
ORI GIN AL PA PER

Equilibrium balking strategies in the single server
queue with setup times and breakdowns

Peishu Chen1,2 • Yongwu Zhou1

Received: 30 September 2014 / Revised: 27 January 2015 / Accepted: 26 February 2015 /

Published online: 11 March 2015

� Springer-Verlag Berlin Heidelberg 2015

Abstract This paper studies the equilibrium behavior of customers in the M/M/1

queue with setup times, breakdowns and repairs. The server is turned off whenever

the system is empty. Once a customer arrives to an empty system, the server begins

an exponential setup time to start service again. The lifetime of the server is as-

sumed to be exponentially distributed and once the server breaks down, it will be

sent for repair immediately, and the repair time is also exponentially distributed. We

consider separately the equilibrium threshold strategies for the fully observable case

and mixed strategies for the partially observable and fully unobservable cases. Some

numerical examples are presented to illustrate the effect of the information levels

and several parameters on the customers’ equilibrium and optimal strategies.

Keywords Equilibrium strategies � Queueing � Balking � Setup � Breakdowns �
Repairs

1 Introduction

Due to wide applications for management in service systems, there exists an

emerging tendency to study customers’ behavior impact on the performance of

queueing system. Customers in service systems act independently in order to

maximize their welfare. However, each customer’s optimal behavior is affected by

acts taken by the system managers and the other customers. This can be viewed as a

game among the customers. Studies about the economic analysis of queueing

systems can go back at least to the pioneering work of Naor (1969) who analyzed
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customers optimal strategies in an observable M/M/1 queue with a simple reward-

cost structure. Edelson and Hildebrand (1975) reexamined the work of Naor and

considered the unobservable case in which the customers make their decisions

without being informed about the state of the queue. Naor’s model and results had

already been extended by several authors(Chen and Frank 2004; Economou and

Kanta 2011).The fundamental results on equilibrium behavior of customers and

servers in queueing systems with extensive bibliographical references can be found

in the comprehensive monograph of Hassin and Haviv (2003).

Queues with setup times have also been studied by many authors. In such models

once the server is reactivated, a random time is required for setup before it can begin

serving customers (Reddy et al. 1998; Bischof 2001; Choudhury 2000; Allahverdi

et al. 2008). The research on the equilibrium customer behavior in queues with

setup times was firstly presented by Burnetas and Economou (2007). Subsequently,

Economou and Kanta (2008) considered a Markovian queue that alternates between

on and off periods in observable cases.

Server failures which lead to service interruptions are quite common in many real

life situations. It is well known that performance measures of unreliable queuing

systems are heavily influenced by server failures (Wang et al. 2001; Boudali and

Economou 2012; Zhang and Zhu 2013; Zhang et al. 2014).

This motivates us to analyze equilibrium strategies in the single server queue with

setup times, breakdowns and repairs. Customers make decisions based on a natural

reward-cost structure, which incorporates their desires for service as well as their

unwillingness to wait. We consider separately the fully observable case where

customers have informed not only about the state of the server but also about the

exact number of customers in the system and the partially observable case where an

arriving customer knows the state of the server but does not observe the number of

customers waiting for service, as well as fully unobservable case where customers do

not observe the state of the server and the exact number of customers in the system.

The paper is organized as follows. In Sect. 2, we describe the dynamics of the

model and the reward-cost structure. In Sect. 3, we derive the equilibrium threshold

strategies for the fully observable case and stationary probabilities of the system. In

Sect. 4, we derive the stationary probabilities and equilibrium mixed strategies for

the partially observable case. In Sect. 5, we study equilibrium threshold strategies

for the fully unobservable case. In Sect. 6, some numerical results are given to

illustrate the effect of the information levels and several parameters on the

customers’ strategies. Finally, some conclusions are given in Sect. 7.

2 Model description

We consider a single-server queue with infinite waiting room in which customers

arrive according to a Poisson process with rate k. The service times are assumed to

be exponentially distributed with parameter l. During the busy periods, the server

may break down and once a breakdown occurs, the server will start to be repaired

immediately. The lifetime of the server is assumed to be exponentially distributed

with parameter n, and the repair time is exponentially distributed with parameter g.
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The server is deactivated and begins a vacation as soon as the queue becomes

empty. When a new customer arrives at an empty system, a setup process starts for

the server to be activated. The time required to setup is exponentially distributed

with rate h. In addition, we assume that once customers enter the system, they will

not allowed to leave. The customers are not allowed to join the system during the

repair time. We further assume that inter-arrival times, service times, setup times,

lifetime of the server and repair times are mutually independent.

