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Abstract China’s rapid economic development has intensified the country’s many

problems in the areas of energy shortage and environmental pollution. However,

little research has been done which pays close attention to the evaluation of energy

and environmental performance even though such evaluation is considered a crucial

method in the fight to save energy, protect the environment, and mitigate global

climate change. In this study, we utilize improved data envelopment analysis (DEA)

models to evaluate the regional total-factor energy and environmental efficiency of

China during the 11th 5-year plan period (2006–2010). The total-factor energy and

environmental efficiency is considered using a joint production framework of both

non-energy inputs and energy inputs, as well as desirable outputs and undesirable

outputs. In addition, the DEA-based Malmquist index is applied to evaluate the

dynamic productivity change considering the undesirable outputs and energy inputs.

An empirical study is done on 30 of mainland China’s provincial-level regions,

showing that most of them have low energy and environmental efficiency. On

average, eastern China had the highest energy and environmental efficiency, fol-

lowed by central China, with the efficiency of western China being the worst.
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Considering the Malmquist index, most regions’ productivity improved each year of

2006–2010. In addition, most regions had a declining trend in technical efficiency

even though most regions had an increasing trend in technical progress.

Keywords Data envelopment analysis � Undesirable outputs � Energy and

environmental performance � Malmquist index

1 Introduction

Since mainland China’s economic reform and opening policy started in 1978,

China’s economy has seen remarkable development. According to the National

Bureau of Statistics of China (NBSC), the average annual growth rate of China’s

gross domestic product (GDP) has increased 15.73 % from 1979 to 2013. This

increasing trend has made China the second largest economy in the world following

the United States (Bi et al. 2012). With the rapid development of its economy,

China’s energy consumption is also growing rapidly. For example, Wang (2010)

indicated that China has already overtaken the United States to become the world’s

largest energy consumer. The rapidly increasing energy consumption inevitably has

caused serious environmental problems (Wang et al. 2007, 2013a; Song et al. 2014;

Wu et al. 2015). Therefore, the energy shortage and environmental problems have

already become significant difficulties for the economic growth and societal

development of China (Zhou et al. 2008a; Wu et al. 2013, 2014a, b; Saharidis 2015).

In order to balance rational utilization of energy, environmental pollution, and

sustainable development, many energy and environmental regulations have been

strengthened by the Chinese government. For example, for the 11th 5-year plan

effective from 2006 to 2010, China’s central government set a target of reducing the

energy consumption of per unit of GDP by 20 % and the main pollutant total

emissions by 10 %. Evaluating energy and environmental performance has attracted

increasing interest in recent years since it is considered a crucial method to save

energy, protect the environment, and mitigate global climate change (Wang et al.

2013a). Since different regions of China may have different energy consumption

structures and different environmental protection policies, the regional energy and

environmental performances within China may have big differences across different

regions (Wang et al. 2013b). Hence, in order to save energy and protect the

environment, it is necessary to evaluate China’s regional energy and environmental

efficiency.

Traditionally, there are two main approaches for measuring efficiency. One is the

parametric stochastic frontier analysis (SFA) approach; the other is the nonpara-

metric data envelopment analysis (DEA) approach (Coelli et al. 2005). Wu et al.

(2014a, b) indicated that the SFA approach is suitable only for one-output scenarios

and the results largely depend on the predicted forms of the production functions.

Therefore, incorrect results may be obtained due to using an incorrect form of

production function. Developed by Charnes et al. (1978), DEA is a programming-

based technique for measuring the relative efficiency of a group of homogenous

decision making units (DMUs) (Cooper et al. 2007; Song et al. 2013; Cook and
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Seiford 2009; Sharma and Yu 2013; Yang et al. 2015a, b). As a nonparametric

technique, DEA does not need any prior functional form of the production frontier

and can effectively measure the efficiency of a system with multiple inputs and

multiple outputs (Smirlis et al. 2012; Panta et al. 2013; Huang et al. 2015; Wu et al.

2009). In the past years, DEA has been extensively applied in the performance

evaluation and benchmarking of hospitals (e.g. Karagiannis and Velentzas 2012;

Dimas et al. 2012), supply chains of enterprises (e.g. Chen et al. 2006), and other

entities (e.g. Halkos et al. 2015; Shabani et al. 2012; Ibanez and McCalley 2011;

Tsolas and Charles 2015). Since any economic activity is a joint production process

using energy resources (coal, oil, etc.) and other non-energy resources (capital,

labor, etc.) to produce desirable outputs (GDP) and undesirable outputs (CO2,

wastes, etc.), DEA is used to construct the framework of total-factor efficiency

evaluation in this paper.

Recently, DEA has been widely applied to studying energy and environmental

efficiency. As for energy efficiency, Ramanathan (2000) compared the energy

efficiencies of alternative transport modes by using DEA. Hu and Wang (2006)

applied DEA models to analyze the total factor energy efficiency index of 29

administrative regions in China for the period 1995–2002. Hu and Lee (2008)

employed DEA methods to measure the energy utility efficiency of China. Yeh et al.

(2010) measured the technical efficiency of energy utilization in the Chinese

mainland and Taiwan by using the traditional BCC model (Banker et al. 1984). Wu

(2012) presented several DEA models to evaluate industrial energy efficiency in 28

of China’s regions.

As for environmental efficiency, Färe et al. (1989) made the first attempt to deal

with undesirable outputs while using nonlinear programming. Seiford and Zhu

(2002) applied a radial DEA model, considering undesirable outputs, to improve the

environmental efficiency by decreasing undesirable outputs and increasing desirable

outputs. Using DEA techniques, Zhou et al. (2008b) divided outputs into desirable

and undesirable to calculate the carbon emission efficiency of eight world regions.

