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Abstract This study tests and compares different optimization algorithms

employed for the calibration of a macroscopic traffic flow model. In particular, the

deterministic Nelder–Mead algorithm, a stochastic genetic algorithm and the

stochastic cross-entropy method are utilized to estimate the parameter values of the

METANET model for a particular freeway site, using real traffic data. The resulting

models are validated using various traffic data sets and the optimization algorithms

are evaluated and compared with respect to the accuracy of the produced validated

models as well as the convergence speed and the required computation time. The

validation results showed that all utilized optimization algorithms were able to

converge to robust model parameter sets, albeit achieving different performances

considering the convergence speed and the required computation time.

Keywords Macroscopic traffic flow models � Model calibration � Comparison of

optimization algorithms

1 Introduction

During the last decades, several mathematical models for the road traffic flow have

been proposed. Depending on the level of detail they use, the models are classified

as macroscopic or microscopic (see Hoogendoorn and Bovy (2001) for an overview

on traffic flow models). Traffic flow models may be employed for the planning of

new, upgraded or modified road infrastructures; as well as for the development and
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testing of traffic flow estimation algorithms, traffic control strategies and other

operational tools (Kotsialos and Papageorgiou 2000). The models include a number

of physical or non-physical parameters, with unknown values, which should be

appropriately specified, in case of real applications, so as to reproduce the network

and traffic flow characteristics with the highest possible accuracy. The macroscopic

traffic flow models include a lower number of parameters compared to microscopic

models; also, they have an analytical form, which allows their usage for various

significant traffic engineering tasks (estimation, control strategy design) beyond

simulation. Before employing a traffic flow model in practice, it is important to first

calibrate it against real traffic data. The calibration procedure aims to appropriately

specify the model parameter values, so that the representation of the network and

traffic flow characteristics is as accurate as the model structure allows. The most

common approach is to minimize the discrepancy between the model’s estimation

and the real traffic data, by use of appropriate optimization tools (see Kontorinaki

et al. (2014) and Treiber and Kesting (2013) for related overviews).

Within the, quite limited, literature on macroscopic traffic flow model calibration,

various methods have been employed to solve the parameter estimation problem. In

particular, Grewal and Payne (1976) utilized the least-squares method and an

extension of the Kalman Filter; Michalopoulos et al. (1993) and Helbing (1996)

have applied some trial-and-error methods; Cremer and Papageorgiou (1981),

Cremer and May (1986), Papageorgiou et al. (1989, 1990), Sanwal et al. (1996),

Kotsialos et al. (2002) and Monamy et al. (2012) have used the deterministic

Complex algorithm of Box (1965); Ngoduy et al. (2004) and Spiliopoulou et al.

(2014) have employed the deterministic Nelder–Mead algorithm (Nelder and Mead

1965), which is, actually, similar to the above mentioned Complex algorithm; Poole

and Kotsialos (2012) utilized stochastic genetic algorithms; and Ngoduy and Maher

(2012) the stochastic cross-entropy method (de Boer et al. 2005). Surprisingly, there

is no work addressing the suitability and effectiveness of the employed optimization

algorithms for this specific parameter estimation problem. Thus, the goal of this

study is to test and compare various optimization algorithms, both stochastic and

deterministic, for the calibration of a macroscopic traffic flow model, namely the

METANET model (Messmer and Papageorgiou 1990; Papageorgiou et al. 2010),

using real traffic data from a freeway stretch. In particular, the optimization

algorithms considered are the deterministic Nelder–Mead algorithm, the stochastic

genetic algorithms and the stochastic cross-entropy method. These algorithms are

compared in terms of optimum cost function value, computation time and accuracy

of the produced validated model.

