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Abstract A shortest path problem on a network in the presence of fuzzy arc

lengths is focused in this paper. The aim is to introduce the shortest path connecting

the first and last vertices of the network which has minimum fuzzy sum of arc

lengths among all possible paths. In this study a solution algorithm based on the

extension principle of Zadeh is developed to solve the problem. The algorithm

decomposes the fuzzy shortest path problem into two lower bound and upper bound

sub-problems. Each sub-problem is solved individually in different a levels to

obtain the shortest path, its fuzzy length and its associated membership function

value. The proposed method contains no fuzzy ranking function and also for each a-
cut, it gives a unique lower and upper bound for the fuzzy length of the shortest

path. The algorithm is examined over some well-known networks from the literature

and its performance is superior to the existent methods.
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1 Introduction

Shortest path problem is a widely used application of graph theory in real-world

networks e.g. transportation networks, routing, communication networks, supply

chain networks, etc. A network of the problem is denoted by weighted direct graph

G ¼ V;Eð Þ, where V ¼ 1; 2; . . .mf g is the set of m vertices and E � V � V is the set

of n arcs. Each arc has a length with the unit of distance, time, weight, cost, etc.,

based on the concepts of the network which is being studied. In the shortest path

problem, the length of each arc is represented by a real number. A path between any

pair of nodes of the network is a collection of consecutive arcs which connect that

pair of nodes. Clearly, the distance of each path is the sum of lengths of its arcs. The

shortest path problem aims to find the path which has the shortest length among all

possible paths connecting the first and last nodes of the network. The problem has

many real-world applications in the fields of transportation, traffic routing, robotic

systems, etc. (see Cappanera and Scaparra 2011; Hassanzadeh et al. 2013).

Fuzzy theory has many applications in real-world problems (see Fullér et al.

2012; Sakawa et al. 2012; Carlsson and Fullér 2013; Atsalakis 2014: Mahmoodi-

Rad et al. 2014). In the case of the shortest path problem as a real-world application,

the lengths of arcs may not have an exact value e.g. it can vary in a range of values

or it may be determined stochastically. Consider a traffic network where the cities

are the vertices of the network and the roads between them are the arcs. The

uncertainty of the time for driving between the cities can suit the network to be an

example of such cases of the shortest path problem with non-exact arc length. This

uncertainty may not be only limited to the geometric distance, as the factors like

weather conditions and other unexpected factors can be cause to consider the

driving time between the cities as a fuzzy variable (see Deng et al. 2012 for this

example and Jayswal et al. 2015 as another example). Therefore, in such cases, the

shortest path problem is remodeled as fuzzy shortest path problem. In the fuzzy

shortest path problem the obtained shortest path will have a fuzzy length which is

the sum of fuzzy lengths of its arcs. Comparing to the shortest path problem, the

fuzzy shortest path problem has more difficulties to be solved. Comparison between

fuzzy numbers for finding the shortest path is more difficult than exact numbers

because of variety of the methods which compare fuzzy numbers.

The fuzzy shortest path problem has been studied in many studies. Dubois and

Prade (1980) may be the first studies which introduced the fuzzy shortest path

problem. Okada and Soper (2000) introduced a fuzzy set based solution for the

fuzzy shortest path problem where nondominated paths or Pareto optimal paths with

no guideline to select one of them as the best one. Blue et al. (2002) introduced an

algorithm to find a cut value in order to limit and decrease the number of paths that

are being analyzed. Okada (2004) applied a method based on the degree of

possibility of the arcs of shortest path with the purpose of finding the shortest path.