Song and Wang (2014) calculated China’s regional environmental efficiency for

1992, 1999, 2007, and 2012, and then decomposed the provincial environmental

efficiency from the perspective of government regulation and technological

progress. Yang et al. (2015a, b) measured the environmental efficiency of China

based on an environmental super-efficiency DEA model using data of 30 provinces

in China during the period 2000–2010.

In addition, there is also some literature that directly addresses combined energy

and environmental efficiency. For example, Bian and Yang (2010) employed

several DEA models for estimating resource efficiencies and environment

efficiencies simultaneously. Shi et al. (2010) measured the energy and environ-

mental overall technical efficiency, pure technical efficiency, and scale efficiency of

28 administrative regions in China based on three extended DEA models. Wang

et al. (2012) established several DEA efficiency models based on environmental

production technology to estimate the environmental efficiency, economic effi-

ciency, and economic-environmental efficiency of 28 provinces in China. Wang

et al. (2013a) applied the range-adjusted measure based on a nonparametric

approach to evaluate the regional energy and environmental efficiency of China
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over the period 2006–2010. Wang et al. (2013b) utilized a DEA window analysis

technique to measure the energy and environmental efficiency in cross-sectional and

time-varying data of 29 administrative regions of China during the period

2000–2008.

In this paper, following Bian and Yang (2010) and Wang et al. (2013b), we

propose an improved DEA model to measure the total-factor energy and

environmental efficiency of 30 provincial-level regions in mainland China during

the 11th 5-year plan period (2006–2010). In particular, our proposed total-factor

energy and environmental efficiency measure considers a joint production

framework of non-energy inputs (labor and capital) and energy input (total energy

consumption), as well as a desirable output (GDP) and an undesirable output (waste

gas). In addition, in order to reflect the dynamic efficiency and productivity change

considering the undesirable output and energy input, a DEA-based Malmquist index

method is utilized in our paper. The Malmquist index is further classified into the

change in technical efficiency (TEC) and the change in technical progress (TPC) in

order to reflect the trends of those two aspects.

The structure of this paper is as follows. Section 2 presents the methodology of

our study. Then the energy and environmental efficiency and Malmquist index of

different regions and areas in China during the period 2006–2010 are analyzed in

Sect. 3. Finally conclusions are shown in Sect. 4.

2 Methodology

In this section, we firstly present a non-radial DEA model to evaluate the total-factor

energy and environmental efficiency. Then we explore the total-factor energy and

environmental efficiency by applying DEA-based Malmquist indices to analyze the

efficiency and productivity changes over time.

2.1 DEA model for evaluating the energy and environmental performance

Suppose that there are n DMUs denoted by DMUj (j = 1,…,n), and each of them

represents an administrative region of China. Each DMUj (j = 1,…,n) consumes m

non-energy inputs denoted by X ¼ ðX1j;X2j; . . .;XmjÞT and d energy inputs denoted

by E ¼ ðE1j;E2j; . . .;EdjÞT to produce s desirable outputs denoted by Y ¼
ðY1j; Y2j; . . .; YsjÞT along with p undesirable outputs denoted by

F ¼ ðF1j;F2j; . . .;FpjÞT .

In the DEA literature, there have been a variety of approaches to dealing with

undesirable outputs, which can be mainly divided into two categories (Song et al.

2012; Chen and Delmas 2012). The first one is based on the weak disposability

assumption of undesirable outputs (Färe et al. 1989, 2005; Zhou et al. 2012) and the

second category on the strong disposability assumption on undesirable output. Two

ways for treating undesirable output under this latter assumption have been

proposed. One way treats undesirable outputs as inputs (Tyteca 1997; Shi et al.

2010; Macpherson et al. 2013); the other way is a transformation method which
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contains a non-linear or linear monotonic decreasing transformation (Scheel 2001;

Seiford and Zhu 2002). In this paper, the weak disposability assumption of

undesirable outputs is chosen for building our new DEA models since it is prevalent

in DEA literature. The corresponding DEA production technology T exhibiting

constant returns to scale (CRS) can be characterized as follows:

T ¼ fðX;E;Y;FÞj
Pn

j¼1

kjXij �Xi; i ¼ 1; . . .;m

Pn

j¼1

kjEkj �Ek; k ¼ 1; . . .; d

Pn

j¼1

kjYrj �Yr; r ¼ 1; . . .; s

Pn

j¼1

kjFgj ¼ Fg; g ¼ 1; . . .; p

kj � 0; j ¼ 1; . . .; ng

ð1Þ

In this study, the undesirable outputs are generated by fuel combustion during the

industrial production process. The corresponding undesirable outputs should be

reduced if energy consumption is reduced. Therefore, following Shi et al. (2010)

and Wang et al. (2013b), we first provide the following radial DEA-based model for

evaluating the DMU0’s total-factor energy and environmental performance as

Min h

s:t:
Pn

j¼1

kjXij �Xi0; i ¼ 1; . . .;m

Pn

j¼1

kjEkj � hEk0; k ¼ 1; . . .; d

Pn

j¼1

kjYrj � Yr0; r ¼ 1; . . .; s

Pn

j¼1

kjFgj ¼ hFg0; g ¼ 1; . . .; p

kj � 0; j ¼ 1; . . .; n

ð2Þ

Note that model (2) proportionally decreases the amounts of energy inputs and

undesirable outputs as much as possible for a given level of non-energy inputs and

desirable outputs. Obviously, the index h for energy and environmental efficiency is

between 0 and 1. The larger the index, the better the corresponding region performs

both in saving energy and protecting the environment.