The paper is organized as follows: Sect. 2 presents the macroscopic traffic flow

model and the unknown model parameters to be estimated. Section 3 describes the

model calibration procedure which is formulated as a least-squares minimization

problem; and Sect. 4 presents the considered optimization algorithms that are

employed to solve the parameter estimation problem. Section 5 describes the

considered freeway stretch and the traffic data used in the current investigations;

followed by Sect. 6 which includes the calibration results and the comparison of the

employed optimization algorithms. Finally, Sect. 7 summarizes the main conclu-

sions and remarks of the study.
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2 Macroscopic traffic flow model

The macroscopic traffic flow model METANET (Messmer and Papageorgiou 1990;

Papageorgiou et al. 2010) will be calibrated for a particular freeway site. Within

METANET, the freeway is divided into homogeneous, consecutively numbered

sections i, with respective lengths Li and number of lanes ki. Each section may have

an on-ramp and off-ramp near its upstream boundary as shown in Fig. 1. The time is

also discretized into uniform intervals of duration T. For each discrete time k = 0, 1,

…, K, the model calculates at each section i, the density qiðkÞ (in veh/km/lane), the

flow qiðkÞ (in veh/h) and the mean speed viðkÞ (in km/h) according to the following

equations:

qiðk þ 1Þ ¼ qiðkÞ þ
T

Liki
qi�1ðkÞ � qiðkÞ þ riðkÞ � siðkÞ½ �: ð1Þ

This is a conservation-of-vehicles equation, where riðkÞ is the traffic flow entering

the freeway from an on-ramp and siðkÞ is the traffic flow exiting the freeway from an

off-ramp, and equals to siðkÞ ¼ biðkÞqi�1ðkÞ where biðkÞ is the splitting ratio.

Furthermore we have

qiðkÞ ¼ viðkÞqiðkÞki ð2Þ

viðk þ 1Þ ¼ viðkÞ þ
T

Li
viðkÞ vi�1ðkÞ � viðkÞ½ � þ T

s
Ve qiðkÞð Þ � viðkÞ½ �

�
mT qiþ1ðkÞ � qiðkÞ
� �

sLi qiðkÞ þ j½ �

ð3Þ

where s (a time constant), m (an anticipation constant) and j are model parameters.

The function Ve(qi(k)) corresponds to the fundamental diagram and is calculated as

follows:

Ve qiðkÞð Þ ¼ vf ;i exp � 1

ai

qiðkÞ
qcr;i

 !ai" #

ð4Þ

where vf,i is the free speed, qcr,i is the critical density (for which the flow at section i

is maximized) and ai is a further model parameter for section i. Moreover, if the

mean speed calculated by the model is lower than a minimum value vmin, then it is

Fig. 1 Freeway discretization within METANET

Macroscopic traffic flow model calibration using… 147

123



set equal to vmin. In Papageorgiou et al. (1989), two additional terms were proposed

for more accurate modeling of merging and lane drop phenomena. In particular, the

impact on mainstream speed due to an on-ramp merging flow is considered by

adding the term �dTriðkÞviðkÞ=Liki qiðkÞ þ jð Þ into (3) for the merging section,

where d is a model parameter. This term is not used if there is a lane gain down-

stream of the on-ramp, i.e., if there is a dedicated lane for entering vehicles.

Moreover, in order to take into account the impact on speed due to intensive lane-

changing at lane-drop areas, the term �uTDkqiðkÞviðkÞ2
.
Likiqcr;i, is added to (3)

for the section immediately upstream of the lane drop, where u is a model parameter

and Dk is the number of dropped lanes.

At bifurcation locations (e.g. off-ramps), a downstream density qi?1(k) is needed

in (3) for the section i entering the bifurcation; this density reflects the upstream

influence of the downstream traffic conditions. However, as we have at least two

downstream sections at bifurcations, the following formula was proposed (Messmer

and Papageorgiou 1990):

qiþ1ðkÞ ¼
X

l2Oi

q2lðkÞ
,
X

l2Oi

qlðkÞ ð5Þ

where qi?1(k) is the virtual density downstream of section i, which is used in (3) of

section i; and ql(k) is the density of each section downstream of section i, Oi being

the set of exiting sections. The quadratic average used in (5) accounts for the fact

that congestion may spill back to a section i from any of its downstream sections

(e.g., in case of spillback from a saturated off-ramp), even if the rest downstream

sections are not congested. Notice that (5) does not include any parameter to be

calibrated.

As presented above, the model includes a number of parameters, whose values

may differ for different freeway sites and depend on factors such as network

geometry, driver behavior, percentage of trucks, weather conditions etc. Thus, the

reliability and accuracy of the model depends on the appropriate specification of its

parameter values; and hence a calibration exercise is required before using the

model in a potential real application.