We denote the state of the system at time t by a random vector ðIðtÞ;NðtÞÞ, where

t denotes the state of the server, and NðtÞ denotes the number of customers in the

system. More specifically, (0, 0) implies that the system is deactivated; the vector

ð0; nÞ, ð1; nÞ, ð2; nÞ corresponds to the server in setup, busy or broken periods with n

customers in the system. It is clear that the process fðIðtÞ;NðtÞÞ : t � 0g is a

continuous time Markov chain with state space S ¼ f0; 0g [ ðf0; 1; 2g �
f1; 2; . . .; gÞ and the related transition rates are given by

qð0;nÞð0;nþ1Þ ¼ k; n ¼ 0; 1; 2; . . .;

qð0;nÞð1;nÞ ¼ h; n ¼ 1; 2; . . .;

qð1;1Þð0;0Þ ¼ l;

qð1;nÞð1;nþ1Þ ¼ k; n ¼ 1; 2; . . .;

qð1;nþ1Þð1;nÞ ¼ l; n ¼ 1; 2; . . .;

qð1;nÞð2;nÞ ¼ n; n ¼ 1; 2; . . .;

qð2;nÞð1;nÞ ¼ g; n ¼ 1; 2; . . .:

The transition rate diagram is shown in Fig. 1.

In this paper, we assume that every customer receives a reward of R units for

completing service. Besides, we assume that there exists a waiting cost of C units

per time unit that is continuously accumulated from the time that the customer

arrives at the system till the time he leaves the system after being served. From now

on, we further assume that

R[C
nþ g
lg

þ 1

h

� �
: ð1Þ

Once a customer joins an empty system, his mean sojourn time equals the mean

setup time plus the mean service time and the mean overall repair time due to

failures during the service time, i.e. 1
h þ 1

l þ n 1
l

1
g. The condition (1) ensures that the

reward for service exceeds the expected cost for a customer who finds the system

empty. Otherwise, after the system becomes empty for the first time, no customers

will ever enter because of the negative net benefit.

Fig. 1 Transition rate diagram
of the original model
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We focus on studying the behavior of customers when they are allowed to decide

whether to join or balk based on the available information upon their arrival,

including the queue length and/or the state of the server. We consider separately

three information cases in this paper, that is, (1) fully observable case: arriving

customers get informed not only about the state of the server but also about the

exact number of customers in the system; (2) partially observable case: arriving

customers just observe the state of the server and don’t know how many customers

in the system; (3)fully unobservable case: arriving customers do not observe the

state of the system at all. We further assume that decisions are irrevocable: retrials

of balking and reneging of entering customer are not allowed.

3 Equilibrium threshold strategies for the fully observable case

We now focus on the fully observable case, which assumes that customers observe

not only the state of the server, but also the exact number of customers in the

system. To study the general threshold strategy adopted by all customers in the fully

observable case, we will first consider the mean overall sojourn time of a customer

who faces different server state upon arrival.

Once the server is activated, the proportion of time that the server is operational

is g
nþg, thus, the effective service rate is lg

nþg : A customer who joins the system when

he observes state ði; nÞ has mean sojourn time Tði; nÞ, which equals to

Tði; nÞ ¼ lgðn þ 1Þ
nþ g

þ 1 � i

h
; i ¼ 0; 1:

His expected net benefit is Bði; nÞ ¼ R � CTði; nÞ:
The customer prefers to join if Bði; nÞ[ 0; he is indifferent between joining and

balking if Bði; nÞ ¼ 0 and prefers to balk if Bði; nÞ\0. By solving inequality

Bði; nÞ� 0, we obtain the following results.

Theorem 1 In the fully observable M/M/1 queue with setup times, server

breakdowns and repairs, there exists thresholds

ðneð0Þ; neð1ÞÞ ¼
ðRh� CÞlg
Chðnþ gÞ

� �
� 1;

Rlg
Cðnþ gÞ

� �
� 1

� �
; ð2Þ

such that the strategy ‘observe ðIðtÞ;NðtÞÞ, enter if NðtÞ� neðIðtÞÞ and balk

otherwise’ is a weakly dominant strategy.

We now turn our attention to the social profit problem. For the stationary

analysis, note that if all customers follow the threshold strategy in (2), then the

system follows a Markov chain ðIðtÞ;NðtÞÞ with state space

Sfo ¼ ð0; nÞ 0� n� neð0Þ+ 1jf g [ fði; nÞ 1� n� neð1Þ+ 1j ; i ¼ 1; 2g:

The transition diagram is depicted in Fig. 2.

The corresponding stationary distribution ðpi;jði; jÞ 2 SfoÞ is given by the

following proposition.
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Proposition 1 Consider an M=M=1 queue with setup times, server breakdowns

and repairs, r 6¼ 1; q 6¼ 1; r 6¼ q, in which the customers follow the threshold policy

ðneð0Þ; neð1ÞÞ. The stationary probabilities ðpfoði; jÞ 2 SfoÞ are as follows:

pfoð1;1Þ ¼gð1� qÞq1þneð0Þðq� rÞð1� rÞ qneð0Þ ðgþ nqÞðq� rÞ � ðgþ nÞq3þneð1Þ
hn

�ð1� rÞ� � ðgþ nÞq qneð0Þðq� rÞ � q1þneð1Þð1� rÞ
h i

r1þneð0Þ
o�1

;

