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Abstract In this paper, we consider a continuous-time retrial queue with two

classes of customers: priority customers and ordinary customers, where priority

customers don’t queue and have an exclusive preemptive priority to receive their

services over ordinary customers. If an arriving ordinary customer finds the server

busy, it enters a retrial group (called orbit) according to FCFS discipline. Only the

ordinary customer at the head of the retrial queue is allowed to access the server.

Firstly, we obtain the necessary and sufficient condition for the system to be stable

by embedded Markov chain approach. Secondly, using supplementary variable

method, we obtain the stationary probability distribution and some performance

measures of interest. Thirdly, we give the analysis of the sojourn time in the system

of an arbitrary ordinary customer. Lastly, numerical examples are given to show the

effect of system parameters on several performance measures.

Keywords Retrial queue � Preemptive priority � Embedded Markov chain �
Supplementary variable method

1 Introduction

Recently, a significant number of papers have dealt with retrial queueing systems,

since retrial queues can be extensively used to stochastically model many problems

arising in computer networks, telecommunication, telephone systems and in daily

life, see, e.g. Falin and Templeton (1997), Artalejo and Gómez-Corral (2008),

Gómez-Corral (2006) and Artalejo (1999, 2010).
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In the past years, the study of retrial queueing systems with priorities have

been reinvigorated because different classes of customers need different quality

of service (QoS). High priority customers are queued or not queued and served

according to preemptive or non-preemptive discipline. If blocked, low priority

customers (called as ordinary customers) leave the system and join the retrial

group to retry until they find the server free. Choi and Park (1990) first

investigated a nonpreemptive retrial queue with priority and ordinary customers,

in which priority customers have nonpreemptive priority over ordinary customers

and are queued in FCFS discipline, however, ordinary customers behave as a

classical M/G/1 retrial queue with classical retrial policy, and two types of

customers have the same service time distributions. Later on, Falin et al. (1993)

considered the retrial queue model of Choi and Park (1990) in the case that two

types of customers may have different service time distributions. Langaris and

Moutzoukis (1995) considered a retrial queue with structured batch arrivals,

preemptive priorities and server vacations, where the retrial times of each low

priority customers in the orbit follow exponential distributions, that is the

classical retrial policy is adopted. Krishna Kumar et al. (2002) considered an M/

G/1 retrial queue with two-phase service and possible preemptive resume at the

first phase of service. Wang (2008) studied an unreliable M1;M2=G1;G2=1 retrial

queue with priority subscribers. Recently, Wu et al. (2013) presented a discrete-

time Geo/G/1 retrial queue with preferred customers and impatient customers,

where the arriving customer may push out the customer in service to commence

his own service with some probability. Dimitriou (2013) considered a retrial

queueing model accepting two types of positive customers and negative arrivals,

where an arriving P1 customer can preempt the service of a P2 customer and

force the server to start his service. Further, Dimitriou (2013) considered an

unreliable single server retrial queue with two classes of customers and negative

customers. Different from above literatures, Krishna Kumar and Pavai Mad-

heswari (2004) investigated a retrial queueing system with two classes of

customers, in which the class-1 customers are blocked if the server is not

available and leave the system forever, while class-2 customers may be obliged

to leave the service area and join the retrial group/orbit, to retry for their service

after a random interval of time. Later, Liu and Gao (2011) extended Krishna

Kumar and Pavai Madheswari’s results to a discrete-time Geo1;GeoX
2 =G1;G2=1

retrial queue with two classes of customers and feedback. However, there is no

work that deals with retrial queueing system with two classes of customers,

preemptive resume and general retrial times. This motivates us to investigate

such queueing system in this work.

The rest of this paper is organized as follows. In Sect. 2, we give the model

description of the preemptive retrial queue. Section 3 presents the stable condition

of the system, and deals with steady-state analysis including the joint distribution of

number of ordinary customers in the orbit and the server state at a random epoch

and some system characteristics. In Sect. 4, we study the distribution of the sojourn

time in the system of any arbitrary ordinary customer. Some numerical examples are

provided in Sect. 5.
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2 System model

In this section, we consider a continuous-time single server retrial queue with

priority customers and ordinary customers. Priority customers have preemptive

priorities over ordinary customers in the use of the server. We assume that priority

customers and ordinary customers arrive according to two independent Poisson

processes with rates d and k, respectively. The service times of priority customers

are assumed to be arbitrary distributed with distribution function (d.f.) AðxÞ,
probability density function (p.d.f) aðxÞ, finite first two moments a1; a2: The service

times of ordinary customers follow arbitrary distribution with d.f. BðxÞ, p.d.f bðxÞ,
finite first two moments b1; b2:

On the arrival of a priority customer, if the server is found to be idle, the arriving

priority customer occupies the server and begins its service. If the server is busy

serving a priority customer, the newly arriving priority customer will depart the

system directly without service. If the server is being occupied by an ordinary

customer, the arriving priority customer will interrupt the service of the ordinary

customer and occupy the server to begin its service immediately. We assume that

when an ordinary customer is preempted by a priority customer, it will wait in the

service area until the server completes the service of the priority customer and

continues to complete its remaining service. On the arrival of an ordinary customer,

if the server is idle, the ordinary customer immediately begins receiving its service

and leaves the system after the completion of the service. If the server is being busy,

the arriving ordinary customer will join the retrial orbit.