Once the optimal solutions ðh�; k�j Þ are obtained by solving model (2), we can

determine each DMU’s efficient targets for all inputs/outputs as
Pn

j¼1 k
�
j Xij;

Pn
j¼1 k

�
j Ekj;

Pn
j¼1 k

�
j Yrj;

Pn
j¼1 k

�
j Ftj

� �
.

The above total-factor energy and environmental efficiency measure is a kind of

radial DEA efficiency index. Zhou et al. (2007) and Zhou and Ang (2008) indicated

that this radial measure may have weak discriminating power in energy and

environmental efficiency comparisons. Therefore, following Bian and Yang (2010)
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and Wang et al. (2013b), we extend the radial energy and environmental efficiency

measure to the following non-radial measure.

Min
1

2

1

d

Xd

k¼1

hk þ
1

p

Xp

g¼1

hg

 !

s:t:
Pn

j¼1

kjXij �Xi0; i ¼ 1; . . .;m

Pn

j¼1

kjEkj � hkEk0; k ¼ 1; . . .; d

Pn

j¼1

kjYrj � Yr0; r ¼ 1; . . .; s

Pn

j¼1

kjFgj ¼ hgFg0; g ¼ 1; . . .; p

kj � 0; j ¼ 1; . . .; n

ð3Þ

Model (3) can evaluate the energy and environmental efficiency by using

different non-proportional adjustments for any energy inputs and undesirable

outputs. In other words, this measure can account for energy input mix effects and

undesirable output mix effects when measuring DMU energy and environmental

efficiency. In addition, we should point out that the energy and environmental

efficiency is measured by using different non-proportional adjustments and the

unified efficiency is calculated through a decision maker specified weight assigned

to each of these two efficiency scores. Similar to Bian and Yang (2010) and Wang

et al. (2013b), the weights are both set to 1/2 in this paper, but the decision makers

also could assign different weights to these scores to represent different preferences

between energy utilization performance and environmental protection performance.

2.2 DEA-based Malmquist index for evaluating the dynamic performance

In this study, we evaluate the energy and environmental efficiency of different

regions in China not only for a single year but for the 11th 5-year plan from 2006 to

2010, which may be considered a dynamic evaluation and could provide us with

more useful information about efficiency changes. Developed by Malmquist (1953),

the Malmquist index has been widely applied in DEA literature for evaluating

dynamic efficiency (e.g. Färe et al. 1994; Mahadevan 2002; Chen and Ali 2004;

Camanho and Dyson 2006). Therefore, we extend the Malmquist index analysis for

use in the dynamic evaluation of energy and environmental performance.

Let ðXt;Et;Yt;FtÞ denote the production process of period t, t = 1,…,T. Then

the Malmquist index can be defined using the results of the following four steps.

1. Compare ðXt
0;E

t
0;Y

t
0;F

t
0Þ to the empirical production frontier (EPF) at time t,

i.e., calculate ht0ðXt
0;E

t
0;Y

t
0;F

t
0Þ via the following linear program:

720 J. Wu et al.

123



ht0 Xt
0;E

t
0;Y

t
0;F

t
0

� �
¼ Min

1

2

1

d

Xd

k¼1

hk þ
1

p

Xp

g¼1

hg

 !

s:t:
Pn

j¼1

kjXt
ij �Xt

i0; i ¼ 1; . . .;m

Pn

j¼1

kjEt
kj � hkEt

k0; k ¼ 1; . . .; d

Pn

j¼1

kjYt
rj � Yt

r0; r ¼ 1; . . .; s

Pn

j¼1

kjFt
gj ¼ hgFt

g0; g ¼ 1; . . .; p

kj � 0; j ¼ 1; . . .; n

ð4Þ

2. Compare ðXtþ1
0 ;Etþ1

0 ;Ytþ1
0 ;Ftþ1

0 Þ to the empirical production frontier (EPF) at

time t ? 1, i.e., calculate htþ1
0 ðXtþ1

0 ;Etþ1
0 ;Ytþ1

0 ;Ftþ1
0 Þ via the following linear

program:

htþ1
0 Xtþ1

0 ;Etþ1
0 ;Ytþ1

0 ;Ftþ1
0

� �
¼ Min

1

2

1

d

Xd

k¼1

hk þ
1

p

Xp

g¼1

hg

 !

s:t:
Pn

j¼1

kjXtþ1
ij �Xtþ1

i0 ; i ¼ 1; . . .;m

Pn

j¼1

kjEtþ1
kj � hkEtþ1

k0 ; k ¼ 1; . . .; d

Pn

j¼1

kjYtþ1
rj � Ytþ1

r0 ; r ¼ 1; . . .; s

Pn

j¼1

kjFtþ1
gj ¼ hgFtþ1

g0 ; g ¼ 1; . . .; p

kj � 0; j ¼ 1; . . .; n

ð5Þ

3. Compare ðXt
0;E

t
0;Y

t
0;F

t
0Þ to the empirical production frontier (EPF) at time

t ? 1, i.e., calculate htþ1
0 ðXt

0;E
t
0;Y

t
0;F

t
0Þ via the following linear program:
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htþ1
0 Xt

0;E
t
0;Y

t
0;F

t
0

� �
¼ Min

1

2

1

d

Xd

k¼1

hk þ
1

p

Xp

g¼1

hg

 !