ð3Þ

pfoð0; nÞ ¼ rnpfoð1; 1Þ
q

; n ¼ 0; 1; . . .; neð0Þ; ð4Þ

pfoð0; neð0Þ þ 1Þ ¼ rneð0Þþ1pfoð1; 1Þ
qð1 � rÞ ; ð5Þ

pfoð1; nÞ ¼ ðrn � qnÞpfoð1; 1Þ
r� q

; n ¼ 1; 2; . . .; neð0Þ þ 1; ð6Þ

pfoð1; nÞ ¼ ðrneð0Þþ1 � qneð0Þþ1Þqn�neð0Þ�1pfoð1; 1Þ
r� q

; n ¼ neð0Þ þ 2; . . .; neð1Þ þ 1;

ð7Þ

pfoð2; nÞ ¼ ðrn � qnÞnpfoð1; 1Þ
gðr� qÞ ; n ¼ 1; 2; . . .; neð0Þ þ 1; ð8Þ

pfoð2; nÞ ¼ nðrneð0Þþ1 � qneð0Þþ1Þqn�neð0Þ�1pfoð1; 1Þ
gðr� qÞ ; n ¼ neð0Þ þ 2; � � � ; neð1Þ þ 1;

ð9Þ

where

q ¼ k
l
; r ¼ k

kþ h
: ð10Þ

Proof The stationary distribution is obtained from the following balance

equations:

kpð0; 0Þ ¼lpð1; 1Þ; ð11Þ

(0,2)(((((0,1) (0, (0))en(0,0)

(1,1) (1,2)

(2,1) (2,2)

(1, (0))en

(2, (0))en

(0, (0) 1)en

(1, (0) 1)en

(2, (0) 1)en

(1, (1))en

(2, (1))en

(1, (1) 1)en

(2, (1) 1)en

Fig. 2 Transition rate diagram for the ðneð0Þ; neð1ÞÞ threshold strategy
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ðkþ hÞpð0; nÞ ¼ kpð0; n � 1Þ; n ¼ 1; 2; . . .; neð0Þ; ð12Þ

kpð0; neð0ÞÞ ¼ hpð0; neð0Þ þ 1Þ; ð13Þ

ðkþ lþ nÞpð1; 1Þ ¼ hpð0; 1Þ þ lpð1; 2Þ þ gpð2; 1Þ; ð14Þ

ðkþ lþ nÞpð1; nÞ ¼ kpð1; n � 1Þ þ hpð0; nÞ þ lpð1; n þ 1Þ þ gpð2; nÞ;
n ¼ 2; 3; . . .; neð0Þ;

ð15Þ

ðkþ lþ nÞpð1; nÞ ¼ kpð1; n � 1Þ þ lpð1; n þ 1Þ þ gpð2; nÞ;
n ¼ neð0Þ þ 2; . . .; neð1Þ;

ð16Þ

ðlþ nÞpð1; neð1Þ þ 1Þ ¼ kpð1; neð1ÞÞ þ gpðneð1Þ þ 1; 2Þ; ð17Þ

gpð2; nÞ ¼ npð1; nÞ; n ¼ 1; 2; . . .; neð1Þ þ 1: ð18Þ

By iterating (12) and (16), taking into account (11), (13), (17), (18) and (10), we can

easily obtain expressions (4), (5), (6), (7) in Proposition 1, and the following

equation:

pfoð2; nÞ ¼ npfoð1; nÞ
g

; n ¼ 1; . . .; neð1Þ þ 1: ð19Þ

From (14), (18) and (10), we get

pð1; 2Þ ¼ ðqþ rÞpð1; 1Þ: ð20Þ

From (15), (18) and (4), we have

lpð1;nþ 1Þ � ðkþ lÞpð1;nÞ þ kpð1;n� 1Þ ¼ �hrnpfoð1;1Þ
q

; n ¼ 2;3; . . .;neð0Þ:

ð21Þ

Combining (20) and the recursive formulas (21), we can obtain (6) by tedious

calculations.Then, with the help of the normalizing equation

Xneð0Þþ1

n¼0

pfoð0; nÞ þ
Xneð1Þþ1

n¼1

pfoð1; nÞ þ
Xneð1Þþ1

n¼1

pfoð2; nÞ ¼ 1;

we get the expression of pfoð1; 1Þ: h

Lemma 1 Proposition 1 holds for the stationary distribution corresponding to

any threshold policy ðneð0Þ; neð1ÞÞ and not merely to the individually optimal policy

specified by (2).