We assume that only the ordinary customer at the head of the retrial queue is

allowed to retry to access the server at a service completion instant. The retrial time

is assumed to be generally distributed with d.f. RðxÞ, p.d.f rðxÞ. Then measured from

the instant the server becomes idle, an external potential priority customer or

ordinary customer and a retrial ordinary customer compete to access the server. The

retrial ordinary customer is required to give up the attempt for service if an external

priority customer or ordinary customer arrives first. In that case, the retrial ordinary

customer goes back to its position in the retrial queue. About literatures on retrial

queues with general retrial times, readers may refer to Gómez-Corral (1999), Wang

(2006), Gao and Wang (2014) and references therein.

We assume that all the random variables defined above are independent mutually.

Throughout the rest of the paper, for a d.f. FðxÞ, we define FðxÞ ¼ 1 � FðxÞ to be

the tail of FðxÞ, eFðsÞ ¼
R1

0
e�sxdFðxÞ, the Laplace–Stieltjes transform of FðxÞ and

F�ðsÞ ¼
R1

0
e�sxFðxÞdx to be the Laplace transform of function FðxÞ, and we adopt

the notation F
�ðsÞ ¼ 1�eF ðsÞ

s
.

Define the functions aðxÞ and bðxÞ, respectively, as the conditional completion

rates for services of a priority customer and an ordinary customer, and cðxÞ as the

conditional completion rate for retrial attempt, i.e.,

aðxÞ ¼ aðxÞ
AðxÞ

; bðxÞ ¼ bðxÞ
BðxÞ

; cðxÞ ¼ rðxÞ
RðxÞ
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Remark 1 If the arriving priority customer find the server busy no matter with a

priority customer or an ordinary customer, it will leave the system forever, i.e., no

preemption occurs during the service of an ordinary customer, the model becomes to be

a non-preemptive priority queue with two class customers and general retrial times,

which is an extension of the paper (Krishna Kumar and Pavai Madheswari 2004).

As a practical application of the queue model considered in this paper, we can

take a cognitive network with a single licensed channel as an example. In cognitive

networks (see Akyildiz et al. 2006; Yucek and Arslan 2009), there are two classes

of users, called as primary users (PUs, corresponding to priority customers) and

secondary users (SUs, corresponding to ordinary customers). PUs have exclusive

preemptive priority to occupy a certain spectrum band (called licensed channel,

corresponding to the single server) and their access is generally controlled by a

Primary Operator (PO). SUs have no spectrum license, they implement additional

functionalities to share the licensed channel without interfering with PUs, i.e., they

can access the licensed channel when there are no PUs occupying it and the message

transmissions of the SU can be randomly interrupted by the arriving PU and the

interrupted SU can continue its message transmission immediately after the service

of the PU. If the channel is busy with a PU, the arriving PU leaves the system

forever, however, the new arriving SU enters the retrial group and retries its luck to

get service after some time if it finds the channel busy upon arrival. Obviously, this

cognitive radio work can be modelled as our retrial queue.

3 Stability condition and steady state performance analysis
of the system

In this section, we will focus on the discussion of the stability condition of the

system by using embedded Markov chain technique and steady state performance

analysis of the system by using supplementary variable method.

3.1 Stability condition

First, we introduce some notations used in the future.

Let gkðk� 0Þ denote the probability that there are k ordinary customers enter the

retrial queue during the service time of a priority customer and its probability

generating function be GðzÞ ¼
P1

k¼0 z
kgk, then

gk ¼
Z 1

0

ðktÞk

k!
e�ktaðtÞdt;

and

GðzÞ ¼ eAðkð1 � zÞÞ:

Let S be the generalized service time of an ordinary customer from the epoch that it

begins its service to the epoch at which the ordinary customer’s service is
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completed, that is the server is ready for the next new service, and let AS be the

number of ordinary customers that enter the retrial queue during S. The probability

generating function of AS is denoted as HðzÞ¼M
P1

k¼0 z
khk ¼

P1
k¼0 z

kPðAS ¼ kÞ, and

we define eSðsÞ ¼ E½e�sS� to be the Laplace transform of S. Denote

hðk; tÞdt ¼ Pðt\S� t þ dt;AS ¼ kÞ;

eHðz; sÞ ¼
X

1

k¼0

zk
Z 1

0

e�sthðk; tÞdt:

Then we have

hðk; tÞ ¼
X

1

n¼0

pnðtÞbðtÞ � aðnÞðtÞ
 !

qkðtÞ;

hk ¼
Z 1

0

hðk; tÞdt;

where � denotes convolution, pkðtÞ ¼ ðdtÞk
k! e�dt, qkðtÞ ¼ ðktÞk

k! e�kt, aðkÞðtÞ denotes k-

convolution of aðtÞ. After algebra convolutions, we can obtain

eHðz; sÞ ¼ eBðUðs; zÞÞ;

where Uðs; zÞ ¼ sþ kð1 � zÞ þ dð1 � eAðsþ kð1 � zÞÞÞ:
Putting /ðzÞ ¼ Uð0; zÞ ¼ kð1 � zÞ þ dð1 � GðzÞÞ, hence

eSðsÞ ¼ eHð1; sÞ ¼ eBðsþ dð1 � eAðsÞÞÞ;
HðzÞ ¼ eHðz; 0Þ ¼ eBð/ðzÞÞ;

H0ð1Þ ¼ dHðzÞ
dz

�

�

�

�

z¼1

¼ kb1ð1 þ da1Þ:

Let TkðT0 ¼ 0Þ be the time epoch at which the server becomes idle for the kth time,

Nk ¼ NðTkÞ be the number of ordinary customers in the orbit at the time Tk, then the

process fNk; k� 0g is an embedded Markov chain with state space N.

