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Abstract Given a non-empty, compact and convex set, and an a priori defined

condition which each element either satisfies or not, we want to find an element

belonging to the former category. This is a fundamental problem of mathematical

programming which encompasses nonlinear programs, variational inequalities, and

saddle-point problems. We present a conceptual column generation scheme, which

alternates between solving a restriction of the original problem and a column

generation phase which is used to augment the restricted problems. We establish the

general applicability of the conceptual method, as well as to the three problem

classes mentioned. We also establish a version of the conceptual method in which

the restricted and column generation problems are allowed to be solved ap-

proximately, and of a version allowing for the dropping of columns. We show that

some solution methods (e.g., Dantzig–Wolfe decomposition and simplicial de-

composition) are special instances, and present new convergent column generation

methods in nonlinear programming, such as a sequential linear programming type

method. Along the way, we also relate our quite general scheme in nonlinear

programming presented in this paper with several other classic, and more recent,

iterative methods in nonlinear optimization.
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1 Introduction

This section formalizes the problem studied, provides sample instances along with

the basic assumptions made, and discusses the background to the work behind this

paper.

1.1 Statement of the problem

Let X be a non-empty, compact and convex subset of Rn. Suppose that each element

in the set X either satisfies or violates a well-defined condition, which is denoted by

CðXÞ since it may in general depend on the set X. This condition might, for example,

correspond to the requirement that an element in X should be an optimizer of an

objective function defined on X, solve a variational inequality over X, or satisfy a

saddle-point defining inequality over X.

The archetype problem under consideration in this work is to

find an x 2 X that satisfies the Condition CðXÞ: ½PðXÞ�

The set X is referred to as the admissible set of the problem PðXÞ, and the set of

elements in X satisfying the Condition C(X), denoted X�, is then referred to as the

solution set. (Whenever an optimization problem is considered, the admissible set

will be referred to as the feasible set.) Further, if a set bX � X, that is, an inner

approximation of the admissible set, is non-empty, compact and convex, then the

problem PðbXÞ is said to be a (proper) restriction of the problem PðXÞ.
The solution sets of the problem PðXÞ and its proper restrictions PðbXÞ; bX � X,

are required to have the following property.

Assumption 1 (solution sets).Whenever bX � X is non-empty, compact and convex,

the solution set bX
�
is non-empty and compact.

Assumption 1 implies, in particular, that X� is non-empty and compact. Some

instances of the archetype problem PðXÞ which fulfill Assumption 1 are given in the

following examples.

Example 1 (convex programming). Consider the class of convex programming

problems of the form

min
x2X

f ðxÞ; ½CP�
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where X � R
n is a non-empty, compact and convex set, and f : Rn ! R is con-

tinuously differentiable and convex.1 This problem can be stated as an instance of

the archetype problem PðXÞ as, for example, to find an x� 2 X such that

�rf ðx�Þ 2 NXðx�Þ; ð1Þ

where NXðx�Þ denotes the normal cone to the set X at the point x�.

Example 2 (variational inequality problem). The variational inequality problem

(e.g., Harker and Pang 1990) is to find an x� 2 X such that �Fðx�Þ 2 NXðx�Þ, or,
equivalently, such that

Fðx�ÞTðx � x�Þ� 0; 8x 2 X; ½VIP�

where F : X ! R
n is continuous on the non-empty, compact and convex set

X � R
n.

Example 3 (saddle-point problem). Given a non-empty, compact and convex

Cartesian product set X ¼ X1 	 X2, where Xi � R
ni ; i ¼ 1; 2, and a continuous

saddle-function L : X1 	 X2 ! R, a pair ðx�1; x�2Þ 2 X1 	 X2 is sought such that

Lðx�1; x2Þ
 Lðx�1; x�2Þ
 Lðx1; x�2Þ; 8ðx1; x2Þ 2 X1 	 X2; ½SPP�

which describes the saddle-point problem (e.g., Danskin 1967; Rockafellar 1970;

Dem’yanov and Malozemov 1974).

Remark 1 (generality and flexibility of the archetype problem). (a) If the

archetype problem PðXÞ is an instance of a nonlinear program, then the Condition

CðXÞ may describe local requirements on a point x� 2 X, such as a condition like

(1), or it may describe global requirements such as

x� 2 x 2 X f ðxÞ
 min
z2X

f ðzÞ
�

�

�

�

� �

: ð2Þ

From these examples we may conclude that different formulations of the Con-

dition CðXÞ (from the same original problem) will obviously then yield archetype

problems that may differ substantially in their tractability. Further, the algorithm

class to be devised and analyzed in this paper in order to find a point satisfying

this condition includes iterative steps that will be more or less tractable and

realizable.

(b) The versions of the archetype problem given above are of a primal nature,

while they may also be chosen to be of a dual or primal–dual character, de-

scribing, for example, the KKT conditions of a nonlinear program or of a

variational inequality. We may also envisage an archetype problem based on a

reformulation of an objective function in terms of its epigraph, etc. The result of

such reformulations is that the algorithm to be devised will yield different types of

approximations of the original problem (such as outer approximations of con-

straints and/or the epigraph of the objective function), and also that the sequence

1 The requirement that f be convex is only made for reasons of simplicity of the presentation.
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of iterates will be defined in different spaces of the problem formulation. We shall

henceforth remark on opportunities along these lines for some instances of the

archetype problem, but will concentrate on inner approximations of the admissible

set in our basic convergence results.

(c) Further examples of problems which can be stated as instances of the

archetype problem include Nash and Stackelberg equilibrium problems, and

mathematical programs with equilibrium constraints (MPEC); see Luo et al.

(1996). Further, the Condition CðXÞ also may describe requirements that are not of

an optimality-describing character, but may describe requirements like comple-

mentarity, efficiency (in the context of multi-objective optimization), or feasibility

with respect to side constraints, or a combination of different kinds of

requirements.

We will also require the problem PðXÞ to have a continuity property. Consider

any sequence fXkg of non-empty, compact, convex and increasing subsets of X. The

sequence then has a set limit (e.g., Mosco 1969; Salinetti and Wets 1979), say

eX � X, which is also non-empty, compact and convex. Further, let, for all

k; xk 2 X�
k . Then, since, for all k; xk 2 Xk, it directly follows (e.g., Aubin and

Frankowska 1990, Proposition 1.1.2) that any accumulation point ex of the sequence

fxkg, belongs to eX . We impose the following problem continuity property.

Assumption 2 (problem continuity). Let the sequence fXkg consist of non-empty,

compact, convex and increasing subsets of X, and with the non-empty, compact and

convex set limit eX � X. Let, for all k; xk 2 X�
k , and suppose that ex is an

accumulation point of the sequence fxkg. Then, ex 2 eX�
.

The fulfillment of Assumption 2 for the Examples 1–3 discussed above will be

verified in Sect. 4.

1.2 Background and motivation

The solution strategy known as the column generation principle—and its dual

correspondence, constraint generation—is one of the standard tools of mathematical

programming, and has since the pioneering work on the maximal multicommodity

network flow problem by Ford and Fulkerson (1958) been developed and applied in a

variety of contexts. Early, classical, applications of this strategy include economic lot

sizing (Manne 1958), the cutting stock problem (Gilmore and Gomory 1961, 1963),

and ship scheduling and routing (Appelgren 1969, 1971). The probably most widely

known column generation method is the Dantzig–Wolfe decomposition method

(Dantzig and Wolfe 1960, 1961) for block-angular linear programs. In all these

applications of the general principle, the column generation is based on the pricing-

out mechanism of the simplex method. Included in the class of column generation

methods are also the inner linearization/restriction type algorithms defined by

Geoffrion (1970); these include the simplicial decomposition method (Holloway

1974; Hohenbalken 1975, 1977) for nonlinear programming, in which the column

generation is not based on any pricing mechanism, but on the solution of
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a subproblem which is constructed through a linear approximation of the objective

function of the nonlinear problem.

The origin of the work which led to the development of the generic column

generation principle, to be presented in this paper, was the idea to generalize

simplicial decomposition type methods to include nonlinear subproblems, the

reason being that the use of subproblems arising from more accurate approximations

of the original problem might enhance the overall performance of such methods.

(Some numerical results for this generalization are presented in Larsson et al.

(1996) as well as in Garcı́a et al. (2011).) A further motivation for this work was

also the interest to extend the previous analysis to cover also non-differentiable

convex objective functions. The simplicial decomposition strategy is also a natural

background to and setting for the generic column generation principle, and we are

therefore inclined to proceed the introduction and the presentation from this angle of

approach, even though the results obtained in this paper reach far beyond the

original scope.

One origin of simplicial decomposition is the Frank–Wolfe algorithm (Frank and

Wolfe 1956) for quadratic programs and its extension to general differentiable

objective functions known as the conditional gradient algorithm (Pshenichny and

Danilin 1978, Section III.3). Applied to the problem CP when X is polyhedral, this

method alternates between the solution of a feasible direction-finding subproblem,

which is a linear program constructed through a first-order Taylor series expansion

of f at the current iterate, and a line search towards the solution to this linear

program. The optima of the linear programs provide (convergent) lower bounds on

the optimal value of the original problem, and are therefore useful to monitor the

progress of the solution process. A further feature of the method is the ability to

utilize problem structures, like feasible sets being Cartesian products or defining

(generalized) network flows. Because of these nice features, the Frank–Wolfe

method has reached some popularity, in particular within the field of traffic

planning, although its convergence performance might be poor. (See, e.g., Canon

and Cullum 1968; Wolfe 1970; Hearn et al. 1987; Patriksson 1994; Bar-Gera 2002;

Boyce et al. 2004; Nie 2009; Bar-Gera 2010 on the latter issue.) There have been

many suggestions for improvements, and among these we distinguish two important

categories.

