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Abstract In this research, we study permutation flowshop scheduling problem

with minimal and maximal time lags while minimizing the total tardiness. The time

lags are defined between couples of successive operations of jobs. Each time lag is

greater than or equal to a prescribed value called minimal time lag and smaller than

or equal to a prescribed value called maximal time lag. A new mathematical for-

mulation is proposed. Upper bounds are provided by applying heuristic procedures

based on known and new rules. Then, new lower bounds are derived by applying

different methods where the main one is the Lagrangian relaxation. In order to make

the last technique a viable approach to the considered problem, an auxiliary for-

mulation is adopted and the Lagrangian multipliers are updated using the subgra-

dient algorithm. Then, results of computational experiments are reported.

Keywords Scheduling � Permutation flowshop � Time lags � Tardiness �
Upper bounds � Lower bounds

1 Introduction

The problem that we address in this paper is the permutation flowshop scheduling

problem with time lags. Traditionally, flowshop scheduling models assume that for

a given job, if its operation k precedes its operation l, then once the processing of the

operation k is completed, the operation l may begin to process at any time.

However, in several practical situations, a time lag between a couple of successive
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operations of jobs is required. Hence, the considered problem can be formulated as

follows: there are n jobs to be scheduled for processing on m machines. Each

machine can process at most one operation at a time and preemption is not allowed.

Each job i is processed on the m machines during pi;1; pi;2; . . .; pi;m time units

successively. We consider here additional constraints that extend the classical

model: for each job, a definite amount of time must elapse between two consecutive

operations of the same job which must be greater than or equal to a non negative

value called minimal time lag ðhminÞ and smaller than or equal to a non-negative

value called maximal time lag ðhmaxÞ where hmax� hmin. It is shown by Koulamas

(1994) that the classical permutation flowshop scheduling problem with minimizing

the total tardiness is NP-hard in the strong sense, then obviously the considered

problem is also strongly NP-hard.

Motivation for the considered problem comes from industrial applications. Many

industrial situations involving specific manufacturing processes may be modelled

using minimal and maximal time lags. For example in the field of biotechnologies

and chemistry, the chemical reactions with variable processing times may be

represented by time lags (Chu and Proth 1996). In the agriculture field, such

constraints arise during the sequence of harvesting operations (Foulds and Wilson

2005). In the food-producing industry, the maximal time lags may be used to model

situations when the delay between operations must not be too long in order to avoid

deterioration of the product.

The flowshop scheduling problems with time lags are studied largely with the

classical criterion the makespan (see Fondrevelle et al. 2006; Dell’Amico 1996; Yu

et al. 2004). However, the criteria related to the due dates are the most encountred in

the real situations. Among these criteria, the most applicable performance measure

is the total tardiness. Generally, each job has a given due date, if it finishes too late it

cannot be delivered on time. To the best of our knowledge, this is the first attempt to

consider the permutation flowshop scheduling problem with time lags to minimize

the total tardiness.

Some approaches are proposed to solve the problem under consideration in this

research. A mathematical formulation is proposed, then by running the commercial

software CPLEX we can obtain an optimal solution for small size problems. For

large size problems, upper bounds are provided by applying some efficient heuristic

procedures. They are based on some rules called ‘‘Shortest Processing Time,’’

‘‘Adjustment on the Bottleneck Machine,’’ and ‘‘Estimated Completion Time’’

which will be described later. Also, lower bounds are derived by using different

methods. The first one is obtained by relaxing the integrality constraints, the second

one by relaxing the constraints which state that the machines 1; . . .;m� 1 can

process one job at a time, and the third one is derived by applying the Lagrangian

relaxation (LR). This last technique is frequently used in operational research. It can

often calculate lower bounds of the optimal solution. Its idea consists in relaxing

some constraints (often those that make difficult problem) and inject them into the

objective function as a linear combination of penalties. The coefficients of this

combination are called Lagrangian multipliers. The most known method that can be

used to update the Lagrangian multipliers is the subgradient.
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Generally, LR is effective for separable problems, i.e. problems with additive

objective functions and additive coupling constraints (constraints that couple

subsystems together). If the original integer or mixed integer optimization problem

is NP-hard, the relaxed problem after relaxing those coupling constraints can be

decomposed into individual subsystem problems which are not NP-hard, then LR is

very powerful. It is a trade off, we want to relax just enough coupling constraints so

that subproblems can be efficiently solved while not having too many multipliers for

good high level convergence and tight lower bound.

Survey of the flowshop models reveals that there are some interesting researches

addressing the LR application. Liu et al. (1997) consider the permutation flowshop

scheduling problem while minimizing the additive penalties on product tardiness

and on releasing raw materials too early. They develop a novel approach based on

LR, the number of multipliers is independent of the planning horizon, and the

multipliers are updated by using the recently developed reduced complexity bundle

method. Recently, the LR is integrated with other approaches to yield very

performant results (see Nishi et al. 2009, 2010; Nishi and Hiranakaa 2013). Bulbul

et al. (2004) consider the flowshop problem to minimize the sum of tardiness,

earliness, and intermediate inventory holding costs. They develop heuristics to

minimize the total cost, then they exploit the duality between Dantzig-Wolfe

reformulation and LR to enhance these heuristics and to to develop two different

lower bounds on the optimal integer solution. The computational study proove that

the proposed algorithms have a significant speed advantage over alternate methods.