Before further development, we first give a lemma.

Lemma 1 (Foster’s criterion, see Pakes 1969) An irreducible and aperiodic

Markov chain fYk; k� 0g with state space S is ergodic if there exists a non-negative

test function f ðiÞ; i 2 S, and e[ 0 such that the mean drift yi ¼
E f ðYkþ1Þ � f ðYkÞjYk ¼ i½ � is finite for all i 2 S and yi � � e for all i 2 S except

perhaps a finite number.

Then we have the following theorem.

Theorem 1 The embedded Markov chain fNk; k� 0g is ergodic if and only if the

following inequality holds:

eRðdþ kÞ þ kR
�ðdþ kÞ

� �

kb1ð1 þ da1Þ þ dR
�ðdþ kÞka1\eRðdþ kÞ:
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Proof From the assumptions of our model, the one-step transition probabilities are

given as follows:

PðNkþ1 ¼ jjNk ¼ iÞ

¼

d
dþ k

gj þ
k

dþ k
hj; i ¼ 0; j� 0;

eRðdþ kÞh0; i[ 0; j ¼ i� 1;

dR
�ðdþ kÞgj�i þ kR

�ðdþ kÞhj�i þ eRðdþ kÞhj�iþ1; i[ 0; j[ i� 1;

0; otherwise:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

Obviously, the Markov chain fNk; k� 0g is irreducible and aperiodic. And the mean

drift

xi ¼ E Nkþ1 � NkjNk ¼ i½ �

¼
d

dþ k
ka1 þ

k
dþ k

kb1ð1 þ da1Þ; i ¼ 0;

eRðdþ kÞ þ kR
�ðdþ kÞ

� �

kb1ð1 þ da1Þ þ dR
�ðdþ kÞka1 � eRðdþ kÞ; i[ 0:

8

>

<

>

:

Then from Foster’s criterion, by taking the function f ðiÞ ¼ i, we know that the

inequality eRðdþ kÞ þ kR
�ðdþ kÞ

� �

kb1ð1 þ da1Þ þ dR
�ðdþ kÞka1\eRðdþ kÞ is a

sufficient condition for the system to be stable.

The same inequality is also the necessary condition for ergodicity. Assume that
eRðdþ kÞ þ kR

�ðdþ kÞ
� �

kb1ð1 þ da1Þ þ dR
�ðdþ kÞka1 � eRðdþ kÞ, which implies

that xi � 0 for all i� 0. Furthermore, according to the one-step transition prob-

abilities, we know that the down drift

Di ¼
X

j\i

ðj� iÞPðNkþ1 ¼ jjNk ¼ iÞ ¼
0; i ¼ 0;

�eRðdþ kÞh0; i[ 0;

�

which implies that the Markov chain fNk; k� 0g satisfies Kaplan’s condition

namely if the sequence fDm;m� 0g is bounded below. Thus the Markov chain

fNk; k� 0g is not ergodic, and then the necessity of the ergodicity is proven. h

3.2 Steady state performance analysis of the system

By the description of the model, we know that at time t, the state of the system

considered in this paper can be described by the Markov process

XðtÞ ¼ fNðtÞ; JðtÞ; n0ðtÞ; n1ðtÞ; n2ðtÞ; n3ðtÞg, where NðtÞ denotes the number of

ordinary customers in the orbit at time t, JðtÞ represents the server state, defined as

follows
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JðtÞ ¼

0; the server is idle at time t;

1; the server is busy with a priority customer without preempting

an ordinary customer at time t;

2; the server is busy with a priority customer with preempting

an ordinary customer at time t;

3; the server is busy with an ordinary customer at time t.

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

When JðtÞ ¼ 0 and NðtÞ[ 0, n0ðtÞ is the elapsed retrial time; when JðtÞ ¼ 1, n1ðtÞ
is the elapsed service time of the priority customer; when JðtÞ ¼ 2, n1ðtÞ is the

elapsed service time of the priority customer and n2ðtÞ is the elapsed service time of

the interrupted ordinary customer; when JðtÞ ¼ 3, n3ðtÞ denotes the elapsed service

time of the ordinary customer.