Because an arrival balks once he finds the system at state ð0; neð0Þ þ 1Þ or

ð1; neð1Þ þ 1Þ or the server is broken, then the effective arrival rate of the system is

given by
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kðneð0Þ; neð1ÞÞ ¼ k
Xneð0Þ

n¼0

pfoð0; nÞ þ
Xneð1Þ

n¼1

pfoð1; nÞ
" #

:

Hence, the social benefit per time unit when all customers follow the threshold

policy ðneð0Þ; neð1ÞÞ equals

Sfo ¼ kR
Xneð0Þ

n¼0

pfoð0; nÞ þ
Xneð1Þ

n¼1

pfoð1; nÞ
" #

� C
Xneð0Þþ1

n¼0

npfoð0; nÞ þ
Xneð1Þþ1

n¼1

npfoð1; nÞ þ
Xneð1Þþ1

n¼1

npfoð2; nÞ
" #

:

4 Equilibrium mixed strategies for the partially observable case

In this section, we turn our attention to the partially observable case, where arrivals

only observe the server state, and do not observe the number of customers in the

system. We will prove that there exists equilibrium mixed strategies. A mixed

strategy for a customer is specified by a vector ðq0; q1Þ; where qi ¼ qðiÞ is the

probability of joining when the server is in state i. If all customers follow the same

mixed strategy ðq0; q1Þ; then the system follows a Markov chain similar to that

described in Fig. 1 except that the arrival rate equals to ki ¼ kqi. The state space Spo

for the partially observable case is identical to the original state space S, and

transition diagram is illustrated in Fig. 3.

Proposition 2 Consider an M/M/1 queue with setup times, server breakdowns

and r0 6¼ q1; in which the customers enter the system with probability qi if observe

the server in state iði ¼ 0; 1Þ upon arrival, and never enter the system whenever the

server is broken. The system is stable if and only if q1\1 and the stationary

probabilities of the system are given by:

ppoð0; 0Þ ¼ gð1 � q1Þð1 � r0Þ
ðgþ nÞq0 þ gð1 � q1Þ

; ð22Þ

ppoð0; nÞ ¼ gð1 � q1Þð1 � r0Þrn
0

ðgþ nÞq0 þ gð1 � q1Þ
; n ¼ 0; 1; 2; . . .; ð23Þ

(0,2)0 0(0,1) (0,3)0(0,0)

1 1
(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

Fig. 3 Transition rate diagram
for the ðq0; q1Þ mixed strategy
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ppoð1; nÞ ¼ q0gð1 � q1Þð1 � r0Þðrn
0 � qn

1Þ
ðr0 � q1Þ½gþ ðgþ nÞq0 � gq1�

; n ¼ 1; 2; 3; . . .; ð24Þ

ppoð2; nÞ ¼ q0nð1 � q1Þð1 � r0Þðrn
0 � qn

1Þ
ðr0 � q1Þ½gþ ðgþ nÞq0 � gq1�

; n ¼ 1; 2; 3; . . .; ð25Þ

where

q0 ¼ k0

l
; q1 ¼ k1

l
; r0 ¼ k0

k0 þ h
: ð26Þ

Proof Let ðppoði; nÞ : ði; nÞ 2 SÞ be the stationary distribution of the corresponding

system. The balance equations are presented below:

k0pð0; 0Þ ¼ lpð1; 1Þ; ð27Þ

ðk0 þ hÞpð0; nÞ ¼ k0pð0; n � 1Þ; n ¼ 1; 2; 3; . . .; ð28Þ

ðk1 þ lþ nÞpð1; 1Þ ¼ hpð0; 1Þ þ lpð1; 2Þ þ gpð2; 1Þ; ð29Þ

ðk1 þ lþ nÞpð1; nÞ ¼ k1pð1; n � 1Þ þ hpð0; nÞ þ lpð1; n þ 1Þ þ gpð2; nÞ;
n ¼ 2; 3; . . .;

ð30Þ

gpðn; 1Þ ¼ npð1; nÞ; n ¼ 1; 2; 3; . . .: ð31Þ

By iterating (28), we obtain

ppoð0; nÞ ¼ rn
0ppoð0; 0Þ; n ¼ 0; 1; 2; . . .: ð32Þ

From (28)–(32), we can get

pð1; 1Þ ¼ q0pð0; 0Þ; ð33Þ

pð1; 2Þ ¼ q0ðr0 þ q1Þpð0; 0Þ; ð34Þ

lpð1; n þ 1Þ � ðk1 þ lÞpð1; nÞ þ k1pð1; n � 1Þ ¼ �hrn
0pð0; 0Þ; n ¼ 2; 3; . . .:

ð35Þ

Combining (33)–(34)and the recursive formulas (35), we obtain the following

equation by tedious calculations

ppoð1; nÞ ¼ q0ðrn
0 � qn

1Þpð0; 0Þ
r0 � q1

; n ¼ 1; 2; 3; . . .: ð36Þ

From (31), we get

ppoð2; nÞ ¼ nppoð1; nÞ
g

; n ¼ 1; 2; 3; . . .: ð37Þ
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Putting (33), (36) and (37) into the normalizing equation

ppoð0; 1Þ þ ppoð1; 1Þ þ ppoð2; 1Þ ¼ 1;

we obtain the expression of pp0ð0; 0Þ in (22). From the expression pp0ð0; 0Þ[ 0; we