In a first category, one seeks to improve the quality of the search directions. An

inherent weakness of the Frank–Wolfe method is that the search directions will

eventually become arbitrarily poor, in the sense that they eventually become almost

perpendicular to the direction of steepest descent (e.g., Wolfe 1970). This property

is a direct consequence of the linearity of the direction-finding subproblem, and a

natural strategy for improvements is therefore the introduction of a nonlinearity in

this problem. Examples of this strategy are the constrained Newton method (e.g.,

Pshenichny and Danilin 1978) and the regularized Frank–Wolfe method of

Migdalas (1994). (The latter method employs a direction-finding subproblem

devised by augmenting the usual linear objective function with a term which has the

effect of a trust region.) Similar strategies have, of course, been frequently used in

other settings; an example of this is the auxiliary problem principle of Cohen

(1980). The principle of using nonlinear direction-finding subproblems in descent
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algorithms for nonlinear programs and variational inequality problems is in

Patriksson (1998a, b, c, d) analyzed within the framework of the class of cost

approximation algorithms, which includes all of the above as special cases.

In a second category of improvements of the Frank–Wolfe method, the line

search is replaced by a multi-dimensional search. These simplicial decomposition

algorithms are founded on Carathéodory’s Theorem (e.g., Bazaraa et al.

2006, Theorem 2.1.6), which states that any point in the convex hull of an arbitrary

subset, S, of Rn can be expressed as a convex combination of, at most, 1þ dim S

points in the set, where dim S refers to the dimension of the affine hull of S. (The

convexity weights are sometimes referred to as barycentric coordinates.) A

consequence of this result is that any feasible solution to an optimization problem

with a bounded and polyhedral feasible set can be represented as a convex

combination of the extreme points of the feasible polyhedron. This fact is exploited

in the simplicial decomposition algorithms, which alternate between a master

problem, which is the restriction of the original program to an inner approximation

of the feasible set, defined by a restricted set of extreme points, and of the solution

of the linear program of the Frank–Wolfe method.

Consider a convex program of the form CP and with a polyhedral feasible set.

Given a feasible iterate, xk�1 (k � 1), and k stored extreme points, yi; i ¼ 1; . . .; k,

the master problem is given by

min f xk�1 þ
X

k

i¼0

ki yi � xk�1
� �

 !

s:t:
X

k

i¼0

ki 
 1;

ki � 0; i ¼ 0; � � � ; k;

with y0 ¼ x0. This problem provides the new iterate, xk, and an upper bound on the

optimal value of the nonlinear program. It obviously generalizes the line search of

the Frank–Wolfe method, but its special constraint structure enables its solution by

efficient specialized methods, as long as the number of columns retained is

relatively low. The generation of a new column (i.e., an extreme point of the

feasible polyhedron) to be included in the master problem is made through the

solution of the linear programming subproblem of the Frank–Wolfe method, that is,

min
y2X

rf ðxkÞTy:

The simplicial decomposition strategy has been applied mainly to certain classes of

structured linearly constrained convex programs, and it has then shown to be suc-

cessful. Especially, for nonlinear network flow problems, the simplicial decompo-

sition methods have shown to be efficient computational tools (e.g., Hearn et al.

1987; Mulvey et al. 1990; Larsson and Patriksson 1992).

von Hohenbalken (1977), who gave the method its name and gave its first

complete description, shows that the convergence of the simplicial decomposition

algorithm is finite in the number of master problems even if extreme points with
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zero weights are removed from one master problem to the next.2 This convergence

result allows for the use of column dropping (that is, the elimination of columns that

have received a zero weight in the solution to a master problem, see Murphy 1973a,

b), which is essential to gain computational efficiency in large-scale applications. In

fact, by applying Carathéodory’s theorem to the optimal face, F�, of the feasible set,
the number of extreme points needed to express any optimal solution is bounded

from above by 1þ dimF�. This fact is exploited in the restricted simplicial

decomposition algorithm, devised by Hearn et al. (1985), in which the number of

stored extreme points is bounded by a number, r; the convergence remains finite

provided that r � 1þ dimF�.
The remaining discussion in this section on extensions of the simplicial

decomposition algorithm is pertinent to those of the algorithm to be presented and

analyzed in this paper.

The basic works described so far have, of course, been extended in various

directions. Larsson and Patriksson (1992) extend the simplicial decomposition

strategy to take full advantage of Cartesian product structures, resulting in the

disaggregate simplicial decomposition (DSD) algorithm. Ventura and Hearn (1993)

extend the restricted simplicial decomposition method to convexly constrained

problems, and Feng and Li (2001) analyze the effect of approximating the restricted

master problem by a quadratic one. In Lawphongpanich and Hearn (1984) the

simplicial decomposition strategy is applied to a variational inequality formulation

of the traffic equilibrium problem. The latter algorithm includes a column dropping

scheme which is governed by the primal gap function (e.g., Hearn et al. 1984).

Simplicial decomposition may also be based on the pricing-out of a subset of the

(linear) constraints. Identifying a subset of the constraints defining X as compli-

cating, these may be priced-out (that is, Lagrangian relaxed) in the column

generation subproblem, and instead included in the master problem, just as in

Dantzig–Wolfe decomposition for linear and non-linear programming problems; see

Marı́n (1995), Stefek (1989). It should be noted, however, that just as in the original

(primal) simplicial decomposition method, the column generation subproblems in

these methods are based on the linearization of the original objective function, and

are therefore linear programs, and their master problems are non-linear; this is

precisely the opposite to the case of non-linear Dantzig–Wolfe decomposition (e.g.,

Lasdon 1970).

As noted earlier, in the Frank–Wolfe method, and therefore also in simplicial

decomposition methods, the direction towards the latest generated extreme point

might be arbitrarily close to being perpendicular to the direction of steepest descent,

and there is therefore no guarantee that the inclusion of this extreme point in the

master problem leads to any significant improvement in the objective value. These

methods might therefore actually suffer from a weakness that is similar to that of the

Frank–Wolfe method, and such a behaviour has indeed been observed in

applications to some large-scale traffic equilibrium models (Hearn et al. 1987;

Larsson and Patriksson 1992). As for the Frank–Wolfe method, there might also be

2 As Higgins and Polak (1990) have pointed out, von Hohenbalken’s version of the algorithm is

guaranteed convergent for polyhedral feasible sets only.
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a potential for enhancements of simplicial decomposition methods through the

introduction of a nonlinear direction-finding subproblem. This was the original

motivation for the work in Larsson et al. (1996) and the present one.

1.3 Preview

We present a conceptual column generation scheme for an archetype problem which

encompasses a wide variety of problem classes from the field of mathematical

programming. The admissible set of the archetype problem is required to be

compact and convex, and its solution set is characterized by an a priori specified

condition. The column generation problem of the generic scheme is not required to

have any particular form; when applied to linearly constrained nonlinear programs,

the generic column generation principle thus allows combinations of the two

strategies for enhancements of the Frank–Wolfe method discussed above. The main

contribution of our work is that the generic column generation principle provides a

theoretical foundation for the introduction of multi-dimensional searches, instead of

the traditional line searches, in a variety of existing solution methods for nonlinear

programs, variational inequality problems, etc., while also suggesting new and

interesting methodologies. We believe that this strategy will be computationally

beneficial if the inner approximated problem is much more easily solved than is the

original one.

The outline of the remainder of the paper is as follows. In the next section we

introduce the general column generation problem of the conceptual scheme, and in

the section that follows, we state the scheme formally and give the basic convergence

theorem. In Sect. 4, it is shown that convergence is ensured when the algorithm is

applied to nonlinear programs, variational inequalities and saddle-point problems.

Next, we present a version of the algorithm in which both master and column

generation problems are solved inexactly; we also extend the basic convergence

result to this truncated version of the algorithm. In the same section, we also

introduce a very general rule for updating the restriction from one iteration to the

next, which will in particular allow for the construction of column dropping rules.

Also this version is theoretically validated. Then in Sect. 6 we establish that the

Dantzig–Wolfe decomposition method is a special case of the generic column

generation principle, by applying the method to the primal–dual saddle-point

problem arising from the original linear program. We also introduce a sample of new

algorithms that may be derived from the use of the column generation principle: a

sequential linear programming (SLP) method, a simplicial decomposition algorithm

for constrained non-smooth optimization, and a Newton method for variational

inequalities with multi-dimensional searches, and also briefly suggest some others.

The paper is concluded with some suggestions for further work and applications.

2 Requirements on the column generation problem

We assume that we have at hand a principle for constructing a column generation

problem, that is, an auxiliary problem which is used to guide the search for a
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solution to the original problem, PðXÞ. The column generation problem constructed

for some x 2 X and its solution set are denoted CGðxÞ and YðxÞ � X, respectively.

Assumption 3 (solution set of CGðxÞ). For any x 2 X, the solution set YðxÞ � X is

non-empty.

We further suppose that the mapping associated with the column generation

problem is closed, in the sense defined by Zangwill (1969, Chapter 4).

Assumption 4 (closedness of YðxÞ). The principle for constructing the column

generation problem results in a point–to–set solution set mapping Y : X ! 2X which

is closed on X [i.e., if, for all k; xk 2 X; fxkg ! ex, and if, for all k; yk 2 YðxkÞ, and
fykg ! ey holds, then ey 2 YðexÞ].

We further assume that the column generation problem is devised so that it can

be used to establish if a solution to the original problem has been found. That is, we

assume that the column generation problem has the following fixed point property.

Assumption 5 (fixed-point property of YðxÞ). Let x 2 X. Then

YðxÞ 3 x () x 2 X�.

We note in reference to the convergence results to follow, that the implication in

the right direction is the only one actually needed, although the instances of column

generation subproblems discussed in the paper satisfy Assumption 5.

Further, whenever a solution is not at hand, the column generation problems shall

have the following set augmentation property.

Assumption 6 (set augmentation property). Let the set bX � X be non-empty,

compact and convex, and let bx
� 2 bX�

. If bx
� 62 Yðbx�Þ, then Yðbx�Þ � X n bX .

Hence, when the solution to the proper restriction PðbXÞ does not solve its

resulting column generation problem, then the column generation problem will

supply candidate solutions (i.e., columns) to the original problem that are strictly

separated from the restricted admissible set, that is, which have not already been

considered; algorithmically, any column found by the column generation problem

can thus be used to augment the set bX , that is, improve the inner approximation of

the original admissible set. (In this sense, the column generation problem may be

viewed as a separation oracle.)

