
4

0
.2

-
7
.7

0
.2

R
E
C
0
7

1
0
*
2
0

2
1
1
9

-
2
.3
1

0
-
3
.4
5

1
2

-
3
.6
3

0
.2

-
3
.6
3

0
.2

-
3
.6
3

0
.2

R
E
C
0
9

1
0
*
2
0

2
1
4
1

-
2
.3
8

0
-
4
.4
8

1
1

-
4
.6
2

0
.2

-
4
.5
8

0
.2

-
4
.5
8

0
.2

R
E
C
1
1

1
0
*
2
0

1
9
4
6

-
1
.5
4

0
-
3
.3
4

1
0

-
3
.3
4

0
.2

-
3
.3
4

0
.2

-
3
.3
4

0
.2

R
E
C
1
3

1
5
*
2
0

2
7
0
9

-
5
.7
6

0
-
5
.6
5

1
7

-
6
.0
5

0
.3

-
6
.0
5

0
.3

-
6
.0
5

0
.3

R
E
C
1
5

1
5
*
2
0

2
6
9
1

-
5
.9
1

0
-
6
.0
2

1
7

-
5
.9
1

0
.3

-
6
.0
2

0
.3

-
5
.9
1

0
.3

R
E
C
1
7

1
5
*
2
0

2
7
4
0

-
5
.1
5

0
-
5
.4
7

1
6

-
5
.5
8

0
.3

-
5
.5
8

0
.3

-
5
.5
8

0
.3

R
E
C
1
9

1
0
*
3
0

3
1
5
7

-
7
.5
7

1
-
5
.4
5

3
4

-
9
.7
2

0
.4

-
9
.2
5

0
.4

-
9
.3
8

0
.4

R
E
C
2
1

1
0
*
3
0

3
0
1
5

-
4
.2
1

1
-
2
.2
2

3
5

-
6
.3
1

0
.4

-
6
.3

0
.4

-
6
.1
7

0
.4

R
E
C
2
3

1
0
*
3
0

3
0
3
0

-
1
0
.7
6

0
-
6
.7

3
5

-
1
0
.7
6

0
.4

-
1
0
.7
3

0
.4

-
1
0
.8
9

0
.4

R
E
C
2
5

1
5
*
3
0

3
8
3
5

-
5
.4
5

1
-
2
.6
9

5
5

-
5
.9
7

0
.5

-
6
.3
1

0
.5

-
6
.2
1

0
.5

R
E
C
2
7

1
5
*
3
0

3
6
5
5

-
5
.8
3

1
-
2
.6

5
1

-
5
.6
4

0
.5

-
6
.1

0
.5

-
5
.8
3

0
.5

R
E
C
2
9

1
5
*
3
0

3
5
8
3

-
7
.2
3

1
-
3
.9
9

5
4

-
7
.6
4

0
.5

-
8
.2
8

0
.5

-
7
.9
4

0
.5

A new hybrid ant colony algorithm for scheduling of… 67

123

T
a
b
le

2
co
n
ti
n
u
ed

In
st
an
ce

M
*
J

O
p
t

R
A
J

V
N
S

G
A
S
A

T
S

T
S
?

M
T
S
?