s:t:
Pn

j¼1

kjXtþ1
ij �Xt

i0; i ¼ 1; . . .;m

Pn

j¼1

kjEtþ1
kj � hkEt

k0; k ¼ 1; . . .; d

Pn

j¼1

kjYtþ1
rj � Yt

r0; r ¼ 1; . . .; s

Pn

j¼1

kjFtþ1
gj ¼ hgFt

g0; g ¼ 1; . . .; p

kj � 0; j ¼ 1; . . .; n

ð6Þ

4. Compare ðXtþ1
0 ;Etþ1

0 ;Ytþ1
0 ;Ftþ1

0 Þ to the empirical production frontier (EPF) at

time t ? 1, i.e., calculate ht0ðXtþ1
0 ;Etþ1

0 ;Ytþ1
0 ;Ftþ1

0 Þ via the following linear

program:

ht0 Xtþ1
0 ;Etþ1

0 ;Ytþ1
0 ;Ftþ1

0

� �
¼ Min

1

2

1

d

Xd

k¼1

hk þ
1

p

Xp

g¼1

hg

 !

s:t:
Pn

j¼1

kjXt
ij �Xtþ1

i0 ; i ¼ 1; . . .;m

Pn

j¼1

kjEt
kj � hkEtþ1

k0 ; k ¼ 1; . . .; d

Pn

j¼1

kjYt
rj � Ytþ1

r0 ; r ¼ 1; . . .; s

Pn

j¼1

kjFt
gj ¼ hgFtþ1

g0 ; g ¼ 1; . . .; p

kj � 0; j ¼ 1; . . .; n

ð7Þ

Then the Malmquist index is defined as:

M0 ¼
ht0 Xtþ1

0 ;Etþ1
0 ;Ytþ1

0 ;Ftþ1
0

� �

ht0 Xt
0;E

t
0;Y

t
0;F

t
0

� �
htþ1

0 Xtþ1
0 ;Etþ1

0 ;Ytþ1
0 ;Ftþ1

0

� �

htþ1
0 Xt

0;E
t
0;Y

t
0;F

t
0

� �

" #1=2

ð8Þ

722 J. Wu et al.

123



The Malmquist index M0 measures the efficiency and productivity changes

between periods t and t ? 1. Productivity declines if M0\ 1, remains unchanged if

M0 = 1, and improves if M0[ 1.

According to Färe et al. (1994), the Malmquist index M0 can be divided into two

components:

M0 ¼
htþ1

0 Xtþ1
0 ;Etþ1

0 ;Ytþ1
0 ;Ftþ1

0

� �

ht0 Xt
0;E

t
0;Y

t
0;F

t
0

� �

�
ht0 Xtþ1

0 ;Etþ1
0 ;Ytþ1

0 ;Ftþ1
0

� �

htþ1
0 Xtþ1

0 ;Etþ1
0 ;Ytþ1

0 ;Ftþ1
0

� �
ht0 Xt

0;E
t
0;Y

t
0;F

t
0

� �

htþ1
0 Xtþ1

0 ;Etþ1
0 ;Ytþ1

0 ;Ftþ1
0

� �

" #1=2

where the first component on the right hand side measures the change in technical

efficiency (TEC) between periods t and t ? 1, denoted as follows.

TEC0 ¼
htþ1

0 Xtþ1
0 ;Etþ1

0 ;Ytþ1
0 ;Ftþ1

0

� �

ht0 Xt
0;E

t
0;Y

t
0;F

t
0

� � ð9Þ

Technical efficiency declines if TEC0\ 1, remains unchanged if TEC0 = 1, and

improves if TEC0[ 1. The second component, which is the geometric mean,

measures the change in technical progress (TPC) between periods t and t ? 1,

denoted as follows.

TPC0 ¼
ht0 Xtþ1

0 ;Etþ1
0 ;Ytþ1

0 ;Ftþ1
0

� �

htþ1
0 Xtþ1

0 ;Etþ1
0 ;Ytþ1

0 ;Ftþ1
0

� �
ht0 Xt

0;E
t
0;Y

t
0;F

t
0

� �

htþ1
0 Xt

0;E
t
0;Y

t
0;F

t
0

� �

" #1=2

ð10Þ

Technical progress declines if TPC0\ 1, remains unchanged if TPC0 = 1, and

improves if TPC0[ 1.

3 Empirical studies

3.1 Data description

This section describes how to use our developed approach to evaluate the energy

and environmental efficiencies of 30 provincial-level regions in mainland China

Table 1 Variables of inputs and outputs

Input/output Variable Units

Non-energy input Labor 10 Thousand persons

Capital 100 Million RMB

Energy input Energy 10 Thousand tons of coal equivalent (10,000 tce)

Desirable output GDP 100 Million RMB

Undesirable output Waste gas 100 Million cu.m
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during the 11th 5-year plan period (2006–2010). As Golany and Roll (1989)

indicated, the number of evaluated DMUs should be more than five times the total

selected number of inputs and outputs, otherwise the validity and credibility of the

results will be seriously compromised. Hence, following many studies (Wang et al.

2013a, b; Li et al. 2013), our study selects five factors as inputs and outputs. We

employ labor and investment of fixed assets (namely capital) as two non-energy

inputs, energy consumption as the only energy input, GDP as one desirable output,

and industrial waste gas emissions as one undesirable output. The input–output

measures that are used in this study are summarized in Table 1.

