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Abstract This paper considers Stackelberg solutions for bilevel linear program-

ming problems under fuzzy random environments. To deal with the formulated

fuzzy random bilevel linear programming problem, a-level sets of fuzzy random

variables are introduced and an a-stochastic bilevel linear programming problem is

defined for guaranteeing the degree of realization of the problem. Taking into

account vagueness of judgments of decision makers, fuzzy goals are introduced and

the a-stochastic bilevel linear programming problem is transformed into the prob-

lem to maximize the satisfaction degree for each fuzzy goal. Through probability

maximization in stochastic programming, the transformed stochastic bilevel pro-

gramming problem can be reduced to a deterministic bilevel programming problem.

An extended concept of Stackelberg solution is introduced and a computational

method is also presented. A numerical example is provided to illustrate the proposed

method.
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1 Introduction

Decision making problems in decentralized organizations are often modeled as

Stackelberg games (Simaan and Cruz 1973), and they are formulated as bilevel

mathematical programming problems (Shimizu et al. 1997; Sakawa and Nishizaki

2009). In the context of bilevel programming, the decision maker at the upper level

first specifies a strategy, and then the decision maker at the lower level specifies a

strategy so as to optimize the objective with full knowledge of the action of the

decision maker at the upper level. In conventional multi-level mathematical

programming models employing the solution concept of Stackelberg equilibrium, it

is assumed that there is no communication among decision makers, or they do not

make any binding agreement even if there exists such communication. Computa-

tional methods for obtaining Stackelberg solutions to bilevel linear programming

problems are classified roughly into three categories: the vertex enumeration

approach (Bialas and Karwan 1984), the Kuhn-Tucker approach (Bard and Falk

1982; Bard and Moore 1990; Bialas and Karwan 1984; Hansen et al. 1992), and the

penalty function approach (White and Anandalingam 1993). The subsequent works

on bilevel programming problems under noncooperative behavior of the decision

makers have been appearing (Nishizaki and Sakawa 1999, 2000; Gümüs and

Floudas 2001; Nishizaki et al. 2003; Colson et al. 2005; Faisca et al. 2007)

including some applications to aluminium production process (Nicholls 1996),

pollution control policy determination (Amouzegar and Moshirvaziri 1999), tax

credits determination for biofuel producers (Dempe and Bard 2001), pricing in

competitive electricity markets (Fampa et al. 2008), supply chain planning

(Roghanian et al. 2007) and so forth.

However, to utilize bilevel programming for resolution of conflict in decision

making problems in real-world decentralized organizations, it is important to realize

that simultaneous considerations of fuzziness (Sakawa 1993, 2000, 2001) and

randomness (Stancu-Minasian 1984; Birge and Louveaux 1997; Sakawa and Kato

2008) would be required. Fuzzy random variables, first introduced by Kwakernaak

(1978), have been developing (Kruse and Meyer 1987; Puri and Ralescu 1996; Liu

and Liu 2003), and an overview of the developments of fuzzy random variables was

found in (Gil et al. 2006). Studies on linear programming problems with fuzzy

random variable coefficients, called fuzzy random linear programming problems,

were initiated by Wang and Qiao (1993), Qiao et al. (1994) as seeking the probability

distribution of the optimal solution and optimal value. Optimization models for fuzzy

random linear programming problems were first considered by Luhandjula (1996;

Luhandjula and Gupta 1996) and further developed by Liu (2001a, b) and

Rommelfanger (2007). A brief survey of major fuzzy stochastic programming

models was found in the paper by Luhandjula (2006). As we look at recent

developments in the fields of fuzzy random programming, we can see continuing

advances (Katagiri et al. 2004a, b, c, 2005a, b, 2006, 2008; Rommlfanger 2007;

Ammar 2008; Xu and Liu 2008).

Under these circumstances, in this paper, we consider Stackelberg solutions for

bilevel linear programming problems under fuzzy random environments. To deal

with the formulated bilevel linear programming problem involving fuzzy random
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variables, a-level sets of fuzzy random variables are introduced and an a-stochastic

bilevel linear programming problem is defined for guaranteeing the degree of

realization of the problem. Taking into account vagueness of judgments of decision

makers, fuzzy goals are introduced and the a-stochastic bilevel linear programming

problem is transformed into the problem to maximize the satisfaction degree for

each fuzzy goal. Following the probability maximization model (Charnes and

Cooper 1963), the transformed stochastic bilevel programming problem can be

reduced to a deterministic one. For the transformed problem, an extended concept of

Stackelberg solution is introduced and a computational method is also presented. It

is shown that the extended Stackelberg solution can be obtained through the

combined use of the variable transformation method by Charnes and Cooper (1962)

and the Kth best algorithm for bilevel linear programming problems by Bialas and

Karwan (1984).