The study of Nayeem and Pal (2005) introduced a solution method for the fuzzy

shortest path problem based on the acceptance index which was proposed by

Sengupta and Pal (2000). The method introduces a single fuzzy shortest path for the

problem. A dynamic programming solution method was proposed by Mahdavi et al.
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(2009) to tackle the fuzzy shortest path problem by applying an appropriate ranking

method. Tajdin et al. (2010) applied a dynamic programming model to find the

fuzzy shortest path in a network in existence of mixed fuzzy arc lengths by a-cuts.
Kumar and Kaur (2011) proposed an iterative heuristic algorithm to solve the

shortest path problem on a network where the arcs have imprecise length. Zareei

et al. (2011) studied fuzzy shortest path (critical path) problem in project

scheduling. Dou et al. (2012) applied a multi-criteria decision making approach

which was based on value similarity measure to solve the fuzzy shortest path

problem. Hassanzadeh et al. (2013) proposed a genetic algorithm metaheuristic to

solve the fuzzy shortest path problem when mixed fuzzy arc lengths exist. In

addition to the above-mentioned studies, Yano and Sakawa (2014) applied an

interactive fuzzy programming to multiobjective fuzzy random linear programming

problems using possibility-based probability maximization.

Clearly,when the lengths of the arcs in a network are fuzzy numbers, the length of the

shortest path of that network is a fuzzy number. In this study, a new solution approach is

proposed for the fuzzy shortest path problemwhich calculates the fuzzy objective value

of the fuzzy shortest path problem,where the lengths of the arcs in the network are fuzzy

numbers. The solution approach applies Zadeh’s extension principle (see Zadeh 1987;

Yager 1986; Ramik 1986; Zimmermann 1996) which was extensively used in the

literature of fuzzy combinatorial optimization problems (see Liu and Kao 2004; Liu

2008, 2015). The fuzzy shortest path problem is formulated as a pair of two-level

mathematical models to calculate a single lower and upper bound of any a� cut

(0� a� 1) of the objective function value which cover the shortcomings of the

literature of the shortest path problem.Themembership function of the fuzzy objective

function value is obtained numerically by applying different values of a.
The rest of this paper is organized as follows. Section 2 reminds some initial

concepts of fuzzy sets and numbers. The shortest path problem and its fuzzy version

is formulated in Sect. 3. Section 4 describes the proposed solution methodology. In

Sect. 5, some numerical examples from the literature of fuzzy shortest path problem

is solved by the proposed method and the comparison of the results by the literature

is discussed. Section 6 discusses some advantages of the proposed method. Finally,

the paper is ended by conclusion.

2 Preliminaries

In this section, some initial concepts of fuzzy set theory are presented which are

used while dealing with problems with fuzzy parameters (Zadeh 1987; Zimmer-

mann 1996; Fullér et al. 2011; Hadi-Vencheh and Mokhtarian 2011; Kumar and

Kaur 2012).

2.1 Initial definitions

Definition 1: Considering X as a collection of objects that is generically shown by

x, a fuzzy set on X is a set of pairs such that ~A ¼ x; l ~A xð Þ
� �

jx 2 X
� �

and l ~A xð Þ is
the membership function that relates each x to a number from 0; 1½ �.
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Definition 2: Support of a fuzzy set ~A which is denoted by S ~A
� �

, is a set of

elements in R that result in positive value of l ~A xð Þ. It is defined as

S ~A
� �

¼ x 2 Rjl ~A xð Þ [ 0
� �

.

Definition 3: Core of a fuzzy set ~A is denoted by C ~A
� �

and defined as

C ~A
� �

¼ x 2 Xjl ~A xð Þ ¼ 1
� �

.

Definition 4: The (crisp) set of elements that belong to the fuzzy set ~A by at least

the degree of a is called the a-level set as Aa ¼ x 2 Xj l ~A xð Þ� a
� �

.

Definition 5: A fuzzy set ~A is convex if

8x1; x2 2 X and k 2 ½0; 1� : l ~A kx1 þ 1� kð Þx2ð Þ�min l ~A x1ð Þ; l ~A x2ð Þ
� �

:

Definition 6: A trapezoidal fuzzy number is denoted by ~A ¼ a1; a; b; b1ð Þ and
shown by Fig. 1. The core of this trapezoidal fuzzy set is a; b½ � and its support is

a1; b1ð Þ. Its membership function is as follow,

l ~A xð Þ ¼

0 if x� a1

x� a1

a� a1
if a1 � x� a

1 if a� x� b

b1 � x

b1 � b
if b� x� b1

0 if x� b1

8
>>>>>>>>>><

>>>>>>>>>>:

Definition 7: Let a1; a; b; b1ð Þ and c1; c; d; d1ð Þ be two positive trapezoidal

fuzzy numbers. Some fuzzy operators are defined as follow,

Fig. 1 A trapezoidal fuzzy number
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a1; a; b; b1ð Þ 	 c1; c; d; d1ð Þ ¼ a1 þ c1; aþ c; bþ d; b1 þ d1ð Þ
a1; a; b; b1ð Þ
 c1; c; d; d1ð Þ ¼ a1 � d1; a� d; b� c; b1 � c1ð Þ

k a1; a; b; b1ð Þ ¼
ka1; ka; kb; kb1ð Þ k[ 0;

kb1; kb; ka; ka1ð Þ k\0:

(

2.2 Extension principle

One of the most important concepts in fuzzy set theory that can be used to

generalize crisp mathematical concepts to fuzzy sets is Zadeh’s extension principle.

The Zadeh’s extension principle is described here.

Let X be a Cartesian product of some universes X ¼ X1 � � � � � Xn, and
~A1; . . .; ~An be n fuzzy sets in X1; . . .;Xn, respectively. f is a mapping function from X

to a universe Y such that y ¼ f x1; . . .; xnð Þ. Then the extension principle allows us to

define a fuzzy set ~B in Y by

~B ¼ y; l ~B yð Þð Þj y ¼ f x1; . . .; xnð Þ; x1; . . .; xnð Þ 2 X
� �

where

l ~B yð Þ ¼
sup

ðx1;...;xnÞ2f�1ðyÞ
min l ~A1

x1ð Þ; . . .; l ~An
xnð Þ

n o
if f�1 yð Þ 6¼ ;

0 otherwise

8
<

:

where f�1 is the inverse form of f.

3 Fuzzy shortest path problem

Consider a weighted direct graph G ¼ V;Eð Þ, where V ¼ 1; 2; . . .;mf g is the set of

m vertices and E � V � V is the set of n arcs. Each arc is denoted by an ordered pair

i; jð Þ, where i; j 2 V . It is supposed that there is only one directed arc i; jð Þ from
node i to node j. Let the nodes 1 and m be the source and destination nodes,

respectively. A path pij is defined as a sequence of alternating nodes and arcs, from i

to j. We denote length of the paths between two specified vertices by cij associated

with each arc i; jð Þ in direct graph G. So, the shortest path problem with the crisp arc

lengths cij can be linearly formulated as (Bazaraa et al. 2010),

min Z ¼
Xm

i¼1

Xm

j¼1;j6¼i

cijxij

s.t.
Xm

j¼1;j 6¼i

xij �
Xm

k¼1;k 6¼i

xki ¼
1 if i ¼ 1

0 if i ¼ 2; . . .;m� 1

�1 if i ¼ m

8
><

>:

xij � 0 i; j ¼ 1; 2; . . .;m

ð1Þ
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The variable xij is the decision variable of the arc i; jð Þ. It takes a positive value if

the arc i; jð Þ is a part of the shortest path in the solution of the problem. Otherwise,

its value is zero.

The problem is dualized as (Bazaraa et al. 2010),

max w1 � wm

s:t: wi � wj � cij i 6¼ j; i; j ¼ 1; 2; . . .;m
ð2Þ

where wi denotes the dual variable of vertex i with no restriction on its sign.

In conventional shortest path problems the main assumption is that the decision

maker is sure about the arc length of the paths between two specified vertices. In

real world problems, some arc length in the shortest path problems may not be

known precisely due to some uncontrollable factors. In these problems, the arc

length may be shown by units of cost, time, distance, etc.

Intuitively, if because of uncontrollable factors the arc length from the i-th vertex

to the j-th vertex varies from its certain value, fuzzy sets can be used to model it. In

such cases, the shortest path problem is converted to a fuzzy shortest path problem

(see Okada and Soper 2000).