M
P

N
am

e
P
R
D

t
P
R
D

t
P
R
D

t
P
R
D

t
P
R
D

t

R
E
C
3
1

1
0
*
5
0

4
6
3
1

-
4
.7
1

5
2
.7
2

1
4
7

-
5
.9

1
.1

-
6
.1
3

1
.1

-
6
.2
2

1
.1

R
E
C
3
3

1
0
*
5
0

4
7
7
0

-
5
.3
5

7
4
.7
8

1
4
5

-
5
.5
1

1
.1

-
6
.3
1

1
.1

-
6
.3
7

1
.1

R
E
C
3
5

1
0
*
5
0

4
7
1
8

-
5
.5
1

7
3
.6
7

1
4
6

-
6
.0
8

1
.1

-
6
.1
7

1
.1

-
5
.9
1

1
.1

R
E
C
3
7

2
0
*
7
5

8
9
7
9

-
1
0
.0
0

1
2
2

5
.8
9

9
0
7

-
9
.4
1

2
.5

-
9
.4
9

2
.6

-
9
.3
6

2
.6

R
E
C
3
9

2
0
*
7
5

9
1
5
8

-
5
.3
2

1
0
6

8
.8
0

8
9
0

-
4
.9
7

2
.5

-
6
.9
9

2
.6

-
6
.9
1

2
.6

R
E
C
4
1

2
0
*
7
5

9
3
4
4

-
7
.4
1

1
1
0

6
.7
9

9
0
4

-
6
.0
8

2
.5

-
8
.5
7

2
.6

-
8
.8
2

2
.6

M
ea
n

-
3
.8
1

-
1
.2

-
4
.5
2

-
4
.7
6

-
4
.7
4

In
st
an
ce

M
*
J

H
P
S
O

H
G
A

T
S
/P
S
O

A
C
O
–
S
A

N
am

e
P
R
D

t
P
R
D

t
P
R
D

t
P
R
D

0
.0
0

C
ar
0
1

5
*
1
1

0
.0

0
.4

0
.0

0
.0
0
2

0
0
.0
0

0
0
.0
0

C
ar
0
2

4
*
1
3

0
.0

0
.7

0
.0

0
.0
0
2

0
0
.0
0

0
0
.0
0

C
ar
0
3

5
*
1
2

0
.0

0
.9

0
.0

0
.0
0
2

0
0
.0
0

0
0
.0
0

C
ar
0
4

4
*
1
4

0
.0

1
.4

0
.0

0
.0
0
0

0
0
.0
0

0
0
.0
0

C
ar
0
5

4
*
1
0

0
.0

0
.6

0
.0

0
.0
0
2

0
0
.0
0

0
0
.0
0

C
ar
0
6

9
*
8

0
.0

0
.3

0
.0

0
.0
0
0

0
0
.0
0

0
0
.0
0

C
ar
0
7

7
*
7

0
.0

0
.2

0
.0

0
.0
0
0

0
0
.0
0

0
0
.0
0

C
ar
0
8

8
*
8

0
.0

0
.3

0
.0

0
.0
0
0

0
0
.0
0

0
0
.0
0

R
E
C
0
1

5
*
2
0

-
3
.7
7

3
.9

-
4
.0
3

0
.0
0
9

-
4
.0
2
5

0
.0
2
9

-
4
.0
3

0
.0
2
9

R
E
C
0
3

5
*
2
0

-
6
.5
9

4
.8

-
6
.5
9

0
.0
0
6

-
6
.5
9

0
.0
2
2

-
6
.5
9

0
.0
2
2

R
E
C
0
5

5
*
2
0

-
7
.3
9

4
.1

-
7
.7
0

0
.0
0
8

-
7
.3
1

0
.0
1
9

-
7
.7
0

0
.0
1
9

R
E
C
0
7

1
0
*
2
0

-
3
.6
3

6
.6

-
3
.6
3

0
.0
0
8

-
3
.4
4

0
.0
2
2

-
3
.6
3

0
.0
2
2

R
E
C
0
9

1
0
*
2
0

-
4
.5
8

6
.7

-
4
.6
2

0
.0
0
8

-
4
.6
2

0
.0
2
5

-
4
.6
2

0
.0
2
5

68 V. Riahi, M. Kazemi

123

T
a
b
le

2
co
n
ti
n
u
ed

In
st
an
ce

M
*
J

H
P
S
O

H
G
A

T
S
/P
S
O

A
C
O
–
S
A

N
am

e
P
R
D

t
P
R
D

t
P
R
D

t
P
R
D

0