3 Model calibration procedure

The model parameter calibration (or parameter estimation) procedure aims at

enabling a macroscopic traffic flow model to represent traffic conditions of a

freeway network with the highest achievable accuracy. The estimation of the

unknown model parameters is not a trivial task, since the system equations are

highly nonlinear in both the parameters and the state variables. Consider that a

macroscopic discrete-time state-space model is described by the following state

equation,
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xðk þ 1Þ ¼ f ½xðkÞ; dðkÞ; p�
xð0Þ ¼ x0

k ¼ 0; 1; . . .;K � 1 ð6Þ

where x stands for the state vector, d is the disturbance (external variable) vector

and p is the parameter vector. The METANET model can readily assume the state-

space form of (6) for any freeway network. In particular, the state vector x includes

the section densities and mean speeds, the external variable vector d consists of the

origin speeds and inflows, the turning rates at bifurcations, and the downstream

densities; and p includes the unknown model parameters that need to be specified.

If the initial state x0 is given and the external vector d(k) is known over a time

horizon k = 0, …, K - 1, then the parameter estimation problem can be formulated

as a nonlinear least-squares output error problem which aims at the minimization of

the discrepancy between the model calculations and the real traffic data by use of

the following cost function,

JðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K

XK�1

k¼0

yðkÞ � ymðkÞ½ �2
vuut ð7Þ

subject to (6); where y(k) = g[x(k)] is the measurable model output vector (typi-

cally consisting of flows and mean speeds at various network locations) and ym(-
k) includes the real measured traffic data (consisting of flows and speeds at the

corresponding network locations). The model parameter values are selected from a

closed admissible region of the parameter space, which may be defined on the basis

Fig. 2 Model calibration procedure
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of physical considerations and previous experience. The determination of the

optimal parameter set must be performed by means of a suitable nonlinear pro-

gramming routine, whereby for each choice of a new parameter vector p, the value
of the performance index (PI) (7) may be computed by a calibration run of the

model equations as shown in Fig. 2.

The nonlinear, non-convex least-squares optimization problem of parameter

calibration is known to have multiple local minima (see Ngoduy and Maher (2012)

for an illustration), and hence gradient-based optimization algorithms are not an

option. In previous calibration studies, see Sect. 1 for an overview, various

derivative-free optimization algorithms have been employed to solve the parameter

estimation problem, without much insight though regarding their respective

properties for the particular problem at hand. Within this study, various optimization

algorithms are tested and compared in order to investigate which optimization

methodology is more suitable for the problem of macroscopic traffic flow model

calibration.

4 Optimization algorithms

Three derivative-free optimization algorithms are employed to solve the parameter

estimation problem; in particular, the deterministic Nelder–Mead algorithm, a

stochastic genetic algorithm and the stochastic cross-entropy method. In the

following, the selected algorithms are shortly described along with their potential

advantages and weak points.

4.1 Nelder–Mead algorithm

The Nelder–Mead method (Nelder and Mead 1965; Lagarias et al. 1998) is one of

the best known algorithms for multidimensional unconstrained optimization. The

method does not require any derivative information, which makes it suitable for

problems with non-linear, discontinuous or stochastic cost function.

The method uses a simplex, i.e. a n-dimensional geometrical shape with nþ 1

vertices. Every vertex pi, where i ¼ 1; . . .; nþ 1, corresponds to a potential solution

which in turn corresponds to a cost function value, JðpiÞ. The algorithm starts with

an initial working simplex and then performs a sequence of transformations aiming

at reducing the cost function value at its vertices. In particular, at each iteration the

algorithm orders the simplex vertices with respect to the corresponding cost

function values e.g. Jðp1Þ� Jðp2Þ� � � � � Jðpnþ1Þ and calculates the centroid pc of
all vertices excluding the worst vertex pnþ1. Then, it computes the new working

simplex from the current one as follows. First, an attempt is made to replace only

the worst vertex pnþ1 with a better point by using reflection, expansion or

contraction. If this succeeds, the accepted point becomes the new vertex of the

working simplex. Otherwise, the algorithm shrinks the simplex towards the best

vertex p1. In this case, n new vertices are computed. Simplex transformations are

controlled by four parameters: f for reflection, v for contraction, c for expansion and
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r for shrinkage. Note that there is a low need for fine-tuning the algorithm

parameters since the parameter values proposed in the original papers seem to work

good in a broad number of applications. The above procedure continues until the

working simplex becomes sufficiently small or when the function values JðpiÞ are
close enough to each other.