Suppose the arc length between vertices is approximately known and can be

represented by the convex fuzzy sets, ~Cij. Furthermore, let l ~Cij
denote its

membership function. So,

~Cij ¼ cij; l ~Cij
cij
� �� �

jcij 2 S ~Cij

� �n o

where S ~Cij

� �
is the support of ~Cij which denote the universe sets of the unit shipping

cost between the vertices. Then, the fuzzy shortest path problem can be formulated

as,

min ~Z ¼
Xm

i¼1

Xm

j¼1;j 6¼i

~Cijxij

s.t.
Xm

j¼1;j 6¼i

xij �
Xm

k¼1;k 6¼i

xki ¼
1 if i ¼ 1

0 if i ¼ 2; . . .;m� 1

�1 if i ¼ m

8
><

>:

xij � 0 i; j ¼ 1; 2; . . .;m

ð3Þ

where the sign
P

in the objective function is the 	 operator of the fuzzy sets.There

are different methods in the literature which solved fuzzy shortest path problems

(see Okada and Soper 2000; Chuang and Kung 2006; Moazeni 2006; Ji et al. 2007)

but none of them applied the extension principle to find the fuzzy optimal solution

for the problem. In the next section, a solution approach based on the extension

principle is developed for the fuzzy shortest path problem.
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4 The proposed solution methodology

A solution approach based on the extension principle of Zadeh (Zadeh 1987; Yager

1986) is used to solve the fuzzy shortest path problem in this section.

If an a-cut for the fuzzy set ~Cij is defined by,

Cij

� �
a ¼ Cij

� �L
a ; Cij

� �U
a

h i

¼ min
cij

cij 2 S ~Cij

� �
j l ~Cij

cij
� �

� a
n o

; max
cij

cij 2 S ~Cij

� �
j l ~Cij

cij
� �

� a
n o� 	

the interval shows where the cost value at the given possibility level a. As the aim is

to derive the membership function of the total shortest path ~Z, the main difficulty

arises when dealing with the varying ranges of the unit shipping costs. One way to

solve such difficulty is to use Zadeh’s extension principle. Therefore, based on

extension principle, the membership function l ~Z is defined by,

l ~Z zð Þ ¼ sup
c

min l
~Cij

cij
� �

; 8i; jj z ¼ Z cð Þ
n o

ð4Þ

where Z cð Þ is the objective function for the shortest path of the problem (1). The

objective function value of the fuzzy shortest path problem (3) is a fuzzy number if

the a-cuts of ~Z do not degenerate to a similar point. Otherwise, it is a crisp value.

Equation (4) implies that l ~Z is the minimum of l
~Cij

cij
� �

for all pairs of i; j. So, for an

a-cut the following conditions must be held in order to have l ~Z zð Þ ¼ a,

• 8i; j : l
~Cij

cij
� �

� a,

• 8i; j : at least one l
~Cij

cij
� �

¼ a.

Now, to calculate the membership function l ~Z , it is enough to calculate the left

shape and right shape functions of l ~Z , that is the same as finding the lower and

upper bound (ZL
a and ZU

a ) for the a-cuts of ~Z. As ZL
a and ZU

a are the minimum and

maximum of Z cð Þ, respectively, those are defined by,

ZL
a ¼ min Z cð Þj Cij

� �L
a � cij � Cij

� �U
a ; 8i; j

n o

and

ZU
a ¼ max Z cð Þj Cij

� �L
a � cij � Cij

� �U
a ; 8i; j

n o

that are modeled by the following two-level mathematical models:
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ZL
a ¼ min

ðCijÞLa � cij �ðCijÞUa

min Z ¼
Xm

i¼1

Xm

j¼1

cijxij

s:t:
Xm

j¼1

xij �
Xm

k¼1

xki ¼
1 if i ¼ 1

0 if i ¼ 2; . . .;m� 1

�1 if i ¼ m

8
><

>:

xij � 0 i; j ¼ 1; 2; . . .;m

8
>>>>>>>>><

>>>>>>>>>:

ð5Þ

ZU
a ¼ max

ðCijÞLa � cij �ðCijÞUa

min Z ¼
Xm

i¼1

Xm

j¼1

cijxij

s:t:
Xm

j¼1

xij �
Xm

k¼1

xki ¼
1 if i ¼ 1

0 if i ¼ 2; . . .;m� 1

�1 if i ¼ m

8
><

>:

xij � 0 i; j ¼ 1; 2; . . .;m

8
>>>>>>>>><

>>>>>>>>>:

ð6Þ

4.1 One-level transformation

As ZL
a and ZU

a are obtained by the two-level mathematical model (5) and (6), the

models are transformed to one-level models in this subsection.