2 Fuzzy random bilevel linear programming

Fuzzy random variables, first introduced by Kwakernaak (1978), have been defined

in various ways (Kwakernaak 1978; Puri and Ralescu 1996; Kruse and Meyer 1987;

Liu and Liu 2003). In this paper, we give the definition of a fuzzy random variable

as follows:

Definition 1 [Fuzzy random variable] Let ðX;A;PÞ be a probability space, FðRÞ
the set of all fuzzy numbers, and B the Borel r-field of R. Then, a map ~�C :
X! FðRÞ is called a fuzzy random variable if

ðx; sÞ 2 X�R s 2 ~�CaðxÞ
�
�
�

n o

2 A� B; 8a 2 ½0; 1�;

where ~�CaðxÞ ¼ ~�C
�
a ðxÞ; ~�C

þ
a ðxÞ

h i

:¼ s 2 R l~�CðxÞðsÞ� a
�
�
�

n o

is an a-level set of the

fuzzy number ~�CðxÞ for x 2 X.

Although there exist some minor differences in several definitions of fuzzy

random variables, fuzzy random variables could be roughly understood to be a

random variable whose observed values are fuzzy sets.

In this paper, we deal with bilevel linear programming problems involving fuzzy

random variable coefficients in objective functions formulated as:

minimize
for DM1

z1ðx1; x2Þ ¼ ~�C11x1 þ ~�C12x2

minimize
for DM2

z2ðx1; x2Þ ¼ ~�C21x1 þ ~�C22x2

subject to A1x1 þ A2x2� b
x1� 0; x2� 0

9

>>>>=

>>>>;

: ð1Þ

It is significant to note here that randomness and fuzziness of the coefficients are

denoted by the ‘‘dash above’’ and ‘‘wave above’’ i.e., ‘‘–’’ and ‘‘*’’, respectively. In

this formulation, x1 is an n1 dimensional decision variable column vector for the

decision maker at the upper level (DM1), x2 is an n2 dimensional decision variable

column vector for the decision maker at the lower level (DM2), z1ðx1; x2Þ is the
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objective function for DM1 and z2ðx1; x2Þ is the objective function for DM2.

Elements ~�Cljk; k ¼ 1; 2; . . .; nj of coefficient vectors ~�Clj; l ¼ 1; 2; j ¼ 1; 2 are fuzzy

random variables of which observed values for each elementary event x are fuzzy

numbers ~�CljkðxÞ characterized by the membership function:

l~�CljkðxÞðsÞ ¼
L

�dljkðxÞ � s
bljk

 !

; if s� �dljkðxÞ

R
s��dljkðxÞ

cljk

� �

; otherwise;

8

>><

>>:

where the function L(t) = max{0, k(t)} is a real-valued continuous function from

[0, ?) to [0, 1], and k(t) is a strictly decreasing continuous function satisfying

k(0) = 1. Also, R(t) = max{0, q(t)} satisfies the same conditions. The parameters

bljk and cljk, representing left and right spreads of l~�CljkðxÞð�Þ, are positive numbers.

The parameter �dljk which is a mean value of ~�Cljk is defined as �dljk ¼ d1
ljk þ �tld

2
ljk

using a random variable �tl with mean Ml. This definition of random variables is one

of the simplest randomization modeling of coefficients using dilation and translation

of random variables, as discussed by Stancu-Minasian (1990) and Katagiri et al.

(2008).

In the following, let us denote the feasible region of Eq. 1 by X and let
~�Cl ¼ ð~�Cl1;

~�Cl2Þ; x ¼ ðxT
1 ; x

T
2 Þ

T
. Figure 1 illustrates an example of the membership

function of a fuzzy random variable ~�Cljk.