.0
0

R
E
C
1
1

1
0
*
2
0

-
3
.3
4

7
.0

-
3
.3
4

0
.0
0
8

-
3
.1
4

0
.0
2
3

-
3
.3
4

0
.0
2
3

R
E
C
1
3

1
5
*
2
0

-
6
.0
5

1
1
.0

-
6
.0
5

0
.0
0
9

-
5
.9
5

0
.0
2
6

-
6
.0
5

0
.0
2
6

R
E
C
1
5

1
5
*
2
0

-
6
.0
2

8
.6

-
6
.0
2

0
.0
0
8

-
5
.8
6

0
.0
3
6

-
6
.0
2

0
.0
3
6

R
E
C
1
7

1
5
*
2
0

-
5
.5
8

8
.6

-
5
.5
8

0
.0
0
8

-
5
.5
5

0
.0
2
2

-
5
.5
8

0
.0
2
2

R
E
C
1
9

1
0
*
3
0

-
9
.1
5

2
3
.0

-
9
.7
2

0
.0
3
4

-
9
.0
7

0
.0
4
8

-
9
.6
7

0
.0
4
8

R
E
C
2
1

1
0
*
3
0

-
5
.7
0

2
4
.0

-
6
.1
7

0
.0
3

-
6
.2
7

0
.0
5
9

-
6
.3
6

0
.0
5
9

R
E
C
2
3

1
0
*
3
0

-
1
0
.8

2
4
.0

-
1
0
.8
9

0
.0
2
5

-
1
0
.8
3

0
.0
5
0

-
1
0
.8
2

0
.0
5
0

R
E
C
2
5

1
5
*
3
0

-
5
.7
1

3
2
.0

-
6
.3
1

0
.0
3
1

-
5
.8
2
3

0
.0
9
3

-
6
.2
3

0
.0
9
3

R
E
C
2
7

1
5
*
3
0

-
6
.1
3

3
9
.0

-
6
.1
3

0
.0
3
1

-
5
.9
6
0

0
.1
1
5

-
6
.0
4

0
.1
1
5

R
E
C
2
9

1
5
*
3
0

-
7
.8
1

3
1
.0

-
8
.1
5

0
.0
3
1

-
7
.8
8
3

0
.0
9
6

-
8
.0
1

0
.0
9
6

R
E
C
3
1

1
0
*
5
0

-
5
.9
2

1
2
2
.0

-
6
.4
1

0
.2
6
7

-
5
.9
7
0

0
.3
9

-
6
.6
9

0
.3
9

R
E
C
3
3

1
0
*
5
0

-
5
.5
1

1
1
6
.0

-
6
.5
4

0
.2
5
2

-
6
.2
6
0

0
.4
8

-
6
.8
8

0
.4
8

R
E
C
3
5

1
0
*
5
0

-
6
.0
2

1
0
5
.0

-
6
.2
3

0
.2
2
5

-
6
.2
1
7

0
.4
6

-
6
.4
5

0
.4
6

R
E
C
3
7

2
0
*
7
5

-
8
.8
9

6
3
5
.0

-
9
.5
6

1
.4
4
7

-
9
.6
6
7

1
.5
8
1

-
9
.8
9

1
.5
8
1

R
E
C
3
9

2
0
*
7
5

-
6
.7
9

8
9
7
.0

-
7
.1
3

1
.2
8
3

-
6
.7
5
6

1
.5
9
5

-
7
.2
3

1
.5
9
5

R
E
C
4
1

2
0
*
7
5

-
7
.9
4

8
8
3
.0

-
8
.9
8

1
.0
7
3

-
8
.2
1
5

1
.4
0
9

-
8
.8

1
.4
0
9

M
ea
n

-
4
.6

-
4
.8
2

-
4
.6
6
9

-
4
.8
5

B
o
ld

v
al
u
es

ar
e
th
e
b
et
te
r
so
lu
ti
o
n
s
re
ac
h
ed

b
y
p
re
se
n
te
d
al
g
o
ri
th
m

th
an

o
th
er

al
g
o
ri
th
m
s

A new hybrid ant colony algorithm for scheduling of… 69

123

based on its results in Table 3, we compare our algorithm with this algorithm in this

experiment. Results show that proposed algorithm, ACO–SA, is effective and has

reliable performance.