In contrast to other direct search methods which call, at each iteration, for

multiple cost function evaluations, Nelder–Mead typically requires only one or two

function evaluations, except when performing the shrinkage transformation which

is, actually, quite rare in practice. As a result, the method typically gives significant

ameliorations of the cost function value quite fast. On the other hand, in some cases

the method may perform a large number of iterations without significant

improvement of the cost function value. To cope with this problem, restarting the

algorithm several times, with reasonably small number of allowed iterations per

each run, may prove helpful. Generally, the evolution of the working simplex and

the produced best solution are dependent on the initial working simplex, since the

algorithm searches for new points using the vertices of the working simplex, and

this may lead to different paths for different initial simplexes. Such different

evolution paths may or may not lead to the same final best solution. To face this

fact, multiple algorithm runs may be carried out using different initial vertices for

the working simplex and checking the corresponding obtained solutions.

4.2 Genetic algorithm (GA)

A genetic algorithm (Goldberg 1989; Holland 1992) is a heuristic search method

which belongs to the larger class of evolutionary algorithms. GA mimics the process

of biological evolution and uses techniques inspired by natural selection, mutation

and crossover. It is suitable for a variety of optimization problems, in which the

objective function is discontinuous, non-differentiable, stochastic, or highly

nonlinear.

The method uses a population of candidate solutions to an optimization problem

and evolves it towards better solutions. The evolution starts from an initial

population of randomly generated individuals (solutions) which are evaluated

through their respective cost function values (fitness). At each iteration, called

generation, the algorithm selects individuals (parents) from the current generation

and uses them to produce the individuals (offspring) for the next population. To do

so, the GA uses three main types of rules:

• Selection rules select individuals (parents), with probabilities proportional to

their fitness; the selected parents contribute to the population of the next

generation. Some of the individuals in the current population, which have best

fitness, are chosen as elite. These elite individuals are passed directly and

unchanged to the next population.

• Crossover rules combine (random) couples of parents to form offspring for the

next generation, thus exchanging information between two candidate solutions.

• Mutation rules apply random changes to individual parents, which may

introduce new features (i.e. new parameter space regions) to the population.
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Through the stochastic operations of selection, crossover and mutation, the

population ‘‘evolves’’, over successive generations, towards potentially better

solutions, and the algorithm stops when one of the stopping criteria is met, e.g. when

no significant improvement in the cost function values is achieved over successive

iterations (generations), or when the maximum allowed number of iterations is

reached.

The main advantage of GA is its flexibility to search complex solution spaces;

thanks to its stochastic operations, it is less likely to restrict the search to a bad local

minimum area, in contrast to point-to-point movement optimization techniques. On

the other hand, each iteration requires many cost function evaluations, which

increases substantially the computational cost, especially for problems with

computationally expensive cost function or problems which require large population

size. It is worth noting that, since the evaluation of the cost function for each

individual is independent of all others, the parallelization of GA is an option.

Finally, it is important to tune the algorithm’s parameters, i.e. the population size,

the elite rate, the crossover probability and the mutation rate in order to find

appropriate and efficient settings for the specific problem being examined.

4.3 Cross-entropy method (CE method)

The cross-entropy method (Rubinstein and Kroese 2004; de Boer et al. 2005) is a

general Monte-Carlo approach to combinatorial and continuous multi-extremal

optimization and importance sampling problems. The method originates from the

field of rare event simulation, where very small probabilities need to be accurately

estimated.