Example 4 (algorithmic maps fulfilling Assumptions 3–6). An example of a

column generation problem that fulfills the Assumptions 3–6 is the linear

programming subproblem of the simplicial decomposition algorithm, as applied

to linearly constrained convex programs; the column generation problem CGðxÞ
may thus be regarded as a generalization of that subproblem. The column generation

problem arising in the classical column generation algorithm in linear programming

(e.g., Lasdon 1970, Chapters 3–4), which in turn includes that of Dantzig and Wolfe

(1960) and the cutting stock application in Gilmore and Gomory (1961, 1963), also

satisfies Assumptions 3–6.
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3 Conceptual algorithm

3.1 The algorithm and its convergence

The conceptual column generation algorithm for the solution of the archetype

problem PðXÞ is stated in Table 1.

Note that Steps 1, 2, and 4 of the algorithm are well-defined thanks to

Assumption 5, Assumptions 3 and 6, and Assumption 1, respectively. (In realiza-

tions of the algorithm the Steps 1 and 2 are often naturally integrated.) Assump-

tions 2 and 4 are needed to invoke in order to make the algorithm convergent.

Remark 2 (initiation). The initiation that is stated in the algorithm may, of course,

be replaced by an advanced start, which amounts to choosing a non-trivial, closed

and convex set X0 � X and finding x0 as a solution to the restricted problem PðX0Þ.
Notice also that the restricted admissible sets Xk; k ¼ 0; 1; . . ., do not need to be

polyhedral.

To state the main convergence result, let dX� ðxÞ denote the Euclidean distance

between some x 2 X and the solution set X�.

Theorem 1 (convergence of the conceptual algorithm). Suppose that

Assumptions 1 through 6 hold. If the sequence fxkg of iterates generated by the

algorithm is finite, then it has been established that the last iterate solves the

problem PðXÞ. If the sequence of iterates is infinite, then

dX� ðxkÞ
� �

! 0:

Proof If the sequence of iterates is finite, then the algorithm has been interrupted

in Step 1, and the conclusion follows from Assumption 5. In the remainder of the

proof, we thus assume that the sequence of iterates is infinite.

The sequence fXkg (which exists thanks to Assumption 1) consists of non-empty,

compact, convex and increasing sets. Thus, it has a set limit (e.g., Mosco 1969;

Salinetti and Wets 1979), say eX � X, which is also non-empty, compact and

convex.

Let e� 0 be such that the sequence of iterates (which exists by Assumption 1)

contains an (infinite) subsequence, say fxkgk2K, where K � N :¼ f0; 1; . . .g, with

Table 1 Conceptual column generation algorithm

0 (initiation): Find an x0 2 X, let X0 ¼ fx0g and k ¼ 0.

1 (termination check): If the iterate xk solves the column generation problem CGðxkÞ, then terminate

with the same conclusion for the original problem PðXÞ.
2 (column generation): Find ykþ1 as a solution to the column generation problem CGðxkÞ, and
construct a closed and convex set Xkþ1 � X such that ykþ1 2 Xkþ1 � Xk.

3 (iteration): Let k :¼ k þ 1.

4 (solution of restriction): Find a new iterate xk as a solution to the restricted problem PðXkÞ.
5 (repetition): Return to Step 1.
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dX� ðxkÞ� e for all k 2 K. Since the sequence fxkgk2K belongs to the compact set X,

it has at least one accumulation point, say ex 2 X, which is the limit point of a

convergent subsequence, say fxkg
k2eK

, where eK � K. Then, from Assumption 2,

ex 2 eX�
.

Since the sequence fykþ1g
k2eK

(which exists by Assumption 3) belongs to the

compact set X, it has at least one accumulation point, say ey 2 X. From the

closedness of the column generation mapping (i.e., Assumption 4), it follows that

ey 2 YðexÞ. Since ykþ1 2 Xkþ1 for all k 2 eK, it follows (e.g., Aubin and Frankowska

1990, Proposition 1.1.2) that ey 2 eX . From Assumption 6 follows that ex 2 YðexÞ, and
from Assumption 5 then follows that ex 2 X�.

Hence, e ¼ 0, and the result of the theorem follows. h

The traditional simplicial decomposition method is clearly a special case of the

generic scheme when a linearly constrained nonlinear optimization problem (with a

bounded feasible set) is to be solved, and set augmentation is made through the

exact solution of a linearized version of the given problem.

3.2 Remarks

The restricted problem PðXkÞ is preferably dealt with in actual realizations as

follows. Assume that the iterate xk�1 is given and that the current inner

approximation of the admissible set is given by Xk ¼ conv fp0; . . .; pkg, where p0 ¼
x0 and the points pi 2 X; i ¼ 1; . . .; k, have been generated through some set

augmentation principle. (One such principle is given below.) Introducing the

ðk þ 1Þ-dimensional unit simplex

Skþ1 :¼ k 2 R
kþ1

X
k

i¼0

ki 
 1; ki � 0; i ¼ 0; . . .; k

�

�

�

�

�

( )

and the admissible point

x kð Þ :¼ xk�1 þ
X

k

i¼0

ki pi � xk�1
� �

; k 2 Skþ1;

we obtain

Xk ¼ x Skþ1
� �

:¼ x kð Þ k 2 Skþ1
�

�

� �

;

so that the restriction PðXkÞ can preferably be stated and solved as

find a k 2 Skþ1 such that x kð Þ satisfies the Condition C x Skþ1
� �� �

: ½PðSkþ1Þ�

This equivalent problem, or (restricted) master problem, might in practice be sig-

nificantly less expensive to solve because of the simplicity of its admissible set.

(Note that the dependency between the convexity variables and the original
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variables should be handled implicitly.) Furthermore, it is often natural and

beneficial to re-optimize the master problem (from 0 2 Skþ1).

We next discuss some possible relaxations of the requirements for convergence

of the algorithm, and some generalizations of it.

3.2.1 On the boundedness assumption on X

The boundedness requirement on the set X can be replaced by any other assumption

that implies that the sequences fxkg and fykg both are bounded. If, for example, the

optimal solution set is bounded and if the generic scheme is implemented so that the

sequence ff ðxkÞg of objective values is descending, then since the (closed) lower

level set of the objective function (restricted to X) corresponding to the initial

iterate, L
f
Xðx0Þ, is bounded (e.g., Rockafellar 1970, Corollary 8.7.1), it follows that

the sequence fxkg is bounded. If, further, the column generation problem is

designed so that the solution set YðxÞ is non-empty and compact for any x 2 L
f
Xðx0Þ

and the point–to–set solution set mapping Y : X ! 2X is upper semi-continuous on

the compact set L
f
Xðx0Þ, then the set YðLf

Xðx0ÞÞ :¼ [
x2L

f
X
ðx0ÞYðxÞ is also compact

(e.g., Nikaido 1968, Lemma 4.5). Since, for all k; yk 2 YðxkÞ, and fxkg � L
f
Xðx0Þ, it

then follows that the sequence fykg � YðLf
Xðx0ÞÞ is bounded.

Other means to obtain a bounded (working) admissible set include the addition of

redundant constraints. The algorithm may also be combined with trust region

methods (e.g., Conn et al. 2000; Bazaraa et al. 2006, Section 8.7), although the

convergence properties of such a method remains to be analyzed.

Another alternative is to extend the method described in Table 1 so that it deals

explicitly with the possibility of the column generation problem having an

unbounded solution. In such a case, Step 2 would generate a direction in the

recession cone of X, and the inner approximation of X utilized in Step 4 then

describes the sum of the convex hull and cone of the columns and directions

generated, respectively, so-far in the course of the algorithm.

3.2.2 On the closedness of the column generation step

Consider the possibility of applying a column generation principle described by

some mapping x 7! YðxÞ which we cannot establish to be closed (so, Assumption 4

is violated), but which satisfies Assumption 6. Provided that provably convergence-

inducing mappings are applied an infinite number of times in any infinite sequence

of iterations, the resulting sequence of iterates can be shown to still satisfy the

conclusions of Theorem 1, since the property Xkþ1 � Xk still holds for all k � 1.

[See further the discussion in Remark 8 on spacer steps, for the case where a merit

function exists for the problem PðXÞ.] Such a column generation mapping could, for

example, be the result of the application of some heuristic procedure which is of

interest to invoke occasionally.
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3.2.3 On the realization of the set augmentation step

The augmentation of the inner approximation of the admissible set might be

implemented in various ways; a proper generalization of the principle used in

simplicial decompositionwould be to choose a tk � 1 such that xk þ tkðykþ1 � xkÞ 2 X,

and set Xkþ1 ¼ conv ðXk [ fxk þ tkðykþ1 � xkÞgÞ, where conv is the convexification

operator. The choice tk ¼ maxf t j xk þ tðykþ1 � xkÞ 2 X g, which gives the largest

augmentation, has in Larsson et al. (1996) been observed to yield a substantial

improvement over the choice tk ¼ 1 for some cases of nonlinear column generation

problems CGðxÞ.
The column generation step of the algorithm may also be replaced by a closed set

augmentation mapping, that is, a closed mapping M : 2X ! 22
X

, with the property

that for any non-empty, compact and convex set V � X it holds that any set W 2
MðVÞ is also non-empty, compact and convex, and fulfill that V � W � X. Then the

set augmentation step of the algorithm is to let Xkþ1 2 MðXkÞ, of which the given,

composite, set augmentation step is a special case. Convergence is guaranteed if for

any non-empty, compact and convex set V � X it holds that (cf. Assumptions 5

and 6)

MðVÞ 3 V ¼) V \ X� 6¼ ;:

We have chosen to consider set augmentation through the exact solution of a

column generation problem, since it is from a conceptual point of view a natural

way to implement this step. Another natural way to obtain a closed set augmentation

mapping is through the approximate solution of a column generation problem, with

a closed solution set mapping, using a solution method with a closed algorithmic

map.