immediately get q1\1. The conclusions (23)–(25) can be easily derived based on

the above expressions (32), (36) and (37). h

From Proposition 2, we can obtain the steady state probabilities of the server

pði ¼ 0Þ ¼
Xþ1

n¼0

ppoð0; nÞ ¼ gð1 � q1Þ
gð1 � q1Þ þ ðgþ nÞq0

; ð38Þ

pði ¼ 1Þ ¼
Xþ1

n¼1

ppoð1; nÞ ¼ gq0

gð1 � q1Þ þ ðgþ nÞq0

: ð39Þ

Let EðN� ij Þ be the expected number of customers in the system found by an arrival,

given that the server is found at state i, then we have

EðN� 0j Þ ¼
Pþ1

n¼0 nppoð0; nÞ
pði ¼ 0Þ ¼ r0

1 � r0

; ð40Þ

EðN� 1j Þ ¼
Pþ1

n¼1 nppoð1; nÞ
pði ¼ 1Þ ¼ 1

1 � r0

þ q1

1 � q1

: ð41Þ

Thus we can get a customer who finds the server at state i upon arrival, his mean

sojourn time is

SðiÞ ¼ ðnþ gÞ½EðN� ij Þ þ 1�
lg

þ 1 � i

h
; ð42Þ

the expected net benefit of such customer who decides to enter is

BðiÞ ¼ R � C � SðiÞ ¼ R � C
ðnþ gÞ½EðN� ij Þ þ 1�

lg
þ 1 � i

h

� �
: ð43Þ

Then the social benefit per time unit when all customers follow the mixed policy

ðq0; q1Þ can be eventually computed as:

Spo ¼ k0 � pði ¼ 0Þ � Bð0Þ þ k1 � pði ¼ 1Þ � Bð1Þ

¼ k0 �
gð1 � q1Þ

gð1 � q1Þ þ ðgþ nÞq0

� R � Cðnþ gÞ½EðN� 0j Þ þ 1�
lg

� C

h

� �

þ k1 �
gq0

gð1 � q1Þ þ ðgþ nÞq0

� R � Cðnþ gÞ½EðN� 1j Þ þ 1�
lg

� �
ð44Þ

Theorem 2 In the fully observable M/M/1 queue with setup times, server

breakdowns and repairs, there exists a unique mixed equilibrium strategy

ðqeð0Þ; qeð1ÞÞ ‘observe IðtÞ and enter with probability qeðIðtÞÞ’ when condition
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k\l holds, where the vector ðqeð0Þ; qeð1ÞÞ is given as follows.

Case I: 1
h\

nþg
lg ;

ðqeð0Þ; qeð1ÞÞ ¼

Rghl� C gðhþ lÞ þ hn½ �
kðgþ nÞC ; 0

� �
if R 2 Cðnþ gÞ

lg
þ C

h
;
Cðkþ hÞðnþ gÞ

lgh
þ C

h

� �
;

ð1; 0Þ if R 2 Cðkþ hÞðnþ gÞ
lgh

þ C

h
;
Cðnþ gÞ

lg
1 þ kþ h

h

� �� �
;

1;
l Rlgh� Cðkþ 2hÞðgþ nÞ½ �
k Rlgh� Cðkþ hÞðgþ nÞ½ �

� �
;

if R 2 Cðnþ gÞ
lg

ð1 þ kþ h
h

Þ;Cðnþ gÞ
lg

l
l� k

þ kþ h
h

� �� �
;

ð1; 1Þ if R 2 Cðnþ gÞ
lg

l
l� k

þ kþ h
h

� �
;þ1

� �
:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

Case II: nþg
lg � 1

h �
nþg

ðl�kÞg;

ðqeð0Þ; qeð1ÞÞ ¼

Rghl� C½gðhþ lÞ þ hn�
kðgþ nÞC ;

gl� hðnþ gÞ
kg

� �
if R 2 Cðnþ gÞ

lg
þ C

h
;
Cðkþ hÞðnþ gÞ

lgh
þ C

h

� �
;

1;
l Rlgh� Cðkþ 2hÞðgþ nÞ½ �
k Rlgh� Cðkþ hÞðgþ nÞ½ �

� �
if R 2 Cðkþ hÞðnþ gÞ

lgh
þ C

h
;
Cðnþ gÞ

lg
l

l� k
þ kþ h

h

� �� �
;

ð1; 1Þ if R 2 Cðnþ gÞ
lg

ð l
l� k

þ kþ h
h

Þ;þ1
� �

:

8>>>>>>><
>>>>>>>:

Case III: 1
h [

nþg
ðl�kÞg;

ðqeð0Þ; qeð1ÞÞ ¼

Rghl� C gðhþ lÞ þ hn½ �
kðgþ nÞC ; 1

� �
if R 2 Cðnþ gÞ

lg
þ C

h
;
C kþ hð Þðnþ gÞ

lgh
þ C

h

� �
;

ð1; 1Þ if R 2 C kþ hð Þðnþ gÞ
lgh

þ C

h
;þ1

� �
:

8>>><
>>>:

Proof Consider a tagged customer who finds the server at state 0 upon arrival.