It is easy to see that the Markov process XðtÞ ¼ fNðtÞ; JðtÞ;
n0ðtÞ; n1ðtÞ; n2ðtÞ; n3ðtÞg is a semi-regenerative process with embedded Markov

chain fNk; k� 0g, from Burke’s theorem that the steady state probabilities of the

Markov process exist and are positive if and only if the embedded Markov chain

fNk; k� 0g is ergodic. Therefore, the inequality eRðdþ kÞ þ kR
�ðdþ kÞ

� �

kb1ð1 þ
da1Þ þ dR

�ðdþ kÞka1\eRðdþ kÞ is a sufficient and necessary condition for the

system to be stable. Let X ¼ fN; J; n0; n1; n2; n3g be the stationary limit of the

Markov process XðtÞ ¼ fNðtÞ; JðtÞ; n0ðtÞ; n1ðtÞ; n2ðtÞ; n3ðtÞg.

Henceforth, we assume that the system is stable. Define the following limiting

probabilities and limiting probability densities:

p0;0 ¼ PðN ¼ 0; J ¼ 0Þ ¼ lim
t!1

PðNðtÞ ¼ 0; JðtÞ ¼ 0Þ;

pk;0ðxÞdx ¼ PðN ¼ k; J ¼ 0; x\n0 � xþ dxÞ
¼ lim

t!1
PðNðtÞ ¼ k; JðtÞ ¼ 0; x\n0ðtÞ� xþ dxÞ; x� 0; k� 1;

pk;1ðxÞdx ¼ PðN ¼ k; J ¼ 1; x\n1 � xþ dxÞ
¼ lim

t!1
PðNðtÞ ¼ k; JðtÞ ¼ 1; x\n1ðtÞ� xþ dxÞ; x� 0; k� 0;

pk;2ðx; yÞdxdy ¼ PðN ¼ k; J ¼ 2; x\n1 � xþ dx; y\n2 � yþ dyÞ
¼ lim

t!1
PðNðtÞ ¼ k; JðtÞ ¼ 2; x\n1ðtÞ� xþ dx; y\n2ðtÞ� yþ dyÞ;

x� 0; y� 0; k� 0;

pk;3ðxÞdx ¼ PðN ¼ k; J ¼ 3; x\n3 � xþ dxÞ
¼ lim

t!1
PðNðtÞ ¼ k; JðtÞ ¼ 3; x\n3ðtÞ� xþ dxÞ; x� 0; k� 0:

By the method of the supplementary variable, we easily obtain the system of

equilibrium equations:

ðdþ kÞp0;0 ¼
Z 1

0

p0;1ðxÞaðxÞdxþ
Z 1

0

p0;3ðxÞbðxÞdx; ð1Þ
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d

dx
pk;0ðxÞ ¼ �ðdþ kþ cðxÞÞpk;0ðxÞ; k� 1; ð2Þ

d

dx
pk;1ðxÞ ¼ �ðkþ aðxÞÞpk;1ðxÞ þ ð1 � dk;0Þkpk�1;1ðxÞ; k� 0; ð3Þ

o

ox
pk;2ðx; yÞ ¼ �ðkþ aðxÞÞpk;2ðx; yÞ þ ð1 � dk;0Þkpk�1;2ðxÞ; k� 0; ð4Þ

d

dx
pk;3ðxÞ ¼ � ðdþ kþ bðxÞÞpk;3ðxÞ þ ð1 � dk;0Þkpk�1;3ðxÞ

þ
Z 1

0

pk;2ðy; xÞaðyÞdy; k� 0; ð5Þ

where dk;0 is the Kronecker’s symbol. The boundary conditions are

pk;0ð0Þ ¼
Z 1

0

pk;1ðxÞaðxÞdxþ
Z 1

0

pk;3ðxÞbðxÞdx; k� 1; ð6Þ

pk;1ð0Þ ¼ dk;0dp0;0 þ dð1 � dk;0Þ
Z 1

0

pk;0ðxÞdx; k� 0; ð7Þ

pk;2ð0; xÞ ¼ dpk;3ðxÞ; k� 0; ð8Þ

pk;3ð0Þ ¼ dk;0kp0;0 þ kð1 � dk;0Þ
Z 1

0

pk;0ðxÞdxþ
Z 1

0

pkþ1;0ðxÞaðxÞdx; k� 0; ð9Þ

and the normalization condition is

p0;0þ
X

1

k¼1

Z 1

0

pk;0ðxÞdxþ
X

1

k¼0

Z 1

0

pk;1ðxÞþpk;3ðxÞ
� �

dxþ
Z 1

0

pk;2ðx;yÞdxdy

� �

¼1:

ð10Þ

By introducing the generating functions P0ðx;zÞ¼
P1

k¼1 z
kpk;0ðxÞ; and Pjðx;zÞ¼

P1
k¼0 z

kpk;jðxÞ; j¼1;3; and P2ðx;y;zÞ¼
P1

k¼0 z
kpk;2ðx;yÞ; from Eqs. (2)–(5), we have

P0ðx; zÞ ¼ P0ð0; zÞ expf�ðdþ kÞxgRðxÞ; ð11Þ

P1ðx; zÞ ¼ P1ð0; zÞ expf�kð1 � zÞxgAðxÞ; ð12Þ

P2ðx; y; zÞ ¼ P2ð0; y; zÞ expf�kð1 � zÞxgAðxÞ; ð13Þ

o

ox
P3ðx; zÞ ¼ �ðdþ kð1 � zÞ þ bðxÞÞP3ðx; zÞ þ P2ð0; x; zÞGðzÞ: ð14Þ

and then by (1), (6)–(9), we can obtain
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P0ð0; zÞ ¼ P1ð0; zÞGðzÞ þ
Z 1