Fuzzy random bilevel linear programming problems formulated as Eq. 1 are

often seen in actual decision making situations. For example, consider a supply

chain planning (Roghanian et al. 2007) where the distribution center (DM1) and the

production part (DM2) hope to minimize the distribution cost and the production

cost respectively. Since coefficients of these objective functions are often affected

by the economic conditions varying at random, they can be regarded as random

variables. In addition, since observed values of them are often ambiguous and

estimated by fuzzy numbers, they are expressed by fuzzy random variables. Hence,

the supply chain planning problem can be formulated as a bilevel linear

programming problem involving fuzzy random variable coefficients.

Observing that each coefficient ~�Cljk is a fuzzy random variable defined as a

random variable of which observed values are L–R fuzzy numbers, each objective

Fig. 1 An example of the
membership function l~�CljkðxÞð�Þ
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function ~�Clx ¼ ~�Cl1x1 þ ~�Cl2x2 is also a fuzzy random variable of which observed

values for elementary events x are fuzzy numbers characterized by the membership

function

l~�ClðxÞx
ðtÞ ¼

L
�dlðxÞx�t

blx

� �

; if t� �dlðxÞx

R t��dlðxÞx
clx

� �

; otherwise

8

<

:

An example of a membership function of an objective function for DMl is shown

in Fig. 2.

3 Level set-based optimization approach

Observing that Eq. 1 involves fuzzy random variables in the objective functions, we

first introduce the a-level set of the fuzzy random variables. The a-level set of the

fuzzy random variables ~�Cljk is defined as the ordinary set for which the degree of

their membership functions for each elementary event x exceeds the level a:

~�CljkaðxÞ ¼ fs j l~�CljkðxÞðsÞ� a; s 2 Rg; j ¼ 1; 2; k ¼ 1; 2; . . .; nj:

For notational convenience, in the following, let ~�Cla ¼ ð~�Cl1a;
~�Cl2aÞ; l ¼ 1; 2 be an a-

level set defined as the Cartesian product of a-level sets ~�Cljka of fuzzy random

variables ~�Cljk; j ¼ 1; 2; k ¼ 1; 2; . . .; nj.

Now suppose that DM1 decides that the degree of all of the membership

functions of the fuzzy random variables involved in Eq. 1 should be greater than or

equal to some value a. Then for such a degree a, Eq. 1 can be interpreted as the

following stochastic bilevel linear programming problem which depends on the

coefficient vectors ð�C11; �C12Þ 2 ð~�C11a;
~�C12aÞ and ð�C21; �C22Þ 2 ð~�C21a;

~�C22aÞ
minimize

DM1
z1ðx1; x2Þ ¼ �C11x1 þ �C12x2

minimize
DM2

z2ðx1; x2Þ ¼ �C21x1 þ �C22x2

subject to A1x1 þ A2x2� b
x1� 0; x2� 0

9

>>>=

>>>;

: ð2Þ

Observe that there exists an infinite number of such problems depending on the

coefficient vector ð�C11; �C12Þ 2 ð~�C11a;
~�C12aÞ and ð�C21; �C22Þ 2 ð~�C21a;

~�C22aÞ, and the

Fig. 2 An example of a
membership function of an
objective function for DMl
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values of ð�C11; �C12Þ and ð�C21; �C22Þ are arbitrary for any ð�C11; �C12Þ 2 ð~�C11a;
~�C12aÞ and

ð�C21; �C22Þ 2 ð~�C21a;
~�C22aÞ in the sense that the degree of all of the membership

functions for the fuzzy random variables in Eq. 2 exceeds the level a. However, if

possible, it would be desirable for DM1 to choose ð�C11; �C12Þ 2 ð~�C11a;
~�C12aÞ and

ð�C21; �C22Þ 2 ð~�C21a;
~�C22aÞ in Eq. 2 to minimize the objective functions under the

constraints. From such a point of view, for a certain degree a, it seems to be quite

natural to have Eq. 2 as the following a-stochastic bilevel linear programming

problem:

minimize
DM1

z1ðx1; x2Þ ¼ �C11x1 þ �C12x2

minimize
DM2

z2ðx1; x2Þ ¼ �C21x1 þ �C22x2

subject to A1x1 þ A2x2� b
x1� 0; x2� 0

�C1 ¼ ð�C11; �C12Þ 2 ~�C1a; �C2 ¼ ð�C21; �C22Þ 2 ~�C2a

9

>>>>>=

>>>>>;

: ð3Þ

4 Stackelberg solutions through probability maximization

Considering vague natures of the decision makers’ judgment, it is natural to assume

that decision makers may have vague or fuzzy goals for each of the objective

functions in the a-stochastic bilevel linear programming problem Eq. 3. In a

minimization problem, a goal stated by decision makers may be to achieve

‘‘substantially less than or equal to some value.’’ This type of statement can be

quantified by eliciting a corresponding membership function.