From equations (40) and (43), if he decides to enter, his expected net benefit is

Bð0Þ ¼ R � C

lgh
ðnþ gÞðkqð0Þ þ hÞ � C

h
;

Then we discuss the values of Bð0Þ in two cases below:

Case 1: Bð0Þ� 0; i:e:; CðnþgÞ
lg þ C

h \R� CðkþhÞðnþgÞ
lgh þ C

h :

In this case, if all customers who find the system empty enter with probability

qeð0Þ ¼ 1; then the tagged customer suffers a negative expected benefit if he decides

to enter. Hence qeð0Þ ¼ 1 does not lead to equilibrium. Similarly, if all customers

use qeð0Þ ¼ 0, then the tagged customer receives a positive benefit from entering,

thus qeð0Þ ¼ 0 also cannot be part of an equilibrium mixed strategy. Therefore,

there exists a unique qeð0Þ satisfying

R � C

lgh
ðnþ gÞðkqð0Þ þ hÞ � C

h
¼ 0;
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for which customers are indifferent between entering and balking. Solving the above

linear equation with respect to qð0Þ, we obtain

qeð0Þ ¼
Rghl� C½gðhþ lÞ þ hn�

kðgþ nÞC :

Case 2: Bð0Þ[ 0; i:e:R[ CðkþhÞðnþgÞ
lgh þ C

h :

In this case, for every strategy of the other customers, the tagged customer has a

positive expected net benefit if he decides to enter, so the best response is qeð0Þ ¼ 1.

We next consider qeð1Þ and tag a customer who finds the server at state 1 upon

arrival. From (41) and (43), if he decides to enter his expected net benefit is equal to

Bð1Þ ¼R � Cðnþ gÞ
lg

1

1 � r0

þ q1

1 � q1

þ 1

� �
¼ R � Cðnþ gÞ

lg
k0 þ h

h
þ l
l� k1

� �
;

so

Bð1Þ ¼

C

h
� Cðnþ gÞ
gðl� kqð1ÞÞ in Case 1;

R � Cðnþ gÞ
lg

kþ h
h

þ l
l� kqð1Þ

� �
in Case 2:

8>><
>>:

Therefore, to find qeð1Þ in equilibrium, we must examine Cases 1 and 2 separately

and consider the following subcases in each.

Case 1a:
CðnþgÞ

lg þ C
h \R� CðkþhÞðnþgÞ

lgh þ C
h and C

h \
CðnþgÞ

lg , we have

ðqeð0Þ; qeð1ÞÞ ¼
Rghl� C½gðhþ lÞ þ hn�

kðgþ nÞC ; 0

� �
:

Case 1b:
CðnþgÞ

lg þ C
h \R� CðkþhÞðnþgÞ

lgh þ C
h and

CðnþgÞ
lg � C

h � CðnþgÞ
ðl�kÞg ; we have

qeð0Þ; qeð1ÞÞ ¼
Rghl� C½gðhþ lÞ þ hn�

kðgþ nÞC ;
gl� hðnþ gÞ

kg

� �
:

Case 1c:
CðnþgÞ

lg þ C
h \R� CðkþhÞðnþgÞ

lgh þ C
h and C

h [ CðnþgÞ
ðl�kÞg, we have

ðqeð0Þ; qeð1ÞÞ ¼
Rghl� C½gðhþ lÞ þ hn�

kðgþ nÞC ; 1

� �
:

Case 2a: R[ CðkþhÞðnþgÞ
lgh þ C

h and R\ CðnþgÞ
lg ð1 þ kþh

h Þ, we have ðqeð0Þ; qeð1ÞÞ ¼
ð1; 0Þ:

Case 2b: R[ CðkþhÞðnþgÞ
lgh þ C

h and
CðnþgÞ

lg ðkþh
h þ 1Þ�R� CðnþgÞ

lg ðkþh
h þ l

l�kÞ; we

have

ðqeð0Þ; qeð1ÞÞ ¼ 1;
l½Rlgh� Cðkþ 2hÞðgþ nÞ�
k½Rlgh� Cðkþ hÞðgþ nÞ�

� �
:
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Case 2c: R[ CðkþhÞðnþgÞ
lgh þ C

h and R[ CðnþgÞ
lg ðkþh

h þ l
l�kÞ, we have ðqeð0Þ; qeð1ÞÞ ¼

ð1; 1Þ:
By rearranging Cases 1a–2c as R varies from

CðnþgÞ
lg þ C

h to infinity, keeping the

operating parameters k; l; h; n; g and the waiting cost rate C fixed, we obtain Cases

I–III in the theorem statement. h

Theorem 2 quantifies several expected situations about the behavior of the

customers when they are informed about the server’s state upon arrival. The key

factor in the theorem is the mean setup time 1
h in comparison with the mean

generalized service time (the mean service time plus the mean overall repair time

due to failures during the service time nþg
lg ) and nþg

ðl�kÞg. As Theorem 2 shows: it is

always true that qeð0Þ� qeð1Þ in case I, qeð0Þ� qeð1Þ in case III and the situation

varies in case II. If a tagged customer is given the information that the server is on

setup and the mean setup time is small, it is optimal for the tagged customer to enter

if few customers ahead of him, which belongs to case I. On the contrary, if a tagged

customer is given the information that the server is on setup, the mean setup time is

large and many customers ahead of him, this would mean that he may wait for a

long time, then his optimal response is balking, which should be in accordance with

case III. When the mean setup time is relatively moderate, the inequality relations of

qeð0Þ and qeð1Þ is various, which should be in accordance with case II.