The algorithm starts from an initial population of potential solutions generated

using a continuous, usually uniform, distribution f0. At each iteration t, the solutions

are evaluated through the cost function and sorted into ascending order; and the best

b % solutions comprise the elite sample. The probability density function, ĝt, of this

elite sample is estimated, e.g. using a Kernel density estimator as proposed by

Ngoduy and Maher (2012), and the probability distribution of the population is

updated using the equation:

f̂tþ1 ¼ f̂tð1� eÞ þ ĝte ð8Þ

where e is a smoothing parameter, typically in the range [0.7, 0.9]. The updated

density equation f̂tþ1 is used in the next iteration to generate the new random sample

of solutions. The algorithm continues leading, over iterations, to increasingly more

spiked shapes of the population probability distribution; and it stops when one of the

stopping criteria is met, e.g. when the shape of the probability density function

becomes very spiked (i.e. concentrated around the optimal value) or when the

maximum allowed number of iterations is reached.

As with the previous algorithms, the CE method does not require any derivative

information, thus it may be applied to problems where the objective function is

discontinuous, non-differentiable or highly nonlinear. In contrast to other stochastic
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methods, the selection of the potential solutions is not a completely random process,

since the utilized distribution is affected by the best solutions of each iteration. The

main disadvantage of the method is that it requires as many cost function evaluation

as the size of the population, resulting in large computational cost and slow

convergence. Again, it is important to tune the algorithm’s parameters, i.e. the

population size, the elite rate b and the smoothing parameter e in order to find

appropriate and efficient settings for the specific problem being examined.

5 Test site and traffic data

The test network considered in this study is a part of Attiki Odos freeway (34th to

28th km, direction Airport to Elefsina) in Athens, Greece. Figure 3 represents the

examined freeway stretch in terms of nodes and links. Each node (N0–N8)

illustrates a bifurcation point or a junction or any location marking a change of the

network geometry; whereas the homogeneous road stretches between these

locations are represented by links (L1–L8). Each network link is subdivided in

sections of equal length; see for example link L1 which is divided in 3 sections, with

the vertical short lines denoting the section borders. Using this representation, the

network sections are well-defined, and the model equations presented in Sect. 2 are

directly applied to these sections. Figure 3 displays the length, number of sections

and number of lanes for each link, the exact location of the on-ramps and off-ramps,

as well as the location of the available detector stations which are depicted by

bullets.

The real traffic data used in this study were provided by ATTIKES

DIADROMES S.A., which is the freeway operating company. In particular, the

provided traffic data include flow and speed measurements at the corresponding

detector station locations, with a time resolution of 20 s, for several days within

June 2009. The traffic data analysis showed that, within this particular freeway

stretch, recurrent traffic congestion is formed during the morning peak hours.

Fig. 3 Representation of the considered freeway stretch within METANET
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Figure 4 illustrates the space–time diagram of real speed measurements for 4

different days: 16/06/2009, 17/06/2009, 23/06/2009 and 25/06/2009.

It is observed that congestion is created during 8–10 a.m.; the congestion

originates at the 29th km of the freeway stretch and spills back several kilometers

upstream, up to the 32nd km, and on some days up to the 33rd km. Figure 3 shows

that the congestion creation area is actually a diverge area, with the off-ramp E-11-1

receiving high exit flow during the morning peak hours, according to real traffic

data. The high exit flow rate, in combination with the limited capacity of the off-

ramp, lead to the creation of congestion, which propagates upstream for several

kilometers on the freeway mainstream. The test network and traffic data presented

above are used to calibrate and validate the METANET traffic flow model. It should

be noted that the main criterion for selecting these 4 days was that, during the

morning hours 6–12 a.m., no incident and no detector failure occurred at the

examined freeway stretch, which can, of course, not be reproduced by any traffic

flow model.