In this paper, we express the fuzzy goals of DM1 and DM2 for their own

objective function values as l1 and l2, respectively.

On the other hand, it should be stressed here that not only fuzziness but also

randomness must be properly reflected in the obtained solution of problem Eq. 3

because the original problem involves fuzzy random variables.

In this paper, assuming that the decision makers are interested in the probability

that each objective function attains a goal value rather than the expectation or

variance of each membership function, we consider the following problem as one of

reasonable decision making problems for Eq. 3:

maximize
DM1

Pr l1ð�C1xÞ� h1

� �

maximize
DM2

Pr l2ð�C2xÞ� h2

� �

subject to A1x1 þ A2x2� b

x1� 0; x2� 0

�C1 2 ~�C1a; �C2 2 ~�C2a

9

>>>>>>>=

>>>>>>>;

ð4Þ

where hl is a permissible level for ll(�). The function ll is a membership function of the

fuzzy goal of DMl, and it is defined as a real-valued non-increasing continuous function

by considering that Eq. 3 is the minimization problem. Figure 3 illustrates a possible

shape of non-increasing membership functions ll, l = 1, 2 of the fuzzy goals of the
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DMs for the objective function values. This figure shows that the value of membership

function ll should be 1 if the decision maker is fully satisfied with the corresponding

objective function value, and 0 if the decision maker is not satisfied at all.

It should be stressed here that Eq. 4 can be interpreted as an optimization

problem based on an extended probability maximization model that was originally

introduced in a framework of stochastic programming Eq. 9.

In more general, expectation optimization, variance minimization, probability

maximization and fractile criterion optimization (Charnes and Cooper 1963; Kataoka

1963; Stancu-Minasian 1984; Birge and Louveaux 1997; Sakawa and Kato 2008) are

typical optimization models for objective functions involving random variables. For

instance, let the objective function represent a profit. If the decision maker wishes to

simply maximize the expected profit without caring about the fluctuation of the profit,

the expectation optimization model to optimize the expectation of the objective

function is appropriate. On the other hand, if the decision maker hopes to decrease the

fluctuation of the profit as little as possible from the viewpoint of the stability of the

profit, the variance minimization model to minimize the variance of the objective

function is useful. In contrast to these two types of optimizing approaches, as

satisficing approaches, the probability maximization model and the fractile criterion

optimization model have been proposed. When the decision maker wants to maximize

the probability that the profit is greater than or equal to a certain permissible level,

probability maximization model is recommended. In contrast, when the decision

maker wishes to optimize such a permissible level as the probability that the profit is

greater than or equal to the permissible level is greater than or equal to a certain

threshold, the fractile criterion optimization model will be appropriate.

Realizing that Eq. 4 is a deterministic bilevel programming problem under

noncooperative environments, we reformulate the following problem of finding a

Stackelberg solution to Eq. 4:

maximize
x1

Pr xjl1ð�C1ðxÞxÞ� h1

� �

where x2 solves

maximize
x2

Pr xjl2ð�C2xÞ� h2

� �

subject to A1x1 þ A2x2� b
x1� 0; x2� 0
�C1 2 ~�C1a; �C2 2 ~�C2a

9

>>>>>>>=

>>>>>>>;

: ð5Þ

Following the definition of Stackelberg solutions, for any feasible decision x̂1 given

by DM1,DM2 is assumed to select a decision x2ðx̂1Þ which is an optimal solution to

the following problem:

Fig. 3 An example of a
membership function llð�Þ of a
fuzzy goal
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maximize
x2

Pr xjl2ð�C2ðxÞxÞ
�
�
x1¼x̂1

� h2

n o

subject to A2x2� b� A1x̂1

x2� 0
�C1 2 ~�C1a; �C2 2 ~�C2a

9

>>>=

>>>;

: ð6Þ

The optimal solution x2ðx̂1Þ to Eq. 6 is called a rational reaction for x̂1. Let us

denote the set of rational reactions for x̂1 by RRðx̂1Þ. Then, DM1 should select a

solution ðx1; x2Þ to optimize h1 from among the inducible region

IR ¼ fðx1; x2Þ j ðx1; x2Þ 2 X; x2 2 RRðx1Þg. To be more explicit, DM1 selects an

optimal solution to the following problem:

maximize
x1

Pr xjl1ð�C1ðxÞxÞ� h1

� �

subject to ðx1; x2Þ 2 IR
�C1 2 ~�C1a; �C2 2 ~�C2a

9

>=

>;

: ð7Þ

The optimal solution to Eq. 7 is a Stackelberg solution to problem Eq. 4.