0

P3ðx; zÞbðxÞdx� ðdþ kÞp0;0; ð15Þ

P1ð0; zÞ ¼ dp0;0 þ dP0ð0; zÞR
�ðdþ kÞ; ð16Þ

P2ð0; x; zÞ ¼ dP3ðx; zÞ; ð17Þ

P3ð0; zÞ ¼ kp0;0 þ kP0ð0; zÞR
�ðdþ kÞ þ 1

z
P0ð0; zÞeRðdþ kÞ: ð18Þ

Inserting (17) into (14) leads to

P3ðx; zÞ ¼ P3ð0; zÞ expf/ðzÞxgBðxÞ; ð19Þ

Combining (15), (16), (18) and (19) and making some algebra calculations, we can

obtain

P0ð0; zÞ ¼
z dþ k� ðdGðzÞ þ kHðzÞÞ½ �

DðzÞ p0;0; ð20Þ

P1ð0; zÞ ¼
eRðdþ kÞðHðzÞ � zÞ

DðzÞ dp0;0; ð21Þ

P2ð0; x; zÞ ¼
deRðdþ kÞ/ðzÞ

DðzÞ expf/ðzÞxgBðxÞp0;0; ð22Þ

P3ð0; zÞ ¼
eRðdþ kÞ/ðzÞ

DðzÞ p0;0; ð23Þ

where DðzÞ ¼ HðzÞeRðdþ kÞ þ zR
�ðdþ kÞðdGðzÞ þ kHðzÞÞ � z.

Applying the normalization condition (10), we obtain

p0;0 þ
Z 1

0

P0ðx; 1Þdxþ
Z 1

0

P1ðx; 1Þ þ P3ðx; 1Þð Þdxþ
Z 1

0

Z 1

0

P2ðx; y; 1Þdxdy ¼ 1;

and by using (11)–(13) and (19)–(23), we can arrive at

p0;0 ¼
eRðdþ kÞ � eRðdþ kÞ þ kR

�ðdþ kÞ
� �

kb1ð1 þ da1Þ þ dR
�ðdþ kÞka1

� 	

eRðdþ kÞð1 þ da1Þ
:

ð24Þ

Now we summarize the above results in following theorem.

Theorem 2 If the system is stable, the generating functions of the stationary joint

distribution of the orbit size and the server state are given by:
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p0;0 ¼
eRðdþ kÞ � eRðdþ kÞ þ kR

�ðdþ kÞ
� �

kb1ð1 þ da1Þ þ dR
�ðdþ kÞka1

� 	

eRðdþ kÞð1 þ da1Þ
;

P0ðx; zÞ ¼
z dþ k� ðdGðzÞ þ kHðzÞÞ½ �

DðzÞ expf�ðdþ kÞxgRðxÞp0;0;

P1ðx; zÞ ¼
eRðdþ kÞðHðzÞ � zÞ

DðzÞ expf�kð1 � zÞxgAðxÞdp0;0;

P2ðx; y; zÞ ¼
deRðdþ kÞ/ðzÞ

DðzÞ expf�kð1 � zÞxg expf/ðzÞygAðxÞBðyÞp0;0;

P3ðx; zÞ ¼
eRðdþ kÞ/ðzÞ

DðzÞ expf/ðzÞxgBðxÞp0;0:

Remark 2 If no preemption occurs during the service of an ordinary customer, the

state of the server JðtÞ only takes values of 0; 1; 3. In this case, similarly we can

prove that the stationary condition is

eRðdþ kÞ þ kR
�ðdþ kÞ

� �

kb1 þ dR
�ðdþ kÞka1\eRðdþ kÞ;

and in steady-state,

p0;0 ¼
eRðdþ kÞ � eRðdþ kÞ þ kR

�ðdþ kÞ
� �

kb1 þ dR
�ðdþ kÞka1

� 	

eRðdþ kÞð1 þ da1Þ
;

P0ðx; zÞ ¼
z dþ k� ðdeAðkð1 � zÞÞ þ keBðkð1 � zÞÞÞ
h i

expf�ðdþ kÞxgRðxÞ

eRðdþ kÞeBðkð1 � zÞÞ þ zR
�ðdþ kÞ deAðkð1 � zÞÞ þ keBðkð1 � zÞÞ

h i

� z
p0;0;

P1ðx; zÞ ¼
eRðdþ kÞðeBðkð1 � zÞÞ � zÞ expf�kð1 � zÞxgAðxÞ

eRðdþ kÞeBðkð1 � zÞÞ þ zR
�ðdþ kÞ deAðkð1 � zÞÞ þ keBðkð1 � zÞÞ

h i

� z
dp0;0;

P3ðx; zÞ ¼
eRðdþ kÞ/ðzÞ expf�kð1 � zÞxgBðxÞ

eRðdþ kÞeBðkð1 � zÞÞ þ zR
�ðdþ kÞ deAðkð1 � zÞÞ þ keBðkð1 � zÞÞ

h i

� z
p0;0:

In the following corollary, we focus on the marginal generating functions of the

number of ordinary customers in the orbit for different server states and the

generating functions of the number of ordinary customers in the orbit and in the

system.