4.1.1 Transformation of the lower bound model

The two-level problem (5) consists of an outer-level problem and an inner-level

problem of minimization type objective function. As both levels has the same type

objective function, those can be easily transformed to a one-level problem respect to

the constraints of the both problems simultaneously. To do this transformation as

the objective function of the both problems is minimization, each cij is replaced by

its lower bound value Cij

� �L
a . Therefore, the two-level problem (5) is transformed to

a one-level problem such as,

min ZL
a ¼

Xm

i¼1

Xm

j¼1;j 6¼i

Cij

� �L
axij

s.t.
Xm

j¼1;j 6¼i

xij �
Xm

k¼1;k 6¼i

xki ¼
1 if i ¼ 1

0 if i ¼ 2; . . .;m� 1

�1 if i ¼ m

8
><

>:

xij � 0 i; j ¼ 1; 2; . . .;m

ð7Þ

As the model (7) is a conventional shortest path problem (Bazaraa et al. 2010), it

can be solved easily by any solver. In the model, as each cij is replaced by the lower

bounds of its a-cut, that means l ~Cij
cij
� �

¼ a, therefore, the requirement of Eq. (4) is

satisfied as l ~Z zð Þ ¼ supc min fl
~Cij

cij
� �

; 8i; jj z ¼ Z cð Þg ¼ a.
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4.1.2 Transformation of the upper bound model

The procedure to transform the two-level model of the upper bound to a one-level

model is different than what was used for the lower bound model. The difference

arises because in the model (6) the outer-level model and the inner-level model have

different optimization directions of maximization and minimization respectively.

So, the model (6) cannot be solved straightforwardly.

Based on the duality principle in linear programming (Bazaraa et al. 2010), a primal

problem and its dual problem which has opposite optimization direction, have the same

objective function value (in optimality condition). So, the duality principle is used here

to transform the model (6) to a one-level mathematical model by replacing the inner-

level problem by its dual version. The dual problem of the inner-level problem of the

model (6) is problem (2). Therefore, the model (6) is rewritten as,

ZU
a ¼ max

ðCijÞLa � cij �ðCijÞUa

maxw1 � wm

s:t: wi � wj � cij 8i; j

(

ð8Þ

In the model (8), as both levels have the same type objective function, those can

be easily transformed to a one-level problem respect to the constraints of the both

problems simultaneously. For this transformation as the objective function of the

both problems is of maximization type, each cij is replaced by its upper bound value

Cij

� �U
a . Therefore, the two-level problems (6) and (8) is transformed to the

following one-level problem,

maxZU
a ¼ w1 � wm

s:t: wi � wj � Cij

� �U
a 8i; j

ð9Þ

As the model (9) is dual of a conventional shortest path problem, it can be solved

easily by any solver. In the model (8), as each cij is replaced by the upper bounds of

its a-cut, that means l ~Cij
cij
� �

¼ a, therefore, the requirement of Eq. (4) is also

satisfied as l ~Z zð Þ ¼ supc min fl
~Cij

cij
� �

; 8i; jj z ¼ Z cð Þg ¼ a.

If two a-cuts of a1 and a2 such that 0� a1 \a2 � 1 is considered, according to

the models (7) and (9) the following relations is true,

ZL
a1 � ZL

a2

and

ZU
a2 � ZU

a1

It means that the left side function according to the a-cuts does not decreased and

the right side one does not increased. Referring to the definition of ‘‘convex fuzzy

set’’ (see Zimmermann 1996), the above relations prove the convexity of ~Z. As, ZL
a

and ZU
a are inverted according to a values, the left and right side functions of

L Zð Þ ¼ ZL
a

� ��1
and L Rð Þ ¼ ZU

a

� ��1
can be defined respectively. Therefore, the

membership function of l ~Z is defined by the following relation,
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l ~Z zð Þ ¼

L Zð Þ ZL
a¼0 � Z � ZL

a¼1

1 ZL
a¼1 � Z � ZU

a¼1

L Rð Þ ZU
a¼1 � Z � ZU

a¼0

8
>>><

>>>:

ð10Þ

Using the models (7) and (9) and different a-cut values, the solutions obtained for
ZL
a and ZU

a are collected to show the shape of L Zð Þ and L Rð Þ as a fuzzy number.