The rest of the paper is organized as follows: a mathematical formulation of the

considered problem is presented in Sect. 2. In Sect. 3, we present the proposed

heuristic procedures. In Sect. 4 we present the developed lower bounds and we

detail the steps of the LR application. Then, computational results are reported in

Sect. 5. Finally, we discuss concluding remarks in Sect. 6.

2 Mathematical formulation

In this section we present a new mathematical formulation for the considered

problem. The parameters of the problem are described as follows.

1. Decision variables

• Xi;j ¼ 1 if job i is scheduled in position j, 0 otherwise 8i 2 f1; 2; . . .; ng; 8j 2
f1; 2; . . .; ng

• Cj;k: completion time of job in position j on machine k, 8j 2 f1; 2; . . .; ng; 8k 2
f1; 2; . . .;mg

2. Data

• pi;k: processing time of job i on machine k, 8i 2 f1; 2; . . .; ng; 8k 2 f1; 2; . . .;mg
• di: due time of job i, 8i 2 f1; 2; . . .; ng
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• hmin
i;k : minimal time lag between machines k and k þ 1 of job i,

8i 2 f1; 2; . . .; ng; 8k 2 f1; 2; . . .;m� 1g
• hmax

i;k : maximal time lag between machines k and k þ 1 of job i,

8i 2 f1; 2; . . .; ng; 8k 2 f1; 2; . . .;m� 1g

Min Z ¼
Xn

j¼1

Tj ð1Þ

s=t
Xn

i¼1

Xi;j ¼ 1 8j 2 f1; 2; . . .; ng ð2Þ

Xn

j¼1

Xi;j ¼ 1 8i 2 f1; 2; . . .; ng ð3Þ

Cj;kþ1�Cj;k þ
Xn

i¼1

Xi;j pi;kþ1 þ hmin
i;k

� �
8j 2 f1; 2; . . .; ng

and 8k 2 f1; 2; . . .;m� 1g ð4Þ

Cj;kþ1�Cj;k þ
Xn

i¼1

Xi;j pi;kþ1 þ hmax
i;k

� �
8j 2 f1; 2; . . .; ng

and 8k 2 f1; 2; . . .;m� 1g ð5Þ

Cðj�1Þ;k þ
Xn

i¼1

Xi;j pi;k

� �
�Cj;k 8j 2 f2; . . .; ng and 8k 2 f1; 2; . . .;mg ð6Þ

Tj � Cj;m þ
Xn

i¼1

ðdi Xi;jÞ� 0 8j 2 f1; 2; . . .; ng ð7Þ

Tj� 0 8j 2 f1; 2; . . .; ng ð8Þ

Xi;j ¼ f0; 1g 8i 2 f1; 2; . . .; ng and 8j 2 f1; 2; . . .; ng ð9Þ

The objective (1) is to minimize the total tardiness. Constraints (2) and (3) are

the classical assignment constraints, with (2) insure that each job is assigned to

just one sequence position, while (3) insure that each position is filled by only

one job. Constraints of types (4) and (5) find the completion time of every job.

They specify the conjunctive precedence constraints for the jobs with respect to

the minimal and maximal time lags respectively. Constraints of type (6) state

that the completion time of job in position j on machine k is greater than or equal

to its processing time on this machine plus the completion time of the job in the

previous position on this same machine k. Constraints of type (7) find the

tardiness of job in position j. Constraints of type (8) force the tardiness of the job
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in position j to be non negative. Constraints (9) specify the decision variables as

binary variables.

The number of decision variables is n2 þ nmþ n and the number of constraints is

3nmþ n� m.

3 Heuristic procedures

Upper bounds of the optimal solution are provided by applying some heuristic

procedures. They are based on three different rules: the well known rule ‘‘Shortest

Processing Time ðSPTÞ’’, and two other new proposed rules: ‘‘Adjustment on the

Bottleneck Machine ðABMÞ’’ and ‘‘Estimated Completion Time (ECT)’’. Then the

obtained sequences by using the proposed rules are scheduled by applying the

‘‘Algorithm (A)’’ described later.

3.1 Shortest Processing Time (SPT) rule

The SPT rule states to sequence the jobs in a nondecreasing order of processing

times. As we are interested in the permutation flowshop problem, we may find m

different sequences, one sequence for each machine. Then, the jobs are arranged

according to ppð1Þ;k � ppð2Þ;k � � � � � ppðnÞ;k for each machine k 2 f1; . . .;mg. We

can determine another sequence which is the (m?1)th one by using the total

processing times ðTPpð1Þ � TPpð2Þ � � � � TPpðnÞÞ as same in (Ghassemi and Olfat

2010). Now, we determine the total tardiness of all the mþ 1 sequences and we

select the final one with the smallest total tardiness. This rule determines the final

schedule through the following algorithmic steps:

Step 1: Let k ¼ 1.

Step 2: Sequence jobs in a non-decreasing order of

pi;kðppð1Þ;k � ppð2Þ;k � � � � � ppðnÞ;kÞ on machine k.

Step 3: Define a permutation schedule on all machines using this sequence and

calculate the total tardiness of all the jobs by applying the Algorithm ðAÞ
described later.

Step 4: If k ¼ m, go to step 5, otherwise let k ¼ k þ 1, and go to step 2.

Step 5: Sequence jobs in a non-decreasing order of

TPi TPp 1ð Þ � TPp 2ð Þ � � � � TPp nð Þ
� �

. Define a permutation schedule using

this sequence and then calculate the total tardiness of all the jobs by

applying the Algorithm ðAÞ. described later.