In order to prove the efficiency of our algorithm, we evaluated it with respect to the

total flowtime criterion. Fink andVoß (2003) presented someconstructionmethods and

meta-heuristics for the no-wait flowshop scheduling problem with the total flowtime

criterion. The benchmark experimentation results have been given in Table 5. The

results are presented as each the job instance sizes. The average, minimum and

Table 3 Results of proposed algorithms

Instance M * J ACO ACO-VNS ACO–SA

PRD PRD PRD

Name Min Avg t Min Avg t Min Avg t

Car01 5 * 11 0.00 0.28 0.00 0.00 0.00 0.00 0 0 0.00

Car02 4 * 13 0.00 0.27 0.00 0.00 0.00 0.00 0 0 0.00

Car03 5 * 12 0.00 0.13 0.00 0.00 0.00 0.00 0 0 0.00

Car04 4 * 14 0.00 0.86 0.00 0.00 0.00 0.00 0 0 0.00

Car05 4 * 10 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0.00

Car06 9 * 8 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0.00

Car07 7 * 7 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0.00

Car08 8 * 8 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0.00

REC01 5 * 20 -3.52 -3.28 0.01 -4.03 -4.03 0.023 -4.03 -4.03 0.029

REC03 5 * 20 -5.4 -5.1 0.00 -6.59 -6.52 0.02 -6.59 -6.59 0.022

REC05 5 * 20 -6.96 -6.33 0.01 -7.68 -7.70 0.019 -7.7 -7.7 0.019

REC07 10 * 20 -3.44 -3.09 0.00 -3.63 -3.63 0.015 -3.63 -3.63 0.022

REC09 10 * 20 -3.6 -3.10 0.00 -4.62 -4.6 0.026 -4.62 -4.62 0.025

REC11 10 * 20 -2.98 -2.46 0.01 -3.34 -3.34 0.021 -3.34 -3.34 0.023

REC13 15 * 20 -5.8 -5.5 0.01 -6.05 -6.05 0.025 -6.05 -6.05 0.026

REC15 15 * 20 -5.9 -5.64 0.00 -6.02 -6.02 0.029 -6.02 -6.02 0.036

REC17 15 * 20 -5.47 -5.27 0.00 -5.58 -5.58 0.024 -5.58 -5.58 0.022

REC19 10 * 30 -8.11 -7.57 0.05 -9.72 -9.67 0.042 -9.72 -9.67 0.048

REC21 10 * 30 -5.30 -4.7 0.04 -6.43 -6.28 0.051 -6.43 -6.36 0.059

REC23 10 * 30 -8.81 -8.58 0.04 -10.89 -10.79 0.053 -10.89 -10.82 0.050

REC25 15 * 30 -5.45 -4.95 0.03 -6.31 -6.23 0.097 -6.31 -6.23 0.093

REC27 15 * 30 -4.57 -3.58 0.05 -6.12 -6.04 0.108 -6.13 -6.04 0.115

REC29 15 * 30 -6.67 -6.21 0.06 -8.15 -8.08 0.096 -8.15 -8.01 0.096

REC31 10 * 50 -4.71 -4.27 0.011 -6.32 -6.21 0.46 -6.76 -6.69 0.39

REC33 10 * 50 -4.57 -3.48 0.011 -6.78 -6.49 0.42 -7.25 -6.88 0.48

REC35 10 * 50 -4.3 -3.7 0.012 -6.42 -6.26 0.35 -6.76 -6.45 0.46

REC37 20 * 75 -7.87 -7.21 0.026 -9.88 -9.48 1.651 -10.32 -9.89 1.581

REC39 20 * 75 -5.54 -4.97 0.026 -7.31 -7.23 1.565 -7.56 -7.23 1.595

REC41 20 * 75 -6.36 -5.85 0.026 -8.80 -8.66 1.309 -8.97 -8.8 1.409

Mean -3.56 -4.79 -4.85

70 V. Riahi, M. Kazemi

123

maximumwere given. ACO–SA has 10 independent replications for each instance and