4.2 Overall solution procedure

The overall procedure of the proposed solution methodology to find the shortest

path of a fuzzy shortest path problem and its associated fuzzy length is summarized

in the flowchart of Fig. 2.

For any fuzzy shortest path problem, the models (7) and (9) are to be solved for

different a confidence levels (a-cuts). For all a-cuts, the same shortest path is obtained

while unique trapezoidal fuzzy path length for each a-cut is obtained by, ~Z ¼

Fig. 2 The flowchart of the
proposed solution methodology
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ZL
a¼0; Z

L
a¼1; Z

U
a¼1; Z

U
a¼0

� �
: Furthermore, for any a-cut other than 0 and 1, lower and

upper bounds can be obtained by ZL
a and Z

U
a from the models (7) and (9) for that a-cut.

5 Numerical examples

In this section, in order to test efficiency of the proposed method, two examples

from the literature of fuzzy shortest path problem is considered. Examples 1 is taken

from the study of Okada and Soper (2000) where Example 2 was solved previously

by Ji et al. (2007), Mahdavi et al. (2009), Deng et al. (2012). To perform the

computations of this section all of the mathematical models are solved using GAMS

23.5 software.

Example 1. This example was tackled by Okada and Soper (2000). It has a

transportation network consisting of six nodes with their lengths represented by

trapezoidal fuzzy numbers. The aim is to find its shortest path and the associated

fuzzy length. The network is illustrated by Fig. 3.

The models (7) and (9) are required to be solved to obtain the shortest path of the

example. So, the models (3), (7) and (9) using the data of the example are written as,

model (3):

min Z ¼ 10; 20; 20; 30ð Þ x12 þ 52; 62; 65; 70ð Þ x13 þ 35; 38; 40; 45ð Þ x23
þ 10; 13; 17; 20ð Þ x34 þ 52; 55; 60; 65ð Þ x25 þ 8; 9; 9; 10ð Þ x35
þ 70; 75; 85; 97ð Þ x46 þ 50; 70; 80; 100ð Þ x56
s:t: x12 þ x13 ¼ 1

x25 þ x23 � x12 ¼ 0

x34 þ x35 � x23 � x13 ¼ 0

x46 � x34 ¼ 0

x56 � x34 � x25

� x46 � x56 ¼ �1

xij � 0 8i; j

ð11Þ

Fig. 3 The transportation network of Example 1 (Okada and Soper 2000)
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The lower bound based on the model (7) is as follows:

min ZL
a ¼ 10þ 10að Þx12 þ 52þ 10að Þ x13 þ 35þ 3að Þx23 þ 10þ 3að Þ x34

þ 52þ 3að Þ x25 þ 8þ að Þ x35 þ 70þ 5að Þ x46 þ 50þ 20að Þ x56
s:t: x12 þ x13 ¼ 1

x25 þ x23 � x12 ¼ 0

x34 þ x35 � x23 � x13 ¼ 0

x46 � x34 ¼ 0

x56 � x34 � x25 ¼ 0

� x46 � x56 ¼ �1

xij � 0 8i; j ð12Þ

The upper bound based on the model (9) is as follows:

max ZU
a ¼ w1 � w6

s:t: w1 � w2 � 30� 10a

w1 � w3 � 70� 5a

w2 � w3 � 45� 5a

w2 � w5 � 65� 5a

w3 � w4 � 20� 3a

w3 � w4 � 20� 3a

w3 � w5 � 10� a

w4 � w6 � 97� 12a

w5 � w6 � 100� 20a

ð13Þ

The models (12) and (13) for the Example 1 are solved using different values of

a, so, different objective function values for upper and lower bound problems are

obtained. The results are shown by Table 1. The results are plotted to reflect a fully

trapezoidal fuzzy number with core of [137, 149] and support of [103, 180] which

are obtained in a-cuts of 1 and 0 respectively. This trapezoidal fuzzy number is

illustrated by Fig. 4.