5 Equilibrium threshold strategies for the fully unobservable case

We finally study the fully unobservable case where the newly arriving customers are

not admitted to join the system when the server is broken. Here a mixed strategy for a

customer is specified by the probability q of entering, where q is the probability of

joining the queue whenever the server is in a regular busy period or a setup period. The

stationary distribution of the system state is given by Proposition 2 by taking

q0 ¼ q1 ¼ q. The equilibrium behavior of the customers is described in the following.

Proposition 3 In the fully unobservable M/M/1 queue with setup times,server

breakdowns and repairs, where the newly arriving customers are not admitted to

join the system when the server is broken. The expected mean sojourn time of a

customer who decides to enter is given by

EðWÞ ¼ gþ n
gðl� kqÞ þ

1

h
þ kqn
ghl

: ð45Þ

Proof By taking q0 ¼ q1 ¼ q in (23)–(25),then we have the mean number of

customers in the system as follows:

EðNÞ ¼
Xþ1

n¼0

npð0; nÞ þ
Xþ1

n¼1

npð1; nÞ þ
Xþ1

n¼1

npð2; nÞ

¼ kq
1

h
� lðgþ nÞ
ðkq � lÞðglþ kqnÞ

� �
;
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and the server is broken with probability

pði ¼ 2Þ ¼
Xþ1

n¼1

pð2; nÞ ¼ kqn
glþ kqn

;

since the newly arriving customers are not admitted to join the system when the

server is broken, then the effective arrival rate is kq 1 � pði ¼ 2Þð Þ. By using Little’s

law, we have the expected mean sojourn time of a customer who decides to enter the

system is

EðWÞ ¼ EðNÞ
kq 1 � pði ¼ 2Þð Þ ¼

gþ n
gðl� kqÞ þ

1

h
þ kqn
ghl

:

h

The social benefit per time when all allowed joining customers follow a mixed

strategy q is given by

Sun ¼ kq 1 � pði ¼ 2Þð ÞðR � CEðWÞÞ

¼ kqgl
glþ kqn

ðR � CEðWÞÞ: ð46Þ

Theorem 3 In the fully unobservable M/M/1 queue with setup times,server

breakdowns and repairs, where the newly arriving customers are not admitted to

join the system when the server is under repair. there exists a mixed equilibrium

strategy ‘enter with probability qe’, where qe is given by

qe ¼
q�

e ; if R 2 Cðgþ n
gl

þ 1

h
Þ;C

kn
ghl

þ gþ n
gðl� kÞ þ

1

h

� �� �
;

1; if R 2 C
kn
ghl

þ gþ n
gðl� kÞ þ

1

h

� �
;þ1Þ:

�
8>>><
>>>:

ð47Þ

where

q�
e ¼

U þ CFl�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C2FV þ ðU � CFlÞ2

q
2CFk

; U ¼ R � C

h
; V ¼ gþ n

g
; F ¼ n

ghl
:

Proof We consider a tagged customer at his arrival instant,if he is allowed to join

the system and decides to enter with probability q, his expected net benefit is

BðqÞ ¼ R � CEðWÞ ¼ R � C
gþ n

gðl� kqÞ þ
1

h
þ kqn
ghl

� �
; ð48Þ

where q 2 ½0; 1�: It is easy to see that BðqÞ is strictly decreasing for q 2 ½0; 1�. We

can get
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Bð0Þ ¼R � C
gþ n
gl

þ 1

h

� �
;

Bð1Þ ¼R � C
kn
ghl

þ gþ n
gðl� kÞ þ

1

h

� �
:

When R 2 C gþn
gl þ 1

h


 �
;C kn

ghl þ
gþn

gðl�kÞ þ 1
h


 �
 �
,we find that (48) has a unique root in

ð0; 1Þ, which is given by the first branch of (47). When R�C kn
ghl þ

gþn
gðl�kÞ þ 1

h


 �
,

BðqÞ is positive for every q, then the unique equilibrium point is qe ¼ 1, which gives

the second branch of (47). h

6 Numerical results

In this section,we will present a set of numerical experiments that are based on the

analytical results of this article. In particular, we concern about the values of the

equilibrium thresholds for the fully observable case, the values of the equilibrium

entrance probabilities for the partially observable and fully unobservable cases as

well as the equilibrium social benefit per unit time when customers follow

equilibrium strategies.