outcomes have been given in Table 6. According to the results, ACO–SA has better

performance than F&V algorithm, due to an average PRD of -0.5405.

6 Conclusion and future work

In the current research, a no-wait flow-shop scheduling problem (NWFSP) for

minimizing the makespan was discussed. This problem is known to be strongly NP-

hard. In this paper, ant colony algorithm with the simulated annealing as a local

search method are proposed to solve this problem. Unlike most of other reported

population-based algorithms in the literature, the proposed ACO–SA algorithm is

simple and easy to implement and replicate. The evaluation of the proposed

methods was carried out against the 8 best performing methods from the literature.

-4.86

-4.85

-4.84

-4.83

-4.82

A
PR

D

0.1 0.2 00.3 0.4 0.5

ρ

0.6 0.7 0.8 0.9

Fig. 1 Effect of the parameter q

Table 4 Results of proposed algorithms on Taillard’s benchmark problems

N * M ACOVNS ACO–SA

PRD CPU PRD CPU

Min Avg Min Avg Min Avg Min Avg

20 * 5 1479.6 1489.55 0.21 0.24 1477.9 1481.67 0.22 0.28

20 * 10 1985 1990.21 0.43 0.48 1981.9 1989.34 0.41 0.44

20 * 20 2976.7 3007.77 0.51 0.59 2972.9 2986.54 0.51 0.56

50 * 5 3285.7 3335.48 1.41 1.69 3280.8 3297.36 1.44 1.79

50 * 10 4288.8 4659.54 2.47 2.56 4279.8 4311.42 2.61 2.96

50 * 20 5920.4 6096.45 2.89 3.06 5903 6001.77 2.99 3.18

100 * 5 6263.4 6505.21 31.89 32.15 6248.6 6375.7 25.49 30.20

100 * 10 8165.3 8225.27 49.49 56.58 8039.5 8133.28 45.49 57.23

100 * 20 10,755.3 10,913.59 52.16 60.81 10,722.3 10,823.33 53.23 61.26

200 * 10 15,588.7 15,663.36 173.69 185.38 15,428.6 15,532.26 169.08 189.17

200 * 20 20,219.5 20,386.24 187.32 198.62 20,111.5 20,221.85 181.14 200.82

Mean 7357.13 7479.33 45.68 49.29 7313.35 7377.68 43.87 49.81

A new hybrid ant colony algorithm for scheduling of… 71

123

Statistical analyses and extensive experimental demonstrate the efficiency of the

proposed ACO–SA algorithm owing to an average PRD of -4.85. In order to prove

the efficiency of our algorithms, we use another method based on VNS for local

search phase. The computational results are indicated that hybridization ACO with

SA is viable and reliable method and really competitive and provides promising

computational results. As the future work, other neighborhood’s structures can be

applied in SA algorithm. In addition, the proposed algorithm can be used to solve

the NWFSP with set-up times, maintenance of machines and transportation times.

Furthermore, combining ACO with other local search-based algorithms such as

Iterated local search or tabu search algorithm is possible research method.