Step 6: Select the final schedule with the smallest total tardiness among the mþ 1

schedules, and stop.

3.2 Adjustment on the Bottleneck Machine (ABM) rule

In this proposed heuristic, we focus on the bottleneck machine ðb 2 f1; 2; . . .;mgÞ
to adjust the number of tardy jobs. This machine is defined as the machine that
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requires maximum sum of processing times of all jobs amongst all machines. We

determine for each job its ready time to be processed on this machine and we derive

its due date. Then, we can define two sets of jobs: a set of tardy jobs and a set of

early jobs. The adjustment is done by sequencing the set of tardy jobs in a

decreasing order of the tardiness values and the early jobs in an increasing order of

the earliness values, then we concatenate the sequence of the early jobs to the set of

tardy jobs to form the final sequence to be scheduled using the Algorithm ðAÞ
described later. We detail the steps of the algorithm as follows:

Step 1.

• Determine the release date of job i on machine b

ri;b ¼
Xb�1

l¼1

pi;l þ hmin
i;l

� �( )

• Determine the due date of job i on machine b

di;b ¼ di �
Xm�1

l¼bþ1

pi;l þ hmin
i;l

� �
þ pi;m

( )

Step 2.

Determine two sets of jobs: set of early jobs ðEÞ and set of tardy jobs ðTÞ on the

bottleneck machine.

T ¼ fijri;b þ pi;b [ di;bg and we define ui2T ¼ ri;b þ pi;b � di;b

E ¼ fijri;b þ pi;b\di;bg and we define si2E ¼ di;b � pi;b � ri;b

Step 3.

Sequence the jobs in an increasing order of si 8i 2 E to provide the sequence E1

Sequence the jobs in a decreasing order of ui 8i 2 T to provide the sequence T1

The final sequence ðpÞ to be scheduled is defined by concatenating the sequence

E1 to the sequence T1 ) p ¼ T1 þ E1.

3.3 Estimated Completion Time (ECT) rule

This rule is similar to the SPT rule, but instead of using the individual job

processing times on each machine, we consider the total processing time of a job on

the previous machines plus the minimal time lags between each consecutive couple

of operations. For each job i 2 f1; . . .; ng, the found value will be considered then as

an estimated ready time for the processing on a specific machine k 2 f1; 2; . . .;mg.
This ready time will be added to the job processing time on the considered machine

to find an ECT. Then, we obtain a sequence of jobs on each machine according to

the ascending order of the ECT. After determining a sequence on each machine k,

we use this sequence as a permutation schedule for all the machines. Then, by

having m different sequences, we calculate the total tardiness of each one by
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applying the ‘‘Algorithm ðAÞ’’ and we select the one with the smallest total tardiness.

This rule determines the final sequence through the following algorithmic steps:

Step 1: Calculate the ECT of each job i 2 f1; . . .; ng as ECTi;k ¼
Pk�1

l¼1 pi;l þ hmin
i;l

� �
þ pi;k on each machine k 2 f1; . . .;mg.

Step 2: Sequence jobs on machine k according to a non-decreasing order of

ECTi ðECTpð1Þ �ECTpð2Þ � � � � �ECTpðnÞÞ.
Step 3: Define a permutation schedule on all machines using this sequence and

calculate the total tardiness of all the jobs by applying the Algorithm ðAÞ
described later.

Step 4: If k ¼ m, go to step 5, otherwise let k ¼ k þ 1, and go to Step 2.

Step 5: Select the final schedule with the smallest total tardiness among the m

schedules, and stop.

3.4 Scheduling algorithm

The sequence obtained by applying each of the previous proposed rules are

scheduled by using the following algorithm. Here pðiÞ; k denote the job in position i

in the sequence p on machine k; i ¼ 1; 2; . . .; n and k ¼ 1; 2; . . .;m [ith job means

the job in position pðiÞ]
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In the above algorithm, it’s shown that there is no matter to check the respect of

the maximal time lags for the job in the first position. As it has not any precedent

job, its processing on the next machine begins exactly after the minimal time lag.

Then, it is straightforward to check the respect of the minimal time lags for the other

jobs. However to check the respect of the maximal time lags, the machines are

considered in a reverse order [from ðm� 1Þ to 1] in order to minimize the number of

shifts. If we consider the order of the operations’s passage, we may shift an

opeartion more than one time. Indeed, shifting an operation on machine k can lead

to the non respect of the maximal time lag between this operation and the preceding

one. Then, this operation must be shifted again.

The complexity of this algorithm is OðnmÞ.

4 Lower bounds

In this section, we present the developed lower bounds. The first one is derived by

relaxing the integrality constraints, the second one is obtained by relaxing the

constraints which state that the machines 1,…, m� 1 can process one job at a time

and by using then the constraint programming, and the third lower bound is

developed by applying the LR technique.

4.1 The integrality constraints relaxation

The key insight behind this approach is that the closely related integer programming

problem is NP-hard. We can therefore relax it to a linear program by removing the

integrality constraints. Then, the binary constraints are allowed to take on any real

values in the closed interval [0, 1].

Then an example of the integer linear programming can be modeled as follows:

min
Xn

i¼1

xi

s:t xi þ xj� 1 8i; j

xi 2 f0; 1g 8i

Its corresponding linear programming after relaxing the integrality constraints is as

follows:

min
Xn

i¼1

xi

s:t xi þ xj� 1 8i; j

0� xi� 1 8i

4.2 Constraint programming based lower bound

Recently, the Constraint Programming ðCPÞ becomes a leading technique for

solving complex decision support problems. It is an other fashion to model a
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problem rather than the integer linear programming. In general, systems based on

CP are much more expressive and hence easy to understand. It is increasingly used

for solving scheduling problems as its flexibility is well suited for real-life

scheduling problems. It works by incorporating some restrictions on the possible

solution into a programming environment.