Table 2 Descriptive statistics of the raw data

Variables Input Desirable output Undesirable output

Labor Investment Energy GDP Waste gas

2006

Mean 245.20967 378.40 9684.57 11,032.63 7750.82

Median 133.055 367.5 6948.5 7614 5528.375

SD 271.93735 210.21522 6167.393748 8619.6952 6289.1881

Max. 1203.58 941 26,759 39,254 26,587.76

Min. 12.2 58 920 860 648.5

2007

Mean 262.439 440.63 10,632.47 12,938.50 9313.16

Median 141.835 377 7663 9372 6763.59

SD 295.71637 245.02 6764.41 9840.34 7475.62

Max. 1307.4 1197 29,177 48,036 31,777.01

Min. 12.33 27 1057 1115 797.35

2008

Mean 294.52833 522.43 11,256.77 13,461.77 11,097.30

Median 167.275 531.5 8289.5 9477.5 8405.285

SD 339.63043 308.43 7068.77 9963.18 8729.27

Max. 1493.38 1550 30,570 40,219 36,796.71

Min. 12.61 36 1135 1345 1018.62

2009

Mean 294.31767 619.53 11,907.93 14,535.03 12,162.08

Median 159.71 548.5 8906 11,002.5 9163.625

SD 326.2036 364.34 7435.20 10,499.63 9499.96

Max. 1436.02 1880 32,420 50,779 39,482.56

Min. 12 56 1233 1353 1081.27

2010

Mean 318.09333 690.37 12,983.70 17,305.07 14,551.15

Median 175.12 591.5 9758 13,687.5 11,020.3

SD 353.64423 433.57 8035.07 11,964.98 11,118.84

Max. 1568 2093 34,808 56,324 46,013.06

Min. 12.44 61 1359 1360 1350.43
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We use the data of the 11th 5-year plan period (2006–2010). Unfortunately, the

data for the Tibet Autonomous Region are incomplete and so it is not considered in

the current study. The data are derived from the ‘‘China Statistical Yearbook’’ and

‘‘China Energy Statistical Yearbook’’. A statistical description of data is shown in

Table 2.

3.2 Results and discussion of regional energy and environmental efficiency

We apply our methodology provided in Sect. 2 to calculate the energy and

environmental efficiencies of 30 provincial-level regions in mainland China during

Table 3 The energy and environmental efficiency of 30 regions of China

Regions 2006 2007 2008 2009 2010 Average

1. Beijing 1 1 1 1 1 1

2. Tianjin 0.553 0.588 0.574 0.574 0.535 0.565

3. Hebei 0.274 0.258 0.270 0.245 0.243 0.258

4. Shanxi 0.199 0.197 0.194 0.184 0.179 0.190

5. Inner Mongolia 0.237 0.253 0.253 0.243 0.242 0.246

6. Liaoning 0.322 0.337 0.285 0.325 0.332 0.320

7. Jilin 0.486 0.498 0.456 0.441 0.434 0.463

8. Heilongjiang 0.549 0.497 0.444 0.378 0.400 0.454

9. Shanghai 0.753 0.753 0.654 0.664 0.600 0.685

10. Jiangsu 0.657 1.000 0.635 0.621 0.619 0.706

11. Zhejiang 0.720 0.693 0.641 0.620 0.633 0.661

12. Anhui 0.511 0.449 0.412 0.425 0.430 0.445

13. Fujian 0.700 0.653 0.603 0.582 0.554 0.618

14. Jiangxi 0.640 0.615 0.550 0.524 0.528 0.571

15. Shandong 0.529 0.497 0.467 0.458 0.428 0.476

16. Henan 0.481 0.476 0.443 0.426 0.436 0.453

17. Hubei 0.444 0.480 0.441 0.443 0.454 0.453

18. Hunan 0.623 0.541 0.509 0.481 0.449 0.520

19. Guangdong 1.000 0.947 0.794 0.749 0.743 0.846

20. Guangxi 0.471 0.429 0.425 0.403 0.409 0.427

21. Hainan 1 1 1 1 1 1

22. Chongqing 0.427 0.411 0.408 0.345 0.370 0.392

23. Sichuan 0.472 0.357 0.425 0.426 0.380 0.412

24. Guizhou 0.216 0.208 0.244 0.231 0.215 0.223

25. Yunnan 0.389 0.368 0.349 0.326 0.316 0.349

26. Shaanxi 0.520 0.504 0.427 0.409 0.407 0.453

27. Gansu 0.307 0.290 0.277 0.264 0.282 0.284

28. Qinghai 0.211 0.205 0.188 0.184 0.187 0.195

29. Ningxia 0.157 0.156 0.159 0.160 0.131 0.152

30. Xinjiang 0.355 0.330 0.300 0.265 0.260 0.302
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the 11th 5-year plan period (2006–2010). By firstly employing model (3), the

evaluated results are listed in Table 3. In Table 3, columns 3–7 show the energy and

environmental efficiencies of the 30 regions from 2006 to 2010 and column 8 lists

the average energy and environmental efficiencies for these 5 years.

It should be noted that the higher the value of energy and environmental

efficiency is, the more efficient the region is. From Table 3, the following

conclusions can be drawn. Firstly, Beijing and Hainan performed well from 2006 to

2010. Their energy and environmental efficiencies were all equal to 1, i.e. they were

all efficient in these 5 years. Secondly, Ningxia performed the worst since the

energy and environmental efficiencies for the 5 years were 0.157, 0.156, 0.159,

0.160 and 0.131, and its average efficiency over these 5 years was 0.152. Thirdly,

more than half of the 30 regions did not perform well during the 11th 5-year plan.