In this example, the length of obtained shortest path is impossible to be out of the

interval [103, 180] and its most likely value lies within the interval [137, 149]. The

shortest path introduced by the models (12) and (13) are the same for different a-
cuts. Here, we focus on the paths obtained by a-cuts 0 and 1.

For a ¼ 0 cut of ~Z, the lower bound of ZL�
a ¼ 103 occurs in the shortest path

1 ! 2 ! 3 ! 5 ! 6 and the upper bound of ZU�
a ¼ 180 occurs in the shortest path

1 ! 3 ! 5 ! 6. In the case of a ¼ 1 cut of ~Z, the lower bound of ZL�
a ¼ 137 occurs

in the shortest path 1 ! 2 ! 3 ! 5 ! 6 and the upper bound of ZU�
a ¼ 149 occurs

in the shortest path 1 ! 2 ! 3 ! 5 ! 6. So, for a ¼ 0 cut, two non-dominated

shortest paths and for a ¼ 1 cut a single shortest path is obtained by the models (12)
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and (13). The obtained shortest paths is the same as what reported by Okada and

Soper (2000) as is explained here.

In Okada and Soper (2000) two non-dominated shortest paths is obtained for this

example. These shortest paths are, path 1: 1 ! 2 ! 3 ! 5 ! 6 and path 2:

1 ! 3 ! 5 ! 6. The paths are the same as what our proposed method results. It

should be mentioned that, in the proposed method, we obtain a lower and upper

bound to the fuzzy shortest path for all a levels starting from 0 to 1 which is no done

in the method of Okada and Soper (2000). For a ¼ 0 cut of ~Z, the proposed method

gives unique lower and upper bounds of 103 and 180 respectively, where the lower

and upper bounds in Okada and Soper (2000) vary in the shortest paths. They

obtained the lower and upper bounds of 103 and 185 for path 1 and the lower and

upper bounds of 110 and 180 for path 2. So, although the shortest paths obtained by

both methods are the same, the proposed method in this paper show better results for

the lower and upper bounds obtained for the minimum a-cut level (a ¼ 0) than the

method used by Okada and Soper (2000).

The same superiority of the method of this paper is proved in the maximum a-cut
level (a ¼ 1). For a ¼ 1 cut of ~Z, the unique lower and upper bounds of 137 and 149
respectively, where the lower and upper bounds in Okada and Soper (2000) is

different for each shortest path. They obtained the lower and upper bounds of 137

and 149 for path 1 and the lower and upper bounds of 141 and 154 for path 2.

Example 2. Another transportation network from the literature of the fuzzy

shortest path problem where the length of each arc is a trapezoidal fuzzy number, is

considered to test the efficiency of the proposed method. The method previously

Table 1 The upper bound and lower bound obtained by different a-cuts for Example 1

a 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ZL
a 103 106.4 109.8 113.2 116.6 120.5 123.4 126.8 130.2 133.6 137

ZU
a 180 177.4 174.8 172.2 169.6 167 163.4 159.8 156.2 152.6 149

Fig. 4 The membership function obtained for Example 1 by different a-cuts
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was solved by Ji et al. (2007), Mahdavi et al. (2009) and Deng et al. (2012). The

network and its input data are presented by Fig. 5 and Table 2.

The lower bound and upper bound models (7) and (9) were coded by the data of

Example 2. The models were solved for different levels of a-cut. The obtained lower
and upper bound values are reported in Table 3. In this example, the length of

obtained shortest path is impossible to be out of the interval [38, 65] and its most

likely value lies within the interval [49, 58]. The shortest path introduced by the

models (7) and (9) are the same for different a-cuts. Here, we focus on the paths

obtained by a-cuts 0 and 1.