We focus on the last machine m and we relax the constraints which state that the

machines 1,…, m� 1 can process one job at a time. Then we can determine for each

job i 2 f1; . . .; ng a release date for its processing on the last machine by summing

its processing times on the m� 1 first machines plus the minimal time lags between

them as ri ¼
Pm�1

l¼1 pi;j þ hmin
i;j

� �
. Then by solving the following CP, we can obtain

a lower bound on the optimal solution.

Minimize sum ði in JobsÞmaxl ðendOf ðitvs½i�Þ � DueDate½i�; 0Þ
s:t startOf ðitvs½i�Þ[ ¼ release½i� forall i

endOf ðitvs½i�Þ[ ¼ startOf ðitvs½i�Þ þ OpDurations½i� forall i

Here, ‘‘itvs’’ means an interval of time used to describe the job i on the last machine,

it is bounded by a release date ‘‘release’’ and a due date ‘‘DueDate’’. ‘‘OpDurations’’

is used as the processing time. The formulation above include an objective function

used to define the total tardiness and two types of constraints. The first type states

that the starting time has to be greater than or equal to the release date defined

above. The second type is used to define the completion time for each job i on the

last machine.

Some constraint-based tools are provided for imperative languages in the form of

libraries. ILOG is one of the most successful companies to produce such tools. High

level modeling languages exist for model constraint problems and specifying search

strategies such that the OPL language.

4.3 Lagrangian relaxation

In this section, we detail the steps of obtaining a lower bound by using the LR. The

basic idea of LR is to have a separable problem formulation in that the objective

function and coupling constraints should be additive in terms of basic decision

variables or groups of decision variables. Since the identical sequence constraints of

a permutation flowshop require the processing sequences of various production

stages to be the same, obtaining a separable problem formulation with manageable

numbers of variables and constraints is not a straightforward task (Liu et al. 1997).

Here, we use a time-indexed formulation, i.e. the time is devided into slots. We

define a long time horizon H and we introduce a new decision variable tj;k to design

the starting time of job in position j on machine k, 8j 2 f1; 2; . . .; ng;
8k 2 f1; 2; . . .;mg. The machines are assumed available from the beginning and

during the planning horizon. The time horizon is assumed to be long enough to

finish all the slots ðCn;m�HÞ. Our objective is to determine an optimal assignment

of jobs to slots and then determining of operations beginning times of the slots on

the different machines. We refer to the idea adopted by (Liu et al. 1997; Baker 1974;
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Pinedo 1995) which is to create a virtual sequence. We try to create a virtual

sequence while the first slot of this sequence is defined to be processed first, the

second slot is defined to be processed the second, and so on. Let s be the slot index

of the virtual sequence with s ¼ 1; 2; . . .; n. So that the constraints are modelled in

terms of the assignment variables. They still the same ones presented already in the

previous mathematical formulation, just the assignment variable Xi;s here is used to

mean that job i is assigned to a slot s (instead of Xi;j which means that the job i is

assigned to position j). The decomposition methodology requires to express the

constraints by using the starting time variable. Then, the constraints (4) and (5) can

be rewritten as follows:

ts;kþ1� ts;k þ
Xn

i¼1

Xi;sðpi;k þ hmin
i;k Þ 8s ¼ 1; . . .; n; 8k ¼ 1; . . .;m� 1 ð10Þ

ts;kþ1� ts;k þ
Xn

i¼1

Xi;sðpi;k þ hmax
i;k Þ 8s ¼ 1; . . .; n; 8k ¼ 1; . . .;m� 1 ð11Þ

4.3.1 Objective function and reducing the solution oscillation

The objective function is to minimize the additive jobs tardiness: Z ¼
Pn

s¼1 Ts

where Ts ¼ maxð0; Cs;m � dsÞ and ds ¼ diXi;s: As it is described previously, the

problem consists in determining an optimal assignment of jobs to slots in this

sequence and then in determining the operations beginning times of the slots on the

different machines. There is a problem that can be created when determining the

beginning times ðts;kÞ which is its oscillation between a large value ðtj;k ¼ H � pj;kÞ
and a small value ðtj;k ¼ 0Þ. The solution oscillation can alternatively be explained

by the geometry of the dual function in which multiplier trajectories generated by

the subgradient method zigzag about a set of nondifferentiable points from iteration

to iteration (Czerwinski and Luh 1994). This problem is studied already by

Czerwinski and Luh (1994) and Luh and Hoitomt (1993). According to them, to

reduce the solution oscillation, quadratic tardiness of operations are included in the

objective function which can be then obtained as: Z ¼
Pn

s¼1 Ts þ
Pn

s¼1

Pm
k¼1 T2

s;k.

The variable Ts;k is defined on a scheduling sequence with Ts;k ¼ maxð0; Cs;k �
ds;kÞ and Cs;k ¼ ts;k þ ps;k such that ds;k is defined as the same way in (Liu et al.