Corollary 1

1. The marginal generating function of the number of ordinary customers in the

orbit when the server is idle but the system is not empty is

P0ðzÞ ¼
Z 1

0

P0ðx; zÞdx ¼
z dþ k� ðdGðzÞ þ kHðzÞÞ½ �

DðzÞ R
�ðdþ kÞp0;0:
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2. The marginal generating function of the number of ordinary customers in the

orbit when the server is busy serving a priority customer without preempting an

ordinary customer is

P1ðzÞ ¼
Z 1

0

P1ðx; zÞdx ¼
eRðdþ kÞðHðzÞ � zÞ

DðzÞ A
�ðkð1 � zÞÞdp0;0:

3. The marginal generating function of the number of ordinary customers in the

orbit when the server is busy serving a priority customer with preempting an

ordinary customer is

P2ðzÞ ¼
Z 1

0

Z 1

0

P2ðx; y; zÞdxdy ¼ deRðdþ kÞð1 � HðzÞÞA�ðkð1 � zÞÞ
DðzÞ p0;0:

4. The marginal generating function of the number of ordinary customers in the

orbit when the server is busy serving an ordinary customer is

P3ðzÞ ¼
Z 1

0

P3ðx; zÞdx ¼
eRðdþ kÞð1 � HðzÞÞ

DðzÞ p0;0:

5. The generating function of the number of ordinary customers in the orbit, PðzÞ,
is given by

PðzÞ ¼ p0;0 þ P0ðzÞ þ P1ðzÞ þ P2ðzÞ þ P3ðzÞ ¼
eRðdþ kÞ/ðzÞ

DðzÞ
p0;0

k
:

6. The generating function of the number of ordinary customers in the system,

WðzÞ, is given by

WðzÞ ¼ p0;0 þ P0ðzÞ þ P1ðzÞ þ zP2ðzÞ þ zP3ðzÞ

¼
eRðdþ kÞHðzÞð1 � zÞð1 þ dA

�ðkð1 � zÞÞÞ
DðzÞ p0;0:

From the above results, we can get some performance measures of the system in

steady state.

Corollary 2

1. The probability that the server is idle but the system is not empty, denoted by P0,

is given by

P0 ¼ P0ð1Þ ¼
kR

�ðdþ kÞðda1 þ kb1ð1 þ da1ÞÞ
eRðdþ kÞð1 þ da1Þ

:

2. The probability that the server is busy serving a priority customer without

preempting an ordinary customer, denoted by P1, is given by
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P1 ¼ P1ð1Þ ¼
da1ð1 � kb1ð1 þ da1ÞÞ

1 þ da1

:

3. The probability that the server is busy serving a priority customer with

preempting an ordinary customer, denoted by P2, is given by

P2 ¼ P2ð1Þ ¼ da1kb1:

4. The probability that the server is busy serving an ordinary customer, denoted by

P3, is given by

P3 ¼ P3ð1Þ ¼ kb1:

5. The mean number of ordinary customers in the orbit, Lq, is given by

Lq ¼ P0ð1Þ ¼ P0
0ð1Þ þ P0

1ð1Þ þ P0
2ð1Þ þ P0

3ð1Þ:

6. The mean number of ordinary customers in the system, Ls, is given by

Ls ¼ W0ð1Þ ¼ Lq þ P2ð1Þ þ P3ð1Þ:

4 Analysis of the sojourn time in the system of an arbitrary ordinary
customer

In this section, we discuss the distribution of the sojourn time in the system of an

arbitrary tagged ordinary customer, denoted by W , which is defined as the time

period from the instant that the ordinary customer arrives at the system to the instant

that the ordinary customer is completely served. Let eW ðsÞ ¼ E½e�sW � be the

Laplace–Stieltjes transform of W , then we have the following result.

Theorem 3 If the system is stable, Laplace–Stieltjes transform of W is given by

eW ðsÞ ¼ ðp0;0 þ P0ÞeSðsÞ þ eRðdþ kÞQðsÞp0;0

�
d½HðQðsÞÞ � QðsÞ� eAðsÞ � GðQðsÞÞ

h i

þ /ðQðsÞÞ eSðsÞ � HðQðsÞÞ
h i

DðQðsÞÞðkð1 � QðsÞÞ � sÞ ;

where

QðsÞ ¼
eSðsÞeRðsþ dþ kÞ

1 � R
�ðsþ dþ kÞðdeAðsÞ þ keSðsÞÞ

:

Proof By conditioning on the server’s state when the tagged ordinary customer

arrives, we have that
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eW ðsÞ ¼ ðp0;0 þ P0ÞeSðsÞ þ
X

1

k¼0

Z 1

0

pk;1ðxÞE e�sW jN ¼ k; J ¼ 1; n1 ¼ x
� 	

dx

þ
X

1

k¼0

Z 1

0

Z 1

0

pk;2ðx; yÞE e�sW jN ¼ k; J ¼ 2; n1 ¼ x; n2 ¼ y
� 	

dxdy

þ
X

1

k¼0

Z 1

0

pk;3ðxÞE e�sW jN ¼ k; J ¼ 3; n2 ¼ x
� 	

dx

¼4 ðp0;0 þ P0ÞeSðsÞ þ IðsÞ þ IIðsÞ þ IIIðsÞ:

If k ordinary customers are already in the retrial orbit and the server is busy when

the tagged ordinary customer arrives and joins the orbit, then W is equal to

W�
r þW ðkþ1Þ, where W�

r denotes the residual (generalized) service time of the

message of priority customer (or ordinary customer) being transmitted from the

instant the ordinary customer arrives, and W ðkþ1Þ represents the total sojourn time of

the ðk þ 1Þth ordinary customer in the retrial queue spent in the system from the

instant that the server becomes idle for the first time after the tagged ordinary

customer arrives. Then we obtain that

E e�sW jN ¼ k; J ¼ 1; n1 ¼ x
� 	

¼E e�sW�
r jN ¼ k; J ¼ 1; n1 ¼ x

� 	

E e�sW ðkþ1Þ
h i

ð25Þ

E e�sW jN ¼ k; J ¼ 2; n1 ¼ x; n2 ¼ y
� 	

¼E e�sW�
r jN ¼ k; J ¼ 2; n2 ¼ x; n2 ¼ y

� 	

E e�sW ðkþ1Þ
h i

;

ð26Þ

E e�sW jN ¼ k; J ¼ 3; n2 ¼ x
� 	

¼E e�sW�
r jN ¼ k; J ¼ 2; n2 ¼ x

� 	

E e�sW ðkþ1Þ
h i

:

ð27Þ

Using the well-known formulas

P y\nr1 � yþ dyjnH1 [ x
� �

¼ aðxþ yÞdy
AðxÞ

;

P y\nr2 � yþ dyjnH2 [ x
� �

¼ bðxþ yÞdy
BðxÞ

;

where nH1 and nH2 denote the service times of priority customer and ordinary cus-

tomer, respectively; nr1 and nr2 denote, respectively, the corresponding residual

service times.

For convenience, we denote 1ðsÞ ¼ sþ dð1 � eAðsÞÞ, then we have

E e�sW�
r jN ¼ k; J ¼ 1; n1 ¼ x

� 	

¼
Z 1

0

aðxþ yÞ
AðxÞ

e�sydy ¼ 1

AðxÞ

Z 1

x

aðuÞe�sðu�xÞdu;

ð28Þ
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E e�sW�
r jN ¼ k; J ¼ 2; n2 ¼ x; n2 ¼ y

� 	

¼
X

1

n¼0

1

AðxÞBðyÞ

Z 1

0

Z 1

0

aðxþ uÞbðyþ vÞe�sðuþvÞ ðdveAðsÞÞ
n

n!
e�dvdvdu

¼ 1

AðxÞBðyÞ

Z 1

x

Z 1

y

aðuÞbðvÞe�sðu�xÞ�1ðsÞðv�yÞdvdu: ð29Þ

E e�sW�
r jN ¼ k; J ¼ 3; n2 ¼ x

� 	

¼
X

1

n¼0

Z 1

0

bðxþ yÞ
BðxÞ

e�sy ðdyÞ
n

n!
e�dyðeAðsÞÞndy

¼ 1

BðxÞ

Z 1

x

bðuÞe�1ðsÞðu�xÞdu: ð30Þ

Because the general retrial policy is adopted, we know that

E e�sW ðkþ1Þ
h i

¼ E e�sW ð1Þ
h i
 �kþ1

: ð31Þ

Note that after the server becomes idle, there exists competition for service among

an external priority customer, an external ordinary customer and the ordinary cus-

tomer at the head of the orbit. Then we arrive at

QðsÞ¼M E e�sW ð1Þ
h i

¼ eSðsÞ
Z 1

0

e�ste�ðdþkÞtrðtÞdt þ
Z 1

0

e�stde�ðdþkÞtRðtÞeAðsÞQðsÞdt

þ
Z 1

0

e�stke�ðdþkÞtRðtÞeSðsÞQðsÞdt

¼ eSðsÞeRðsþ dþ kÞ þ QðsÞR�ðsþ dþ kÞðdeAðsÞ þ keSðsÞÞ;

which yields

QðsÞ ¼
eSðsÞeRðsþ dþ kÞ

1 � R
�ðsþ dþ kÞðdeAðsÞ þ keSðsÞÞ

:

Substituting the above into (31) leads to

E e�sW ðkþ1Þ
h i

¼ ðQðsÞÞkþ1: ð32Þ

Combining (25)–(30) and (32), one can obtain that

IðsÞ ¼
X

1

k¼0

Z 1

0

pk;1ðxÞE e�sW jN ¼ k; J ¼ 1; n1 ¼ x
� 	

dx

¼ QðsÞ
Z 1

0

P1ðx;QðsÞÞ
1

AðxÞ

Z 1

x

aðuÞe�sðu�xÞdudx

¼ QðsÞP1ð0;QðsÞÞ
eAðsÞ � eAðkð1 � QðsÞÞÞ

kð1 � QðsÞÞ � s
; ð33Þ
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IIðsÞ¼
X