Then, we are ready to define a P-a-Stackelberg solution as an extended solution

concept of original Stackelberg solution.

Definition 2 [P-a-Stackelberg solution] A feasible solution ðx�1; x�2Þ 2 X is called a

P-a-Stackelberg solution, meaning a Stackelberg solution through probability

maximization using a-level set, if ðx�1; x�2Þ is an optimal solution to the following

bilevel programming problem:

maximize
x1

Pr xjl1ð�C1ðxÞxÞ� h1

� �

where x2 solves

maximize
x2

Pr xjl2ð�C2ðxÞxÞ� h2

� �

subject to A1x1 þ A2x2� b
x1� 0; x2� 0
�C1 2 ~�C1a; �C2 2 ~�C2a

9

>>>>>>>=

>>>>>>>;

: ð8Þ

In what follows, we discuss how to solve problem Eqs. 8 or 7 in order to obtain a P-a-

Stackelberg solution. Let �CL
ljkaðxÞ and �CR

ljkaðxÞ be s satisfying Lðð�dljkðxÞ � sÞ=bljkÞ ¼
a and s0 satisfying Rððs0 � �dljkðxÞÞ=cljkÞ ¼ a, respectively. Then, the a-level set of

~�CljkðxÞ becomes a closed interval ½ �CL
ljkaðxÞ; �CR

ljkaðxÞ� which varies randomly

dependent on each elementary event x, as shown in Fig. 4.

Accordingly, the constraint �C1 2 ~�C1a is equivalent to �C1 2 ½�CL
1a;

�CR
1a�. Since

�CL
1aðxÞ� �C1ðxÞ for any random variable �C1 2 ½�CL

1a;
�CR

1a�, it holds that

Pr x l1ð�CL
1aðxÞxÞ� h1

�
�

� �

�Pr x l1ð�C1aðxÞxÞ� h1

�
�

� �

for any any random variable �C1 2 ½�CL
1a;

�CR
1a� because l1 is a nonincreasing function.

Therefore, maximizing Pr x l1ð�C1aðxÞxÞ� h1

�
�

� �

under the constraint �C1 2 ~�C1a is

equivalent to maximizing Pr x l1ð�CL
1aðxÞxÞ� h1

�
�

� �

. By applying the similar
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transformation to the objective function of DM2, we obtain the following two-level

linear programming problem as the equivalent problem of (8):

maximize
x1

Pr x l1ð�CL
1aðxÞxÞ� h1

�
�

� �

where x2 solves

maximize
x2

Pr x l2ð�CL
2aðxÞxÞ� h2

�
�

� �

subject to A1x1 þ A2x2� b
x1� 0; x2� 0

9

>>>>>=

>>>>>;

: ð9Þ

Since ll(�), l = 1, 2 are nonincreasing, Eq. 9 can be rewritten as:

maximize
x1

Pr x �CL
1ax� l�1ðh1Þ

�
�

� �

where x2 solves

maximize
x2

Pr x �CL
2ax� l�2ðh2Þ

�
�

� �

subject to A1x1 þ A2x2� b
x1� 0; x2� 0

9

>>>>>=

>>>>>;

ð10Þ

where ll
*(�) is a pseudo-inverse function of ll(�) defined by l�l ðhlÞ ¼

supfy j llðyÞ� hlg.
In view of a ¼ Lðð�dljkðxÞ � �CL

ljkaðxÞÞ=bljkÞ in Eq. 10, it holds that

�CL
ljka ¼ �dljk � L�ðaÞbljk

where L�ð�Þ is a pseudo-inverse function of Lð�Þ defined by L�ðaÞ ¼ supfs j LðsÞ� ag.
Supposing that d2

l x [ 0; l ¼ 1; 2 for any feasible solution x 2 X ¼ fx 2 Rðn1þn2Þ

j A1x1 þ A2x2� b; xj� 0; j ¼ 1; 2g, we can rewrite objective functions in Eq. 10 as

follows.