6 Calibration results and comparison of the employed algorithms

The calibration procedure, as described in Sect. 3, was applied to METANET model

using real traffic data from 16/06/2009 and a simulation step equal to T = 5 s. The

model parameter vector consists of the free flow speed vf, the critical density qcr and
the parameters a, s, m, d and u which are common for all the freeway sections. Thus,

one single fundamental diagram is considered for all freeway sections. Moreover,

the model includes two extra parameters which are known from previous validation

exercises to be of minor importance and are, therefore, given constant values, in

order to reduce the dimension of the parameter vector. In particular, j is set equal to

10 veh/km/lane and vmin is set to 7 km/h. Furthermore, the utilized Performance

Index (PI) (see (7)) includes the model estimation of speed and the real speed

measurements at the corresponding detector station locations (see Fig. 3). This is

because traffic densities are difficult to measure directly; on the other hand,

experience from previous validation procedures has shown that the calculation of

reasonably accurate flows is not a major problem for a macroscopic traffic flow

model, since the conservation equation guarantees that whatever flows in will

Fig. 4 Time-space diagram of measured speed at the considered freeway stretch for four different days
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eventually flow out; in contrast, it is much more challenging to correctly model the

time evolution of the mean speeds in each section.

All simulations were performed using a desktop computer with 2.4 GHz CPU

and 2.0 GB of RAM. The calibration procedure, including the traffic flow model

and the optimization algorithms, has been programmed in MATLAB (R2010a). In

the following sections, the optimization results of each utilized algorithm are

presented first, followed by the evaluation of the algorithms’ performance using

various criteria. It should be noted that, for each utilized algorithm, various initial

calibration tests were carried out using different values for the algorithms’

parameters. These tests helped to fine-tune the algorithms parameters for the present

problem, and these parameters were used in the investigations presented in the

following sections.

6.1 Nelder–Mead algorithm

The Nelder–Mead algorithm was employed using the following parameters: f = 1,

v = 2, c = -0.5 and r = 0.5 (see Sect. 4.1 for a description of the algorithm’s

parameters). Moreover, the utilized termination criteria are the cost function

convergence or the working simplex convergence, with tolerance equal to 0.1; and

the maximum allowed number of iterations which was set equal to 1000.

Figure 5 presents the convergence of the algorithm, i.e. the evolution of the best

PI value in the simplex, for ten calibration runs, starting from the same initial point.

In particular, at each calibration run, the algorithm received the very same initial

vertex and constructed the initial working simplex by generating the required

vertices randomly around the given initial point. As indicated at Sect. 4.1, the

number of vertices of the working simplex is set to n ? 1, where n is the number of

parameters under calibration. It should also be noted that it is preferable to use a

physically reasonable initial vertex in order to speed up the algorithm convergence.

Figure 5 shows that, although the algorithm starts from high PI values, it achieves a

significant improvement already in the first iterations. Table 1 presents the

Fig. 5 Nelder–Mead algorithm:
best performance index value
over iterations during the model
calibration procedure for ten
calibration runs
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performance of the algorithm in terms of various criteria. It may be seen that the

algorithm converges to low and very similar PI values, equal to 9.9 km/h on

average. Moreover, the algorithm requires 113–489 iterations (275.5 iterations on

average) to converge which correspond to less than 1 min (0.5 min on average)

computation time.

Table 1 Nelder–Mead algorithm: performance criteria

Calibration run PI (km/h) Iterations Cost function evaluations Computation time (min)

1 9.7 467 712 0.9

2 9.8 366 573 0.7

3 9.8 489 749 0.9

4 9.9 344 561 0.7

5 9.8 229 372 0.4

6 9.8 261 423 0.5

7 10.0 137 240 0.3

8 9.9 206 337 0.4

9 10.1 143 238 0.3

10 10.0 113 201 0.2

Average 9.9 275.5 440.6 0.5

Fig. 6 Nelder–Mead algorithm: estimated optimal parameter values for each calibration run
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Figure 6 displays the optimal values estimated by the algorithm at the end of

each calibration run for all model parameters and also the corresponding achieved

PI value. It may be seen that the deviation of the estimated parameter values across

the different runs is relatively small. This is especially true for the parameters of the

fundamental diagram (FD), i.e. the free flow speed vf the critical density qcr and the

parameter a (see also Eq. (4)). Moreover, analogy strong correlation is observed in

the estimated optimal values of the parameters s and m. Finally, the stronger

variation observed in the rest of the parameters is deemed to reflect their limited

significance and low sensitivity of the PI with respect to these parameters. Table 4

includes the estimated parameter values for one calibration run with PI value closest

to the average PI value of the 10 runs. This parameter set will be validated and

compared with the optimal sets estimated by the other two algorithms.