For a ¼ 0 cut of ~Z, the lower bound of ZL�
a ¼ 38 occurs in the shortest path

1 ! 5 ! 11 ! 17 ! 21 ! 23 and the upper bound of ZU�
a ¼ 65 occurs in the

shortest path 1 ! 5 ! 11 ! 17 ! 21 ! 23. In the case of a ¼ 1 cut of ~Z, the

lower bound of ZL�
a ¼ 49 occurs in the shortest path 1 ! 5 ! 11 ! 17 ! 21 ! 23

and the upper bound of ZU�
a ¼ 58 occurs in the shortest path

1 ! 5 ! 11 ! 17 ! 21 ! 23. Therefore, the shortest path of the example is 1 !
5 ! 11 ! 17 ! 21 ! 23 with trapezoidal length of (38, 49, 58, 65) which is

exactly the same as what reported by Ji et al. (2007), Mahdavi et al. (2009) and

Deng et al. (2012).

6 Discussion and conclusion

A typical shortest path problem which has fuzzy arc lengths naming fuzzy shortest

path problem was studied in this paper. The problem has many real-world

applications. The objective of the problem was to introduce the shortest path

connecting the first and last vertices of the network which has minimum fuzzy sum

of arc lengths among all possible paths. A solution algorithm based on Zadeh’s

extension principle was developed to solve the problem. The algorithm uses a

Fig. 5 The transportation network of Example 2 (Ji et al. 2007; Mahdavi et al. 2009; Deng et al. 2012)
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decomposition scheme by dividing the problem into two lower bound and upper

bound sub-problems.

The algorithm has the following advantages that can be distinguished from the

numerical examples of Sect. 5.

• No ranking function is applied in the procedure of the algorithm.

• The proposed method can be easily solved using any optimization software.

• There is no need to have high information of fuzzy linear programming,

Zimmermann method and crisp linear programming.

• The proposed method can be applied to the real-world problems that can be

formulated by shortest path problem.

• For each a-cut, we obtain a unique lower and upper bound for fuzzy length of

shortest path(s).

• When the fuzzy shortest path model is defuzzified, in this case, two crisp models

are solved and therefore, all the algorithms introduced for shortest path problem

can be applied.

• The method is of single-criteria type methods, while, some studies of the

literature (see Okada and Soper 2000) considered a multi-criteria method.

Table 2 The arc lengths for the network of Example 2

Arc Length Arc Length Arc Length

(1,2) (12,13,15,17) (7,10) (9,10,12,13) (15,18) (8,9,11,13)

(1,3) (9,11,13,15) (7,11) (6,7,8,9) (15,19) (5,7,10,12)

(1,4) (8,10,12,13) (8,12) (5,8,9,10) (16,20) (9,12,14,16)

(1,5) (7,8,9,10) (8,13) (3,5,8,10) (17,20) (7,10,11,12)

(2,6) (5,10,15,16) (9,16) (6,7,9,10) (17,21) (6,7,8,10)

(2,7) (6,11,11,13) (10,16) (12,13,16,17) (18,21) (15,17,18,19)

(3,8) (10,11,16,17) (10,17) (15,19,20,21) (18,22) (3,5,7,9)

(4,7) (17,20,22,24) (11,14) (8,9,11,13) (18,23) (5,7,9,11)

(4,11) (6,10,13,14) (11,17) (6,9,11,13) (19,22) (15,16,17,19)

(5,8) (6,9,11,13) (12,14) (13,14,16,18) (20,23) (13,14,16,17)

(5,11) (7,10,13,14) (12,15) (12,14,15,16) (21,23) (12,15,17,18)

(5,12) (10,13,15,17) (13,15) (10,12,14,15) (22,23) (4,5,6,8)

(6,9) (6,8,10,11) (13,19) (17,18,19,20)

(6,10) (10,11,14,15) (14,21) (11,12,13,14)

Table 3 The lower and upper bounds obtained by different a-cuts for Example 2

a 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ZL
a 38 39.1 40.2 41.3 42.4 43.5 44.6 45.7 46.8 47.9 49

ZU
a 65 64.3 63.6 62.9 62.2 61.5 60.8 60.1 59.4 58.7 58
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• In the proposed method the fuzzy lower and upper bound models can be solved

by parametric analysis approaches. In the previous methods of the literature

parametric analysis approaches cannot be used.

The algorithm was tested over some well-known networks from the literature and its

performance is superior to the existent methods.
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