We finally remark that to the algorithm described in Table 1 there is a

corresponding dual methodology, where inner representation is replaced by outer

representation, and column generation is replaced by constraint generation. A large

class of such methods is in fact established automatically through the convergence

analysis performed in this paper (as, for example, Benders decomposition of a linear

program is equivalent to Dantzig–Wolfe decomposition of its dual). An example of

the constraint generation methods that can be derived through our framework is

given in Sect. 6.2.1. (See also the discussion in Remark 1.)

4 Realizations of sufficient conditions

We will in this section give a simple realization of Assumption 2 by means of a

merit function, and show that this realization is readily applicable to three familiar

problem classes. It is further shown that Assumptions 5 and 6 can be realized by the

same means.

Lemma 1 (a sufficient condition for problem continuity). Suppose that there

exists a function w : 2X 	 X ! R with the following properties.
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(a) (continuity) Let the sequence fXkg consist of non-empty, compact, convex and

increasing subsets of X, with set limit eX � X. Further, consider a convergent

sequence fxkg, where, for all k; xk 2 Xk, with limit ex. Then,

wðXk; xkÞf g ! wðeX ; exÞ:

(b) (merit property) Let bX � X be non-empty, compact and convex. Then,

bX
� ¼ argmin

y2bX
wðbX ; yÞ:

Then Assumption 2 is fulfilled.

Proof Consider a sequence fxkg where, for all k; xk 2 X�
k , and let ex be one of its

accumulation points, which is then the limit of a convergent subsequence, say

fxkgk2K, where K � N . Consider some arbitrary ey 2 eX . Since eX is the set limit of

the sequence fXkg; ey is then (e.g., Aubin and Frankowska 1990, Proposition 1.1.2)

the limit of a convergent sequence fykg, where, for all k; yk 2 Xk. From the merit

property, we have that, for all k; wðXk; ykÞ�wðXk; xkÞ. Taking the limit corre-

sponding to the subsequence K, using that fXkgk2K ! eX ; fykgk2K ! ey, and the

continuity property, we obtain that wðeX ; eyÞ�wðeX ;exÞ. Finally, by recalling that

ey 2 eX is arbitrary and again invoking the merit property, the result of the lemma

follows. h

The continuity property stated in this lemma holds in particular for any function

w that is continuous on an open neighbourhood of 2X 	 X.

Example 5 (convex programming (continued)). To show that Assumption 2 is

fulfilled for the nonlinear program CP, we invoke Lemma 1 with the choice

wðbX ; xÞ :¼ f ðxÞ; x 2 bX � X;

whose fulfillment of the continuity and merit properties is obvious.

Example 6 (variational inequality problem (continued)). For the variational

inequality problem VIP, Lemma 1 can be invoked by choosing the function w as, for

example, the primal gap function (e.g., Auslender 1976; Hearn et al. 1984; Larsson

and Patriksson 1994), that is,

wðbX ; xÞ :¼ max
y2bX

FðxÞTðx � yÞ; x 2 bX � X: ð3Þ

The continuity property required follows from the compactness of X. Further, it has

the merit property since it can be shown that, for all bX � X; wðbX ; xÞ� 0 for all

x 2 bX , and wðbX ; xÞ ¼ 0 if and only if x 2 bX�
. Assumption 2 is thus fulfilled for the

problem VIP.
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Example 7 (saddle-point problem (continued)). To show that Assumption 2 is

fulfilled for the saddle-point problem SPP, we may choose

wðbX ; xÞ :¼ max
y22bX 2

Lðx1; y2Þ � min
y12bX 1

Lðy1; x2Þ; x ¼ ðx1; x2Þ 2 bX1 	 bX2 ¼ bX � X:

ð4Þ

The function w is continuous in the sense of Lemma 1, and the merit property

follows from that, for all bX � X; wðbX ; xÞ� 0 for all x 2 bX , and wðbX ; xÞ ¼ 0 if and

only if x 2 bX�
.

When there exists a continuous merit function w, it may also be used to establish

that a column generation problem has the fixed point and set augmentation

properties, as defined in Assumptions 5 and 6.

Lemma 2 (a sufficient condition for the fixed point property). Suppose that

there exists a function w : 2X 	 X ! R having the properties that are stated in

Lemma 1, and the following additional ones.

(a) (descent at non-solutions) If x 62 YðxÞ, then for all y 2 YðxÞ and all sufficiently

small t 2 ð0; 1�,

w X; x þ tðy � xÞð Þ\w X; xð Þ:

(b) (non-descent at solutions) If x 2 YðxÞ, then

w X; yð Þ�w X; xð Þ; 8y 2 X:

Then Assumption 5 is fulfilled.

Proof Immediate from the merit property of the function w. h

Remark 3 (fixed point property). From the descent property of the lemma it

directly follows that if for some y 2 YðxÞ; wðX; x þ tðy � xÞÞ�wðX; xÞ holds for

arbitrarily small t[ 0, then YðxÞ 3 x. Hence, an admissible point then solves its

corresponding column generation problem (and, consequently, the original one) if

any of its solutions (e.g., the one produced by some algorithm) does not provide

descent with respect to the merit function wðX; �Þ.

Lemma 3 (a sufficient condition for the set augmentation property). Suppose

that there exists a function w : 2X 	 X ! R having the properties that are stated in

Lemma 1, and the additional property that for all non-empty, compact and convex

sets bX � X, any point bx
� 2 bX�

such that bx
� 62 Yðbx�Þ, and any y 2 Yðbx�Þ, it holds

that the merit function wðbX ; �Þ is descending in the direction of y � bx�
from the point

bx
�
. Then Assumption 6 is fulfilled.

Proof If Assumption 6 is not fulfilled, then there exists a non-empty, compact and

convex set bX � X, a point bx
� 2 bX�

such that bx
� 62 Yðbx�Þ, and a y 2 Yðbx�Þ such that
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y 2 bX . Then, for all t 2 ð0; 1�; bx� þ tðy � bx�Þ 2 bX , and from the merit property of

the function w it follows that, for all t 2 ð0; 1�,

w bX ;bx� þ tðy � bx�Þ
	 


�w bX ; bx�
	 


;

which contradicts the descent assumption, and the result follows. h

Example 8 (convex programming (continued)). With the choice w :¼ f for the

nonlinear program CP, the descent property in Lemma 2 reduces to the well-known

descent condition

rf ðxÞTðy � xÞ\0; y 2 YðxÞ; x 2 X:

This condition, as well as the non-descent property in Lemma 2, the set augmen-

tation property in Lemma 3, and Assumptions 3 and 4, are typically fulfilled by

iterative descent methods for the problem CP, such as the Frank–Wolfe, constrained

Newton (e.g., Pshenichny and Danilin 1978), gradient projection (Goldstein 1964;

Levitin and Polyak 1966), and proximal point (e.g., Rockafellar 1976) methods.

[See Patriksson (1998d) for many further examples.] The direction-finding sub-

problem of any of these methods may thus be used as a column generation problem

in the generic scheme, as applied to the problem CP. In particular, the traditional

simplicial decomposition scheme (for the special case of CP where the feasible set,

X, is polyhedral) might therefore be generalized through the use any of the above-

mentioned direction-finding strategies, while still being convergent.

Example 9 (variational inequality problem (continued)). As has been surveyed,

for example, in Larsson and Patriksson (1994) and Patriksson (1998d), there exist

several column generation problems and merit functions that, in combination,

satisfy the conditions of Lemma 2. Consider, for example, the column generation

problem which, given an x 2 X and under the assumption that F is continuously

differentiable on X, defines YðxÞ to be the set of vectors y 2 X satisfying the

linearized problem

½FðxÞ þ rFðxÞTðy � xÞ�Tðy � zÞ� 0; 8z 2 X: ð5Þ

If F is monotone on X, that is, if,

½FðxÞ � FðyÞ�Tðx � yÞ� 0; 8x; y 2 X;

then a result of Marcotte and Dussault (1989) is that the direction of y � x defines a

direction of descent with respect to the primal gap function (3) if and only if X is not

a solution to VIP. Its application in the context of the present algorithmic framework

yields a Newton method with multi-dimensional searches for the problem VIP, and

it is easily verified from the above that the conditions of Lemma 2 are satisfied. (See

Sect. 6.2.3 for further discussions on this class of algorithms.) The references

Larsson and Patriksson (1994), Patriksson (1998d) contain many other examples of

column generation problems which yield descent directions for differentiable merit

functions for the problem VIP, under additional assumptions on F (such as strict or

strong monotonicity on X) and on the column generation problem itself.
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Example 10 (saddle-point problem (continued)). Assume that the saddle-

function L is strictly convex–concave on X. Then, it is easily established (e.g.,

Dem’yanov and Malozemov 1974) that the vector ðy1; y2Þ which defines the value of
the merit function (4) previously defined for the problem SPP, defines a direction of

descent, y � x, for the said function. In the absence of strict convex–concavity, in

some instance of the saddle-point problem the merit function may be augmented

with strictly convex–concave terms in order to retain the descent property, for

example as follows:

wðbX ; xÞ :¼ max
y22bX 2

Lðx1; y2Þ �
1

2
ky2 � x2k2

� �

� min
y12bX 1

Lðy1; x2Þ þ
1

2
ky1 � x1k2

� �

;

x 2 bX � X:

This merit function, which is differentiable on X, can be shown (cf. Patriksson

1998d, Section 8.8) to satisfy the conditions of Lemmas 2 and 3 whenever L is

extended linear–quadratic (i.e., of the form Lðx; yÞ :¼ cT x þ 1
2

xT Cx � bT y �
1
2

yT By � xT Qy for vectors and matrices of the appropriate dimensions) and convex–

concave on X.

The above examples suggest that it may be a natural strategy to first find a

suitable merit function for the problem class under consideration and then devise a

column generation problem which is related to the merit function in accordance

with the above lemmas.

5 A truncated version of the algorithm

5.1 Additional requirements

In the truncated version of the generic column generation algorithm, the restricted

and column generation problems are allowed to be solved only approximately, using

iterative algorithms, denoted Ar and Ac, respectively, with closed iteration maps

(e.g., Zangwill 1969, Chapter 4). The convergence analysis relies on the existence

of merit functions both for the restricted and column generation problems:

Assumption 7 (merit function for PðXÞ). There exists a merit function, w, having
the properties that are stated in Lemma 1.