6.2 Genetic algorithm

The employed genetic algorithm is included in the Matlab Global Optimization

Toolbox. The population size was set equal to 500, the elite rate equal to 0.01, the

crossover rate equal to 0.8 and the mutation rate equal to 0.1. The termination

criteria utilized are again the cost function convergence which was set equal to

0.001 and the maximum allowed number of iterations (generations) which was set

equal to 1000.

Figure 7 presents the convergence of the genetic algorithm, i.e. the evolution of

the best PI value, for ten calibration runs, starting from random (within reasonable

bounds) initial populations. It is observed that the algorithm achieves low PI values

already in few iterations thanks to the fact that it searches, during each iteration, at a

large number of points within the solution space. Table 2 includes the performance

of the algorithm in terms of various criteria. It may be seen that the algorithm

converges to low and very similar PI values, equal to 10.2 km/h on average. The

number of iterations to converge is much lower compared to the Nelder–Mead

algorithm; however, due to the fact that at each iteration a high number of cost

Fig. 7 Genetic algorithm: best
performance index value over
iterations during the model
calibration procedure for ten
calibration runs
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function evaluations is required, this results in considerably higher computation

time, i.e. about 129 min on average, while the Nelder–Mead algorithm needed less

than 1 min to converge.

Figure 8 displays the optimal values estimated by the algorithm at the end of

each calibration run for all model parameters and also the corresponding achieved

PI value. It is observed, also here, that the deviation of the estimated parameter

Table 2 Genetic algorithm: performance criteria

Calibration run PI (km/h) Iterations Cost function evaluations Computation time (min)

1 10.2 51 25,500 123.5

2 10.2 51 25,500 124.0

3 10.7 62 31,000 150.0

4 10.0 53 26,500 129.1

5 10.2 51 25,500 124.3

6 10.3 58 29,000 140.8

7 10.4 51 25,500 124.4

8 10.2 53 26,500 127.3

9 10.1 51 25,500 122.9

10 10.2 51 25,500 122.8

Average 10.2 53.2 26,600 128.9

Fig. 8 Genetic algorithm: estimated optimal parameter values for each calibration run
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values is small, especially for the parameters involved in the FD. Finally, Table 4

includes the estimated parameter values for one calibration run with PI value closest

to the average PI value of the 10 runs.

6.3 Cross-entropy method (CE method)

The cross-entropy method was applied using population size equal to 500, elite rate

0.05 and smoothing parameter e equal to 0.8. The utilized termination criteria are

the bandwidth of the kernel estimation function, which was set equal to 0.1 and the

maximum allowed number of iterations which was set to 1000.

Figure 9 presents the convergence of the cross-entropy method, i.e. the evolution

of the best PI value in the population, for ten calibration runs, starting from random

(within reasonable bounds) initial populations. It is observed that, similarly to the

genetic algorithm, this method achieves low PI values even already at the first

iterations thanks to the large number of potential solutions considered within the

search space. Table 3 includes the performance of the algorithm in terms of various

criteria. It may be seen that also this algorithm converges to low and similar PI

values, equal to 10.0 km/h on average, but, as with the genetic algorithm, it requires

a high number of cost function evaluations which corresponds to high computation

time compared to the Nelder–Mead algorithm. Finally, comparing the genetic

algorithm with the CE method, it may be seen that both algorithms achieve similar

PI values and also require similar computation time, with the CE method being

some 8 min, on average, faster than the genetic algorithm.

Figure 10 displays the optimal values estimated by the algorithm at the end of

each run for all model parameters and also the achieved PI value. It is observed, also

here, that the deviation of the estimated parameter values is small, especially for the

parameters involved in the FD. Finally, Table 4 includes the estimated parameter

values for one run with PI value closest to the average PI value of the 10 calibration

runs.