Table 5 Summarized results of

F&V
J * M F&V

Min Max Average

20 * 5 15,317 17,970 160,895

20 * 10 21,939 26,342 23,605.6

20 * 20 37,000 39,663 38,467.8

50 * 5 75,842 83,901 802,732

50 * 10 105,433 116,560 112,974.2

50 * 20 160,213 172,845 165,414.2

100 * 5 278,811 308,052 2,969,583

100 * 10 391,359 422,301 405,038.4

100 * 20 556,311 578,119 565,978.1

200 * 10 1,489,457 1,541,419 15,166,852

200 * 20 2,012,785 2,057,409 2,040,911.9

Table 6 Computation

comparison of ACO–SA with

F&V

J 9 M ACO–SA

MaxPRD MinPRD APRD T(s)

20 * 5 0 0 0 0.26

20 * 10 0 0 0 0.51

20 * 20 0 0 0 0.59

50 * 5 0.01,187 -0.63427 -0.273255 1.73

50 * 10 0.00343 -0.268361 -0.082688 2.83

50 * 20 0.08232 -0.16538 -0.02806 3.21

100 * 5 -0.61619 -1.55893 -1.09585 27.27

100 * 10 -0.52152 -1.08169 -0.75413 52.32

100 * 20 -0.33321 -0.83356 -0.51207 66.31

200 * 10 -1.45381 -2.75527 -2.0195 189.56

200 * 20 -0.75124 -1.83107 -1.27409 215.62

Average -0.3253 -0.8298 -0.5405 50.92

72 V. Riahi, M. Kazemi

123

References

Ahmadizar F (2012) A new ant colony algorithm for makespan minimization in permutation flow shops.

Comput Ind Eng 63:355–361

Aldowaisan T, Allahverdi A (2003) New heuristics for no-wait flowshops to minimize makespan. Comput

Oper Res 30:1219–1231

Bagchi TP, Gupta JND, Sriskandarajah C (2006) A review of TSP based approaches for flowshop

scheduling. Eur J Oper Res 169:816–854

Behnamian J, Zandieh M, Fatemi Ghomi SMT (2009) Parallel-machine scheduling problems with

sequence-dependent setup times using an ACO, SA and VNS hybrid algorithm. Expert Syst Appl

32:9637–9644

Bonney MC, Gundry SW (1976) Solutions to the constrained flowshop sequencing problem. Oper Res Q

27:869–883

Bonyadi MR, Li X (2010) A new discrete electromagnetism-based meta-heuristic for solving the

multidimensional knapsack problem using genetic operators. Oper Res Int J 12:229–252

Carlier J (1978) Ordonnancements a contraints disjonctives. RAIRO Rech Oper 12:331–351

Colorni A, Dorigo M, Maniezzo (1991) Distributed optimization by ant colonies. In: Proceedings of the

first european conference on artificial life, Paris

Dai M, Tang D, Giret A, Salido MA, Li WD (2013) Energy-efficient scheduling for a flexible flow shop

using an improved genetic-simulated annealing algorithm. Robot Comput Inter Manuf 29:418–429

Ding JY, Song S, Gupta JND, Zhang R, Chiong R, Wu C (2015) An improved iterated greedy algorithm

with a Tabu-based reconstruction strategy for the no-wait flowshop scheduling problem. Appl Soft

Comput 30:604–613

Elmi A, Solimanpur M, Topaloglu S, Elmi A (2011) A simulated annealing algorithm for the job

shop cell scheduling problem with intercellular moves and reentrant parts. Comput Ind Eng

61:171–178

Fink A, Vob S (2003) Solving the continuous flowshop scheduling problem by meta-heuristics. Eur J

Oper Res 151:400–414

Framinan JM, Nagano MS, Moccellin JV (2010) An efficient heuristic for total flowtime minimisation in

no-wait flowshops. Int J Adv Manuf Technol 46(9–12):1049–1057

Frutos M, Tohmé F (2013) A multi-objective memetic algorithm for the job-shop scheduling problem.

Oper Res Int J 13:233–250

Gangadharan R, Rajendran C (1994) Heuristic algorithms for scheduling in the no-wait flowshop. Int J

Prod Econ 32:285–290

Garay MR, Johnson DS (1979) Computers and Intractability: a guide to the theory of NP-completeness.