1997), ds;m ¼ max
s

dsf g and ds;k ¼ ds;kþ1 � min
s

ps;kþ1

� �
. The quadratic tardiness

terms are intended to define a period of time in the horizon time. In the dual space,

the quatratic terms modify the geometry of the dual function and this, in turn,

reduces oscillation between solutions (Luh and Hoitomt 1993).

The data are assumed given: The number of jobs n, the number of machines m,

the processing times fpi;kg, the minimal time lags fhmin
i;k g, the maximal time lags

fhmax
i;k gand the due dates fdig. The scheduling problem is to select job beginning

times fti;kg so as to minimize the total tardiness. Once the beginning times are

selected, the completion times fCs;kg and the tardiness fTsg can be easily derived.
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Two methods are proposed, one constraints type is relaxed for each one. In the

first method, we relax the constraints of type (4) in the mathematical formulation

given previously [rewritten as constraints (10)] by using the Lagrangian multipliers

fts;kg. The total number of these multipliers is equal to nðm� 1Þ. In the second

method, we relax the constraints of type (5) [rewritten as constraints (11)] by using

the Lagrangian multipliers fbs;kg. Also, the total number of multipliers is equal to

nðm� 1Þ. Three steps are followed by each of the two methods: Obtaining and

solving subproblems, constructing a feasible solution, and updating the Lagrangian

multipliers.

The Lagrangian multiplier ts;k can be interpreted as the cost of violating the

respect of the minimal time lags between each consecutive operations of each job.

The Lagrangian multiplier bs;k can be interpreted as the cost of violating the respect

of the maximal time lags between each consecutive operations of each job. The

optimal values of the Lagrangian multipliers are obtained by solving the Lagrangian

dual problem by applying a subgradient algorithm as it will be presented later.

A specified stopping criterion is used here as non-improvements in the objective

value over a number of consecutive iterations are met.

4.3.2 Decomposition framework and solving subproblems

As it is described previously, we aim to determine the beginning times of the slots

on the different machines. So that, the constraints can be expressed in terms of the

beginning times. In this first step, we detail the decomposition framework and the

solving subproblems for each method.

4.3.3 Method 1: relaxation of constraints (4)

The resulting first relaxed problem is:

Min
Xi;s;ts;kf g

L

with L ¼
P

s Ts þ
P

s

P
k T2

s;k �
P

s

P
k ts;k ts;kþ1 � ts;k �

P
i pi;k þ hmin

i;k

� �
Xi;s

� �

The formulation obtained already for the objective function can be divided into

two subproblems types that will be individually solved.

• Operation beginning time for operations k ¼ 1; 2; . . .;m� 1

Min
ts;k

Ls;k

Ls;k � T2
s;k � ðts;k�1 � ts;kÞts;k 8s 2 f1; 2; . . .; ng

The subproblem is a piecewise quadratic cost function with a convex envelop.

The solution can be obtained by differentiating its convex envelop.

we suppose e ¼ ts;k�1 � ts;k

The subproblem is rewritten as: Min Ls;k with Ls;k ¼ T2
s;k � ets;k
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the solution is ts;k ¼ ds;k � ps;k � e
2

As it’s mentioned previously, the operation’s quadratic tardiness is introduced in

the objective function to reduce the solution oscillation. To confirm this idea, we

suppose that this tardiness is not included in the objective function. Then, the

beginning time ts;k depends only on the sign of e. When this term is negative, ts;k has

to be as large as possible ðts;k ¼ H � ps;kÞ. On the other hand, if this term is positive,

ts;k has to be as small as possible ts;k ¼ 0. So, this solution oscillation between small

and large beginning time for iteration to iteration make difficult the convergence to

meaningful multipliers. Then, the introduction of the operation tardiness in the

objective function to obtain intermediate beginning time solution. This subproblem

can be solved in OðmnÞ.

• Slot assignment and operation beginning time for operation k ¼ m.

The tardiness is defined as Ts ¼ max 0;Cs;m �
P

i diXi;s

� �
, the beginning time of the

last operation ts;m is coupled with the job assignment variable Xi;s in order to obtain

Ts.

min
Xi;s

Ls

with Ls �
Pn

i¼1

Pm�1
k¼1 ts;k pi;k þ hmin

i;k

� �h i
Xi;s

h i
þ min

ts;m
Ls;m

where Ls;m is defined as: Ls;m ¼ Ts þ T2
s;m � ðts;mÞts;m

The beginning time ts;m is solved to minimize Ls;m which has a quadratic cost

function with convex envelop. The solution is ts;m ¼ 1þ ds;m � ps;m � e
2
. This

subproblem can be solved in OðnÞ.
The variable Xi;s is then determined by assigning the job associated with the

lowest subproblem value to slot s. Then, we can obtain an optimal value for each

subproblem given by L�s;k and L�s . These values are then used to solve the dual

problem which is formed as: max
ts;k

L with L �
Pn

s¼1

Pm�1
k¼1 L�s;k þ

Pn
s¼1 L�s .

4.3.4 Method 2: relaxation of constraints (5)

The resulting second relaxed problem is:

Min
Xi;s;ts;kf g

L

with L ¼
P

s Ts þ
P

s

P
k T2

s;k �
P

s

P
k bs;k ts;k þ

P
i Xi;s ps;k þ hmax

s;k

� �
� ts;kþ1

� �

The formulation obtained already for the objective function can be divided into

two subproblems types that will be individually solved as the same way in the

method 1.
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• Operation beginning time for operations k ¼ 1; 2; . . .;m� 1

Min
ts;k

Ls;k

Ls;k � T2
s;k þ bs;k�1 � bs;k

� �
ts;k 8s 2 f1; 2; . . .; ng

The subproblem has a piecewise quadratic cost function with a convex envelop.