For example, there are 20 regions which had average energy and environmental

efficiency below 0.5, including Hebei with 0.258, Shanxi with 0.19, Inner Mongolia

with 0.246, Liaoning with 0.32, and Jilin with 0.463. Fourthly, the energy and

environmental efficiency trend was not promising since the energy and environ-

mental efficiency of most regions did not show any obvious increasing trend during

the 5 years. In fact, they actually had a decreasing trend in some regions. Take

Xinjiang for example. Its energy and environmental efficiency diminished from

0.355 to 0.330 (2006–2007), from 0.330 to 0.3 (2007–2008), from 0.3 to 0.265

(2008–2009), and from 0.265 to 0.26 (2009–2010). Finally, we know that the

developed regions generally performed better than those less developed regions. For

example, the average energy and environmental efficiencies of developed regions

like Beijing, Shanghai, Jiangsu, and Guangdong were 1, 0.685, 0.706, and 0.846

receptively. This result shows us that the energy and environmental efficiency of

provincial-level regions in China are not cause for optimism and so more actions

need to be taken, by both national and regional governments, to practically handle

the problems of energy shortage and environmental pollution.

To analyze the energy and environmental efficiency on a relatively larger scale,

we group the 30 provincial-level regions into three categories: eastern area, central

area, and western area. These areas and their constituent regions are listed in

Table 4.

From Table 4, we know there are 11, 10, and 9 regions in the east, center, and

west of China respectively. In the past 30 years, the eastern area has experienced the

fastest economic growth in China. Along with a dense population, this area is home

to the most light industry and foreign trade firms. Due to its convenient

transportation and developed infrastructure, this area also attracts the most foreign

Table 4 Areas of China and constituent provincial-level regions

Area Regions

East Beijing, Tianjin, Hebei, Liaoning, Shandong, Shanghai, Jiangsu, Zhejiang, Fujian, Guangdong,

Hainan

Central Shanxi, Inner Mongolia, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan, Guangxi

West Chongqing, Sichuan, Guizhou, Yunnan, Shanxi, Gansu, Qinghai, Ningxia, Xinjiang
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investment and the best technology. The central area has a total population of 361

million, which accounts for 28 % of the national population. This area shows a

lower level of development than the eastern area. The western region accounts for

71 % of the total area of China. Economic development in this area is lagging

behind that of the eastern area and central area. Next we illustrate the average

energy and environmental efficiencies of the three areas and 30 regions of China in

Fig. 1.

From Fig. 1, the following conclusions can be drawn. Firstly, in the eastern area,

3 out of 11 regions (Beijing, Guangdong, and Hainan) are highly energy and

environmentally efficient with average efficiency scores above 0.8, and 7 out of 11

regions (Tianjin, Liaoning, Shandong, Shanghai, Jiangsu, Zhejiang, and Fujian)

have average efficiency scores between 0.3 and 0.8, with only one region (Hebei)

having average efficiency score below 0.3. Secondly, in the central area, Jiangxi has

the highest average efficiency and its score is no more than 0.8, which means no

region in this area has high energy and environmental efficiency. All the average

efficiency scores of the other regions in this area are below 0.6, and Shanxi has the

lowest average efficiency score of 0.190, followed by Inner Mongolia with 0.246.

Thirdly, in the western area, all of the 9 regions have low efficiencies below 0.5.

Fig. 1 Regional energy and environmental efficiency of China

Table 5 Energy and

environmental efficiency of the

three big areas

Area 2006 2007 2008 2009 2010 Average

East 0.683 0.702 0.629 0.622 0.608 0.649

Central 0.464 0.443 0.413 0.395 0.396 0.422

West 0.339 0.314 0.309 0.290 0.283 0.307

Whole country 0.507 0.500 0.461 0.446 0.440 0.471
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We also calculate the average efficiencies of the three larger areas and the whole

country for each year from 2006 to 2010; the results are shown in Table 5.

In order to clearly reflect the difference of the three areas, we illustrate the energy

and environmental efficiencies of Table 5 in the following Fig. 2. From Fig. 2, we

have the following conclusions. Firstly, from an area perspective considering each

year during 2006–2010, the eastern area achieved the highest average energy and

environmental efficiency score, followed by the central area and then the western

area, but the efficiency scores of the central and western areas are both below the

average efficiency at the whole country level. Secondly, all of these three areas had

similar increasing and decreasing trends during the years 2007–2010. Finally, the

energy and environmental efficiency of the whole country had a decreasing trend

from 2006 to 2009. After that, the efficiency began to present an increasing trend

from 2009 to 2010.

3.3 Results and discussion of Malmquist index

In order to dynamically analyze the productivity changes for each region during our

study period and give a more detailed and clear demonstration, we show 30

provincial-level regions’ Malmquist indices for 2006–2007, 2007–2008,

2008–2009, and 2009–2010. Applying models (4)–(8) to the data in Table 2, the

Malmquist indices M can be calculated. Table 6 reports the Malmquist index of 30

regions of China over the 5-year period.

From Table 6, we can draw the following conclusions. Firstly we know that the

values of the Malmquist index of the 30 regions are mostly greater than 1 for the

reported period, which indicates that most regions’ productivity improved during

each year of the period 2006–2010. Consider, for example, Beijing. Its productivity

Fig. 2 Average energy and environmental efficiency of China and its three areas
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improved 6.3 % for 2006–2007, 29.3 % for 2007–2008, 14.4 % for 2008–2009, and

2.6 % for 2009–2010. A few regions have a Malmquist index lower than 1, as seen

by the Malmquist index for Hebei being 0.959 for 2008–2009 and for Shanghai

being 0.92 for 2006–2007. These rare Malmquist indices lower than 1 indicate the

decline of productivity in these few regions from 2006 to 2010. Secondly, the

maximum value of Malmquist index for the 30 regions during 2006–2010 is 1.433

for Sichuan for 2007–2008, which had also the minimum value of Malmquist index

(0.841) for 2006–2007. Thirdly, the average values of Malmquist index for the 30

regions are all greater than 1 during 2006–2010, which indicates the improvement in