Freedman, San Francisco

Grabowski J, Pempera J (2005) Some local search algorithms for no-wait flow-shop problem with

makespan criterion. Comput Oper Res 32:2197–2212

Guo Y, Suhl L, Thiel MP (2005) Solving the airline crew recovery problem by a genetic algorithm with

local improvement. Oper Res Int J 5:241–259

Hall NG, Sriskandarajah C (1996) A survey of machine scheduling problems with locking and no-wait in

process. Oper Res 44:510–525

Huang RH, Yang CL, Liu SC (2015) No-wait flexible flow shop scheduling with due windows. Math

Probl Eng 2015:9

Jolai F, Asefi H, Rabiee M, Ramezanian P (2013) Bi-objective simulated annealing approaches for no-

wait two-stage flexible flow shop scheduling problem. Sci Iran 20:861–872

Kashan AH, Karimi B (2008) Scheduling a single batch-processing machine with arbitrary job sizes and

incompatible job families: an ant colony framework. J Oper Res Soc 59:1269–1280

Khorramizadeh M, Riahi V (2015) A bee colony optimization approach for mixed blocking constraints

flow shop scheduling problems. Math Probl Eng 2015:612604. doi:10.1155/2015/612604

King JR, Spachis AS (1980) Heuristics for flowshop scheduling. Int J Prod Res 18:343–357

Laha D, Chakraborty UK (2009) A constructive heuristic for minimizing makespan in no-wait flow shop

scheduling. Int J Adv Manuf Technol 41:97–109

Li X, Wu C (2008) Heuristic for no-wait flow shops with makespan minimization based on total idle-time

increments. Sci China Ser F Inf Sci 51(7):896–909

Li X, Wang Q, Wu C (2008) Heuristic for no-wait flow shops with makespan minimization. Int J Prod

Res 46(9):2519–2530

A new hybrid ant colony algorithm for scheduling of… 73

123

http://dx.doi.org/10.1155/2015/612604

Li X, Baki MF, Aneja YP (2011) Flowshop scheduling to minimize the total completion time with a

permanently present operator: models and ant colony optimization metaheuristic. Comput Oper Res

38:152–164

Liu Y-F, Liu S-Y (2013) A hybrid discrete artificial bee colony algorithm for permutation flowshop

scheduling problem. Appl Soft Comput 13:1459–1563

Liu B, Wang L, Jin YH (2007) An effective hybrid particle swarm optimization for no-wait flowshop

scheduling. Int J Adv Manuf Technol 31:1001–1011

Low C (2005) Simulated annealing heuristic for flow shop scheduling problems with unrelated parallel

machines. Comput Oper Res 32:2013–2025

Low C, Yeh JL, Huang KI (2004) A robust simulated annealing heuristic for flow shop scheduling

problems. Int J Adv Manuf Technol 23:762–767

Marinakis Y, Marinaki M, Matsatsinis N, Zopounidis C (2009) Evolution of the population of a genetic

algorithmusing particle swarmoptimization: application to clustering analysis.OperRes Int J 9:105–120

Mirabi M (2011) Ant colony optimization technique for the sequence-dependent flowshop scheduling

problem. Int J Adv Manuf Technol 55:317–326

Mirsanei HS, Zandieh M, Moayed MJ, Khabbazi MR (2011) A simulated annealing algorithm approach

to hybrid flow shop scheduling with sequence-dependent setup times. J Intell Manuf 22:965–978

Mladenovíc M, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24:1097–1100

Nawaz M, Enscore E, Ham I (1983) A heuristic algorithm for the m-machine, n-job flow-shop sequencing

problem. Omega 11:11–95

Pan QK, Tasgetiren MF, Liang YC (2008a) A discrete particle swarm optimization algorithm for the no-

wait flowshop scheduling problem. Comput Oper Res 35:2807–2839

Pan QK, Wang L, Zhao BH (2008b) An improved iterated greedy algorithm for the no-wait flow shop

scheduling problem with makespan criterion. Int J Adv Manuf Technol 38:778–786

Qian B, Wang L, Huang DX, Wang X (2009) A DE-based approach to no-wait flow-shop scheduling.