The solution can be obtained by differentiating its convex envelop.

we suppose e0 ¼ bs;k�1 � bs;k

The subproblem is rewritten as: Min Ls;k with Ls;k ¼ T2
s;k þ e0ts;k

the solution is ts;k ¼ ds;k � ps;k � e0
2

• Slot assignment and operation beginning time for operation k ¼ m

Min
Xi;s

Ls

with Ls �
Pn

i¼1

Pm�1
k¼1 bs;k �pi;k � hmax

i;k

� �
Xi;s

h i
þ min

ts;k
Ls;m

� 	
where Ls;m is defined

as: Ls;m ¼ Ts þ T2
s;m þ ðbs;mÞts;m.

Ts ¼ max 0; Cs;m �
P

i Xi;sdi

� �
. The beginning time ts;m is solved to minimize

Ls;m which has a quadratic cost function with convex envelop. The solution is

ts;m ¼ 1þ ds;m � ps;m � e0
2
.

The variable Xi;s is then determined by assigning the job associated with the

lowest subproblem value to slot s. Then, we can obtain an optimal value for each

subproblem given by L�s;k and L�s . These values are then used to solve the dual

problem which is formed as: max
bs;k

L with L �
Pn

s¼1

Pm�1
k¼1 L�s;k þ

Pn
s¼1 L�s;k.

4.3.5 Constructing a feasible solution

Generally the found solution may be associated with an infeasible schedule as an

unscheduled sequence can be obtained when a job i is assigned to several slots. A

way to avoid this problem is to apply the following heuristc: when a job is assigned

to several slots, only the one with the smallest index is kept. All the jobs assigned to

succeeding positions are advanced in the scheduling sequence to fill up the gap.

Then, the complement of the sequence is added to the one already obtained. This

algorithm requires OðnÞ time.

Example There are five jobs to be scheduled and which have to be assigned to

five slots in the scheduling sequence. Assume that the dual solution obtained is [1 1

5 3 3], job 1 is assigned to the first and second slots; also job 3 is assigned to the

fourth and fifth slots which is an unscheduled sequence. By Applying the proposed

heuristic, the sequence become [1 5 3 - -]. Then, we complete the sequence by

adding the missing jobs in the ascending order to obtain the sequence [1 5 3 2 4].

Minimizing total tardiness in the permutation flowshop 107

123



4.3.6 Updating the Lagrangian multipliers

To update the Lagrangian multipliers, we adopt the subgradient method. It consists

in updating iteratively the variables of the dual problem (Lagrangian multipliers).

Each iteration z consists in two steps:

1. For tz
s;k; and bz

s;k (Lagrangian multipliers in the zth iteration), calculate

Lðtz
s;kÞ; and Lðbz

s;kÞ to obtain the subgradient of L in the point ðtz
s;kÞ and ðbz

s;kÞ
successively.

2.

• Calculate tzþ1
s;k ¼ tz

s;k þ Sz
t ts;k � ts;kþ1

� �
þ
Pn

i¼1 Xi;s pi;k þ hmin
i;k

� �� �
8k ¼

1; . . .;m� 1 and tzþ1
s;k ¼ tz

s;k þ Sz
t ts;k þ

Pn
i¼1 Xi;spi;k

� �
8k ¼ m

• Calculate bzþ1
s;k ¼ bz

s;k þ Sz
b ts;kþ1 � ts;k

� �
�
Pn

i¼1 Xi;s pi;k þ hmax
i;k

� �� �
8k ¼

1; . . .;m� 1 and bzþ1
s;k ¼ bz

s;k þ Sz
b ts;k �

Pn
i¼1 Xi;spi;k

� �
8k ¼ m

There are several types of step size rules. We use the constant step size as the sub

gradient algorithm is guaranteed to converge to within some range of the optimal

value. The step size is given by:

Sz
t ¼ c

LU � Lz

Pn
s¼1

Pm�1
k¼1 ts;k � ts;kþ1

� �
þ
Pn

i¼1 Xi;s pi;k þ hmin
i;k

� �n o2

Sz
b ¼ c

LU � Lz

Pn
s¼1

Pm�1
k¼1 ts;kþ1 � ts;k

� �
þ
Pn

i¼1 Xi;s pi;k þ hmax
i;k

� �n o2

with 0� c� 2

Here Lz is the value of L at the zth iteration and LU is an estimate of the optimal

solution.

4.3.7 Example

To explain better the steps of the proposed LR technique, we use the following

example of method 1. We consider 3 jobs, 3 slots, and 3 machines and we define the

minimal time lags between them (Table 1).

Then, we detail the steps of the proposed algorithm:

We begin by an iteration counter = 0, we just can determine the starting times as

follows (Table 2).

The first obtained L ¼ 3, and we consider the sequence 1-2-3 as we can’t

determine the Ls value in this iteration (Table 3). Then we can determine the

Lagrangian multipliers values for the next iteration such that S1
t ¼ 0:02.

Then, we can determine the objective value as it was described previously and

the sequence still 1-2-3 (Table 4).
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Then, L ¼ 6 for this iteration such that the last column represent the Ls values.

5 Computational experiments

Some computational experiments are done to test the effectiveness of the proposed

methods. The mathematical formulation is tested by running CPLEX 11., and the

algorithms are implemented with MATLAB 7.6. These computational experiments

are run on a DELL PC/2.20 GHz with 4.00 Go RAM.