We first consider the fully observable case and explore the sensitivity of the

equilibrium pure thresholds policies ðneð0Þ; neð1ÞÞ with respect to the service reward

R, setup rate h,and the ratio of parameters n and g: The results are presented in

Fig. 4a–c. We find that when adding parameter R, the thresholds ðneð0Þ; neð1ÞÞ
increase in a linear fashion, up to the integrality requirement; when the setup rate h
varies, the threshold neð0Þ increases, while neð1Þ remains constant. Finally, when

n=g increases, it means that the lifetime of the system becomes shorter, and the

customers in the system need to wait longer for the server to restore, which leads to

new customers leave the system and the thresholds decrease.

We then turn to the partially observable and fully unobservable cases and

investigate the sensitivity of the equilibrium entrance probabilities qeð0Þ; qeð1Þ and

qe. From the results of Fig. 5a–c, we find that the entrance probability qe in the fully

unobservable case is always inside the interval formed by qeð0Þ and qeð1Þ in the

partial observable case. The entrance probabilities qeð0Þ; qeð1Þ and qe are expected

to increase with respect to reward R. The equilibrium entrance probabilities

qeð0Þ; qeð1Þ and qe are nondecreasing with h for the most part, and there is a range

of small values of h in qeð1Þ is decreasing. The entrance probabilities qeð0Þ; qeð1Þ
and qe are expected to decrease with respect to n=g.

The last three numerical experiments are concerned with the social benefit under

the equilibrium strategy for fully observable, partially observable and fully

unobservable cases. Generally speaking, the equilibrium social benefit is increasing

with respect to the reward R in Fig. 6a. The two curves of fully observable and

partial observable cases are getting closer with the increasing of R. The equilibrium

social benefit is decreasing with respect to the breakdown rate n in Fig. 6b and

increasing with respect to the repair rate g in Fig. 6c. In our system, we find that the
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Fig. 4 Equilibrium thresholds for observable system. a Sensitivity with respect to R, for l ¼ 1; h ¼
0:05; n ¼ 0:02; g ¼ 1;C ¼ 1. b Sensitivity with respect to h, for l ¼ 1;R ¼ 30; n ¼ 0:02; g ¼ 1;C ¼ 1.
c Sensitivity with respect to n=g, for l ¼ 1; h ¼ 0:05;C ¼ 1;R ¼ 50
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Fig. 5 Equilibrium entrance probabilities qeð0Þ; qeð1Þ and qe, a sensitivity with respect to R, for
k ¼ 0:9; l ¼ 1; h ¼ 0:3; n ¼ 0:02; g ¼ 1;C ¼ 1. b Sensitivity with respect to h, for k ¼ 0:9; l ¼ 1; n ¼
0:1; g ¼ 1;C ¼ 1;R ¼ 15. c Sensitivity with respect to n=g, for k ¼ 0:9;l ¼ 1; h ¼ 0:1;C ¼ 1;R ¼ 50

228 P. Chen, Y. Zhou

123



0.9, 1, 0.3,

0.02, 1, C 1.

Fully Observable

Partially Observable

Fully Unobservable

5 10 15 20 25 30 35 40
0

5

10

15

20

25

E
qu

ili
br

iu
m

 s
oc

ia
l b

en
ef

it

R

0.9, 1, 0.3,

1, C 1, R 30.

Fully Observable

Partially Observable
Fully Unobservable

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

E
qu

ili
br

iu
m

 s
oc

ia
l b

en
ef

it

Fully Observable

Fully Unobservable

Partially Observable

0.9, 1, 0.3,

0.02, C 1, R 20.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

E
qu

ili
br

iu
m

 s
oc

ia
l b

en
ef

it

a

b

c

Fig. 6 Equilibrium social benefit for three different cases, a sensitivity with respect to R, for
k ¼ 0:9; l ¼ 1; h ¼ 0:3; n ¼ 0:02; g ¼ 1;C ¼ 1. b Sensitivity with respect to n, for k ¼ 0:9;l ¼ 1;
h ¼ 0:3; g ¼ 1;C ¼ 1;R ¼ 30. c Sensitivity with respect to g, for k ¼ 0:9; l ¼ 1; h ¼ 0:3; n ¼ 0:02;
C ¼ 1;R ¼ 20
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equilibrium social benefit in the partial observable case is always inside the

equilibrium social benefit formed by fully observable case and fully unobservable

case.

7 Conclusions

In this paper, we have considered customer’s equilibrium behavior in the M=M=1

queue with setup times, breakdowns and repairs. We have analyzed the equilibrium

thresholds in the fully observable case and the counterpart equilibrium entrance

probabilities in the partially observable case and fully unobservable case. We also

discussed the sensitivity with respect to various parameters in the three different

cases.

We should pay attention to the effect of the server unreliability on the system

performances. It is clear that customers’ equilibrium thresholds and optimal

entrance probabilities decrease as n=g increases, which means that many customers

unwillingness to join the system and the social welfare decreases at the same time.

So, the analysis on the Nash equilibrium of the present model with server

breakdowns is more important and practical than the model with a reliable server.
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