Assumption 8 (merit function for CGðxÞ). There exists a continuous merit

function P : X 	 X ! R for the column generation problem CGð�Þ, that is, for any
x 2 X,

YðxÞ ¼ argmin
z2X

Pðx; zÞ;

with the additional property that, for any non-empty, compact and convex set bX � X

and any bx
� 2 bX�

,
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bX
� � argmin

y2bX
Pðbx�; yÞ:

Assumption 7 implies the fulfillment of Assumption 2 by Lemma 1, and

Assumption 8 implies the fulfillment of Assumption 4.

Remark 4 From Assumptions 5 and 8 follow that

Pðx; xÞ ¼ min
y2X

Pðx; yÞ () x 2 X�:

This result is analogous to that discussed in Remark 3, and provides an efficient

termination criterion for use in Step 1.

Assumption 9 (algorithm for PðbXÞ). As applied to a restriction PðbXÞ, where
bX � X is non-empty, compact and convex, the algorithm Ar has a closed iteration

map and all its iterates belong to the set bX . Further, for any such restriction and any

point in the restricted admissible set, one iteration of the algorithm gives descent

with respect to the merit function wðbX ; �Þ, unless a solution to the restriction is at

hand.

Assumption 10 (algorithm for CGðxÞ). As applied to a column generation

problem CGðxÞ, where x 2 X, the algorithm Ac has a closed iteration map and all its

iterates belong to the set X. Further, for any point in the admissible set, one iteration

of the algorithm applied to the problem CGðxÞ gives descent with respect to the

merit function Pðx; �Þ, unless a solution to CGðxÞ is at hand.

Observe that the algorithms Ar and Ac both are equipped with sufficient

properties for being (asymptotically) convergent for the problems min
x2bX

wðbX ; xÞ
and miny2X Pðx; yÞ, respectively, by Zangwill’s Theorem A (Zangwill 1969, p.

239).

Assumptions 6, 8, and 10 together imply that a set augmentation will take place

whenever the restricted problem has been solved to a sufficient accuracy, unless the

restricted admissible set contains a solution to the original problem. In an

application to a nonlinear program of the form CP, the merit function, P, for the

column generation problem is often given directly through the choice of (typically

linear or quadratic) approximation of f, as in the Frank–Wolfe, Newton and gradient

projection methods.

5.2 The truncated algorithm and its convergence

The truncated version of the conceptual column generation algorithm for the

solution of the archetype problem PðXÞ is stated in Table 2.

Theorem 2 (convergence of the truncated algorithm). Suppose that Assump-

tions 1 through 10 hold. If the sequence fxkg of iterates generated by the truncated

algorithm is finite, then it has been established that the last iterate solves the

problem PðXÞ. If the sequence of iterates is infinite, then
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dX� ðxkÞ
� �

! 0:

Proof If the sequence of iterates is finite, then the algorithm has been interrupted

in Step 1, and the conclusion follows from Assumptions 5 and 8 (cf. Remark 4). In

the remainder of the proof, we thus assume that the sequence of iterates is infinite.

The sequence fXkg consists of non-empty, compact, convex and increasing sets

(Assumptions 3 and 6). Thus, it has a set limit (e.g., see Mosco 1969; Salinetti and

Wets 1979), say eX � X, which is also non-empty, compact and convex.

Since the sequence fxkg is contained in the compact set X, it has a non-empty and

compact set of accumulation points (e.g., Rudin 1976, Theorem 3.7), say X � X.

Further, X � eX (e.g., Aubin and Frankowska 1990, Proposition 1.1.2). From the

continuity of the merit function w (Assumption 7) and the compactness of the set X

follow that there is a point in X where the function wðeX ; xÞ attains a maximal value

on this set. Consider a subsequence fxkgk2K, where K � N , which converges to

such a point; denoting the limit point by xK, we thus have that wðeX ; xKÞ�wðeX ; xÞ
holds for all x 2 X.

Denote by zk; k 2 K, the first iterate produced by the algorithm Ar applied to the

restricted problem PðXkÞ, starting from the point xk�1 2 Xk. Since each iteration of

the algorithm gives descent with respect to the merit function wðXk; �Þ, unless a

solution to the restriction is already at hand (Assumption 9), it follows that

wðXk; xk�1Þ[wðXk; zkÞ�wðXk; xkÞ holds for all k 2 K. Let xK�1 2 eX be the limit

point of a convergent subsequence of fxk�1gk2K, and let zK 2 eX be an accumulation

point of the corresponding subsequence of fzkgk2K. Taking the limit, corresponding

to this accumulation point, of the above inequality, the continuity of the merit

function yields that wðeX ; xK�1Þ�wðeX ; zKÞ�wðeX ; xKÞ.
The fact that xK�1 2 X gives that wðeX ; xKÞ�wðeX ; xK�1Þ holds, and we conclude

that wðeX ; xK�1Þ ¼ wðeX ; zKÞ ¼ wðeX ; xKÞ. The former equality together with the

closedness and descent properties of the iteration mapping of the algorithm Ar, and

Assumption 1, then gives that xK�1 2 eX�
. Further, the relation wðeX ; xK�1Þ ¼

wðeX ; xKÞ and the merit property of the function wðeX ; �Þ imply that xK 2 eX�

Table 2 Truncated column generation algorithm

0 (initiation): Find an x0 2 X, let X0 ¼ fx0g and k ¼ 0.

1 (termination check): If the iterate xk solves the column generation problem CGðxkÞ, then terminate

with the same conclusion for the original problem PðXÞ.
2 (column generation): Find ykþ1 by performing one or more iterations with the algorithm Ac on the

column generation problem CGðxkÞ, starting from any point vk 2 X such that Pðxk; vkÞ
Pðxk; xkÞ
holds, and construct a closed and convex set Xkþ1 � X such that ykþ1 2 Xkþ1 � Xk .

3 (iteration): Let k :¼ k þ 1.

4 (solution of restriction): Find a new iterate xk by performing one or more iterations with the

algorithm Ar on the restricted problem PðXkÞ, starting from xk�1.

5 (repetition): Return to Step 1.

A generic column generation principle 181

123



(Assumption 7). Using the merit property again, and the construction of the point

xK 2 eX�
, we obtain that wðeX ; yÞ�wðeX ; xKÞ�wðeX ; xÞ holds for all y 2 eX and all

x 2 X. Hence, X � eX
�
.

Now, let e� 0 be such that there is an infinite number of iterates xk with

dX� ðxkÞ� e. This subsequence of iterates has some accumulation point, say ex, which

is then the limit point of some convergent sequence fxkg
k2eK

, where eK � N . From

the above we then know that ex 2 eX�
.

Since each iteration of the algorithm Ac gives descent with respect to the merit

function Pðxk; �Þ, unless the current iterate is a solution to the column generation

problem CGðxkÞ (Assumption 10), it follows that, for all k 2 eK; Pðxk; xkÞ�
Pðxk; vkÞ[Pðxk; ykþ1Þ. Taking the limit corresponding to a suitable subsequence,

the continuity of the merit function (Assumption 8) yields that Pðex; exÞ�Pðex;eyÞ,
where ey 2 X denotes an accumulation point of the sequence fykþ1g

k2eK
.

Since ykþ1 2 Xkþ1 for all k 2 eK; ey 2 eX holds (e.g., Aubin and Frankowska

1990, Proposition 1.1.2). From the fact that ex 2 eX�
and Assumption 8 follow that

Pðex; eyÞ�Pðex; exÞ. Therefore, Pðex; exÞ ¼ Pðex;eyÞ holds, which together with the

closedness and descent properties of the iteration mapping of the algorithm Ac

imply that ex 2 X� (cf. Remark 4).

Hence, e ¼ 0, and the result of the theorem follows. h

Remark 5 Note that the choice vk ¼ xk satisfies the merit value condition in Step 2.

This choice might, however, be practically infeasible in certain realizations of the

generic scheme, due to the nature of the column generation problem and the

algorithm used for its solution. (This is, for example, the case if the point xk is not an

extreme point of the set X, and the column generation problem is a linear program

which is solved by the simplex method.) Note also that the re-optimization strategy

that is suggested in Step 4 is natural, and computationally advantageous, in most

applications. A feasible alternative is, however, to initiate the solution of the

restricted problem in a way that is analogous to that used for the column generation

problem.

5.3 Column dropping

Computational efficiency in large-scale applications may require a column dropping

facility. Such a facility might be especially advantageous when the column

generation problem constitutes a high-quality approximation of the original problem

(e.g., Newton-type approximations in nonlinear programming applications), since

the restricted problem will then (at least in the late iterations) have a solution which

is close to the solution to the latest column generation problem. (See also the

discussion in Section 9.2 in Patriksson 1998d.)

We next establish the convergence of a version of the generic column generation

algorithm which includes column dropping. We specifically consider the truncated

version of the algorithm, and replace the set augmentation in Step 2 with:
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construct a closed and convex setXkþ1 � X such thatXkþ1 � conv fxk; ykþ1g:

This construction (found, e.g., in Bertsekas 1999, p. 221; Patriksson 1998d) of the

new restricted set of course permits a very extensive column dropping, and also

allows for a large degree of freedom when devising realizations of the scheme. (It

indeed includes traditional line search methods.) The resulting algorithm can quite

easily be shown to be convergent, provided that we add the following condition on

the merit function w.

Assumption 11 (merit function). The merit function w is independent of its first

argument, that is, wðeX ; xÞ  wðX; xÞ holds for all eX � X and all x 2 X. Further, if

for some x; y 2 X it holds that Pðx; yÞ\Pðx; xÞ, then the merit function wðX; �Þ is
descending in the direction of y � x from X.

Note that, under this assumption, it is equivalent to solve the problem PðXkÞ and
to minimize w over Xk.