Comput Ind Eng 57:787–805

Rabiee M, Sadeghi rad R, Mazinani M, Sadeghi rad R (2014) An intelligent hybrid meta-heuristic for

solving a case of no-wait two-stage flexible flow shop scheduling problem with unrelated parallel

machines. Int J Adv Manuf Technol 71:1229–1245

Rajendran C (1993) Heuristic algorithm for scheduling in a flowshop to minimize total flowtime. Int J

Prod Econ 29:65–73

Rajendran C (1994) A no-wait flowshop scheduling heuristic to minimize makespan. J Oper Res Soc

45:472–478

Rajendran C, Ziegler H (2004) Ant-colony algorithm for permutation flow-shop scheduling to minimize

makespan/total flowtime of jobs. Eur J Oper Res 155:426–438

Reeves C (1995) A genetic algorithm for flow-shop sequencing. Comput Oper Res 22:5–13

Riahi V, Kazemi M (2015) A hybrid heuristic algorithm for the no-wait flowshop scheduling problem.

Computer science and software engineering (CSSE), 2015 In: International symposium on 1–6

Rui Z, Shilong W, Zheqi Z (2014) An ant colony algorithm for job shop scheduling problem with tool

flow. In: Proceedings of the IMechE, part B: Journal of engineering manufacture

Samarghandi H, ElMekkawy TY (2012) A meta-heuristic approach for solving the no-wait flow-shop

problem. Int J Prod Res 50:7313–7326

Schuster CJ, Framinan JM (2003) Approximative procedures for no-wait job shop scheduling. Oper Res

Lett 31:308–318

Shyu SJ, Lin BMT, Yin PY (2004) Application of ant colony optimization for no-wait flow-shop

scheduling problem to minimize the total completion time. Comput Ind Eng 47:181–193

Taillard E (1993) Benchmarks for basic scheduling problems. Eur J Oper Res 64:278–285

Tseng LY, Lin YT (2010) A hybrid genetic algorithm for no-wait flowshop scheduling problem. Int J

Prod Econ 128:144–152

Wang HM, Chou FD, Wu FC (2011) A simulated annealing for hybrid flow shop scheduling with

multiprocessor tasks to minimize makespan. Int J Adv Manuf Technol 53:761–776

Xiao J, Yang H, Zhang C, Zheng L, Gupta JND (2015) A hybrid Lagrangian-simulated annealing-based

heuristic for the parallel-machine capacitated lot-sizing and scheduling problem with sequence-

dependent setup times. Comput Oper Res 63:72–82

Xu R, Chen H, Li X (2012) Makespan minimization on single batch-processing machine via ant colony

optimization. Comput Oper Res 39:582–593

Ying KC, Lee ZJ, Lu CC, Lin SW (2012) Metaheuristics for scheduling a no-wait flowshop

manufacturing cell with sequence-dependent family setups. Int J Adv Manuf Technol 58:671–682

74 V. Riahi, M. Kazemi

123

	A new hybrid ant colony algorithm for scheduling of no-wait flowshop
	Abstract
	Introduction
	The no-wait flowshop scheduling problem
	Problem formulation
	Literature review

	Description of the proposed ACO algorithm
	Pheromone initialization
	Make feasible solution
	Local update of pheromone trail
	Local search
	A variable neighborhood search for the local search
	The simulated annealing (SA) as a local search
	Initial solution and neighborhood
	Move acceptance
	Cooling schedule
	Termination conditions

	Global update of pheromone trail
	Computational result comparisons
	Conclusion and future work
	References