Pr x �CL
laðxÞx� l�l ðhlÞ

�
�

� �

¼ Pr x ð�dlðxÞ � L�ðaÞblÞx� l�l ðhlÞ
�
�

� �

¼ Pr x ðd1
l þ �tlðxÞd2

l Þx� L�ðaÞblx� l�l ðhlÞ
�
�

� �

¼ Pr x �tlðxÞ�
ðL�ðaÞbl � d1

l Þxþ l�l ðhlÞ
d2

l x

�
�
�
�
�

( )

¼ Tl
ðL�ðaÞbl � d1

l Þxþ l�l ðhlÞ
d2

l x

 !

Fig. 4 An example of the a-

level set of ~�CljkðxÞ
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Therefore, Eq. 10 can be transformed as:

maximize
x1

T1
ðL�ðaÞb1�d1

1Þxþl�
1
ðh1Þ

d2
1x

� �

where x2 solves

maximize
x2

T2
ðL�ðaÞb2�d1

2Þxþl�
2
ðh2Þ

d2
2x

� �

subject to A1x1 þ A2x2� b
x1� 0; x2� 0

9

>>>>>>=

>>>>>>;

ð11Þ

Since distribution functions Tlð�Þ are generally nondecreasing, Eq. 11 is finally

reduced into the following deterministic bilevel linear fractional programming

problem.

maximize
x1

ZP
1aðx1; x2Þ ¼ ðL

�ðaÞb1�d1
1Þxþl�

1
ðh1Þ

d2
1x

where x2 solves

maximize
x2

ZP
2aðx1; x2Þ ¼ ðL

�ðaÞb2�d1
2Þxþl�

2
ðh2Þ

d2
2x

subject to A1x1 þ A2x2� b
x1� 0; x2� 0

9

>>>>>>=

>>>>>>;

ð12Þ

For bilevel linear fractional programming problems, it is shown that Stackelberg

solutions exist at some extreme point of the feasible region (Calvete and Gale 2004).

Therefore, we can construct the following computational method for obtaining P-

a-Stackelberg solutions through the combined use of the variable transformation

method by Charnes and Cooper (1962) and the Kth best algorithm for bilevel linear

programming problems by Bialas and Karwan (1984).

4.1 The computational method for obtaining P-a Stackelberg solutions

Step 1: Let i:¼ 1. Removing the objective function of DM 2 from Eq. 12, solve the

following problem:

maximize
x1;x2

ðL�ðaÞb1�d1
1Þxþl�

1
ðh1Þ

d2
1x

subject to A1x1 þ A2x2� b
x1� 0; x2� 0

9

>=

>;

: ð13Þ

Observing that Eq. 13 is a linear fractional programming problem and the

denominator of the objective function is positive as discussed in Eq. 10, it can be

transformed into an equivalent linear programming problem by the variable

transformation method by Charnes and Cooper (1962). To be more specific,

introducing the variable transformation

t ¼ 1

d2
1x
¼ 1

d2
11x1 þ d2

12x2

and letting y1 ¼ t � x1; y2 ¼ t � x2, Eq. 13 is transformed into the following linear

programming problem:
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maximize
y1;y2; t

ðL�ðaÞb11 � d1
11Þy1 þ ðL�ðaÞb12 � d1

12Þy2 þ l�1ðh1Þt
subject to A1y1 þ A2y2 � bt� 0

d2
11y1 þ d2

12y2 ¼ 1

y1� 0; y2� 0; t� 0

9

>>>=

>>>;

: ð14Þ

Observing that Eq. 14 is a linear programming problem, we can obtain an optimal

solution by the simplex method. Using the optimal solution to Eq. 14 denoted by

ðyT
1½1�; y

T
2½1�; t½1�Þ

T
, we can obtain

ðxT
1½1�; x

T
2½1�Þ

T :¼ ðyT
1½1�=t½1�; y

T
2½1�=t½1�ÞT

which is an extreme point of the feasible region of Eq. 13 as shown in Stancu-

Minasian (1992). Let W be a set of feasible extreme points to be searched and U a

set of feasible extreme points that had been searched. Let W :¼ fðxT
1½1�; x

T
2½1�Þ

Tg and

U :¼ [. Go to step 2.