An example of a merit function w which satisfies Assumption 11 is w :¼ f in the

case of the problem CP. Examples of merit functions P which satisfy Assump-

tion 11 together with this merit function w are those which describe the direction-

finding problem in several descent (line search) methods in the solution of the

problem CP, such as the Frank–Wolfe, Newton, and gradient projection methods,

among many others. (See, for example, Proposition 2.14.b in Patriksson 1998d.)

Theorem 3 (convergence of the truncated algorithm under column

dropping). Suppose that Assumptions 1 through 11 hold. If the sequence fxkg of

iterates generated by the truncated algorithm is finite, then it has been established

that the last iterate solves the problem PðXÞ. If the sequence of iterates is infinite,

then

dX� ðxkÞ
� �

! 0:

Proof The only difference in the proof of this result and that of Theorem 2 is the

following. First, we remark that the sequence fXkg need not converge. This is

immaterial in this context, where the function wðeX ; �Þ is to be replaced throughout

with wðX; �Þ. [We note however that it does have accumulation sets that are non-

empty, compact and convex, by the results of Rockafellar and Wets (1997), The-

orem 4.18, and Propositions 4.4 and 4.15, and the proof may proceed in a

subsequence corresponding to any one of those limit sets.]

Since Xk � conv fxk�1; ykg and since the merit function is descending in the

direction of yk � xk�1 from xk�1 by Assumption 11, this point is clearly not a

minimizer of the merit function wðX; �Þ on the set Xk. Hence,

wðX; xk�1Þ[wðX; zkÞ�wðX; xkÞ holds. The rest of the proof follows the identical

pattern to that of Theorem 2. h

Remark 6 (column dropping and merit functions). The merit functions w
utilized in the Examples 2 and 3 on variational inequality and saddle-point problems

do not satisfy the requirements of Assumption 11, since they are set-dependent. The
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simplicial decomposition algorithm of Lawphongpanich and Hearn (1984) utilizes

column dropping through a rule governed by the decrease in the primal gap function

(3), but in order to establish convergence, column dropping is only allowed to be

performed a finite number of times. In order to extend column dropping rules to set-

dependent merit functions such as the primal gap function, additional requirements

on the column generation problem may have to be introduced. (An example of a

column generation problem for variational inequalities where very flexible column

dropping rules are allowed is however given in Sect. 6.2.3.)

Remark 7 (instances of the algorithmic framework). A special case of the exact

algorithm validated in Theorem 1 is the rudimentary simplicial decomposition

algorithm of von Hohenbalken; among the truncated methods validated in

Theorem 2, we find approximate simplicial decomposition methods, such as those

defined by Hearn et al. (1987); and among the truncated methods which allow for

column dropping, validated in Theorem 3, we find both the Frank–Wolfe algorithm

and truncated versions of it both in the linear subproblem and in the line search step.

Remark 8 (spacer steps). In the case where a merit function w exists for the

problem PðXÞ, and convergence relies on the descent of this merit function in

each step (cf. Sect. 5.1), we may take a different approach to establish

convergence than was sketched in Sect. 3.2, by applying the Spacer Step

Theorem (Luenberger 1984, p. 231). Assume that a column generation principle

exists, for which closedness can not be established, but where the resulting

column can be shown to yield a direction of descent with respect to the merit

function unless a solution to the problem PðXÞ is at hand (cf. Lemma 2). In short,

the strategy for establishing convergence is as follows. Under the requirement that

an infinite number of the problems CGðxkÞ are constructed from a closed

algorithmic map of the form described hitherto in this paper, and that the overall

algorithm is such that the entire sequence of iterates is descending with respect to

the merit function for the original problem, the overall algorithm may be

described by a closed algorithmic map, by describing the iterations corresponding

to the use of the non-closed column generation problems as elements of the closed

algorithmic map x 7! L
w
XðxÞ. Since Xkþ1 � conv fxk; ykþ1g is still satisfied,

convergence holds.

From the convergence analysis, we finally note the interesting fact that as the

algorithm framework allows for a greater and greater flexibility, the requirements

on the merit functions involved in monitoring and guiding the convergence of it

also increases. In the basic convergence result (Theorem 1), no merit function is

needed. In order to establish the convergence of the truncated algorithm

(Theorem 2) we however rely on the existence of a merit function for the

column generation and master problems. Finally, when considering the possibility

to drop columns (Theorem 3), the merit functions must obey an even stronger

requirement.
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6 Instances of the generic principle

In this section, we provide a sample of instances of both existing methods and of

potentially interesting, new, methods, within the algorithmic framework of the

paper. Mostly, we shall for simplicity deal with the conceptual framework, but we

will occasionally refer to the possibility of using truncated steps and/or column

dropping.

6.1 Known methods

We here give examples of how some known solution methods can be seen as special

cases of the generic column generation principle.

6.1.1 Dantzig–Wolfe decomposition

As is very well-known, both the simplicial decomposition algorithms, for nonlinear

programs and variational inequality problems, and the classical Dantzig–Wolfe

decomposition method, for linear programs (e.g., Lasdon 1970), are founded on

Carathéodory’s theorem (e.g., Bazaraa et al. 2006, Theorem 2.1.6), but no further

relation has, to the best of our knowledge, been shown. We will here establish a

precise relationship between these two solution procedures by showing that the

Dantzig–Wolfe decomposition method can be derived as a special case of the

generic column generation principle. (Recall that the simplicial decomposition

algorithms are also included as special cases.) This derivation also illustrates how

special problem structures might be taken into account and exploited within the

frame of the generic scheme.

Consider the linear program

max
x2X

f cTx j Ax
 b g; ½LP�

where X � R
n is a bounded polyhedron, A 2 R

m	n; b 2 R
m, and c 2 R

n. We as-

sume that the problem is feasible, so that its set of optimal solutions is non-empty

and compact.

Introducing a vector u 2 R
m
þ of multipliers (or linear programming dual variables)

and the Lagrangian function L : X 	 R
m
þ ! R, with Lðx; uÞ ¼ cTx þ bTu � uTAx, the

linear program is equivalent to the saddle-point problem

min
u2Rm

þ
max
x2X

Lðx; uÞ;

which is a special case of the archetype problem.

Now, suppose that we attack this saddle-point problem with the generic column

generation principle and let the column generation problem be defined through a

linearization of the saddle-function. Because of the Cartesian product structure of

the feasible set X 	 R
m
þ, each of the two sets can be treated separately. Furthermore,

because of the simplicity of the dual feasible set Rm
þ, it is not approximated but

treated explicitly.
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Assume, without any loss of generality, that we have at hand a feasible solution

to the linear program LP, that is, a point x0 2 X such that Ax0 
 b. Assume further

that k (distinct) extreme points of the set X, denoted yi; i ¼ 1; . . .; k, are known

explicitly. Letting

Kkþ1 ¼ k 2 R
kþ1

X
k

i¼0

ki ¼ 1; ki � 0; i ¼ 0; . . .; k

�

�

�

�

�

( )

and defining

xðkÞ ¼
X

k

i¼0

kiy
i; k 2 Kkþ1;

with y0 ¼ x0, the restricted saddle-point problem is to

min
u� 0

max
k2Kkþ1

LðxðkÞ; uÞ:

This problem is equivalent to the linear program

max
k2Kkþ1

X
k

i¼0

cTyi
� �

ki

X
k

i¼0

Ayi
� �

ki 
 b

�

�

�

�

�

( )

;

which is recognized as the restricted master problem of the Dantzig–Wolfe de-

composition method, as applied to the problem LP.

Let ðkk; ukÞ be a solution to the restricted saddle-point problem, and let

xk ¼ xðkkÞ. The linearization based column generation problem defined at ðxk; ukÞ is
to find

min
u� 0

max
x2X

L xk; uk
� �

þrxL xk; uk
� �T

x � xk
� �

þruL xk; uk
� �T

u � uk
� �

;

which reduces and separates into

max
x2X

c � ATuk
� �T

x and min
u� 0

b � Axk
� �T

u:

The former problem is recognized as the column generation problem (or, sub-

problem) of the Dantzig–Wolfe decomposition method, as applied to the problem

LP, and it provides a new extreme point of the set X; ykþ1. (The latter problem,

which is of no interest since the dual feasible set is treated explicitly in the restricted

saddle-point problem, is trivial since Axk 
 b holds.)

The Dantzig–Wolfe decomposition method is thus a special case of the generic

column generation principle; applied to the primal–dual saddle-point formulation of

the original linear program, in fact it is a simplicial decomposition method.

To establish that Assumptions 1–10 are satisfied is straightforward, and hence the

generic Dantzig–Wolfe algorithm as well as truncated versions of it are validated.

The latter enables the use of well-known and practical truncation possibilities, as

follows: in the column generation step, we do not search for the best new column,
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but notice that it suffices to generate any column (that is, extreme point of X) with a

negative reduced cost; in the master problem phase, we notice that it is sufficient,

for example, to perform one pivoting step of the simplex method, starting from the

previous solution. (The latter, however, reduces the algorithm to a version of the

revised simplex method.) Several possibilities to devise ‘‘inexact’’ versions of the

Dantzig–Wolfe algorithm are discussed in Lübbecke and Desrosiers (2005), Fuller

and Chung (2008), Çelebi and Fuller (2013).

How to realistically fulfill Assumption 11 to establish the convergence of

versions of the Dantzig–Wolfe algorithm which include column dropping rules that

are as general as that utilized in the scheme of Theorem 3 is beyond the scope of

this paper.

6.1.2 Nonlinear simplicial decomposition

As has been remarked upon already, the motivation for the work in Larsson et al.

(1996) and the present one was the potential for improving the convergence of

simplicial decomposition schemes through the use of nonlinear column generation

subproblems. In Larsson et al. (1996) convergence is established for an exact version

of the nonlinear simplicial decomposition method for the solution of CP, in which the

column generation problem is assumed to be constructed through the approximation of

fwith a functionP of the formPðx; yÞ ¼ rf ðxÞTðy � xÞ þ uðx; yÞ, with the properties
that u is strictly convex and continuously differentiable in y for each fixed x 2 X and

further with uðx; xÞ ¼ 0 and ryuðx; xÞ ¼ 0 being true for every x 2 X. [This

subproblem is equivalent to that of the regularized Frank–Wolfe method (Migdalas

1994; Karakitsiou et al. 2004), and a special case of that of the cost approximation

method (Patriksson 1998a, b, c, d).] With the appropriate choices of the function u,
multi-dimensional search versions of gradient projection and Newton-type methods,

for example, are possible to construct. Applications to two types of nonlinear network

flowproblems established the numerical efficiency of the approach; in one of the cases,

the function uwas chosen to adapt to a Cartesian product structure of the feasible set.