1

k¼0

Z 1

0

Z 1

0

pk;2ðx;yÞE e�sW jN¼k;J¼2;n1¼x;n2¼y
� 	

dxdy

¼QðsÞ
Z 1

0

Z 1

0

P2ðx;y;QðsÞÞ
1

AðxÞBðyÞ

Z 1

x

Z 1

y

aðuÞbðvÞe�sðu�xÞ�1ðsÞðv�yÞdvdu

� �

dydx

¼dP3ð0;QðsÞÞQðsÞ
eAðsÞ� eAðkð1�QðsÞÞÞ

kð1�QðsÞÞ�s

eSðsÞ�HðQðsÞÞ
/ðQðsÞÞ�1ðsÞ ;

ð34Þ

IIIðsÞ ¼
X

1

k¼0

Z 1

0

pk;3ðxÞE e�sW jN ¼ k; J ¼ 3; n2 ¼ x
� 	

dx

¼ QðsÞ
Z 1

0

P3ðx;QðsÞÞ
1

BðxÞ

Z 1

x

bðuÞe�1ðsÞðu�xÞdudx

¼ QðsÞP3ð0;QðsÞÞ
eSðsÞ � HðQðsÞÞ
/ðQðsÞÞ � 1ðsÞ : ð35Þ

with the help of (21) and (23), we can complete the proof of Theorem 3. h

5 Numerical examples

In this section, we present some numerical examples to show the effects of system

parameters on the important performance measures, such as the probability that the

system is busy, i.e., the utilization factor of the system, 1 � p0;0, and the mean

number of ordinary customers in the orbit Lq. The values of the parameters are

chosen to satisfy the stable condition. In general, We assume that the service times
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Fig. 1 The effect of r on 1 � p0;0 for different d
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of priority customers and ordinary customers, respectively, follow exponential

distributions with mean a1 ¼ 0:5 and b1 ¼ 1:5:
In Figs. 1 and 2, we assume that arrival rate of ordinary customers is k ¼ 0:35. In

Figs. 3 and 4, we assume that arrival rate of priority customers d ¼ 2:0: And in

Figs. 1, 2, 3 and 4, the retrial times are governed by an exponential distribution with

Laplace–Stieltjes transform eRðsÞ ¼ r
rþs

.

In Fig. 1, we plot 1 � p0;0 versus the retrial rate r for different values of

d ¼ 0; 0:5; 1:0; 1:25. In Fig. 3 we plot 1 � p0;0 versus the retrial rate r for different

values of k ¼ 0:05; 0:15; 0:2. As expected, from Figs. 1 and 3, the utilization factor

1 � p0;0 decrease with increasing retrial rate r. The reason is that as r increases (i.e.,

the rate of customer in the orbit to the server increases), the number of customers in

the orbit decreases and the probability p0;0 that no customers in the orbit increases,

which leads to the decrease of 1 � p0;0, and as r tends to infinity, 1 � p0;0 converges

to a fixed value which corresponds to the quantity related to the queue without

retrial ordinary customers. Additionally, Figs. 1 and 3 also show that with

increasing of the arrival rate d and k, the utilization factor 1 � p0;0 increases. The

same conclusion holds for Figs. 2 and 4, which illustrates the behavior of the mean

number of ordinary customers in the orbit Lq as function of r for different values of

d and k, respectively.

From Figs. 1, 2, 3 and 4, we can also observe that, as r approaches the ergodicity

condition, the mean number of ordinary customers in the orbit Lq tends to infinite

(due to the system becomes unstable) and, as a consequence, the utilization factor

1 � p0;0 converges to 1.

In Figs. 5 and 6, we assume that arrival rates of priority customers and ordinary

customers are, respectively, d ¼ 2:0; k ¼ 0:05; and the retrial times follow the
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Fig. 2 The effect of r on Lq for different d
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Erlang distribution with Laplace–Stieltjes transform eRðsÞ ¼ r
rþs


 �n

. In Fig. 5 we

plot 1 � p0;0 versus the parameter r for different values of n ¼ 1; 2; 3; 4. Figure 5

shows that the utilization factor 1 � p0;0 increases with increasing of n and also

increases as the value of r, which is agree to our intuition. Similarly, the same

effects are presented in Fig. 6, which shows the behavior of Lq as function of r.

In Fig. 7a, b, for the performance measure Lq, we aim to compare the preemptive

rule with the non-preemptive case for different retrial times, respectively, follow

exponential distribution with Laplace–Stieltjes transform eRðsÞ ¼ r
rþs

and Erlang(2)

distribution with Laplace–Stieltjes transform eRðsÞ ¼ r
rþs


 �2

. we assume that the

arrival rates of priority customers and ordinary customers are, respectively, d ¼ 0:5
and k ¼ 0:025 and their service times, respectively, follow exponential distributions

with mean a1 ¼ 5:5 and b1 ¼ 4:5. As expected, Fig. 7 shows that the orbit size Lq in

0 0.5 1 1.5 2 2.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

r

1−
p 0,

0

λ=0.2

λ=0.15

λ=0.05

Fig. 3 The effect of r on 1 � p0;0 for different k
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the queue with preemptive rule is larger than that with non-preemptive priority,

which shows the correctness of our theoretical analysis.
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