The processing times are generated randomly from a uniform distribution

between 20 and 50, the minimal and maximal time lags are generated from a

uniform distribution in the intervals [0, 7] and [0, 14] successively as the same way

in (Fondrevelle et al. 2006). The due dates are generated as the same way in (Nishi

et al. 2009) by the random numbers on uniform distribution between

Table 1 The data

pi,1 pi,2 pi,3 hmin
i;1 hmin

i;2
hmax

i;1 hmax
i;2 di,1 di,2 di,3

Job 1 3 4 2 3 3 4 4 5 8 10

Job 2 4 3 3 1 2 3 3 5 8 10

Job 3 5 2 3 2 4 3 6 5 8 10

Table 2 Lagrangian multipliers

ts,k 1 2 3

1 2 4 9

2 1 5 8

3 0 6 8

Table 3 The obtained Lagrangian multipliers ts;k and e values

ts;k 1 2 3 e 1 2 3

1 0.08 0.04 0.22 1 -0.08 -0.04 -0.18

2 0.02 0.10 0.22 2 -0.02 -0.08 -0.18

3 0.02 0.08 0.22 3 -0.02 -0.06 -0.18

Table 4 The Ls;k and Ls values

Ls;k 1 2 3

1 0.06 0.16 1.08

2 0.02 0.04 2.04

3 0 0.06 2.06
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½Pð1� a� c=2Þ; Pð1� aþ c=2Þ�. P is a lower bound of the makespan which is

given as follows:

P¼max max
1�k�m

Xn

i¼1

pi;kþmin
i

Xk�1

l¼1

pi;lþhmin
i;l

� �
þmin

i

Xm

l¼kþ1

pi;lþhmin
i;l

� � !
;max

i

Xm

k¼1

pi;kþhmin
i;k

� �( )

a is the tardiness factor of jobs to determine the length of due dates, and c is the

dispersion range of due dates. A larger a generate tight due dates, and smaller c
generates a small range of due dates (Nishi et al. 2009). a and c are fixed to 0.4 and

0.8 respectively.

5.1 Evaluation of the heuristic algorithms and effect of the time lags

on the results

First experiments are done to distuinguish the influence of the minimal and maximal

lags on the results, on the CPU time and the number of nodes. They allow us to

define four different classes of problems: problems with minimal and maximal time

lags ðhmin ¼ 7; hmax ¼ 14Þ; problems without time lags constraints ðhmin ¼ 0;

hmax ¼ þ1Þ; problems with minimal time lags only ðhmin ¼ 7; hmax ¼ þ1Þ; and

problems with maximal time lags only ðhmin ¼ 0; hmax ¼ 14Þ. On the other hand,

these experiments aim to test the performance of the proposed heuristic algorithms

by determining the deviation percentage from the optimal solution. It is calculated

as follows UB�Op
Op
	 100 (noted % in the table) where the UB is the solution found by

Table 5 The effect of the time lags on the results and performance of the heuristics

ðn; mÞ ðhmin; hmaxÞ CPLEX SPT (%) ABM (%) ECT (%)

T CPUðsÞ Nodes

(5, 5) (7, 14) 52 0.14 15 4.31 3.17 1.12

(0, ?1) 47 0.03 6 1.81 2.44 0.81

(7, ?1) 50 0.05 15 1.66 2.13 2.50

(0,14) 48 0.37 41 4.45 1.82 1.37

(10, 5) (7, 14) 250 0.45 549 2.75 1.15 0.01

(0, ?1) 130 0.19 107 2.16 2.68 1.15

(7, ?1) 210 0.13 163 4.13 3.58 2.86

(0, 14) 123 0.33 756 3.36 2.34 1.81

(15, 5) (7, 14) 369 42.82 14,469 4.13 1.95 0.91

(0, ?1) 260 10.78 3,322 2.67 3.07 1.93

(7, ?1) 320 15.41 5,992 3.25 2.68 0.42

(0, 14) 277 34.31 16,669 2.01 4.11 2.07

(20, 4) (7, 14) 613 52.14 27,995 1.13 3.45 0.12

(0, ?1) 555 23.24 10,889 2.77 1.05 0.09

(7, ?1) 598 18.56 15,423 3.13 3.67 3.57

(0, 14) 568 55.76 44,239 3.62 2.63 1.45

110 I. Hamdi, T. Loukil

123



the heuristic procedure and Op is the optimal solution obtained by running

CPLEX to the proposed mathematical formulation. The results are drown in

Table 5. We set four different configurations for number of jobs

n 2 f5; 10; 15; 20g, and the number of machines is set to 4 and 5. For each

problem, ten instances are generated; then the average value of the total tardiness

is determined. A total of 160 runs are executed (16 problems 	10 tested instances

for each one). Note that a limit of 20,000 s is set.

From Table 5, it’s obvious that the minimal and maximal time lags have a

significant effect on the objective value, the CPU time, and the number of nodes

required to solve each problem. The tardiness values ðTÞ are greater for the

problems with only minimal time lags and both minimal and maximal time lags. it’s

not surprising as the makespan is greater for these problems which results in higher

tardiness values. However, the problems with only maximal time lags and with both

minimal and maximal time lags are hardest to be solved than the classical

permutation flowshop problems and with only minimal time lags problems. They

require more CPU time to be solved and the greatest number of nodes for almost all

the problems sizes. The heuristic procedures are solved in less than 1 second for all

the tested problems.