Convergence of this scheme, also in its truncated version and with column

dropping, follows from the above results by making the immediate choices of w and

P; the fulfillment of Assumptions 1–11 follows immediately. We note finally that in

Patriksson (1998d), the convergence of this type of methods has been taken some

steps further, and has for example removed the requirement of closedness of the

mapping Y . Further extensions of the scheme and results on its properties can also

be found in Garcı́a et al. (2003, 2011), the first mainly on its finite convergence, the

second on numerical investigations.

6.2 New methods

6.2.1 A sequential linear programming method

We will here use the generic column generation scheme to develop a novel

sequential linear programming (SLP) type method for constrained nonlinear
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optimization. It is based on inner approximations of both the primal and dual spaces,

which yields a method which in the primal space combines column and constraint

generation.

Consider a convex and differentiable optimization problem of the form

min
x2X

f f ðxÞ j gðxÞ
 0 g; ½CDP�

where X � R
n is a bounded polyhedron and g : X ! R

m. We assume that the

problem is feasible, so that its set of optimal solutions is non-empty and compact,

and that an appropriate constraint qualification holds. (We also presuppose that the

numbers of variables and explicit constraints are large, since the method to be

presented is otherwise not advantageous.)

Letting u 2 R
m
þ be a vector of multipliers associated with the explicit constraints

and introducing the Lagrangian function L : X 	 R
m
þ ! R, with

Lðx; uÞ ¼ f ðxÞ þ uTgðxÞ, the above problem can (under a suitable constraint

qualification, cf., for example, Bazaraa et al. 2006, Chapter 5) be equivalently

restated as the saddle-point problem

max
u2BR

þ

min
x2X

Lðx; uÞ;

where BR
þ ¼ f u 2 R

m
þ j kuk2 
R g, with R being a very large positive constant.

Assume, for simplicity, that a feasible solution, x0, to CDP is available. Let

xk�1 2 X be the current (primal) iterate, and suppose that k extreme points of the set

X, denoted yi; i ¼ 1; . . .; k, and k points in the dual feasible set, R
m
þ, say

di; i ¼ 1; . . .; k, such that kdik2 ¼ 1, are known explicitly. With Skþ1 denoting the

ðk þ 1Þ-dimensional unit simplex, define

xðkÞ ¼ xk�1 þ
X

k

i¼0

ki yi � xk�1
� �

; k 2 Skþ1;

where y0 ¼ x0, and

uðlÞ ¼ R
X

k

i¼1

lid
i; l 2 Skþ1:

The restricted saddle-point problem then is to find

max
l2Skþ1

min
k2Skþ1

L xðkÞ; uðlÞð Þ:

Let ðkk; lkÞ be a solution and define xk ¼ xðkkÞ and uk ¼ uðlkÞ.
Note that the restricted saddle-point problem is equivalent to

max
l2Rk

þ

min
k2Skþ1

L xðkÞ; uðlÞð Þ;

which can be stated and solved as the primal problem
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min
k2Skþ1

f f ðxðkÞÞ j DTgðxðkÞÞ
 0 g; ð6Þ

where D ¼ ðd1; . . .; dkÞ. This problem is, clearly, of the same type as the original

one, but it typically has fewer (actual) variables and fewer constraints. Further, it is

(typically) a restriction of the original problem in the respect that only a subset of

the points in the set X are spanned by the points yi; i ¼ 0; . . .; k, while it is

(typically) a relaxation in the respect that the original explicit constraints are re-

placed by the surrogate constraints ðdiÞTgðxðkÞÞ
 0; i ¼ 1; . . .; k. Because of the

fewer variables and constraints, it should be computationally less demanding than

the original problem. It is easily verified that the problem (6) is feasible, under the

assumptions made above.

The column generation problem is constructed through a linear approximation of

the saddle-function at the point ðxk; ukÞ, and amounts to finding

max
u2BR

þ

min
x2X

L xk; uk
� �

þrxL xk; uk
� �T

x � xk
� �

þruL xk; uk
� �T

u � uk
� �

;

which reduces and separates into

min
x2X

rf xk
� �

þrg xk
� �

uk
� �T

x � xk
� �

and max
u2BR

þ

g xk
� �T

u � uk
� �

: ð7Þ

The former problem is a linear program and it provides a new extreme point, ykþ1,

of the set X. Assuming that xk is not feasible in the original problem, that is, that

gðxkÞ£ 0 holds, the latter problem is solved by u ¼ Rdkþ1, with dkþ1 ¼
gþðxkÞ=kgþðxkÞk2 (where gþ denotes component-wise maximum of g at comparison

with zero). Note that the new surrogate constraint, that is, ðdkþ1ÞTgðxÞ
 0, is the

most violated at the point xk.

Regarding the convergence of this algorithm, the critical stepping-stone is the

fulfillment of the set augmentation property (Assumption 6), which we establish

next; the argument is similar to that for simplicial decomposition methods.

Suppose that the pair ðxk; ukÞ does not solve the saddle-point problem SPP. By

the separability of the saddle-function it must then hold that either xk does not fulfill

the saddle-point inequality over X for the given value of uk, or uk does not fulfill the

saddle-point inequality over u for the given value of xk, or both. We consider each

case separately below.

The vector xk is feasible in the min-problem over X in (7), and its objective value

in this problem is zero. Hence, the optimal value in this problem must then be

negative. Consider next the optimality conditions of the master problem in terms of

the conditions on X: every point in the convex hull of the vectors yi generated and

stored so-far must have a non-negative objective value in the subproblem over X in

(7). Therefore, it must be that the negative optimal value in this problem

corresponds to an optimal extreme point solution (we consider only extreme points

of the set X) that was not in their convex hull, and it is therefore new.

The vector uk is feasible in the max-problem over u in (7), and its objective value

in this problem is zero. By the above, the optimal value in this problem must then be
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positive. Consider next the optimality conditions of the master problem in terms of

the conditions on u: the complementarity condition gðxkÞTuk ¼ 0 must hold, thanks

to complementarity being fulfilled for each constraint in the master problem.

Further, every vector u which is feasible in the master problem, or is a non-negative

linear combination thereof, satisfies that gðxkÞTu
 0, thanks to the fact that the

vector xk is primal feasible. Therefore, it must be that the positive optimal value in

the max-problem in (7) corresponds to a vector which is new.

This completes the proof that Assumption 6 holds.

Remark 9 The LP subproblem (7) can of course be supplied with trust-region type

constraints. Such constraints can also be incorporated implicitly as proximity

penalty terms in the objective function. These approaches have the effect that non-

extremal subproblem solutions are found, which may enhance convergence in

practice.

Remark 10 The linear programming subproblem of the SLP method presented

differs from the one constructed in traditional methods of this type, in the respect

that the explicit constraints are taken into account implicitly in a Lagrangian-dual

(priced-out) fashion, instead of being imposed explicitly. An SLP method of the

traditional type, but with the line-search step replaced by a multi-dimensional

search, is reached if the generic column generation scheme is applied to an exact

penalty reformulation (that is, a purely primal formulation) of the nonlinear

program. A method for linear programming with complicating constraints and

variables can also be constructed in this manner.

6.2.2 Simplicial decomposition for constrained non-smooth optimization

Consider a convex non-smooth problem of the form

min
x2X

f ðxÞ; ½NSP�

where X � R
n is a non-empty, compact and convex set, and f : S ! R is convex but

not everywhere differentiable; the set S � R
n represents the effective domain of f

and is for simplicity of the presentation assumed to include the feasible set X in its

relative interior. This problem can be stated as an instance of the archetype problem

PðXÞ as to find an x� 2 X and a c� 2 R
n such that

c� 2 of x�ð Þ \ �NX x�ð Þ;

where of denotes the subdifferential of f.

Suppose that the algorithm was initiated at x0 2 X and that k points in the set X,

say yi; i ¼ 1; . . .; k, have been generated by its column generation problem (to be

defined below). Defining Xk ¼ conv fx0; y1; � � � ; ykg, the restricted non-smooth

problem then is to find

min
x2Xk

f ðxÞ:
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Let xk be a solution and let ck 2 of ðxkÞ \ �NXkðxkÞ. (As usual, the restricted

problem might of course preferably be stated and solved in terms of the convexity

variables for the points which span the set Xk.)

The column generation might be accomplished by constructing a continuously

differentiable and convex function u : X ! R which has the property that

ruðxkÞ ¼ ck (one may, for example, choose u as a linear or convex quadratic

approximation of the objective function f at the point xk), and the solution of the

problem

min
x2X

uðxÞ:

Let a solution to this problem define ykþ1. To verify the set augmentation property

of this column generation problem, we observe that xk is a minimizer of u over the

restricted feasible set Xk, sinceruðxkÞ ¼ ck 2 �NXkðxkÞ. Therefore ykþ1 2 Xk holds

if and only if xk is also a minimizer of u over the feasible set X, which, in turn, holds

exactly when ruðxkÞ ¼ ck 2 �NXðxkÞ. Using that ck 2 of ðxkÞ, we thus conclude

that ykþ1 2 Xk if and only if xk solves NSP.

Remark 11 A vector ck 2 of ðxkÞ \ �NXkðxkÞ is found automatically whenever the

restricted problem is solved by a bundle method, but this is not the case if it is

solved by a subgradient optimization scheme. Such a method might, however, be

augmented with the computation of a weighted average of all subgradient directions

used (an ergodic subgradient), which asymptotically has the requested property (see

Strömberg 1997, Part II.6; Larsson et al. 1998, Theorem 3.9; Larsson et al.