Table 6 Malmquist indices of 30 regions of China

Area Regions 2006–2007 2007–2008 2008–2009 2009–2010 Region

average

Area

averageM M M M

East Beijing 1.063 1.293 1.144 1.026 1.132 1.084

Tianjin 1.185 1.176 1.060 1.016 1.110

Hebei 1.059 1.239 0.959 1.086 1.086

Liaoning 1.170 0.998 1.207 1.116 1.123

Shandong 1.031 1.136 1.038 1.018 1.056

Shanghai 0.920 1.141 1.075 0.968 1.026

Jiangsu 1.393 1.080 1.036 1.065 1.144

Zhejiang 1.054 1.133 1.026 1.113 1.081

Fujian 1.022 1.112 1.023 1.037 1.049

Guangdong 1.027 1.027 0.999 1.080 1.033

Hainan 1.050 1.166 1.135 1.230 1.145

Central Shanxi 1.093 1.178 1.003 1.061 1.084 1.078

Inner Mongolia 1.199 1.196 1.014 1.090 1.125

Jilin 1.135 1.117 1.025 1.073 1.088

Heilongjiang 1.000 1.097 0.902 1.153 1.038

Anhui 0.979 1.086 1.092 1.104 1.065

Jiangxi 1.067 1.073 1.007 1.101 1.062

Henan 1.095 1.124 1.019 1.117 1.089

Hubei 1.199 1.120 1.065 1.114 1.125

Hunan 0.957 1.156 1.002 1.018 1.033

Guangxi 1.026 1.166 1.004 1.107 1.076

West Chongqing 1.074 1.192 0.896 1.171 1.083 1.075

Sichuan 0.841 1.433 1.062 0.973 1.077

Guizhou 1.075 1.411 1.003 1.013 1.125

Yunnan 1.055 1.143 0.990 1.058 1.061

Shaanxi 1.073 1.023 1.014 1.086 1.049

Gansu 1.047 1.151 1.012 1.164 1.094

Qinghai 1.084 1.101 1.033 1.111 1.082

Ningxia 1.099 1.225 1.065 0.890 1.070

Xinjiang 1.037 1.111 0.935 1.069 1.038
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productivity of each region during the 11th 5-year plan of China. Fourthly, the

average Malmquist indices of the eastern area, central area, and western area are

1.084, 1.078, and 1.075 respectively, which means the productivity in those areas

during 2006–2010 improved 8.4, 7.8, and 7.5 % respectively. This result indicates

that the eastern area had the highest improvement of productivity during the 11th

5-year plan, followed by central area and then the western area. Lastly, we find that

Table 7 TEC and TPC of Malmquist index

Regions 2006–2007 2007–2008 2008–2009 2009–2010 Average

TEC TPC TEC TPC TEC TPC TEC TPC TEC TPC

East

Beijing 1.000 1.063 1.000 1.293 1.000 1.144 1.000 1.026 1.000 1.132

Tianjin 1.064 1.114 0.975 1.206 1.001 1.060 0.932 1.090 0.993 1.118

Hebei 0.943 1.123 1.046 1.184 0.906 1.058 0.994 1.092 0.972 1.114

Liaoning 1.048 1.117 0.844 1.183 1.141 1.058 1.024 1.090 1.014 1.112

Shandong 0.938 1.099 0.940 1.208 0.979 1.060 0.934 1.090 0.948 1.114

Shanghai 0.999 0.921 0.869 1.313 1.015 1.060 0.905 1.070 0.947 1.091

Jiangsu 1.521 0.916 0.635 1.702 0.978 1.059 0.998 1.067 1.033 1.186

Zhejiang 0.962 1.096 0.925 1.225 0.968 1.059 1.021 1.090 0.969 1.117

Fujian 0.933 1.096 0.923 1.205 0.966 1.059 0.951 1.090 0.943 1.113

Guangdong 0.947 1.085 0.839 1.224 0.942 1.060 0.992 1.089 0.930 1.114

Hainan 1.000 1.050 1.000 1.166 1.000 1.135 1.000 1.230 1.000 1.145

Central

Shanxi 0.990 1.104 0.987 1.194 0.948 1.058 0.972 1.092 0.974 1.112

Inner Mongolia 1.068 1.123 1.002 1.194 0.958 1.058 0.999 1.091 1.007 1.117

Jilin 1.024 1.108 0.915 1.220 0.967 1.061 0.985 1.089 0.973 1.120

Heilongjiang 0.905 1.105 0.894 1.226 0.851 1.061 1.059 1.089 0.927 1.120

Anhui 0.877 1.116 0.918 1.183 1.033 1.058 1.012 1.092 0.960 1.112

Jiangxi 0.960 1.111 0.895 1.199 0.952 1.059 1.009 1.091 0.954 1.115

Henan 0.990 1.107 0.930 1.209 0.961 1.060 1.025 1.090 0.977 1.116

Hubei 1.082 1.108 0.919 1.220 1.004 1.060 1.023 1.089 1.007 1.119

Hunan 0.868 1.102 0.941 1.228 0.945 1.061 0.935 1.089 0.922 1.120

Guangxi 0.913 1.124 0.989 1.180 0.949 1.058 1.014 1.092 0.966 1.113

West

Chongqing 0.963 1.115 0.991 1.202 0.846 1.059 1.073 1.091 0.969 1.117

Sichuan 0.757 1.110 1.190 1.204 1.002 1.061 0.894 1.089 0.961 1.116

Guizhou 0.963 1.116 1.173 1.202 0.946 1.060 0.930 1.090 1.003 1.117

Yunnan 0.945 1.117 0.948 1.206 0.934 1.059 0.970 1.090 0.949 1.118

Shaanxi 0.968 1.108 0.848 1.207 0.957 1.059 0.995 1.091 0.942 1.116

Gansu 0.946 1.107 0.954 1.207 0.955 1.060 1.068 1.090 0.981 1.116

Qinghai 0.973 1.115 0.918 1.199 0.976 1.059 1.018 1.091 0.971 1.116

Ningxia 0.992 1.107 1.023 1.198 1.006 1.059 0.815 1.093 0.959 1.114

Xinjiang 0.929 1.116 0.911 1.220 0.882 1.060 0.981 1.089 0.926 1.121
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the values of Malmquist index of all the 30 regions does not show any obvious