Step 2: In order to check whether the present extreme point ðxT
1½i�; x

T
2½i�Þ

T
exists in

the inducible region IR, i.e., x2½i� is a rational reaction for x1½i� or not, we solve the

following problem:

maximize
x2

ðL�ðaÞb22�d1
22Þx2þðL�ðaÞb21�d1

21Þx1½i�þl�
2
ðh2Þ

d2
22x2þd2

21x1½i�

subject to A2x2� b� A1x1½i�
x2� 0

9

>=

>;

: ð15Þ

Observing that Eq. 15 is a linear fractional programming problem and the

denominator of the objective function is positive, it can be transformed into an

equivalent linear programming problem by the variable transformation method by

Charnes and Cooper (1962). Namely, introducing the variable transformation

u ¼ 1

d2
22x2 þ d2

21x1½i�

and letting w2 :¼ u � x2, Eq. 15 is transformed into the following linear program-

ming problem:

maximize
w2; u

ðL�ðaÞb22 � d1
22Þw2

þ½ðL�ðaÞb21 � d1
21Þx1½i� þ l�2ðh2Þ�u

subject to A2w2 � ðb� A1x1½i�Þu� 0

d2
22w2 þ d2

21x1½i�u ¼ 1

w2� 0; u� 0

9

>>>>>=

>>>>>;

: ð16Þ

Observing that Eq. 16 is a linear programming problem, we can find an optimal

solution ðwT
2½i�; u½i�Þ

T
by the simplex method. If w2½i�=u½i� ¼ x2½i�, then the current

extreme point ðxT
1½i�; x

T
2½i�Þ

T
exists in IR, i.e., it is a P-a-Stackelberg solution and the

algorithm is terminated. Otherwise, go to step 3.
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Step 3: Let W[i] be a set of feasible extreme points which are adjacent to

ðxT
1½i�; x

T
2½i�Þ

T
and satisfy ZP

1aðx1; x2Þ� ZP
1aðx1½i�; x2½i�Þ. Let U :¼ U [ fðxT

1½i�; x
T
2½i�Þ

Tg
and W :¼ ðW [W½i�ÞnU, and go to step 4.

Step 4: Let i :¼ i ?1. Choose an extreme point ðxT
1½i�; x

T
2½i�Þ

T
such that

ZP
1aðx1½i�; x2½i�Þ ¼ max

ðxT
1
;xT

2
ÞT2W

ZP
1aðx1; x2Þ;

and return to step 2.

It should be noted here that the proposed computational method uses nothing but

the variable transformation method, the simplex method and the pivot operation for

obtaining a P-a-Stackelberg solution.

5 Numerical example

In order to demonstrate the feasibility and efficiency of the proposed computational

methods, consider the following bilevel linear programming problem involving

fuzzy random variable coefficients:

minimize
for DM1

z1ðx1; x2Þ ¼ ~�C11x1 þ ~�C12x2

minimize
for DM2

z2ðx1; x2Þ ¼ ~�C21x1 þ ~�C22x2

subject to a11x1 þ a12x2� b1

a21x1 þ a22x2� b2

a31x1 þ a32x2� b3

a41x1 þ a42x2� b4

x1 ¼ ðx11; x12; x13ÞT � 0

x2 ¼ ðx21; x22; x23ÞT � 0

9

>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>;

: ð17Þ

where ~�Clj; l ¼ 1; 2; j ¼ 1; 2 are vectors whose elements ~�Cljk; k ¼ 1; 2; 3 are fuzzy

random variables, and each of �tl; l ¼ 1; 2 is a Gaussian random variable whose mean

0 and variance 12.

Values of coefficients in constraints are shown in Table 1, and values of �d1
l ;

�d2
l ; bl

and cl; l ¼ 1; 2 are shown in Table 2.