The proposed heuristic procedures perform very will. The deviation percentage

from the optimal solution range between 1.13 and 4.45 for the SPT heuristic,

between 1.05 and 4.11 for the ABM heuristic, and between 0.01 and 3.57 for the

ECT heuristic. The last one performs better among the three proposed procedures. It

provides the best solution 15 times among 16 found solutions. On the other hand, we

can confirm that the deviation percentage depends on the tardiness value, it

decreases with the increasing tardiness values. So that, the ECT heuristic is able to

find the optimal solution for problems with potentially high total tardiness.

5.2 Evaluation of the lower bounds

Second experiments are done to test the effectiveness of the proposed lower bounds.

Many problems with different sizes are generated. They are classified into small size

problems and large size problems. For the first type, we set four different

configurations for the number of jobs n 2 f5; 10; 15; 20g and three configurations

for the number of machines m 2 f4; 5; 10g. To evaluate the performance of the

developed Lower Bounds ðLBÞ, we determine for each one its deviation percentage

from the optimal solution as: Op�LB
LB
	 100.

For the large size problems, we set the number of jobs to n 2 f30; 50; 100g and

the number of machines to 5 or 10. As the CPLEX is unable to solve problems with

size larger than ðn ¼ 20; m ¼ 4Þ, we use the ECT based heuristic ðUBÞ instead of

the optimal solution to determine the deviation percentage. It is then calculated as
UB�LB

LB
	 100. 10 instances are tested for each problem size, then the average value is

determined. The minimal and maximal time lags are generated from a uniform

distribution in the intervals [0, 7] and [0, 14] respectively. It is worthy noted that we

aim also to distuinguish the effect of the minimal and maximal time lags constraints
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on the the quality of the developed lower bounds. Here LB1 is the lower bound

obtained by relaxing the integrality constraints.

For small size problems shown in Table 6, the CP based-lower bound is shown to

be the best one and the average deviation percentage from the optimal solution

doesn’t exceed 2.64. This lower bound and both methods 1 and 2 perform better

than the LB1. Method 2 which consists in relaxing the maximal time lags constraints

is better. However, relaxing the minimal time lags constraints presented in method 1

can’t provide a great enhancement. This result is not surprising, as it is known that

problems with only maximal time lags are hardest to be solved than the problems

with only minimal time lags according to the previous experiments. Then by

relaxing the maximal time lags, the problems become easier to be solved and the

result is better. The computation time of the proposed both methods 1 and 2 is less

than 1 second, and then consume less time than LB1. Also, it is shown that the LB1

and the CP based lower bound suffer from much consuming time to solve problems

and they prove their inability to solve large size problems.

In Table 7, we evaluate the performance of the LR for large size problems.

We extend the experiments to large size problems. We can confirm that the LR

performs good until the size ðn ¼ 100; m ¼ 10Þ with manageable CPU time for the

two methods while confirming that method 2 consumes less CPU time. Also, in

view of the difference between the two methods, we can confirm the results

obtained for the small size problems.

Table 6 Performance of the lower bounds for small size problems

ðn; mÞ CPLEX ðOpÞ LB1 Method 1 ð%Þ Method 2 ð%Þ CP

% CPUðsÞ % CPU ðsÞ % CPU ðsÞ % CPU ðsÞ

(5, 5) 52 15.14 0.04 10.13 0.02 8.00 0.03 2.65 0.03

(10, 5) 250 20.61 0.32 13.23 0.08 10.39 0.07 3.06 0.05

(10, 10) 476 19.01 0.55 15.50 0.11 12.00 0.10 2.27 1.28

(15, 5) 369 15.13 13.45 12.30 0.08 10.00 0.06 1.75 8.34

(15, 10) 628 17.34 41.23 13.30 0.15 10.13 0.10 2.45 20.76

(20, 4) 613 18.19 38.43 14.00 0.19 12.13 0.22 3.67 33.13

Average 17.57 13.07 10.42 2.64

Table 7 Performance of LR for large size problems

ðn; mÞ ECT ðUBÞ Method 1 ð%Þ Method 2 ð%Þ

% CPU ðsÞ % CPU ðsÞ

(30, 5) 936 20.45 1.12 15.89 1.33

(30, 10) 2,820 21.34 2.28 13.56 2.06

(50, 5) 2,744 18.77 3.61 15.55 0.71

(50, 10) 5,433 18.45 3.51 14.77 2.16

(100, 10) 7,748 17.55 9.35 13.34 8.50
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6 Conclusion

The permutation flowshop scheduling problem with minimal and maximal time lags

to minimize the total tardiness was studied in this paper. We proposed its

corresponding mathematical formulation. Computationally efficient heuristic algo-

rithms based on different rules are proposed to provide upper bounds for large size

problems. Then, lower bounds based on different methods are derived where the LR

is the main one. A solution methodology was presented and the Lagrangian

multipliers were updated using the subgradient algorithm. Two methods of the LR

were proposed which were distuinguished by the type of the relaxed constraints.

Experimental results show a great performance of the proposed heuristic procedures

and especially the one based on the ECT rule. On the other hand, both small and

large problem sizes proved the good quality of the developed lower bounds in a few

CPU time for the LR.

Several directions for further work can be of major interest: the proposed LR

technique can be hybridized with other approaches such as the column generation

and then we can assess the enhancement that can be occured to the results. It could

be interesting also to study similar problems with non classical performance criteria

such as the total tardiness and earliness.
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