2012, Section 5). (If ck 2 of ðxkÞ does not also satisfy ck 2 �NXðxkÞ then the

algorithm may halt at a non-optimal solution, as shown by Strömberg 1997, Ex-

ample 6.3, p. 83.) The paper by Bertsekas and Yu (2011, Section 6.2) contains

several additional variations of simplicial decomposition methods for non-differ-

entiable convex programs, and illustrates how the above normal cone inclusion can

be verified in special cases, such as when the objective is a max-function over

convex differentiable functions, or if the constraints are described through such

constructions.

Assumptions 1–6 follow immediately, which means that convergence is

established of a generic simplicial decomposition scheme for convex, non-

differentiable optimization. The fulfillment of further assumptions for the use of

inexact computations and column dropping require further assumptions on the

function u and on the algorithms utilized for solving the sub- and master problems.

6.2.3 Newton methods with multi-dimensional searches

Consider the subproblem (5) corresponding to the affine approximation of the

mapping F of the variational inequality problem VIP at the point X, and consider its

use as a column generation problem in the generic scheme. By the assumptions

stated in Example 2, Assumptions 1–6 follow immediately, and so it is straight-

forward to extend the convergence of the Newton method of Marcotte and Dussault
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(1989) to the case of multi-dimensional searches (see also Patriksson 1998d, Chap-

ter 9).

The restriction of the primal gap function (3) to the current subset of columns,

wðX̂; �Þ, can be used as a merit function for the restriction, and the algorithm for

PðX̂Þ stated in Assumption 9 could, for example, be the original Newton method in

Marcotte and Dussault (1989). The choice of a merit function P for the affine

subproblem (5) is less straightforward to make, but could, for example, be the

natural result of the choice of a particular splitting method for its solution. With

such a choice, also the conditions of Theorem 2 are fulfilled.

When considering the use of very general column dropping rules, we note that

the primal gap function is not set-independent, and so the convergence of gap-

minimizing algorithms with multi-dimensional searches is difficult to establish. (We

note, however, that if the flexibility of the set augmentation is reduced to require

that Xkþ1 ¼ conv fxk; ykþ1g then convergence according to Theorem 3 may be

established, with the use of the global merit function also in the restricted (line

search) problem; this however in effect reduces the algorithm to the original one in

Marcotte and Dussault (1989).)

7 Concluding remarks

A goal when deriving the generic column generation principle has been to make it

widely applicable and easy to modify and extend. We have therefore throughout the

derivation strived at choosing the assumptions so that they are reasonable, from the

point of view of our experience and intuition, and realistic, from the point of view of

possible realizations, and also as weak as possible while still being able to guarantee

convergence.

Clearly, the algorithm framework of the generic column generation principle

contains a large variety of possible realizations since its steps can be implemented in

many ways; in an optimization context, one might for instance construct column

generation problems with or without a pricing mechanism, which, in turn, might be

linear or nonlinear (e.g., an augmented Lagrangian dualization as in Ruszczyński

1989), and one might choose between keeping some of the constraints of the

original problem in the restricted problem, or not. However, it is important to

observe that an extra degree of freedom in the construction of an algorithm for a

specific class of problems is achieved by considering different, but equivalent,

formulations of the original problem. In particular, one can in an optimization

context consider primal, dual, and primal–dual formulations. Moreover, one may

also obtain different algorithms for a given problem by considering alternative

equivalent formulations through transformations of the original one. An example of

such a transformation is the (well-known) replacement of a nonlinear objective

function with an auxiliary variable and an additional constraint (made in order to

create an equivalent problem with a linear objective function), which can be shown

to be a means for introducing an approximation of the objective function in the

restricted problem of an instance of the generic column generation principle.
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(Compare with the different treatment of the objective function in a simplicial

decomposition method and in nonlinear Dantzig–Wolfe decomposition,

respectively.)

Whenever the admissible set X is a Cartesian product of sets, it is likely to be

advantageous, from the point of view of computational efficiency, to employ a

disaggregated representation, that is, to approximate each of the sets in the product

separately. [In Larsson and Patriksson (1992), the advantage of using this strategy

was established for an application of a simplicial decomposition method to a

specially structured nonlinear multicommodity network flow problem. See also

Jones et al. (1993), where it is similarly observed that a disaggregated represen-

tation is advantageous in the application of Dantzig–Wolfe decomposition to linear

multicommodity network flow problems.] It can in the Cartesian product case also

be natural to use a column generation problem that separates over the individual

sets; the resulting overall scheme can then be interpreted as a Jacobi-type method

with multi-dimensional searches.

In case X ¼ G \ R, where the set G has a favourable structure (e.g., a Cartesian

product structure) and the set R is associated with some additional requirements for

overall feasibility (e.g., described by a set of side constraints), the application of the

generic scheme may be based on an inner approximation of the set G only, while the

additional requirements are treated explicitly in the master problem. Such an

extended scheme makes use of a column generation problem with a solution set

mapping Y : G \ R ! 2G, and a (side constrained) restricted problem PðGk \ RÞ,
where, for example, Gk ¼ conv fp0; . . .; pkg with p0 ¼ x0 2 G \ R and

pi 2 G; i ¼ 1; . . .; k, and which is solved as

find a k 2 Skþ1 such that x kð Þ 2 R and satisfies the Condition

C x Skþ1
� �

\ R
� �

; ½PðSkþ1 \ kðRÞÞ�

where kðRÞ ¼ f k j xðkÞ 2 R g. (Note that the mapping Y takes on as values subsets

of G, and is in this sense relaxed compared to the column generation mapping of the

conceptual scheme, which would take on as values subsets of G \ R.) In the context

of simplicial decomposition applied to nonlinear network flows, Stefek (1989) and

Marı́n (1995) have developed methods of that type; see also Larsson and Patriksson

(1995), Zenios et al. (1995), Larsson and Patriksson (1999), Lawphongpanich

(2000), Larsson et al. (2004), Nie et al. (2004), Mijangos (2005), Shahpar et al.

(2008), and Çelebi and Fuller (2013). The convergence of this methodology requires

a column generation principle which includes a pricing mechanism for the side

constraints (cf. the strategy employed in the Dantzig–Wolfe decomposition method,

see Sect. 6.1.1).

We finally note that convergence of this scheme in its full generality does not

immediately follow from Theorem 1, although it does for some special cases, such

as Dantzig–Wolfe decomposition.

The exploitation of the generic column generation principle might lead to new,

and hopefully also efficient, solution methods in many of the fields of mathematical

programming. As concluded in Sect. 4, the generic scheme is directly applicable to

large classes of nonlinear programming, variational inequality, and saddle-point
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problems, but it should also be applicable to related problem classes, such as for

example complementarity problems and non-smooth optimization problems.

Because of the degree of freedom of our algorithm framework, there is with no

doubt a large number of instances that are worth studying.

For example, within the field of nonlinear programming, a frequently employed

solution principle is to alternate, in an iterative manner, between the solution of an

approximate problem and a line search with respect to a merit function, which

measures the degree of non-optimality of any tentative solution. Methods included

in this class are the reduced gradient method (e.g., Bazaraa et al. 2006, Sec-

tion 10.6), the Frank–Wolfe algorithm, the method of Zoutendijk (e.g., Bazaraa

et al. 2006, Section 10.1–2), the linearization method (e.g., Pshenichnyi and

Sosnovsky 1993), the constrained Newton method (e.g., Pshenichny and Danilin

1978), and the successive quadratic programming approach (e.g., Bazaraa et al.

2006, Section 10.4), among others. Further, this solution principle is also employed

for the numerical treatment of variational inequality and saddle-point problems. An

important area for continued research is, in our opinion, to use the framework of the

generic column generation principle to enhance methods within this class through

replacing their line searches with multi-dimensional searches. An example method

from this class of methods was proposed in Feng and Cui (2003), combining a trust-

region method with simplicial decomposition for an optimization problem with

explicit nonlinear constraints, and thus extending the method in Ventura and Hearn

(1993). It is also our opinion that the introduction of a master problem can relax the

need for penalty functions in nonlinear programming algorithms; this idea is

complementary to that of introducing ‘‘filters,’’ which has become very popular in

combination with SLP and sequential quadratic programming (SQP) methods (see,

e.g., Fletcher et al. 2002; Fletcher and Leyffer 2002). An example SQP algorithm

without a penalty function is obtained from our SLP algorithm of Sect. 6.2.1 if we

construct the column generation problem based upon a second-order approximation.

We are currently investigating the extension of the SLP type method validated in

Sect. 6.2.1 to general, non-convex, problems, in which case the saddle-point based

analysis is replaced by a KKT based one.

The use of nonlinear pricing mechanisms (e.g., an augmented Lagrangian

dualization) in the Dantzig–Wolfe decomposition method would permit the

subproblem to have non-extreme point solutions. [Cf., e.g., Kim and Nazareth

(1991), in which non-extreme subproblem solutions are generated by truncating an

interior-point method, Feinberg (1989), in which a special class of nonlinear price

functions are used, and O’Neill and Widhelm (1976), in which an augmented

Lagrangian pricing is used to accelerate convergence in the extension of the

Dantzig-Wolfe method to nonlinear problems.] Convergence of such a method is

immediate from that of the generic scheme. Nonlinear pricing in the Dantzig–Wolfe

method is of interest since it can probably enhance the method’s practical

performance (which is otherwise often rather poor), but also because it can be

interpreted as a mathematical means to obtain an optimal utilization of scarce

resources in an economic system with decentralized planning (e.g., Dirickx and

Jennergren 1979; Feinberg 1989).
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Further questions for continued research is the establishment of (non-trivial)

sufficient conditions (e.g., on the properties of the original problem or the column

generation problem, on the implementation of the steps of the algorithm, or

combinations thereof) for finite convergence. In case the admissible set is

polyhedral and represented by a set of linear constraints, it is also of interest to

establish conditions under which the constraints that are active at a solution are

identified finitely. (Cf. the results given by Burke and Moré (1988, 1994) for

nonlinear programming algorithms. See also Patriksson (1998d), Garcı́a et al.

(2003) on this issue.)
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