increasing or decreasing trend during the four periods. Moreover, we know that the

productivity of most regions had an increasing trend during 2006–2008 and

2008–2010 since the values of Malmquist index of most regions for 2007–2008

(2009–2010) are bigger than the values for 2006–2007 (2008–2009). However, the

productivity of most regions had a decreasing trend during 2007–2009 since the

values of Malmquist index of most regions for 2008–2009 are smaller than the

values for 2007–2008. Take Hainan for example. All of its values of Malmquist

index are bigger than 1, that is, its productivity improved each year, however its

improving trend is not increasing since its values of Malmquist index are 1.05

(2006–2007), 1.166 (2007–2008), 1.135 (2008–2009), and 1.23 (2009–2010). To be

more precise, Hainan’s productivity had an increasing trend during 2006–2008

(from 1.05 to 1.166) and 2008–2010 (from 1.135 to 1.23), but a decreasing trend

during 2007–2009 (from 1.166 to 1.135).

Applying models (9) and (10) from Sect. 2, we divide the Malmquist index into

the change in technical efficiency (TEC) and the change in technical progress

(TPC). The corresponding results are shown in Table 7.

From Table 7, we have the following conclusions. Firstly, during each year of the

period 2006–2010, the values of TECs for most regions are lower than 1, while the

values of TPCs for most regions are higher than 1. For example, there are 22 regions

which have the values of TEC lower than 1 and just 8 regions with the values of

TEC higher than 1 for 2006–2007. In contrast, there are only two regions (Shanghai

and Jiangsu) which have values of TPC lower than 1 for 2006–2007. These results

indicate a decline of technical efficiency and an improvement of technical progress.

Secondly, from the average values of TEC and TPC during the period 2006–2010,

there are 23 regions which have a declining trend of technical efficiency (that is the

value of TEC is lower than 1) while all the 30 regions have an increasing trend of

technical progress (that is the value of TPC is higher than 1). Thirdly, combining

Tables 6 and 7, we know which values of TEC and TPC led to the higher or lower

Malmquist index. Take Anhui for example. Its value of Malmquist index for

2006–2007 is 0.979 which indicates that the productivity of Anhui declined 2.1 %.

This result was caused by the changes of technical efficiency, where the value of

TEC is lower than 1 in corresponding time period, whereas the technical progress

improved since the value of TPC is greater than 1 for 2006–2007. Finally,

considering the various trends of TECs, we know that the technical efficiency did

not have an increasing or decreasing trend for most regions during the period

2006–2010, that is, it does not present any regular changes. Although the technical

progress also did not have an increasing or decreasing trend for most regions during

the whole period 2006–2010, the regions did have identical trends during parts of

the period. For example, the technical progress of all regions has an increasing trend

for 2006–2008 (2008–2010) since the values of TPCs of all regions for 2007–2008

(2009–2010) are all higher than their values for 2006–2007 (2008–2009). In

addition, the technical progress of all regions has a decreasing trend for 2007–2009

since the values of TPCs of all regions for 2008–2009 are all lower than their values

for 2007–2008.
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4 Conclusions

During the last three decades, the economy of China has been increasing rapidly.

The fast economic progress has led to the growth of GDP accompanied by serious

problems such as energy shortage and environmental pollution. Naturally, it is

desirable to evaluate the energy and environmental performance of provincial-level

regions of China.

Based on the above-mentioned context, in this paper we apply DEA models to

evaluate the total-factor efficiency of energy and environment of 30 provincial-level

regions and three areas in mainland China during China’s 11th 5-year plan period

(2006–2010). In particular, this study measures a joint production framework of

non-energy inputs (labor and capital) and an energy input (total energy consump-

tion), as well as a desirable output (GDP) and an undesirable output (waste gas). In

addition, this study applies a DEA-based Malmquist index to evaluate the dynamic

productivity change considering the undesirable output and energy input.

The major empirical results of this study show that: (1) Two regions, namely

Beijing and Hainan, had the highest total-factor energy and environmental

efficiency during the period 2006–2010. In addition, most regions had poor energy

and environmental efficiency. Thus, these two regions could be seen as the

benchmarks for inefficient regions to bring about energy and environmental

efficiency improvement. (2) From an area perspective, China’s eastern area had the

highest energy and environmental efficiency, followed by the central area, with the

efficiency of the western area being the worst. The efficiency differences of the

three areas may arise from the imbalance of economic development. (3) From the

Malmquist index, we know that productivity in most regions improved during each

year of the period 2006–2010. The eastern area had the highest improvement of

productivity during the 11th 5-year plan, followed by the central area and then the

western area. (4) Dividing the Malmquist index into the change in technical

efficiency (TEC) and the change in technical progress (TPC), we know that most

regions had a declining trend in technical efficiency while most regions had an

increasing trend in technical progress.
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