Fig. 9 Cross-entropy method:
best performance index value
over iterations during the model
calibration procedure for ten
calibration runs
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6.4 Validation of the produced models

Apart from the performance of the optimization methods, the decision on the

optimization algorithm to be employed for the calibration of a macroscopic traffic

flow model should also consider the quality of the produced solutions (models). As

Table 3 Cross-entropy method: performance criteria

Calibration run PI (km/h) Iterations Cost function evaluations Computation time (min)

1 9.8 95 47,500 130.2

2 10.0 93 46,500 127.9

3 10.1 90 45,000 124.6

4 10.0 91 45,500 125.2

5 9.8 100 50,000 137.7

6 10.1 68 34,000 94.1

7 10.0 97 48,500 135.0

8 9.8 98 49,000 135.3

9 10.1 77 38,500 106.6

10 10.2 68 34,000 95.0

Average 10.0 87.7 43,850 121.1

Fig. 10 Cross-entropy method: estimated optimal parameter values for each calibration run
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presented above, the calibration of METANET model for the particular freeway

site, using three different optimization algorithms, may result in different model

parameter sets, with similar but not the same parameter values, see for example

Table 4. In particular, Table 4 indicates the very close proximity of, particularly, the

optimal parameter values which are involved in the fundamental diagram (FD).

Moreover, it is known from previous model validation work (e.g. Papageorgiou

et al. 1990) that the calibration PI features low sensitivity around the optimum if the

parameters m and s are changing values simultaneously. This is confirmed with the

results of Table 4, where the ratio m/s may be calculated to be 1.1, 1.3, 1.2 for the

three respective optimization methods, despite the stronger deviation of the

underlying absolute parameter values.

The resulting traffic flow models should reflect reliably the traffic characteristics

of the considered network, thus they should be able to reproduce its typical traffic

conditions. In order to test the accuracy and robustness of the produced models, the

models are validated, i.e. are applied using different traffic data sets (from the same

freeway stretch) than the ones used for their calibration. To this end, the models

included in Table 4, were applied using traffic data from 17/06/2009, 23/06/2009

and 25/06/2009. Table 5 presents the validation results in terms of PI values for all

three models and all utilized traffic data sets. Moreover, Fig. 11 presents the space–

time diagrams of the real measured speeds and the models’ estimation of speed for

all considered dates. It is observed that all models are able to reproduce the traffic

conditions of other days with sufficient accuracy, achieving low PI values for both

the calibration and the validation dates.

Table 4 Optimal model parameter sets estimated by use of different optimization algorithms

Optimization algorithm Model parameters

s (s) m (km2/h) d (h/km) u (h/km) qcr (veh/km/lane) a vf (km/h)

NM algorithm 20.2 22.5 0.9 1.2 36.3 1.4 120.9

GA 26.7 34.2 1.1 1.2 34.3 1.7 116.4

CE method 30.4 36.3 0.3 1.2 34.1 1.5 118.7

Table 5 Performance index value for each optimal parameter set for four different dates

Optimization algorithm Validation results (PI)

16/06/2009 17/06/2009 23/06/2009 25/06/2009 Average

NM algorithm 9.9 9.2 11.2 9.6 10.0

GA 10.2 10.63 12.8 8.4 10.5

CE method 10.0 10.1 12.1 8.6 10.2
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Considering the above, all three optimization algorithms are able to estimate a

robust model parameter set. Nevertheless, while employing an optimization

algorithm, the required computation time for calibration should be taken into

account. Note that multiple calibration runs may have to be carried out in order to

decide on the number of the utilized model parameters and also in order to tune the

algorithms’ parameters for the particular problem. Finally, it should further be noted

that, in this study, a low number of model parameters were considered, while in

other problems with higher number of parameters the performance of the presented

algorithms may differ.

Fig. 11 Space-time diagrams of real measured speed and the models’ estimation of speed for 16/06/
2009, 17/06/2009, 23/06/2009 and 25/06/2009

162 A. Spiliopoulou et al.

123



7 Conclusions

Within this study, three different optimization algorithms were employed to solve

the parameter estimation problem for a macroscopic traffic flow model. In

particular, the deterministic Nelder–Mead algorithm, the stochastic genetic

algorithm and the stochastic cross-entropy method were utilized in order to

calibrate the METANET model for a particular freeway stretch using real traffic

data. The optimization results showed that all three algorithms were able to

converge to robust model parameter sets, albeit achieving different performances

considering the convergence speed and the required computation time.
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