In this numerical experiment, the hypothetical decision makers determine the

permissible levels h1 = 0.80, h2 = 0.80 and the degree of realization of the problem

a = 0.6. In step 1, after transforming Eq. 13 into Eq. 14 by the variable

transformation method, Eq. 14 is solved by the simplex method. For the obtained

value of ðxT
1½1�; x

T
2½1�Þ

T ¼ ð10:00; 0:00; 0:00; 28:00; 0:00; 40:00ÞT , let W :¼
fðxT

1½1�; x
T
2½1�Þ

Tg;U :¼ ;. In step 2, after transforming Eq. 15 into Eq. 16 by the

variable transformation method, we solve Eq. 16 by the simplex method in order to

obtain the rational reaction for x1½1�. Since the optimal solution to Eq. 16 w2½1�=u½1� ¼
ð0:00; 0:00; 28:00ÞT is not equal to x2½1� ¼ ð28:00; 0:00; 40:00ÞT , the current extreme
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point ðxT
1½1�; x

T
2½1�Þ

T
is not a P-a-Stackelberg solution. In step 3, we enumerate

feasible extreme points ðxT
1 ; x

T
2 Þ

T
which are adjacent to ðxT

1½1�; x
T
2½1�Þ

T
and satisfy

ZP
1aðx1; x2Þ� ZP

1aðx1½1�; x2½1�Þ, and make W[1]. Then, let U :¼ U [ ðxT
1½1�; x

T
2½1�Þ

T
and

W :¼ ðW [W½1�ÞnU. In step 4, we find a feasible extreme point ðxT
1 ; x

T
2 Þ

T
in

W whose ZP
1aðx1; x2Þ is the greatest and let it be the next extreme point

ðxT
1½iþ1�; x

T
2½iþ1�Þ

T
. Then, let i :¼ i ?1 and return to step 2. By repeating the

procedures, we can obtain a P-a-Stackelberg solution

ðxT
1;Pa; x

T
2;PaÞ

T ¼ ð12:50; 0:00; 0:00; 0:00; 0:00; 30:00ÞT :

From the viewpoint of maximizing ZP
laðx1; x2Þ, it is desirable for DM1 to give larger

values to decision variables xjk that the corresponding d1
1jk; d

2
1jk are small and the

value of b1jk is large. On the other hand, it is desirable for DM2 to give larger values

to decision variables x2k that the corresponding d1
2jk; d

2
2jk are small and the value of

b2jk is large. With respect to this example, ðxT
1;Pa; x

T
2;PaÞ

T
becomes Stackelberg

equilibrium as a result of strategy selection by DM1 and by DM2 mentioned above.

6 Conclusion

In this paper, computational methods for obtaining Stackelberg solutions for bilevel

linear programming problems involving fuzzy random variable coefficients have

Table 1 Values of coefficients in constraints

x11 x12 x13 x21 x22 x23 b

a1 -2 3 1 2 3 3 65

a2 4 4 2 3 2 1 80

a3 2 4 3 3 2 2 105

a4 -3 -2 -2 -4 -1 -1 -70

Table 2 Values of d1
l ; d

2
l ; bl and cl

x11 x12 x13 x21 x22 x23

d1
1

-5.0 -3.0 -3.0 -4.0 -4.0 -2.0

d1
2

-1.0 -2.0 -2.0 -3.0 -3.0 -4.0

d2
1

2.0 1.0 2.0 3.0 2.0 1.0

d2
2

1.0 1.0 1.0 2.0 2.0 2.0

b1 0.3 0.4 0.2 0.5 0.2 0.4

b2 0.3 0.1 0.2 0.3 0.5 0.3

c1 0.3 0.2 0.6 0.2 0.7 0.4

c2 0.4 0.2 0.3 0.5 0.2 0.8
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been presented. To deal with the formulated bilevel linear programming problem

involving fuzzy random variables, a-level sets of fuzzy random variables were

introduced and an a-stochastic bilevel linear programming problem was defined for

guaranteeing the degree of realization of the problem. Taking into account

vagueness of judgments of decision makers, fuzzy goals were introduced and the

a-stochastic bilevel linear programming problem has been transformed into the

problem to maximize the satisfaction degree for each fuzzy goal. Through the use of

probability maximization in stochastic programming, the transformed stochastic

bilevel programming problem was reduced to a deterministic bilevel programming

problem. For the transformed problem, an extended concept of Stackelberg solution

was introduced and a computational method was also presented. It is significant to

note here that the extended Stackelberg solution can be obtained through the

combined use of the variable transformation method and the Kth best algorithm for

bilevel linear programming problems. To illustrate the proposed computational

method, a numerical example for obtaining the extended Stackelberg solution was

provided. As one of future works, the proposed method may be extended by

considering not only fuzzy random objective functions but also fuzzy random

constraints. Extensions to other stochastic programming models will be considered

elsewhere. Further considerations from the view point of fuzzy random cooperative

bilevel programming will be required in the near future.
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